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Abstract 

This paper analyses the links between advances in financial technology, investors’ 
sophistication, and the composition and returns of their financial portfolios. We develop a 
simple portfolio choice model under asymmetric information and derive some theoretical 
predictions. Using detailed microdata from Banca d’Italia, we test these predictions for Italian 
households over the period 2004-20. In general, heterogeneity in portfolio composition and in 
returns between sophisticated and unsophisticated investors grows with improvements in 
financial technology. This heterogeneity is reduced only if financial technology is accessible 
to everyone and if investors have a similar capacity to use it. 
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1 Introduction1

Financial technology (FinTech) allows for more efficient use of data to solve problems

of asymmetric information. The application of artificial intelligence techniques in finance

(i.e. machine learning and big data) can increase financial inclusion, while reducing the

costs of financial services at the same time. Recent research indicates substantial benefits of

financial technology in alleviating discrimination in mortgage markets (Bartlett et al. (2022)),

in facilitating the calculation of credit scoring for opaque borrowers (Berg et al. (2020)), in

reducing minimum investment requirements and capital charges (Abraham et al. (2019)), and

in allowing users access to an expanding array of information useful for investment decisions

remotely and effortlessly (Katona et al. (2018)).

However, financial technology can also increase discrimination among investors groups,

especially if they have a different access to (or use of) the new technology. For example,

FinTech can create opportunities for sophisticated market players to acquire better data and

formulate profitable trading strategies at the expense of less sophisticated ones. Early articu-

lations of this argument were proposed in Becker (1967) and Arrow (1987). Becker (1967) sug-

gests that households who can secure systematically higher financial returns become wealthier,

and Arrow (1987) proposes that individuals with lower costs of information acquisition buy

more information and therefore get higher rates of return. Subsequent variations of these

arguments, with wealth effects and fixed stock market participation costs (Peress (2004)),

pooling through mutual funds in order to share the cost of data acquisition (Mihet (2018)),

or heterogeneity in data processing abilities (Kacperczyk et al. (2018), Azarmsa (2019)) have

all reached the same theoretical conclusion: general progress in financial information tech-

nologies benefits sophisticated investors to the detriment of less sophisticated ones. This is at

odds with the general optimism in the financial industry. Thus, whether advances in financial

technology are democratizing finance and leveling-out the playing field is unclear.

To contribute to this debate, in this paper we analyse the links between advances in

financial technology, investors’ sophistication levels and financial portfolios’ composition and

returns using standard portfolio theory which we test with novel micro-level data. In particu-

lar, we use a workhorse portfolio choice model with asymmetric information, where investors

differ in their sophistication levels as measured by their capacity to process information, and

choose which assets to learn about and invest in. We use the model to derive several testable

1We thank Robert Marquez and Anthony Zhang, for extremely constructive and helpful feedback.
We also thank participants at the RCFS Winter Conference, and Andreas Fuster, Tarun Ramadorai,
Vatsala Shreeti and Laura Veldkamp for their useful comments. We are also indebted to Ginette
Eramo, Marco Langiulli and Paola Rossi for helping us to better understand and use the data of
Banca d’Italia’s Regional Lending Survey and Supervisory Reports of Italian banks. The views in this
paper are those of the authors only and do not necessarily reflect those of Banca d’Italia or the Bank
for International Settlements.
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predictions on the impact of absolute and relative increases in sophistication on investors’

shares of risky asset classes and ex-post returns. We then test these predictions using a

unique micro-level data set merging information on Italian households’ and banks’ character-

istics. Data on households are gathered from Banca d’Italia’s Survey on Household Income

and Wealth (SHIW) from 2004 to 2020. We complement these data with the Regional Bank

Lending Survey (RBLS) which collects information on the digitalization of the Italian bank-

ing sector. Particularly, we succeed in building a set of indicators for the degree of bank

investment in FinTech technologies for the provision of financial services dating back to 2004.

