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Abstract 

Since 2016, insurance corporations have been reporting granular asset data in Solvency 
II templates on a quarterly basis. Assets are uniquely identified by codes that must be kept stable 
and consistent over time; nevertheless, due to reporting errors, unexpected changes in these 
codes may occur, leading to inconsistencies when compiling insurance statistics. The paper 
addresses this issue as a statistical matching problem and proposes a supervised classification 
approach to detect such anomalies. Test results show the potential benefits of machine learning 
techniques to data quality management processes, specifically of a selected random forest 
model for supervised binary classification, and the efficiency gains arising from automation. 
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1. Introduction and motivation*

In the process of collecting, processing and disseminating statistics, an effective and efficient data quality 

management (DQM) is of paramount importance for central banks in order to ensure high data quality and to 

limit the burden of ex-post verification on reporters. The automation and precision of DQM processes are 

becoming increasingly important as databases become larger and more granular.  

In the statistical literature, machine learning models are emerging as important tools to approach DQM on very 

granular data in an automated way, since they generally outperform traditional modelling approaches in 

prediction tasks (Chakraborty et al., 2017). Focusing on central bank statistics, the Bank of Italy has already 

successfully applied several machine learning methods to specific DQM processes (see Buzzi et al., 2020, 

Cusano et al., 2021, Zambuto et al., 2021, Maddaloni et al., 2022) and further research in this field is ongoing.  

This paper proposes a machine learning approach in a statistical matching framework to solve - in an accurate 

and efficient automated way - a DQM issue on insurance granular asset data and to check for anomalies in 

identification code (ID) reporting.  

Specifically, insurance asset IDs are expected to remain unique and consistent over time, i.e. the IDs assigned 

by insurance corporations (ICs) are not expected to change throughout the reporting history of the assets. 

However, unexpected changes in the ID for the same asset may occur between two consecutive reporting dates. 

This is either due to updates to the requirements or, more commonly, to reporting errors. Either way, such 

changes have major implications for the work of supervisory authorities and central banks, since they may be 

misinterpreted as a signal that a previously reported asset was removed from the IC’s portfolio and that a new 

asset was added to the portfolio when, in fact, this is not the case. This reporting behaviour raises DQM issues 

when analysing the time series of assets and compiling the IC statistics that are then disseminated. 

This work stems from an ESCB joint project within the “network of experts on machine learning”, established 

by the ECB’s Statistical Committee, and is an extension of a previous paper by the same authors (La Serra, 

Svezia, 2022)2: the main innovations of this paper are the assessment of the temporal robustness of the 

proposed methodology, a deeper performance analysis for different asset types, and a first validation with the 

reporting agents during the production rounds.   

The paper is structured as follows. Section 2 describes the data from which the dataset used in the analysis is 

derived, presenting its structure and details on the Italian case. Section 3 proposes a record linkage approach 

based on machine learning models for classification; it assesses different models for the Italian dataset, selects 

a robust and high-performance random forest, and presents the results. Section 4 illustrates the test results for 

* The views expressed herein are those of the authors and do not necessarily reflect those of the Bank of Italy.
2 This paper benefits from the suggestions and remarks received during the presentation of the previous work by the same

authors, held at the 11th biennal conference of the Irving Fisher Committee of the Bank for International Settlements

(Basel, 2022), where it was awarded as the ‘best paper by a young statistician’.
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all types of assets and for specific asset types. Finally, the main conclusions summarize the advantages of the 

proposed approach and open up new avenues for future research.  

2. Data description

Since 2016 European insurance corporations (ICs) report to their national supervisory authorities3 and the 

national central banks quarterly data on their individual balance sheets. The data is organised in templates 

according to the Solvency II Directive4. They provide very granular and highly valuable information especially 

with template S.06.02 which contains asset-by-asset information on the single holdings of insurance 

corporations, showing the investments in debt securities, equity and investment fund shares, as well as loans, 

deposits and properties. 

Template S.06.02 allows, on the one hand, supervisory authorities to perform a comprehensive and detailed 

risk assessment on insurance undertakings and, on the other, central banks to compile statistics about the 

insurance sector, useful to analyse its interconnections within the financial system and to gather knowledge on 

households wealth and income from insurance policies. The supervisory template is enriched with specific 

information for the statistical purposes. 

More in detail, template S.06.02 comprises quantitative information on each position held, such as the market 

and nominal value, quantity and accrued interest of the asset, along with qualitative features, which include – 

wherever applicable – the type of insurance undertaking, the type of asset, the issuer and/or counterparty sector, 

the issuer and/or counterparty area, the currency, the issue and maturity dates, the name of the issuer, the 

description of the asset.  

Each asset in the template is reported with an identification code (ID). Assets’ IDs are standardized in most 

cases (e.g. ISIN codes for securities), although in some cases insurance corporations can report their assets 

with  internally assigned codes (CAU, Code Attributed by the Undertaking).  

The dataset used in the paper consists of the S.06.02 template reported by Italian ICs between 2019 and 2022 

and it is also integrated with attributes originated from the Centralised Securities Database (CSDB) - the ESCB 

harmonised security registry. In detail, the population of Italian ICs is composed of around 100 entities; overall, 

reported data comprise almost 30 reporting quarters and around 70,000 assets at each period. Such data is 

collected by IVASS, which releases it to Banca d’Italia in order to compile ESCB statistics on insurance sector. 

