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QUANTUM COMPUTING WINKS AT STATISTICS. IS IT A GOOD MATCH? 

 

by Adriano Baldeschi* and Giuseppe Bruno* 

 

Abstract 

Quantum computers are widely expected to foster innovation in many fields. Statistical 
modeling surely has an unquenchable thirst for computing cycles, no matter where they come 
from. Quantum computing holds great potential to push ahead of its current limits in 
computational statistics. This paper explores the present suitability of a quantum machine to 
carry out a basic statistical estimation method, such as the maximum likelihood (ML) estimation 
for binary discrimination, specifically the Logit model. In this adventure, we encountered 
different modelling tasks required to map our original mathematical model into a form more 
suitable to be dealt with by a quantum computer, such as the D-Wave quantum annealer. This 
platform is specialized for solving Quadratic Unconstrained Binary Optimization (QUBO) 
problems. Our results show how to leverage these types of computing resources, which appear 
to be emerging as the main players. The performances and accuracy achieved in this example 
look quite promising. 
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1 Introduction

Quantum computing is a field at the intersection of physics, computer science,
engineering and mathematics leveraging the capabilities of quantum mechanics
(see for examples [15], [11] and [4]).

Quantum computers work in a fundamentally different fashion than classi-
cal computers (see [5] and [19]). By leveraging the laws of quantum mechanics,
they promise significant speed-ups for particular class of problems. There are
many potential applications which include machine learning, new drugs discov-
ery, cryptography simulation (for example see [21], [13] and [3]). This opens up
numerous opportunities for the banking industry to harness the advantages of
the new technology (see [20]). Computers that use quantum mechanics as their
foundation are known as quantum computers. In contrast to traditional com-
puters, which only allow bits to be in one given state at each time: either 0 or 1,
quantum computers do computation using devices called qubits which may be
simultaneously in several states. Due to this characteristic, quantum computers
are able to tackle some challenging mathematical problems by reducing their
time complexity from exponential to polynomial.

This possibility arises because quantum computers leverage devices called
qubits: a two-states system which presents itself a blend of superposition of the
classical binary states (see [10]).

Unlike conventional computers, quantum machines cannot make use of tran-
sistors, logic gates, or integrated circuits. Instead, they utilize qubits engineered
from elementary particles such as atoms, electrons, photons, and ions, along
with information about their spins and states. In theory, quantum comput-
ers show more computing power because their qubits can be overlapped and
operated concurrently.

In this paper we focus our attention on a specific kind of quantum com-
puter, known as the D-Wave1 quantum annealer. These kinds of machines are
not geared for general purpose computation but they are quite good at solv-
ing particular optimization problems see ([1]). Quantum annealing processors
naturally return low-energy solutions2.

Physics proves beneficial in addressing optimization by casting it as a prob-
lem of energy minimization. A basic principle in physics asserts that objects
naturally gravitate towards a state of minimum energy. Whether we have ob-
jects descending slopes or hot substances gradually cooling. Quantum annealing
harnesses quantum physics to identify low-energy states in a problem, thereby
determining the optimal or nearly optimal arrangement of elements (cfr. [8]).
The main advantage of the quantum annealer is its ability to solve combinato-
rial optimization problems much faster than classical computers. This kinds of
optimization problems are common in many fields, including finance, logistics,
and machine learning, and they often involve finding the best solution out of a
large number of possibilities. The reason for focusing on the D-Wave platform

1D-Wave is a private company that specializes in quantum computing.
2In Economics these might be defined as minimum cost solutions
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is two-fold. Firstly, running quantum computation with the D-Wave is much
simpler to execute and understand compared to algorithms that operate on
universal quantum computers. The second advantage comes from the architec-
ture. Gate model quantum computers typically use a circuit-based architecture,
where qubits are connected together in a such way that allows them to carry
on any kinds of computations. Quantum annealers, on the other hand, em-
ploy a lattice-based architecture, where qubits interact with a limited number
of the other nearest qubits. This makes quantum annealers simpler and easier
to control than gate model quantum computers.