The main contribution of this paper is to combine novel data with a theory-motivated

empirical approach to investigate the potential channels that could explain the observed fi-

nancial return and portfolio choice heterogeneity between investors with different levels of

sophistication, which we proxy by financial literacy, and access to FinTech services, which

we measure using the characteristics of the investor’s bank. The theoretical predictions are

tested, one at a time, using microdata that allows us to control for households and banks

characteristics without relying on ad hoc assumptions.

Three predictions of the model seem particularly relevant in light of observed trends.

The first implies that capital return heterogeneity between sophisticated and unsophisticated

investors grows with enhancements in aggregate financial information technology that hold

constant or amplify the gap in investor sophistication. Second, the model predicts a growing

presence of sophisticated investors in risky asset classes, and a retrenchment of less sophisti-

cated investors from trading and stock market ownership in general. Third, and in a departure

from existing work, the theoretical framework implies that innovations that lower the gap in

investor sophistication levels also lower capital income inequality.

We empirically verify these predictions one by one. Examining the realized rates of

return and the portfolio composition of investors who differ in their financial literacy levels,

and controlling for a multitude of factors – such as households’ risk-aversion, age, gender,

access to remote banking, as well as time and region fixed effects – we find that heterogeneity

in financial returns and in the share of risky assets between sophisticated and unsophisticated

investors increases with innovations in financial technology, conditional on the existence of

a growing gap in investor sophistication. In other words, advances in financial technology

amplify inequalities in the two groups of investors if, at the same time, they do not reduce

the investors’ sophistication gap.

The policy implication of our findings is that financial technology enhancements need

also to bridge the gap in investor sophistication levels in order to leave no one behind. Merely

providing access to innovative sources of financial information and advice is not enough. As

traditional and non-traditional financial institutions move more of their services and initia-

tives online, the least sophisticated risk of being left further behind. Avoiding this requires
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making financial technologies not only accessible to everyone but also usable by everyone.

Development initiatives need to incorporate innovative elements in order to expand the use of

technological advances to the most marginalised; build the capacity of the digitally disadvan-

taged to help them catch up with the rest; and curtail the capacity and intent of malicious

actors using digital technologies to manipulate information and markets.2

Our paper is related to three main strands of literature.

First, a number of studies look into the impact of technological innovation on inequality.

Acemoglu (2002) discusses how technical change in the latter half of the 20th century has been

“skills-biased”, leading to greater differentials between skilled and unskilled labour. Jaumotte

et al. (2013) discuss the relative contributions of technological progress and globalisation in

explaining rising inequality across countries in the period 1981–2003; they find that techno-

logical progress has been a more important factor. Differently from these papers, we look at

how progress in financial technology could contribute to financial income inequality.

A second strand of the literature looks at the so called ”Matthew effect”, the mechanism

of the well-endowed receiving further privilege, e.g. the rich getting richer (Merton, 1968).3

Using administrative data from Norway, Fagereng et al. (2020) find higher returns on financial

assets and net wealth among wealthier households, which they call “scale dependence”. Frost

et al. (2022) find that while households of all wealth deciles benefit from the effects of financial

development and financial technology, these benefits are larger when moving toward the top

of the wealth distribution. Differently from these papers, we look at the specific mechanisms

through which more sophisticated investors (not necessarily the wealthiest) could benefit from

more advances in financial technologies.

A third strand of the literature looks at the effects of financial literacy. For Sweden,

Calvet et al. (2007) find that more sophisticated households are more likely to have financial

investments and invest efficiently. Likewise, using Dutch household survey data, Deuflhard et

al. (2019) find that a one-standard deviation increase in financial literacy is associated with

a 12 per cent increase in returns on saving accounts. They find that online accounts are one

channel through which financial literacy has a positive correlation with returns. Differently

from these papers that focus on the link between financial literacy and portfolio choice, we

consider also the effects of advances in digital financial services on such a link.

The rest of the paper is organised as follows. Section (2) describes the model and derives

2Given the growing interest in cryptocurrencies, there is a pressing need to increase financial literacy
and bridge the gap in investor sophistication levels. Cryptocurrencies are a highly volatile asset,
particularly popular among younger and male investors, who are commonly identified as the most
risk-seeking segment of the population (Auer et al., 2022).