On average, in each quarter, there is a turnover of 8% in number and 4% in market value share for the reported 

assets. In line with the reporting instructions, assets’ IDs that are only reported in one of two adjacent quarters 

should consist in new purchased or sold assets. However, these also include the cases of erroneous changes in 

3 According to the Implementing Technical Standards (ITS)  drawn by EIOPA: Commission Implementing Regulation 

(EU) 2015/2450 of 2 December 2015 and following amendments, laying down implementing technical standards with 

regard to the templates for the submission of information to the supervisory authorities, according to Directive 

2009/138/EC of the European Parliament and of the Council. 
4 Directive 2009/138/EC of the European Parliament and of the Council of 25 November 2009 on the taking-up and 

pursuit of the business of Insurance and Reinsurance. 
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the codes, whose exact percentage in the data is unknown. Therefore, 8% can be taken as the maximum 

expected percentage of cases of anomaly, which highlights how, even having a limited impact on the general 

data quality, errors in IDs cannot be neglected. 

3. The proposed machine learning approach

In this section we illustrate the literature regarding record linkage, the preprocessing of insurance data and the 

training, validation and testing of the machine learning models.  

3.1 Record linkage in literature 

Statistical matching techniques, as described in D'Orazio et al. (2006), have the objective to draw information 

from two (or more) different datasets by linking them with respect to some common observed variables. Such 

techniques were originally proposed with the aim of data integration, i.e. to link two (or more) datasets coming 

from independent surveys and build a richer dataset containing information from both (Okner, 1972). 

A specific case of statistical matching is record linkage, which is applied when the statistical units in two 

datasets are supposed to be at least partially overlapping (D'Orazio et al., 2006) and the objective of the analysis 

is to identify the list of common units between the two.  

The topic was first introduced and formalized by Fellegi et al. (1969) and a classical approach was then 

proposed by Jaro (1989); different methodologies for performing record linkage have later been proposed, 

such as mixture models (Larsen et al., 2001) and Bayesian approaches (Fortini et al., 2001; Tancredi et al., 

2011). More recent contributions to record linkage make use of machine learning techniques (Feigenbaum, 

2016, Rijpma et al., 2020).  

Since mid-Nineties, many applications of record linkage have concerned the issue of linking historical census 

data, as in the works of Ferrie (1996), Rosenwaike et al. (1998) and Ruggle (2002); more recent literature on 

record linkage concerns different real life issues, such as health issues (Mumme et al., 2022; Heidinger et al., 

2022), deduplication issues (Christen et al., 2011; Tancredi et al., 2020) and crime and fraud detection 

(Vatsalan et al., 2013), among others. 

The issue of unexpected changes of IDs in insurance data introduced above in Section 1 can be approached as 

a record linkage problem; the current work uses the more recent machine learning framework.  

3.2 Building the comparison matrix 

As described in Section 1, each asset in a quarter is identified by a unique ID and reported with a set of 

qualitative and quantitative features. If a change in an asset’s ID occurs, so that an insurance corporation reports 
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asset "a" in quarter 𝑸𝒕 and recodes it as "b" in quarter 𝑸𝒕+𝟏, it is expected for the reported features of the two

apparently different assets "a" and "b" to take the same values, since they actually refer to the same asset. 

Comparing the reported features of the two assets is therefore necessary to assess whether their difference in 

ID is in fact an anomaly, stemming from an unexpected change that has taken place.  

As in a record linkage framework, two datasets of assets, each referring to two adjacent reporting quarters 

{𝑸𝒕, 𝑸𝒕+𝟏}, can be compared to assess whether there are common units between the two datasets; each unit in

a dataset is an asset, identified by its ID and its reporting IC.   

Assets in the two quarters are compared with respect to the observed features and such comparisons are carried 

out using distance measures, one for each feature’s type, whether categorical (nominal or ordinal), numerical 

or textual. Distances are computed in order to build a comparison matrix, as reported in Table 1. Each row in 

the matrix refers to a pair of assets from the two adjacent quarters and each column refers to an observed 

feature, either nominal, ordinal, numerical or textual, for which a distance measure 𝒅(. ) is chosen. 

The 𝒅𝒇(𝒂, 𝒃) distance measure for two assets a and b on a feature f is a value calculated in [0,1], where the

endpoints of the interval respectively indicate minimum and maximum distance between the two observed 

values for feature f.  

Nominal variables, such as counterparty sector or issuer area, are compared with an overlap measure (Boriah 

et al., 2008), taking 0 as a measure of minimum distance if the reported values are equal and 1 otherwise; this 

measure produces binary distances (0 or 1), therefore it is only used for the comparison of nominal variables, 

where it is meaningful for couples of values to be only evaluated as equal or not.  

Ordinal variables, such as the categorized maturity date, are compared via the Manhattan distance, while 

numerical variables, as the assets’ market value, are compared using a Euclidean5 distance. 

Lastly, textual variables as the assets’ description are compared using a Levenshtein measure for strings; given 

two strings s1 and s2, the Levenshtein distance is defined as the total number of deletions, insertions, or 

substitutions required to transform s1 into s2 (Haldar et al., 2011).  

Each computed distance is normalized to take values in the interval [0,1]. This is done so that distances for 

different features can be compared and no measure is affected by extreme values in its distribution, either very 

large or very small. 