This paper shows the capabilities of a D-Wave quantum machine in finding
the optimal parameters to maximize the log-likelihood function of a logit model.
The achieved accuracy is on par with that of conventional algorithms. For this
goal, we generate synthetic data following a logistic distribution and then trans-
form the problem of maximizing log-likelihood into a Quadratic Unconstrained
Binary Optimization (QUBO) problem (see [12]).

The rest of this paper is organized as shown in the following. In section 2 we
provide the main taxonomy for the quantum computing. In section 3 we provide
the definition of a QUBO problem. In section 4 we give a brief introduction
to the D-Wave quantum computers. In section 5 we map the ML problem of
a logit model with two parameters into a QUBO. In section 6 we generate the
synthetic data following a logistic distribution. In section 7 we show how a D-
Wave machine is capable of finding the best parameters for a logit model with
one variable and two parameters. In section 8 we compare the results with the
ones from classical algorithms. Finally in section 9 we draw some concluding
remarks.

2 Main Quantum computing taxonomy

Although the empirical and theoretical efforts of the last three decades, quantum
computing is still in its infancy. Today there are quite a few technical challenges
that need to be overcome before it becomes a mainstream technology.

These challenges include improving the stability and scalability of quan-
tum hardware, developing better algorithms and error-mitigation and correction
techniques, and finding new applications that can take advantage of quantum
computing’s unique properties 3.

We do have essentially two different flavors of Quantum computing plat-
forms: gate based and quantum annealer. While both kinds of platforms present
the potential to solve given particular problems much faster than classical com-
puters, they use different approaches and are best suited for different types of
tasks.

These two models are based on different principles and each one has its own
strengths and weaknesses.

3Quantum error correction entails the detection and correction of errors occurring during
computation, while error mitigation provides techniques for compensating the negative effects
of these errors.
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A gate-based quantum computer implements a universal general purpose
platform employing quantum phenomena such as superposition and entangle-
ment to perform any kinds of computations. On the other hand, the quan-
tum annealers are a different class of computers designed specifically for finding
the minimum of particular quadratic functions. These devices excel at quickly
searching a solution space to find the optimal values. The physical architecture
of quantum annealers, such as D-Wave’s, employs a network of qubits and cou-
plers among them arranged to efficiently map optimization problems onto the
quantum hardware4. This layout allows for the effective translation of optimiza-
tion problems into Hamiltonian functions and their subsequent minimization5.

The original optimization problem is encoded into the energy levels of a
physical system which is left evolving towards the global minimum of the energy
landscape. The most common physical implementation of quantum annealers
is using superconducting circuits6. The system is typically initialized in the
ground state of a simple Hamiltonian. Then it slowly 7 evolves cooling down
towards the ground state of the final Hamiltonian, which encodes the solution
to the problem. A quick grasp of the process can be obtained from figure 1):

Quantum annealing algorithms are based on the adiabatic theorem (see [7]),
which states that if the Hamiltonian time evolution is slow enough, the system
will remain in the ground state8 throughout the process. A gate based quan-
tum machine is geared towards the universal computing, which means it can
perform any quantum operation represented by a sequence of quantum gates.
This makes the gate model quantum computers very flexible and powerful, but
also more complex and prone to mistakes. A quantum annealer is a specialized
infrastructure aimed at finding the minimum (or maximum) of a function, which
represents the objective of our optimization problem. Another difference per-
taining the two platforms is their architecture. Gate model quantum computers
typically use a circuit-based architecture, where qubits are connected together
in a way that allows them to perform arbitrary quantum operations. Quantum
annealers, on the other hand, use a lattice-based architecture, where qubits
are arranged in a lattice and they directly interact only with their neighbor-
hood. This makes quantum annealers simpler and easier to control than their
gate-based model counterpart, but also limits their flexibility and the types of
problems they can solve.