3The name of the ”Matthew effect” derives from the New Testament Book of Matthew (25:29), in
which it is written: “For unto every one that hath shall be given, and he shall have abundance: but
from him that hath not shall be taken away even that which he hath”.
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the testable predictions. Section (3) discusses the data and documents some stylized facts.

The empirical analysis is developed in section (4), including some robustness checks and

extensions. The last section summarises the main conclusions.

2 Theoretical Model and Predictions

We present a one-period general equilibrium portfolio choice model with endogenous

learning about assets’ stochastic payoffs in the spirit of Van Nieuwerburgh and Veldkamp

(2010) and Kacperczyk et al. (2018), where investors’ utility function is CRRA with respect

to end of period wealth, investors learn with information capacity constraints, and there are

a finite number of uncorrelated risky assets.

Our goal is not to develop innovative theory. Rather, the goal is to write down a sim-

ple framework rooted in workhorse models of portfolio choice with endogenous information

acquisition to quantify the channels and implications of progress in financial information tech-

nologies and provide some clean testable predictions. Our model has three key features: (i)

Investors’ preferences belong to the constant relative risk aversion (CRRA) and implicitly the

decreasing absolute risk aversion (DARA) family, implying risky portfolio shares that increase

with investors’ wealth. This is consistent with our data (see our summary statistics table in

the empirical section) and with a long behavioural and experimental economics literature

that supports DARA preferences instead of the more commonly used CARA preferences in

finance. CRRA preferences, as opposed to CARA preferences, not only reflect reality better,

but also allow us to separate (theoretically and empirically) the effects due to progress in fi-

nancial information technologies from wealth heterogeneity and risk-aversion and isolate each

of their contribution on stock market portfolio choices and the evolution of financial income

and wealth. (ii) The financial market consists of multiple risky assets; this assumption allows

us to have predictions on asset ownership across different risky asset classes. (iii) Investors dif-

fer in their financial literacy levels, which we model as heterogeneity in investors’ information

capacity constraints (because we can observe financial literacy empirically).

After we fully characterize the equilibrium, we derive several theoretical predictions for

the impact of growth in information processing capacity. In a departure from existing work, we

focus on three distinct cases: 1) an asymmetric (relative) growth in the information processing

capacity of sophisticated and unsophisticated investors that favours sophisticated investors;

(2) a symmetric (absolute) growth in information processing capacity of sophisticated and

unsophisticated investors; and (3) an asymmetric (relative) growth in the information pro-

cessing capacity of sophisticated and unsophisticated investors that favours unsophisticated

investors.
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2.1 Set-up

This is a static model divided into two periods, time t and time t + 1. In the first pe-

riod, at time t, the investor chooses the precision of signals about asset payoffs, subject to

an information capacity constraint. At the beginning of the second period, at time t+ 1, the

investor observes signals and then chooses which assets to purchase. At the end of the second

period, the investor receives the asset payoffs and realizes his utility.

Investors’ preferences. There is a unit mass of perfectly competitive investors indexed

by j. Investors have CRRA preferences with respect to their terminal wealth Wj,t+1 and a

relative risk-aversion coefficient ρ > 0, as in Van Nieuwerburgh and Veldkamp (2010) and

Brunnermeier (2001):

max E
1

1− ρ
W 1−ρ

j,t+1 (1)

This specification guarantees that an investor increases his investment in risky stocks as

his wealth increases.4 Moreover, an investor with a CRRA utility function always invests a

constant fraction of his wealth in the risky portfolio.

Independent assets. Without loss of generality, the financial market consists of one risk-

less asset, with a small rate of return r and a price normalized to 1, and N risky assets,

indexed by i with prices pi and stochastic payoffs which are i.i.d. and normally distributed

according to zi ∼ N(z̄i, σ
2
i ).

5 The supply of the risky assets is stochastic and provided by

liquidity traders xi ∼ N(x̄i, σ
2
xi), and is independent of payoffs and across assets. The riskless

asset is in unlimited supply.