The final step of the construction of the comparison matrix consists in adding a further column, referred to as 

the “status” variable. This variable takes value “match” if the two codes are equal and “non-match” otherwise. 

In the example in Table 1, the couple (A, A) is a match, while (A, B) is a non-match. 

5 In the current work, only one numerical variable is used for comparison. Therefore, the Euclidean distance is equivalent 

to the Manhattan distance. 
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The columns in the comparison matrix are used as input (covariates) to supervised statistical models together 

with the status of each pair that is the binary target variable to be predicted with values “match” or “non-

match”. 

Table 1. Input to supervised models: the comparison matrix and the target variable 

From the Italian insurance database, assets from two subsequent reporting quarters can be considered; at each 

quarter, around 70,000 assets are reported. With the goal of detecting the changes in IDs that ICs have reported 

between couples of adjacent quarters, comparison is only made for pairs referring to the same ICs. Even with 

this constraint, the number of rows in the matrix, i.e. the number of compared pairs between two quarters, 

approaches on average 150 million. Given the size of the dataset, it would be impossible for data analysts to 

manually check all pairs of assets. 

3.2.1 Sampling the comparison matrix: training and test sets 

As presented in the Data Description section, in the Italian data there is a turnover of 8% in number for the 

reported assets, on average, in each quarter. Observing this, 8% can be taken as the maximum expected 

percentage of cases of anomalies, i.e. potential errors in the reporting codes. Based on prior experience on 

insurance data, we do not expect the true (and unknown) percentage to exceed such threshold. However, it 

must be ensured that the proposed methodology can perform outlier detection even with larger or smaller 

percentages of anomalies in the data. For this reason, we tested the approach for different percentages of 

unbabalance 𝑝 ranging from 1% (extreme unbalance) to 50% (perfect balance). 

The comparison matrix, built as described above, is afterwards split into a “training set” and a “test set”, 

respectively including 80% and 20% of the data. Moreover, both datasets are stratified with respect to the 

“asset type”  feature, in order to obtain datasets in which each asset type is represented, and sampled to be 

unbalanced with respect to the target variable to present 𝑝% cases of match and (1 − 𝑝)% cases of non-match. 

More in detail, training and test datasets are built through the following steps. 

For a fixed unbalance proportion 𝑝 and for each asset type, all couples of assets are considered by filtering that 

specific asset type in the original comparison matrix; the subset is over/subsampled in order to have 𝑝% of 

COMPARISON MATRIX 

Asset 

codes 

TARGET 

VARIABLE 

Nominal Ordinal Numerical Textual 

𝑄𝑡  𝑄𝑡+1 Status 𝑖 ∈ {1 …𝑛𝑖} 𝑗 ∈  1 …𝑛𝑗  𝑘 ∈ {1 …𝑛𝑘} 𝑤 ∈ {1 …𝑛𝑤 }

a a Match 𝑑𝑖
1(𝑎, 𝑎)…𝑑𝑖

𝑛 𝑖(𝑎, 𝑎) 𝑑𝑗
1(𝑎, 𝑎)…𝑑

𝑗

𝑛𝑗 (𝑎, 𝑎) 𝑑𝑘
1(𝑎, 𝑎)…𝑑𝑘

𝑛𝑘(𝑎, 𝑎) 𝑑𝑤
1 (𝑎, 𝑎)…𝑑𝑤

𝑛𝑤 (𝑎, 𝑎) 

a b Non-match 𝑑𝑖
1(𝑎, 𝑏)…𝑑𝑖

𝑛 𝑖(𝑎, 𝑏) 𝑑𝑗
1(𝑎, 𝑏)…𝑑

𝑗

𝑛𝑗 (𝑎, 𝑏) 𝑑𝑘
1(𝑎, 𝑏)…𝑑𝑘

𝑛𝑘(𝑎, 𝑏) 𝑑𝑤
1 (𝑎, 𝑏)…𝑑𝑤

𝑛𝑤 (𝑎, 𝑏) 

b b Match 𝑑𝑖
1(𝑏, 𝑏)…𝑑𝑖

𝑛 𝑖(𝑏, 𝑏) 𝑑𝑗
1(𝑏, 𝑏)…𝑑𝑗

𝑛𝑗 (𝑏, 𝑏) 𝑑𝑘
1(𝑏, 𝑏)…𝑑𝑘

𝑛𝑘(𝑏, 𝑏) 𝑑𝑤
1 (𝑏, 𝑏)…𝑑𝑤

𝑛𝑤 (𝑏, 𝑏) 

… … … … … … … 
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cases of match and (1 − 𝑝)% cases of non-match and simultaneously randomly split in 80% (training set) and 

20% (test set).  

In our application to Italian data, in practice, the described sampling with respect to the unbalance proportion 

always consists in taking all cases of match and subsampling the cases of non-match, since the former are the 

minority class in the comparison matrix, while the latter are fictitiously generated through the Cartesian 

product of all couples of assets.6  

The steps presented above in this section are repeated for twelve couples of subsequent reporting quarters, 

starting from 2019Q1-2019Q2 until 2021Q4-2022Q1. Even if data is available since 2016, the reason for the 

choice of the “starting point” in 2019 is that, based on prior experience from working in the field of Central 

Bank reporting and statistical production, the quality of reported data gradually increases with time, after the 

introduction of a new regulation. Also, the most recent data can be more representative of the current asset 

portfolio.  