In terms of performance, gate model quantum computers are generally con-
sidered to be more powerful than quantum annealers. This is because they can
perform a wider range of quantum operations, which allows them to tackle a

4D-Wave employs superconducting qubits as Google, IBM and Rigetti
5Hamiltonian functions are also found in dynamic economics. For example when solving

for max
w(t),c(t)

∫∞
0 exp−ρt · c(t)

1−θ

1−θ
dt s.t. ẇ(t) = w(t) − c(t). The Hamiltonian is given by

H = exp−ρt · c(t)
1−θ

1−θ
+ λ(t) · [w(t)− c(t)] where λ(t) is the Lagrange multiplier for the law of

motion on w(t)
6Superconductivity is a phenomenon shown by a whole range of materials, that under

certain conditions, conduct electrical current without energy dissipation.
7here the speed of the evolution heavily depends on the nature of the hardware.
8The ground state refers to the minimal energy of the system.
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Figure 1: At high temperatures the objects are in a liquid state (left). We can
reach the solid state through two main avenues: hardening and annealing. In the
hardening process, the material reaches a solid state with non-minimal energy
(top right).The atomic structure lacks any symmetry. In the annealing process,
the material reaches also a solid state but this time the atoms are symmetrically
organized (bottom right). Picture credit [9].

broader range of problems. However, quantum annealers have the advantage of
being able to solve certain kinds of combinatorial optimization problems much
faster than classical computers, even if they are less powerful than gate model
quantum computers.

3 Problem formulation

In many different scientific research areas such as optimization (see e.g.[18]),
physics (see, e.g. [2] and combinatorics (see, [14]) we are confronted with QUBO
problems. These problems have a wide range of applications. Data science,
logistics (quadratic assignment problem), telecommunications (for example fre-
quency assignment problem), portfolio optimization problem, etc. are some
examples where solving the underlying quadratic {0/1} problems is essential.
Formally, a QUBO model or problem is defined as an optimization consisting in
looking for the the binary vector q with nq components which allow to minimize
the following objective function:

min
qi∈{0,1}

E =
∑
i

aiqi +
∑
i<j

bijqi · qj , (1)

where ai and bij are real numbers, and qi ∈ {0, 1} are the binary decision
variables which we have control on. The goal of the problem is to find the
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values of qi that minimize equation 1. The computational complexity of a
QUBO problem grows exponentially with the number of binary variables as
2nq . Therefore it quickly becomes unfeasible to find the exact solution in a
classical machine when nq ≥ 30 .

The D-Wave quantum machine leverages the physical phenomenon of quan-
tum annealing to solve any sorts of problems that can be mapped into a QUBO.
Equation 1 may be written in a compact way as:

min
q∈{0,1}

E = q′Qx + c′ · q (2)

where q is the nq dimensional vector composed of the qi values, Q ∈ Rnq×nq is
a symmetric matrix and c ∈ Rn

q . Since q2i = qi for every i ∈ {1, . . . , n} one can
rewrite equation 2 as q′Qq + c′ · x = q′(Q + diag(c))x where diag(c) is the
diagonal matrix whose diagonal elements are given by the entries of the vector
c.

The matrix Q+ diag(c) is upper triangular matrix containing the ai values
along the main diagonal and the bij values in the upper triangle. A QUBO
expressed as in equation 2 is the kinds of problems that the D-Wave machine is
suitable to solve.

4 The D-Wave quantum machine

A quantum computer is an infrastructure harnessing the characteristics of el-
ementary particles to conduct linear algebra operations in the complex plane
without the need to store numerical values in memory and perform compu-
tational operations on them. Optimization problems involve the exploration
of numerous potential combinations to identify the most favorable outcome.
These problems encompass various scenarios, such as resolving scheduling prob-
lems like deciding which truck to use for shipping a package or determining the
most efficient route for a traveling salesperson to visit multiple cities.