Information allocation choice. There are two aspects to the information choice: how

much information to acquire, and how to allocate that information among assets (whether

to acquire information about one or all of the risky assets). Information is obtained in the

4The coefficient of absolute risk aversion, −u′′/u = ρW−1
j,t+1, is decreasing in wealth, implying that

the CRRA utility considered belongs to the DARA utility family. Moreover, the coefficient of relative
risk aversion is a constant, ρ.

5In our case, the covariance between any two assets i and i′ is zero, σi,i′ = 0. For any set of correlated
assets with a full rank variance-covariance payoff matrix, we can extract n ≤ N independent principal
components as linear combinations of those correlated assets. The solution to the correlated asset
problem would be exactly the same, as long as we define [q1, q2, ..., qn], [p1, p2, ..., pn] and [z1, z2, ..., zn]
to be the quantities invested, prices and payoffs of the n risk factors. Investors learn and invest in
the risk factors just as if they were independent assets. Investing more into one asset is equivalent to
investing in one risk factor, which is a portfolio of assets with correlated payoffs. While the solution
remains unchanged, only the interpretation is different with correlated assets.
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form of signals, which are then used to update the beliefs that inform the investors’ portfolio

allocations. We assume that each investor receives a separate, independent signal sij on each

of the assets’ payoffs zi:
6

zi = sji + ϵji, where sji ∼ N(z̄i, σ
2
sji) and ϵji ∼ N(0, σ2

ϵji) (2)

with σ2
i = σ2

sji + σ2
ϵji. The intuition for this specification, unlike the literature that assumes

an additive noise signal structure7 is that investors simplify the state (the uncertainty in the

world) rather than amplify it with noise. This formulation of the state as the sum between a

signal and some data loss due to compression of the random variable zi is equivalent to the

formulation of an additive noise signal structure (see Cover and Thomas (2006)). Moreover,

we also allow investors to learn from prices pi.

The standard measure of information in information theory is entropy. It is often used to

model limited information processing by individuals. Following Grossman and Stiglitz (1980)

and Van Nieuwerburgh and Veldkamp (2009), we model the amount of information learned

as an entropy reduction. In other words, the quantity of information an investor observes

is his capacity, K̃j . We take K̃j as given and focus on the information allocation problem.

Prior variances σ2
i are not random; they are given. The posterior (conditional) variances

σ̂i
2, which measure investors’ uncertainty about asset payoffs, are also not random; these are

choice variables that summarize the investors’ optimal information decisions. Learning about

asset i makes the conditional variance σ̂i
2 lower than its unconditional variance σ2

i . Because

payoffs and signals are independent across assets, the information capacity constraint is a

continuous function that maps the product of prior and posterior variances across all assets

i into a level of capacity unique for each investor j,
∏N

i=1 σi/
∏N

i=1 σ̂i ≤ K̃j . It will become

more convenient to work with an equivalent log form of this constraint where K̃j = exp(2Kj):

N∏
i=1

σi
σ̂i

≤ exp(2Kj) (3)

We assume that all investors in the economy have the ability to learn about the N risky

assets, but some are better than others at learning. Specifically, a measure λ of investors have

high capacity for processing information and thus, they are sophisticated, while a measure 1−λ

of investors have low capacity for processing information and are referred to as unsophisticated

6For each asset, investor j decomposes the payoff zi into a signal component, sji, and a residual
component, ϵji that represents data lost due to the compression of the random variable zi

7An additive noise signal structure is modelled as the signal being an unbiased predictor of the
stochastic payoff, sji = zi+ϵji with ϵji ∼ N(0, σ2

ϵji). For applications of this particular signal structure
see Grossman and Stiglitz (1980), Brunnermeier (2001) and Van Nieuwerburgh and Veldkamp (2010).
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investors. Thus, 0 ≤ KU ≤ KS ≤ Kmax.
8

For sophisticated investors, the capacity constraint takes the form
∏N

i=1 σi/σ̂i ≤ exp(2KS).