All the couples of quarters, except the last one, are used in the validation phase for the fine-tuning of the 

hyperparameters of the models and for selection of the best model, as described below in sub-Section 3.3; on 

data from the last couple of quarters, test results from the chosen model are presented in detail in Section 4. 

3.3 Model selection 

3.3.1 Investigated classes of model 

For a selected couple of adjacent quarters (𝑄𝑡 , 𝑄𝑡+1) with t in {2019Q1, … 2021Q4} and a fixed percentage

𝑝 of unbalance in the target, with 𝑝 in {1%, … 50%}, the training and test datasets from the comparison matrix 

are built, as described in the previous section. 

On each training and test dataset, three classes of supervised classification models are fitted: the logit model, 

random forests and neural networks.  

The logit is used as a benchmark, due to the fact that it is a classical and probabilistic logistic regression model, 

a high-performing yet easy-to-interpret classifier (Feigenbaum, 2016). The logit is a regression type of model 

for binary response variables which makes use of the standard logistic function, i.e. a sigmoid function.  

6The proposed methodology to stratify the comparison matrix also applies to cases in which the match cases represent the

majority class.  
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The random forest is a tree-based ensemble model and its hyperparameters7 are the number of bootstrap 

samples and the number of variables to use at each split. The former represents the number of random trees to 

fit and the latter ensures that trees are not very similar to each other. Defined by Howard et al. (2012) as “the 

most successful general-purpose algorithm in modern times”, random forests are used in a wide range of real 

life problems, such as ecology issues (Prasad et al., 2006; Cutler et al., 2007), bioinformatics (Diaz-Uriarte et 

al., 2006) or econometrics (Varian, 2014). 

Finally, neural networks are considered. These are made of different layers, the first and last respectively called 

“input” and “output” layers and the inner ones being called the “hidden” layers.8 Each hidden layer is composed 

of “nodes”, interconnected in a directed and weighted graph; each node is a regression or classification model. 

As presented by Bishop in 1995, neural networks are notoriously powerful methods for prediction and are 

widely used in many areas, such as social science, engineering, economic, business or finance (Adebiyi et al., 

2014), image or speech recognition (Egmont-Petersen et al., 2002; Ossama et al., 2014). Its usage is due to its 

desirable features, such as it being data-driven and self-adaptive with a few prior assumptions (Khashei et al., 

2010). 

3.3.2 Validation phase 

In this section we assess the performance of the three classes of models for different hyperparameters, fitted 

on all couples of quarters from 2019Q1-2019Q2 until 2021Q3-2021Q4, and we select the best model. 

For the logit model, since it is just used as a benchmark, no fine-tuning of its hyperparameter is considered: 

the probability threshold for classification is fixed to 0.5; the random forest is trained and tested with different 

numbers for its hyperparameters, the number of trees and number of variables to use at each split (mtry9), and 

the neural network is trained and tested with different numbers of nodes in its single hidden layer. 

For each couple of quarters, averaging over the results obtained on differently unbalanced data, test results for 

a model can be summarised in an average ROC (Receiver Operating Characteristics) curve, with its 

corresponding AUC (Area Under Curve) index. Each curve is built with average false positive and true positive 

rates and it varies with the probability threshold for classification. 

The AUC indexes for all the considered models are reported in Table 2 for all couples of reporting periods; in 

yellow is highlighted the best performing model for each couple of quarters10.  

7 Model’s hyperparameters and parameters need to be distinguished: the former are selected by the researcher depending 

on the objectives of the analysis while the latter are estimated in the training phase. 
8 In the current paper, no deep neural networks are used but only networks with one single hidden layer.  
9 Notation from R programming language.  
10 The same (best) performance might be achieved by multiple models in the same couple of quarters.  
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Table 2. Average AUC for class of model and hyperparameters 

The results reported in Table 2 show that all three models perform well on the different couples of quarters, 

since all AUC indexes are very large, never under 96%, and the mean values for the models are all around 

98%, the logit presenting the smallest value, the random forest presenting the largest one. 

Among the three classes of models, performance for the benchmark one (the logit) are always equal or lower 

to those of the other models. As it is observable, in most couples of quarters, performance for the random forest 

model are higher than those of the neural network; it is then interesting to observe how the neural network 

with 20 neurons in the hidden layer slightly outperforms the random forest only in the Q3-Q4 couples of 

quarters. 

The presented AUC indexes can be used for the fine-tuning of the hyperparameters in the models. 

For the neural network, a value of 20 nodes in the hidden layer is selected as the best one, as this is the one 

that provides the best results in most cases; concerning the random forest, instead, in order to select the best 

hyperparameter, a consideration is made: there is no need for a very complex model if this does not have a 

substantial impact of increase on the performance measure. Indeed, a random forest with 100 trees and 5 mtry 

ensures an average AUC of 98.97%, which is just 0.01 smaller than the maximum average AUC observed for 

200 trees and same mtry.  