Physics provides a valuable approach to address optimization problems by
casting them as challenges of energy minimization. A fundamental principle in
physics establishes that systems tend to gravitate toward their state of minimal
energy. This rule applies to everyday phenomena, such as objects descending
slopes or hot substances gradually cooling. Quantum physics also adheres to
this principle, and quantum annealing leverages this principles to determine
low-energy states in a problem, thereby revealing the optimal or nearly optimal
combination of elements.

While a traditional bit can only represent values as 0 or 1, a qubit is defined
as a system existing in the following state:

|q⟩ = c0 |0⟩+ c1 |1⟩ (3)

where |0⟩ and |1⟩ are two orthonormal vectors in the bra/ket notation 9

9The ket or Dirac notations is useful for linear algebra and linear operators on complex
vector spaces.
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forming a base of a normed vector space. Here c0 and c1 are complex numbers
satisfying the probability normalization condition |c0|2 + |c1|2 = 1. One of the
special characteristics of a qubit consists in the possibility to live simultaneously
as a linear combination of the vectors |0⟩ and |1⟩. This connection between the
qubit and the traditional bit involves assigning numerical values to the pure
states |0⟩ and |1⟩. These values can theoretically vary, but the most common
choices are from the sets {−1, 1} or {0, 1} 10. While the numerical values of c0
and c1 are determined before the qubit is observed, upon observation, the state
of the qubit q will collapse into either 0 or 1 with probabilities P (0) = |c0|2 and
P (1) = |c1|2. While other properties of quantum mechanics are necessary for
various quantum computing algorithms, the superposition property is the most
important requirement for running a quantum annealing.

Problems described by equation 1) are often solved using methods like sim-
ulated annealing (see for example [16]), which allow the exploration both uphill
and downhill on the energy landscape to prevent getting stuck in local optimal
solutions by employing a stochastic search. In the worst-case scenario, however,
these methods may still necessitate the examination of all 2nq possible combina-
tions of qubit state to identify the lowest-energy solution. Quantum annealing,
in theory, offers a way to directly estimate the minimum energy state without
the need to explore the entire energy landscape. By maintaining the quantum
coherence of the qubit, expressed as a linear combination of the 0 and 1 basis
states in equation 3, quantum tunneling becomes possible. Quantum tunneling
allows the solution to traverse directly through energy barriers between local
minima without the ’retreat’ that a method like simulated annealing typically
involves.

Once the minimization problem has been mathematically formalized there is
the problem of mapping the binary variables onto the physical qubit available.
One of the hardest technical challenge is the process of embedding the problem
into an actual qubit configuration. While the model has been described as a
theoretical graph of qubits, this abstract graph needs to be mapped onto the
physical hardware of the D-Wave quantum computer. The hardware graph
configurations chosen by D-Wave are known as the Chimera and the Pegasus
structure. The two graphs are sparsely connected. Though, in the Chimera
graph each qubit can be linked to other 6 qubits whereas in the Pegasus graph
each qubit can reach up to 15 qubits. For example, the Chimera structure
prevents the direct solution of a simple three-qubit system as there is not a set
of three qubits that are all directly connected to each other. To address this,
one has to find a way to embed the problem graph onto the Chimera structure
to find the minimum energy of the system. This entails linking multiple qubits
together in a chain and treating that chain as if it were a single qubit.

Executing a program on the D-Wave quantum computer involves the follow-
ing steps:

1. Formulate the problem in the form of a QUBO, as shown in equation 1.

10It is straightforward to move from the former to the latter representation with the following
affine transformation xb = 1

2
· (xa + 1)
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Figure 2: Graphs of Chimera and Pegasus topologies, where nodes and edges
represent qubits and couplers, respectively. The picture has been taken from
the article [6]).

2. Map the problem’s QUBO onto the Chimera or the Pegasus graph. Quite
often this step typically requires a conversion from the QUBO into the
Ising model which consists going from {0, 1} to {−1, 1}.This conversion
can be performed manually or by employing the automated tools provided
by D-Wave Ocean software kit 11.

3. Specify the parameters for the annealing process, including factors like the
anneal duration or other advanced processing options.