Unsophisticated investors have a capacity constraint as
∏N

i=1 σi/σ̂i ≤ exp(2KU ). Capacity

allocation is a one-time decision, not a sequential choice. An investor is not allowed to re-

optimize the learning choice based on signal realizations. Rather, we imagine that at time t,

the investor decides what news articles about the assets to download, and at time t + 1 the

investor observes these news articles and decides how to invest.

Lastly, we assume a no-forgetting constraint, as in Van Nieuwerburgh and Veldkamp

(2010). In other words, the variance of each signal must be non-negative. Without this

constraint, an investor could choose to forget what he learned about one asset in order to

obtain a more precise signal about another, without violating the capacity constraint. This

constraint implies that the posterior variance on any asset i cannot exceed the prior variance:

0 < σ̂i
2 ≤ σ2

i (4)

Portfolio allocation choice. Given his posterior beliefs, an investor chooses the quantities

of each asset that he chooses to hold, qji = [q1,1, q1,2, ..., q1,N ]. The investor takes as given

the risk-free return r and the asset prices [p1, p2, ..., pN ]. In making this choice, the investor

is constrained by his budget constraint:

Wt+1,j = rWt,j +

N∑
i=1

qji (zi − rpi) (5)

Timing. In the first subperiod, investors solve the information acquisition problem sub-

ject to their information capacity constraint. In the second subperiod, investors learn and

choose their portfolio allocations. The sequence of events is depicted in Figure 1.

Figure 1: Sequence of events

8Kmax needs to be bounded away from infinity, because financial innovation, which is assumed to
increase the capacity constraint, becomes meaningless if capacity is unbounded already.
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2.2 Solution

As standard in the information-based general equilibrium theoretical literature, we solve

the model backwards, starting with the investors’ portfolio problem in subperiod t+ 1, for a

given information structure, and then solving for the information choice in period t.

Portfolio choice. Each investor j chooses to invest quantity qi in each asset i to maximize:

max Et+1,j
1

1− ρ
W 1−ρ

t+1,j (6)

subject to the budget constraint

Wt+1,j = rWt,j +
N∑
i=1

qji (zi − rpi) (7)

where E2j denotes the expected utility conditional on investor j’s information set at t + 1,

wealth Wt,j is wealth at period t, and qji is the quantity invested in asset i by investor j. This

terminal wealth has a Normal distribution if the zi’s are Normal.

Proposition 1 The solution to this problem is given by

qi =
(E[zi|Ij ]− rpi)Wt,j

ρσ̂i
2 (8)

where E[zi|Ij ] is the conditional expectation of asset payoff i conditional on an investor’s

information set Ij , and σ̂i
2 = var[zi|Ij ] is the expected variance of asset i’s payoff conditional

on the investor’s information set. The proof is in Appendix A.1.1.

Information choice. Following Van Nieuwerburgh and Veldkamp (2010), with CRRA

preferences and entropy-learning technology, investors use their entire capacity to learn about

the different assets. As the total amount of information any given investor has is exogenous,

the only question is how to allocate this information among assets. We proceed by first

computing ex-ante expected utility, as in Brunnermeier (2001). To ease exposition, denote

the unconditional excess return as Ri = zi − rpi with conditional mean R̂ji, and the ex-ante

volatility of Rji − R̂ji as V̂ji expressed below:

R̂ji = E[zi|Iji]− rE[pi|Iji] (9)

V̂ji = V ar(Ri − R̂i) (10)

Proposition 2 Each investor specializes by allocating his entire capacity to learning

12



about a single asset.

The complete proof is in Appendix A.1.2. Intuitively, an investor’s information choice

problem can be expressed as a convex objective function decreasing in the choice variable, the

posterior standard error σ̂i. Thus, an investor invests all his capacity Kj in learning about

one single asset and nothing about any other asset as in Figure (2). With CRRA utility

and an information capacity constraint, there are increasing returns to devoting additional

capacity to learning about a given asset (specialization). Furthermore, the asset that is most

valuable to learn about is the one with the highest maximal expected gains (a high expected

return and low initial uncertainty). If multiple assets have equal maximal expected gains, the

investor randomizes between them.