For completeness, all average ROC curves from all the couples of reporting quarters considered and the best 

combination of hyperparameters for each class of model selected in the validation phase can be observed in 

Appendix. The superiority of the random forest model against the others can be clearly observed in the figures 

in Appendix, where its average ROC curves often show larger true positive rates over false positive rates with 

respect to the other models.  

threshold = 0.5 10 nodes 20 nodes 30 nodes mtry = 5 mtry = 6 mtry = 7 mtry = 5 mtry = 6 mtry = 7 mtry = 5 mtry = 6 mtry = 7

2019Q1-2019Q2 97.69 97.31 97.62 97.69 98.54 98.33 98.31 98.48 98.37 98.31 98.44 98.41 98.37

2019Q2-2019Q3 98.02 96.72 97.65 96.71 98.48 98.43 98.39 98.47 98.46 98.41 98.52 98.51 98.45

2019Q3-2019Q4 99.51 99.81 99.93 99.92 99.91 99.92 99.91 99.92 99.91 99.91 99.92 99.92 99.90

2019Q4-2020Q1 97.77 99.44 99.59 99.57 99.64 99.63 99.62 99.66 99.62 99.60 99.66 99.63 99.62

2020Q1-2020Q2 97.70 97.82 97.18 96.98 98.78 98.55 98.58 98.81 98.61 98.59 98.76 98.69 98.59

2020Q2-2020Q3 98.00 97.53 98.94 97.63 98.99 98.77 98.71 98.90 98.69 98.67 98.92 98.74 98.71

2020Q3-2020Q4 97.84 97.72 99.15 97.79 98.87 98.59 98.47 98.76 98.59 98.46 98.71 98.66 98.44

2020Q4-2021Q1 97.77 97.41 97.78 97.54 98.75 98.69 98.54 98.78 98.61 98.54 98.81 98.58 98.55

2021Q1-2021Q2 98.12 98.21 97.77 98.03 98.88 98.79 98.69 98.95 98.76 98.73 98.87 98.82 98.75

2021Q2-2021Q3 98.12 97.49 98.48 98.19 99.04 98.89 98.92 99.04 98.89 98.89 99.02 98.91 98.89

2021Q3-2021Q4 97.93 98.08 99.09 98.05 98.83 98.78 98.77 98.98 98.81 98.78 98.99 98.75 98.77

Average 98.04 97.96 98.47 98.01 98.97 98.85 98.81 98.98 98.85 98.81 98.97 98.87 98.82

Logit Neural network
Random forest

100 trees 200 trees 300 trees
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In light of the presented results, with the goal of selecting a unique model for future applications, the random 

forest model with the selected hyperparameters (100 trees, 5 mtry) is chosen as the best among the investigated 

ones11. 

As observable from Table 2, all the investigated models show stable average AUC over the different couples 

of quarters, proving the robustness of the performance of the proposed approach in time.  

4. Test results

In the previous section we have shown the robustness of the approach to different couples of quarters; in this 

section, with reference to the couple of quarters 2021Q4-2022Q1, test results for the selected random forest 

are presented in detail to prove also robustness to unbalance in terms of percentage of matches.  

In Figure 1, ROC curves for the selected random forest are shown for different percentages of unbalance; the 

corresponding values for the AUC indexes are observable in Table A.3 in Appendix, showing satisfying results 

for all unbalances in the dataset, from 1% to 50%. Moreover, as observable in the plots in Figure 1, the average 

ROC curve is closer to the one for balanced data (50%) than to the one for extremely unbalanced data (1%). 

As expected, a high true positive rate for a highly unbalance dataset is reached only with low thresholds, while 

a high true positive rate for a balanced dataset is achieved also with high thresholds.  

Figure 1. ROC curves for differently unbalanced test sets 

Panel A     Panel B 

11 Highlighted in green in Table 2. 
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Panels A and B both show the ROC curves for the most (1%) and least (50%) unbalanced test sets; panel A 

shows the whole curves, while panel B focuses on smaller ranges of the axes, to better spot the differences. 

Each point in the ROC curves refers to a specific probability threshold for classification; from left to right, the 

threshold varies from 1 to 0.  

4.1 Overall results 

In the previous sections we have shown the robustness of the chosen model to different couples of quarters 

and different unbalance percentages in the data. For this reason, in this section, more test results for the selected 

best random forest are shown for the couple of quarters 2021Q4-2022Q1 and an unbalance percentage 𝑝 =

5%. This percentage is chosen for illustrative purpose, being smaller than 8%, namely the maximum expected 

unbalance proportion in the dataset (see Section 1). 

Performance measures for the model are presented in Table 3, varying only with the probability threshold for 

classification. The presented indexes are accuracy, balanced accuracy, true positive rate (TPR), true negative 

rate (TNR), false discovery rate (FDR) and the difference between true positive rate and false discovery rate12. 

12 Formulas for the different indexes are detailed in Table A.2 in Appendix, based on the confusion matrix in Table A.1. 
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Table 3. Model performance indexes for the random forest selected model (p=5%) 

(percentage values) 

True negative rate (TNR) shows very good results, remaining stably around a 99% value for all thresholds. 

Making 95% of the unbalanced test set, the cases of non-match are naturally easier to be detected by the 

classification model.  

A more interesting result is the ability of the model to correctly identify the minority class in the data, i.e. the 

matches (5%): this ability is measured by the TPR, which is the percentage of correctly classified cases of 

match among the true cases of match; this is a quantity that one would like to maximise as much as possible. 

As observable in the table, the average TPR is indeed very large, above 95%.   