4. Execute the quantum annealing process and collect the results.

5. Reverse the mapping of results from the Chimera or the Pegasus structure
to derive a solution and energy for each anneal read. The analysis might
involve selecting the solution with the lowest energy or conducting further
assessments across all the obtained solutions.

The output of the annealing process using D-Wave quantum computers pro-
vides a set of solutions to a given problem, each associated with a specific energy
level.

5 Logit model Estimation: a QUBO formulation

In this section we show how to convert the log-likelihood function of a Logit
model on a QUBO problem. To keep the calculations within a tractable level,
here we consider a logit model with just one feature and two parameters.

11Ocean is a suite of open source Python tools.
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The logistic distribution and the log-likelihood function for the aforemen-
tioned model are respectively:

P (yd = 1, a, b|xd) =
1

1 + e−a−bxd
, (4)

and
l(a, b|xd) = − log(1 + ea+bxd) + yd(a+ bxd) (5)

respectively, where xd ∈ (x1, x1, ..., xD) and yd ∈ {0, 1} are the data points with
sample size D and the labels, respectively. The second order Taylor expansion
around (a, b) = (0, 0) of l(a, b|xd), neglecting the constant terms which are
irrelevant in the minimization process, is:

l(a, b|xd) ≈ a

(
yd −

1

2

)
+ b

(
xdyd −

xd

2

)
− ab

(xd

4

)
− a2

8
− b2x2

d

8
. (6)

To simplify the computations, here we consider the expansion around the point
(a, b) = (0, 0). In order to be able to take advantage of the D-Wave platform, the
log-likelihood function must be expressed in the form of equation 2. Therefore
we transform a, b in binary as :

a =

nq∑
ia=1

2pia · qia b =

nq∑
ib=1

2pibqib, (7)

where pia and pib are the powers of 2 to be used for the binary representation
of each parameter, nq is the number of the employed qubits and qi ∈ {0, 1} are
the binary decision variable that we want to find in the optimization process.
Note that equation 7 implies a > 0 and b > 0.

By plugging the parameters a and b from 7 into equation 5 we obtain:

l(a, b) =
∑
i

Φiqi +
∑
j>i

Θijqiqj , (8)

where

Φi =

{∑
d 2

pia
(
yd − 1

2

)
i qubits of a∑

d 2
pib

(
xdyd − xd

2

)
i qubits of b

(9)

and

Θij =


∑

d −
1
82

pia+pja i,j qubits of a∑
d −2pib+pjb

x2
d

8 i,j qubits of b∑
d −2pia+pjb xd

4 i,j qubits of a and b

(10)

Here it is important to remember the fact that q2i = qi. This equivalence
show us that equation 8 can easily be mapped as in equation 2 for computational
purposes. We should also point that the D-Wave platform finds the minimum
of a cost function and hence we have to multiply Φi and Θij by -1.
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6 Data simulation

In section 3 we mapped the bi-dimensional logit model into a QUBO. We now
want to test our mathematical formulation of the model with some synthetic
data. The procedure to generate data from a logit distribution with one feature
and two parameters is trivial:

1. We draw n random points from a uniform distribution with lower bound
0 and upper bound 1. These points (X) are going to be the features.

2. We insert X into equation 4 to obtain the probabilities (p) for the extrac-
tion.

3. We finally draw n points from a Bernoulli random variable with probabil-
ities p.

We simulate 106 points from equation 4 with a = 0.3 and b = 0.1. The
Python code to extract the data is provided in appendix A. We then chose the
values of pia and pib to expand in series a and b, respectively and estimate and
Θij and Φi.

Finding the minimum/maximum of equation 8 can be achieved by finding
the whole sets of dispositions. It is clear that the whole number of dispositions
can not be found when nq is large since the computational complexity goes as
22nq . In Figure 3 we evaluate the cost function for each possible disposition
for nq equal to 3, 5, 7 and 9. The figure reveals that the cost function grows
approximately as power-law.