Figure 2: CRRA preferences and information capacity constraints

Legend: The yellow area represents the set of posterior variances that are feasible and satisfy the
entropy – information capacity – learning constraint. The orange line represents the investor’s utility.
The black dot at the intersection of the feasible information choice set and the investor’s utility
represents the optimal information choice. This corner solution is due to a convex objective function
decreasing in the choice variable, the information choice σ̂1

−1 and σ̂2
−1. In this example, the

expected return on both assets is the same, but the investor is initially less uncertain about asset 2.
The prior precision on asset 2 is 0.5, higher than the prior precision on asset 1 (0.4). The investor
specializes in learning all about asset 2 and none about asset 1.

The preference for specialization is an artefact of the learning technology and investors’

preferences.9 We use CRRA preferences with an entropy constraint to obtain specialization,

9The most commonly used learning technologies are the entropy constraint, the additive precision
constraint, or the linear, concave or convex costs of acquiring precision. Depending on investors’
preferences, these technologies give rise to either specialized learning, where the learning portfolio is
concentrated or to generalized learning. For example, CARA preferences deliver less of a preference for
specialization than CRRA preferences used in much of the rest of the finance literature. CRRA means
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because there is extensive empirical evidence that retail investors’ portfolios are highly con-

centrated in a small number of stocks (Barber and Odean (2000), Campbell (2006), Calvet et

al. (2007), and Luo et al. (2020)). And the best assets to acquire information about are the

ones the investor expects to hold.

Investors’ posterior beliefs about payoffs depend on whether they learn or not. For assets

that are passively traded, the posterior belief equals the prior belief (i.e., nothing is learned).

For assets that are actively traded, the posterior mean equals the received signal and the

posterior variance is strictly lower and decreasing in capacity (i.e., the higher the capacity,

the more precise the posterior gets). Most important for the results is that the higher the

capacity of an investor, the larger the weight that the investor’s signal puts on the realization

of the signal relative to the prior (i.e., this means that sophisticated investors will respond

more strongly to positive/negative signals).

σ̂i =

σ̂i = exp(−2Kj)σi if the investor learns (if i ∈ A)

σi if the investor does not learn (if i /∈ A)
(11)

and E[zij |Ij ] =

sij if the investor learns (if i ∈ A)

z̄i if the investor does not learn (if i /∈ A)
(12)

We next present the asset market equilibrium, given the solution to an individual in-

vestor’s information allocation problem in equations (11) and (12). We follow Van Nieuwer-

burgh and Veldkamp (2010) and Kacperczyk et al. (2018) in deriving the asset market equi-

librium.

Corollary 1 The asset market equilibrium is given by a market clearing condition that

equates the demand and supply for each asset

(1− ϕi)

(
z̄i − rpi
ρσ2

i

)
+

∫ 1

0

(
sji − rpi

ρσ2
i exp(−2Kj)

)
dj = xi (13)

and a price for each asset that is a linear combination of the asset’s stochastic return and its

stochastic supply pi = ai + bizi − cixi where

ai =
z̄i

r (1 + ϕiC)
; bi =

ϕiC
r (1 + ϕiC)

; ci =
ρσ2

i

r (1 + ϕiC)
(14)

that absolute risk aversion fluctuates, depending on the investor’s realized wealth. This fluctuation
works to hedge the risk that specialized learning entails (Van Nieuwerburgh and Veldkamp (2010)).
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and thus the price of each asset i takes the form

pi =
z̄i + ziϕiC − xiρσ

2
i

r (1 + ϕiC)
(15)

where ϕi denotes the measure of investors that learn about asset i that we still have to solve

for, Kj denotes the investor’s capacity which can be Ku or Ks for unsophisticated and so-

phisticated investors respectively, and C =
[
λ
(
e2Ks − 1

)
+ (1− λ)

(
e2Ku − 1

)]
is a proxy for

the total capacity in the economy.10 The proof is in Appendix (A.1.5).

We next determine which assets are learned about in equilibrium, and how much in-

formation capacity is allocated across these assets. We again follow Van Nieuwerburgh and

Veldkamp (2010) and Kacperczyk et al. (2018) in deriving the information allocation.