General model performance measures such as accuracy and balanced accuracy show that the model correctly 

identifies true cases of match and true cases of non-match with high frequencies, for all probability thresholds. 

Mean values for the two measures are respectively 99.36% and 97.32%. 

Accuracy is computed as the percentage of correctly classified cases - both positive and negative - among all 

cases. It should be highlighted that, in an unbalanced test dataset, the minimum acceptable value for this metric 

is the percentage referred to the majority class: in fact, a trivial model predicting always this class would 

achieve an accuracy equal to the majority class percentage; in the application in this section, the majority class 

is represented by the proportion of non-matches cases in the test set (95%). As observable from the first row 

in the matrix, values for the accuracy are always higher than this minimum.  

Despite being simple and intuitive for a model’s performance, accuracy is strongly affected by unbalances in 

the target variable. The topic has been deeply analysed, as in the works of Chawla et al. (2004), Daskalaki et 

al. (2006) and Elazmeh et al. (2006). In the case of strongly unbalanced data, an alternative general model 

performance that can be used is balanced accuracy, which is computed as the simple mean between TPR and 

TNR. Since the current results are referred to a 5-95% unbalanced test dataset, this metric is more appropriate 

to measure the model’s performance. Considering again the trivial model predicting always the majority class 

(in this case, 95% of non-matches), the minimum acceptable balanced accuracy would be 50%, where TNR 

and TPR would respectively be 100% and 0%. As observable from Table 3, even for large values of the 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Average

Accuracy 98.82 99.23 99.45 99.53 99.58 99.58 99.54 99.40 99.08 99.36

Balanced accuracy 99.36 99.25 99.05 98.76 98.34 97.66 97.04 94.94 91.45 97.32

TPR 99.95 99.28 98.61 97.89 96.97 95.54 94.26 90.00 82.96 95.05

TNR 98.76 99.23 99.49 99.62 99.72 99.79 99.82 99.89 99.93 99.58

FDR 19.03 12.83 8.90 6.87 5.27 4.04 3.55 2.23 1.58 7.15

TPR-FDR 80.92 86.45 89.72 91.02 91.70 91.49 90.71 87.76 81.39 87.91

Probability threshold for classification
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probability threshold, balanced accuracy is lower than accuracy but always much larger than the 50% 

minimum. 

Taking into consideration that results vary with the probability threshold for classification, we also want to 

choose the threshold which optimizes the model’s performance for our work. The selection of the probability 

threshold is conducted by analyzing specific performance metrics that we consider to be relevant: true positive 

rate (TPR), false discovery rate (FDR) and the difference between the two.  These metrics are presented in 

Table 3 and in Figure 2. 

Benjamini et al. (2001) define FDR as the “expected proportion of false discoveries among the discoveries”. 

Given a binary confusion matrix, FDR is the percentage of negative cases that the model incorrectly classifies 

as positive cases; in the current analysis, FDR measures the percentage of non-matching assets that are 

erroneously classified as matches by the model and it is therefore a DQM cost to minimize. 

Figure 2. Model performance measures for 2021Q4-2022Q1 (TPR, FDR, TPR-FDR) 

Panel A       Panel B 

Panel A shows TPR and FDR while panel B shows the difference between the two indexes for different 

probability thresholds. 

As observable in Figure 2 - panel A, both the true positive rate and false discovery rate slowly decrease with 

the probability threshold increasing.  

As observable in Table 3, for instance, taking the lowest threshold for classification, the selected model ensures 

a 99.95% rate of correctly classified cases of match, with the consequence of a 19.03% incorrectly classified 
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cases of non-match; instead, taking the highest threshold, less than 2% false discoveries are made but only 

82.96% cases of match are correctly identified. 

Therefore, a trade-off between the two indexes must be found in order to choose an appropriate probability 

threshold for the model. However, the two rates do not have the same weight in the current analysis: although 

false discovery rate is a DQM cost to minimize, maximizing the true positive rate is considered as a priority 

for the model’s effectiveness. Detecting most of the true cases of match is in fact the goal of the analysis and 

it is therefore desirable to select a lower probability threshold for classification which would ensure to reach 

the goal, even if that implies that some cases of non-match are erroneously classified as matches.  

To assess for the best threshold, the difference between TPR and FDR is calculated and reported in Table 3 

and Figure 2 - panel B. The maximum value for the index is reached on a 0.5 threshold; however, the maximum 

increase in the index is observed when switching from threshold 0.2 to 0.3, with very small increases in the 

index for larger thresholds. A probability threshold of 0.3 ensures a 98.61% true positive rate, with the cost of 

a 8.90% false discovery rate, and it is therefore the chosen value in the current analysis. 

In light of the presented results, with the goal of identifying the anomalous cases of changes in assets’ IDs 

between two quarters, assuming that the percentage of such changes in a quarter is 5% of all reported assets, a 

random forest model results as the best choice. In fact, among the tested models, the random forest ensures 

large accuracy and balanced accuracy. Moreover, selecting a probability threshold for classification of 0.3, the 

best model provides a true positive rate around 99% and a cost of a less than 9% in terms of false discovery 

rate that is considered acceptable in the DQM process. 

4.2 Asset type-detailed results 

As previously mentioned in the introduction, in this paper we also conduct a deeper analysis to evaluate the 

performance of the selected best model13 on different “asset types”. 