The objective of a good algorithm is to find the disposition associated the
the minimum value of the cost function.

7 D-Wave implementation and results

We employed the D-Wave Python library to solve the QUBO problem that rep-
resents the log-likelihood maximization for the logistic regression model. This
library provides access to quantum annealing hardware, which explores the so-
lution space efficiently to find optimal binary assignments.

After configuring the QUBO problem parameters and submitting it to the
quantum annealer, we performed quantum annealing runs to identify the best
binary assignment that corresponds to the MLE of the logistic regression model.

As discussed in section 6 we solve the QUBO problem for nq equal to 3, 5,
7 and 9. The results obtained by the D-Wave library are summarized in table
1 and we compare the results with the optimal values in table 2. The D-Wave
Python library successfully found the best solution to our QUBO problem at
nq equal to 3, 5 and 9. When nq is equal to 9 the values of a and b are 0.2968
and 0.1013, respectively which give a relative error of around 1% (a = 0.3 and
b = 0.1).

In this section, we presented our approach to address a log-likelihood prob-
lem for a logit model by mapping it to a QUBO problem and solving it using the
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Figure 3: Logarithm of cost function (see equation 8) vs disposition number.
We added 20000 to the cost function in order to make the cost function posi-
tive for each set of disposition and hence being able to take the logarithm. We
evaluate the cost function for each possible disposition of qa and qb. Upper left
panel: we chose pa = pb = [−1.,−4.5,−8] therefore there are 64 possible dis-
positions. Upper right panel: we chose pa = pb = [−1.,−2.75,−4.5− 6.25,−8.]
therefore there are 1024 possible dispositions. Lower left panel: we chose
pa = pb = [−1.,−2.17,−3.334,−4.5,−5.667,−6.834 − 8.] therefore there
are 16384 possible dispositions. Lower right panel: we chose pa = pb =
[1.,−1.875,−2.75,−3.625,−4.5,−5.375,−6.25,−7.125 − 8.] therefore there are
262144 possible dispositions. We also report the best linear fit of the data. Note
that that the best linear fit is steeper when nq is smaller.
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nq a b best qa best qb Cost function
3 0.0481 0.5000 [0 1 1] [1 0 0] -13301.547
5 0.2099 0.2099 [0 1 1 1 1] [0 1 1 1 1] -14993.145
7 0.3504 0.0481 [0 1 1 0 1 1 0] [0 0 0 1 0 0 1] -15128.433
9 0.2968 0.1013 [0 1 0 0 0 0 1 1 1] [0 0 0 1 0 0 1 1 0] -15247.977

Table 1: Best Parameter values found Using the D-Wave Library for a QUBO
Problem. These values should be compared with the optimal values presented
in table 2

nq a b best qa best qb Cost function
3 0.0481 0.5000 [0 1 1] [1 0 0] -13301.547
5 0.2099 0.2099 [0 1 1 1 1] [0 1 1 1 1] -14993.145
7 0.2954 0.1031 [0 1 0 1 1 1 0] [0 0 1 0 0 0 1] -15247.918
9 0.2968 0.1013 [0 1 0 0 0 0 1 1 1] [0 0 0 1 0 0 1 1 0] -15247.977

Table 2: Optimal QUBO problem parameters were determined by evaluating
the cost function for every possible arrangement.

D-Wave Python library. Our results show the potential of quantum annealing
as a powerful tool for optimization in statistical modeling, offering a promising
avenue for efficient parameter estimation in logistic regression.