Proposition 3 All assets that are actively learned about in equilibrium (actively traded)

belong to the set of assets with maximal expected gains, A, or in other words, the ones with

the highest expected return and lowest initial uncertainty. Not all assets are learned about in

equilibrium (but they can be traded passively).

The complete proof is in Appendix A.1.4. The optimal information acquisition strategy

uses all capacity to learn first about the asset with the highest maximal expected gain (i.e.,

highest idiosyncratic volatility), then learn (with the capacity left) about the asset with the

second highest expected gain (i.e., second highest idiosyncratic volatility), and so on and so

forth. An investor’s objective function is to choose the variance σ2
ϵji to maximize ex-ante

utility:

max
σ2
ϵji

N∑
i=1

V̂i + R̂2
ji

σ2
ϵji

(16)

s.t.

N∏
i=1

σ2
i

σ2
ϵji

≤ exp(2Kj) (17)

where V̂i = (1−2rbi)σ
2
i +r2σ2

pi and R̂i = z̄i−rp̄i are components common across all investors

as these are average ex-ante variances and expectations of posterior excess returns. As we

have seen already in Proof (A.1.2), the solution to this problem is a corner solution because

the objective function is convex and decreasing in the choice variable σ2
ϵji. Thus, an investor

10C is the summation of the total capacity of sophisticated investors, in measure λ, and the total
capacity of unsophisticated investors in measure 1− λ, minus 1. This transformation is easy to work
with in our exponential/log derivations, and does not materially change any of our results.
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allocates his entire capacity to learning about a single asset and all assets that are actively

traded in equilibrium belong to the set of assets with maximal expected gains:

A =

{
i|i ∈ argmax

i
Ai

}
, where

Ai =
V̂i + R̂2

ji

σ2
ji

(18)

Proposition 4 Among the assets that are actively traded, i ∈ A, not all are given the

same attention by investors. The market endogenously learns about a select number of assets,

and the mass of investors ϕi choosing to learn about asset i will vary with the volatility and

liquidity of the asset.

The complete proof is in Appendix A.1.6. Using the price equation (15), we can derive

R̂i =
x̄iρσ

2
i

(1 + ϕiC)
; V̂i =

σ2
i (1 + ρ2σ2

i σ
2
xi)

(1 + ϕiC)2
; V̂ji =

σ2
i (1 + ρ2σ2

i σ
2
xi)− σ2

ϵji(1− ϕ2
i C2)

(1 + ϕiC)2
(19)

and substituting them into equation (18), the gain factor becomes

Ai =
1 + ρ2σ2

i (σ
2
xi + x̄2i )

(1 + ϕiC)2
(20)

where C =
[
λ
(
e2Ks − 1

)
+ (1− λ)

(
e2Ku − 1

)]
is the total capacity in the economy. Since

ϕi ≥ 0 and C > 0, the gain factor, derived in equation (20), is decreasing in the total capacity

of the economy, C, as well as in the mass ϕi of investors who learn about asset i. Intuitively,

the more investors learn, the lower the gains from trading the asset. Investors prefer to trade

in an environment where there are few informed investors. However, the gain factor increases

with the volatility of the asset σ2
i , as well as with the volatility of the stochastic supply σ2

xi.

Intuitively, the more noise traders there are, the higher the gains from trading with them.

Likewise, the riskier the asset, the higher the gains from trade.

Corollary 2 Investors start learning about a first asset with the highest idiosyncratic risk

σ2
i (σ

2
xi+ x̄2i ). As capacity C increases, investors start learning about new assets in a decreasing

order of idiosyncratic risk, going from the riskiest asset they can afford into less risky assets.

Figure (3) displays the order of assets in which investors learn.
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Figure 3: Learning equilibrium. Investors first learn about the most volatile asset, and
then expand their learning towards the next highest volatility asset and so on.

Legend: Investors start learning about a first asset with the highest idiosyncratic risk (i.e. the
riskiest, most volatile asset). As capacity increases, investors start learning about new assets in a
decreasing order of idiosyncratic risk, going from the riskiest asset into less risky assets (moving in
the left direction of learning).