Figure 3 below shows the results, in terms of accuracy, balanced accuracy, true positive rate and false discovery 

rate, for an unbalance percentage of 𝑝 = 5%, with the previously chosen general probability threshold 0.3. As 

observable, performance do vary depending on the asset type: in fact, securities (asset type from 1 to 6) have 

very good results for all four metrics. Differently, false discovery rates for non-securities assets (asset type 0, 

7, 8 and 9) are quite high, especially for asset type 8 (loans); this means that we can expect that many of the 

predicted cases of matches would actually be erroneously classified. Despite this cost in terms of FDR, true 

13 The random forest with ntrees=100, mtry=5 and a probability threshold of 0.3. 
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positive rates are quite high also for non-securities assets, proving that the model continues being effective in 

these cases. 

Figure 3. Accuracy, balanced accuracy, TPR and FDR for different asset types. 

As explained, security asset types (1-6) show excellent results, while lower performance is observed for non-

security asset types (0, 7-9). A first possible reason that could explain this variability in performance is the 

different volume of data in each asset type class in the database, being small for non-securities; a second 

motivation could be the presence or absence of standard for the identification code: ISIN codes are widely 

available for securities and reporting by standard is strongly recommended by regulators. On the other side, 

IDs for assets that are not securities are often chosen arbitrarily by reporting insurance corporations. Finally, a 

third reason could be that available features for non-securities assets are less informative and many features 

used in the training matrix are securities-specific (e.g. issue date, issuer sector, issuer area). 
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Given the observed large values for the FDR in asset types 0, 7, 8 and 9, a more in depth analysis on these four 

cases can be held: in order to improve performance of the model on these four classes, a class-specific 

probability threshold can be investigated, since the globally optimal threshold of 0.3 is not performing 

sufficiently well.  

In Figures 4 and Tables 4 are presented the model performance metrics TPR and FDR for the types of assets 

0, 7, 8 and 9, varying with the probability threshold for classification. We will now focus on each type of asset 

separately, in order to choose the best probability threshold in each case.  

Figure 4.1 Model performance measures (TPR, FDR, TPR-FDR) for asset type 0 

Table 4.1 Model performance measures for asset type 0 

 

As observable from Figure 4.1 on the left, TPR and FDR have two different trends with the increasing 

probability threshold; the difference between TPR and FDR decreases. As observable from the plot on the 

right, performance for the asset type 0 can be improved by choosing a smaller probability threshold than the 

general value of 0.3. In fact, choosing a threshold of 0.2, TPR reaches 90.5 and FDR equals 13.6. Although a 

smaller threshold of 0.1 would provide a TPR of 100, this would lead to an excessively high FDR (19.2). 

Threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Accuracy 98.81 98.81 98.33 98.33 97.86 97.62 97.38 97.14 97.14

Balanced accuracy 99.37 94.86 90.10 90.10 85.34 82.96 80.58 78.20 78.20

TPR 100.00 90.48 80.95 80.95 71.43 66.67 61.90 57.14 57.14

FDR 19.23 13.64 15.00 15.00 16.67 17.65 18.75 20.00 20.00

TPR-FDR 80.77 76.84 65.95 65.95 54.76 49.02 43.15 37.14 37.14

Asset type: 0
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Figure 4.2 Model performance measures (TPR, FDR, TPR-FDR) for asset type 7 

Table 4.2 Model performance measures for asset type 7 

 

As observable from the Figure 4.2 on the left, TPR and FDR both decrease with increasing probability 

threshold, although with different speed. Indeed, the difference between the two metrics, observable in the plot 

on the right, reaches its maximum for a threshold of 0.3. Even though threshold 0.3 does provide a 92.2 TPR, 

the FDR is considered to be too large (19.5); therefore, selecting a larger threshold of 0.4, a satisfying 87 TPR 

is reached with a 14.7 FDR, which is preferable.  

Threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Accuracy 97.81 98.20 98.49 98.60 98.60 98.47 98.36 98.07 97.64

Balanced accuracy 98.85 97.41 95.51 93.10 91.56 89.54 87.94 83.16 77.90

TPR 100.00 96.53 92.19 86.98 83.73 79.61 76.36 66.59 55.97

FDR 30.47 25.21 19.51 14.68 12.27 11.35 10.66 7.25 5.15

TPR-FDR 69.53 71.32 72.68 72.30 71.46 68.26 65.70 59.34 50.82

Asset type: 7
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Figure 4.3 Model performance measures (TPR, FDR, TPR-FDR) for asset type 8 

Table 4.3 Model performance measures for asset type 8 

 

As observable from Figure 4.3 on the left, TPR and FDR both decrease with increasing probability threshold, 

although with different speed: FDR decreases faster than TPR. Consequently, the difference between the two 

metrics does increase. Even though threshold 0.3 does provide a 98.1 TPR, the FDR is considered extremely 

large (67.7) and not acceptable; therefore, selecting a larger threshold of 0.8, a satisfying 84.2 TPR is reached 

with a 34.7 FDR, which is still large but provides a good compromise.  

Threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Accuracy 74.34 84.11 89.60 92.03 93.80 95.29 95.86 96.97 97.53

Balanced accuracy 86.33 90.89 93.61 94.64 94.16 94.61 94.66 90.93 89.06

TPR 99.65 98.42 98.07 97.54 94.56 93.86 93.33 84.21 79.65

FDR 83.71 76.24 67.73 61.63 55.60 48.36 44.87 34.69 26.66

TPR-FDR 15.94 22.18 30.35 35.92 38.96 45.50 48.46 49.52 52.99

Asset type: 8
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Figure 4.4 Model performance measures (TPR, FDR, TPR-FDR) for asset type 9 

Table 4.4 Model performance measures for asset type 9 

 

As observable from Figure 4.4 on the left, TPR and FDR both decrease with the increasing probability 

threshold; the difference between TPR and FDR reaches its maximum for a threshold of 0.6; as observable 

from Table 4.4, choosing this value does provide a large TPR (98.1) with a very low FDR (1.9). For this reason, 

threshold 0.6 can be chosen in the model for asset type 9.  

In conclusion, the chosen values for the probability threshold for each asset type are reported in Table 5. 

Table 5. Fine-tuned probability threshold for each asset type. 

Asset type Selected probability threshold 

0 0.2 

1-6 0.3 

7 0.4 

8 0.8 

9 0.6 

Threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Accuracy 98.59 99.12 99.28 99.52 99.76 99.81 99.78 99.66 99.63

Balanced accuracy 99.26 99.23 99.32 99.44 99.42 98.99 98.21 96.94 96.31

TPR 100.00 99.36 99.36 99.36 99.04 98.08 96.47 93.91 92.63

FDR 22.00 14.60 12.18 8.28 3.74 1.92 0.99 0.68 0.00

TPR-FDR 78.00 84.76 87.18 91.07 95.30 96.15 95.49 93.23 92.63

Asset type: 9
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5. Conclusions

Errors in insurance reporting may lead to unexpected and undesirable changes in the IDs of the reported assets 

from one quarter to the next. An automated method to detect such changes is necessary to improve the data 

quality of insurance statistics, which are published at the international level, given the volume of the available 

data, the level of granularity for the single assets and the non-negligible impact of these changes on compiled 

statistics.  

A record linkage approach using supervised machine learning classification models is proposed to achieve this 

goal.  

Real quarterly Italian data from 2019-2022 are used for the application. Three models are considered, i.e. the 

logit model as a benchmark, random forests and neural networks as machine learning options. Robust results 

are presented, testing the models on differently sampled data, stratified by different percentages of code change 

cases in two consecutive quarters, since the true proportion of such anomalies in the data is currently not known 

with precision. Moreover, the robustness of the test results is shown for all the different models and periods 

considered.  

The tested models performed well in terms of average metrics (AUC) and the results show the superiority of 

the random forest model to approach the problem compared with the other tested classifiers (logit and neural 

networks).  

Taking a 5% proportion of anomalies in the data and a 0.3 probability threshold for classification, the selected 

random forest model shows good overall performance in all measures, both in terms of effectiveness and 

efficiency, ensuring both high accuracy and balanced accuracy, with a rate of correctly identified cases of ID 

changes (true positive rate) of around 99%, accepting the cost of a false discovery rate that approaches 9%.  

Looking more closely at the performance of the selected random forest model, the test results for the different 

asset types are heterogeneous: the performance is lower for non-security asset types, mainly due to the small 

volumes of data, the lack of a standard for building IDs and the limited information held in the features used 

for classification. For this reason, different probability thresholds are selected for each non-security asset type 

to improve performance.  

The presented test results provide an estimate of the improvement in data quality that would result from running 

the selected model on production data, with the goal of successfully identifying cases of unexpected and 

erroneous changes in IDs.  

However, the estimated cases of change need to be validated by cross-checking with the insurance corporations 

in order to measure the actual//real performance of the proposed methodology. To this end, the model was 

used during four real production rounds in 2022 and proved to be effective: the first feedback from the check 
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with the insurance corporations, obtained thanks to the collaboration of IVASS, showed that around 60% of 

the detected cases are indeed anomalouswhile feedback on the remaining 40% is still under investigation.  

Finally, the model should be periodically monitored in the future and its parameters updated if performance 

deteriorates during production rounds. However, these updates are not expected to be frequent, as the results 

presented in this paper are robust for all the couples of quarters considered.  
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Table A.1 A confusion matrix 

 Predicted positive Predicted negative 

True status: positive A B 

True status: negative C D 

 

 

Table A.2 Performance metrics of a binary classification supervised model. 

Metric Formula 

TPR A/(A+B) 

TNR D/(C+D) 

FPR  C/(C+D) 

FDR C/(A+C) 

Accuracy (A+D)/(A+B+C+D) 

Balanced accuracy (TPR+TNR)/2 

 

 

 

Table A.3 AUC index of the ROC curves for the different percentages of unbalance for the quarters 

2021Q4-2022Q1.  

 

AUC (%) Unbalance 

98.99 1% 

99.57 2% 

99.82 3% 

99.92 4% 

99.89 5% 

99.90 6% 

99.92 7% 

99.91 8% 

99.90 9% 

99.89 10% 

99.88 20% 

99.87 30% 

99.85 40% 

99.79 50% 

99.79 Average 
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Glossary 

 

IC: insurance corporation 

ID: identification code of the asset  

DQM: data quality management 

TPR: true positive rate 

TNR: true negative rate 

FDR: false discovery rate 

FPR: false positive rate 

AUC: area under curve 

ROC: receiver operating characteristic  
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