8 A comparison with classical algorithms

In this section, we undertake a comprehensive comparison between the solutions
of a (QUBO) problems obtained through D-Wave quantum annealing and clas-
sical optimization libraries like GEKKO which is an open-source optimization
tool designed for solving complex optimization problems in various domains, in-
cluding engineering, science, and finance. It offers an intuitive and user-friendly
interface to define and solve optimization problems, including QUBO problems.
GEKKO provides the capability to formulate and solve QUBO problems, which
are a class of combinatorial optimization problems. QUBO problems involve
binary variables and quadratic objective functions. These problems are en-
countered in various real-world applications, such as logistics, scheduling, and
machine learning. GEKKO is written in Python, which makes it easy to in-
tegrate into existing Python-based workflows and applications. It leverages
Python’s flexibility and extensibility to facilitate problem formulation and so-
lution. GEKKO is equipped with an efficient solver for QUBO problems. It
leverages optimization techniques to find the optimal binary assignment that
minimizes or maximizes the quadratic objective function. Our aim is to assess
the performance and effectiveness of quantum annealing, as offered by D-Wave,
in contrast to traditional optimization techniques available in classical libraries.
The results obtained with the GEKKO library to our QUBO problem are shown
in table 3. The results obtained from D-Wave’s quantum computing approach

11



nq a b best qa best qb Cost function
3 0.0481 0.5000 [0 1 1] [1 0 0] -13301.547
5 0.2099 0.1928 [0 1 1 1 1] [0 1 1 0 0] -14948.109
7 0.3504 0.0569 [0 1 1 0 1 1 0] [0 0 0 1 0 1 1] -15106.367
9 0.2798 0.1727 [0 1 0 0 0 0 0 1 0] [0 0 1 0 0 1 0 0 0] -15157.052

Table 3: Best Parameter values found Using the GEKKo Library for a QUBO
Problem. These values should be compared with the values obtained with the
D-Wave library in table 1

outperform the results obtained from Gekko’s library. This implies that for
QUBO problems involving a small number of variables, quantum annealing of-
fers a viable solution compared to classical computing platform libraries.

We also employe the scikit-learn library to address a logistic regression (logit)
problem and obtain parameter values a=0.2982 and b=0.10687, which are com-
parable with the values we obtained using the D-Wave library when nq = 9. The
scikit-learn library solves the log-likelihood problem directly through numerical
methods.

9 Conclusions

This study successfully addressed the solution of maximum likelihood problem
for a logit model by mapping it to a Quadratic Unconstrained Binary Opti-
mization (QUBO) problem and solving it using the D-Wave quantum annealer.
The utilization of quantum annealing technology provided a novel and efficient
approach to finding optimal parameter values. As of today, the size of optimiza-
tion problems approachable with current annealer technology is limited by the
number of qubits and the available connectivity among them. Implementing
terms that involve the product of non-adjacent qubits consumes more qubits
to represent a single logical variable. Therefore, the current hardware allows
solving problems with up to approximately 10 to 15 variables [17].

Furthermore, we conducted a comparative analysis by applying the GEKKO
optimization library, a classical solver, to the same problem instances. Our
findings revealed that the D-Wave quantum annealer outperformed GEKKO
in terms of solution quality. The results showed the superiority of D-Wave’s
quantum annealing approach for solving QUBO-based likelihood problems. We
also utilize the scikit-learn library to address a logistic regression (logit) problem
and obtaining comparable results with the values we obtained using the D-Wave
library.

This research emphasizes the potential of quantum annealing in the realm of
optimization and its application to complex statistical models. While GEKKO
remains a valuable tool for various optimization tasks, our study highlights the
advantages of quantum computing for specific problem domains, offering effec-
tive solutions. These results encourage further exploration of quantum annealing
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for challenging optimization problems in the future.
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Figure 4: Python function to produce synthetic data following a logistic distri-
bution with one feature and two parameters.

A Python implementation

In this section, we showcase the key Python functions that underpin our work.
These functions serve as the backbone of our analysis and enable us 1) to simu-
late the synthetic data following the logistic distribution (see fig 4), 2) to create
the parameters Φ and Θ (see fig 5) and 3) to map Φ and Θ in an appropriate
format for the D-Wave machine (see fig 6).
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Figure 5: Python function to generate Φ and Θ as in equations 9. and 10.
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Figure 6: Python function to map Φ and Θ in an appropriate format for the
D-wave machine.
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