The proof is in Appendix A.1.7. Intuitively, investors start learning about the asset with

the highest gain, which is the asset with the highest idiosyncratic risk. When aggregate infor-

mation capacity increases, investors move down the pecking-order of learning into the second

highest idiosyncratic risk asset, and so on and so forth, due to strategic substitutability. At

low capacity, both investor types learn about the most volatile asset. Yet, as capacity grows,

the gains from learning about this asset decline (through a general equilibrium effect that

works through prices), which pushes some investors to learn about less volatile assets. This

happens as part of pinning down the market equilibrium, moving from one asset to another

as greater demand raises the price of that asset, reducing the benefit of holding that asset.

The threshold that pins down the selection of investors who learn about the first 1 ≤ n ≤ N

assets is given below.

Corollary 3. The selection of investors who learn about the first n ≤ N assets is pinned

down by

ϕn+1 = ... = ϕN = 0 (21)

ϕi =

√
1 + ρ2Σi

1 + ρ2Σ1

 1

Cn
+

1− 1
Cn
∑n≤N

i=1

(√
1+ρ2Σi

1+ρ2Σ1
− 1
)

∑n≤N
i=1

√
1+ρ2Σi

1+ρ2Σ1

− 1

Cn
(22)

ϕ1 =
1− 1

Cn
∑n≤N

i=1 (
√

1+ρ2Σi

1+ρ2Σ1
− 1)∑n≤N

i=1

√
1+ρ2Σi

1+ρ2Σ1

(23)
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where i ∈ {2, 3, ..., n} ⊂ A, ρ denotes the average risk-aversion, ϕi ≥ 0 denotes the measure of

investors who learned about asset i, Σi = σ2
i (σ

2
xi + x̄2i ) denotes the idiosyncratic volatility of

asset i, and Cn =
[
λ
(
e2Ks − 1

)
+ (1− λ)

(
e2Ku − 1

)]
≥ C1 is the total capacity in the econ-

omy in which 1 < n ≤ N assets are learned about in equilibrium. The proof is in Appendix

A.1.8.

Lastly, denote the sets of sophisticated and unsophisticated investors that learn about

asset i as MSj and MUj respectively. These sets are of measure λϕi and (1−λ)ϕi, where ϕ is

defined in terms of the primitives of this model as in equation (21). This completes the full

characterization of the equilibrium of this economy.

2.3 Theoretical predictions

Given that we have characterized the full equilibrium in the previous section, we now

turn to predictions related to heterogeneity in capital income and to the impact that progress

in financial information technologies have on heterogeneity in capital income and portfolio

holdings in the context of this particular theoretical setting.

Prediction 1. Heterogeneity in information sophistication leads to differences in re-

alized and expected capital income, as well as in expected portfolio holdings. That is,

if KS > KU , then
∑N

i=1ΠS,i,t >
∑N

i=1ΠU,i,t, and
∑N

i=1E[ΠS,i,t] >
∑N

i=1E[ΠU,i,t] and

E[HS,i,t/λ] ≥ E[HS,i,t/(1− λ)].

The complete proof is in Appendix A.2.1. Capital income heterogeneity is given by the

difference in profits between sophisticated and unsophisticated investors

n∑
i=1

ΠS,i,t −ΠU,i,t =

n∑
i=1

[
ϕi(e

2KS − e2KU )(zi − rpi,t)
2

ρσ2
i

]
(24)

where ΠS,i,t and ΠU,i,t denote the per capita average profit of sophisticated and unsophisticated

investors respectively, ϕi is the mass of investors learning about asset i, KS and KU are the

capacities of sophisticated and unsophisticated investors. Thus, if KS > KU this implies∑n
i=1ΠS,i,t >

∑n
i=1ΠU,i,t.

Heterogeneity in portfolio composition is given by differences in holding levels of a given

asset by sophisticated and unsophisticated investors.

HS,i,t = λ

[
(z̄i − rpi,t) + ϕi(e

2KS − 1)(zi − rpi,t)

ρσ2
i

]
(25)
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HU,i,t = (1− λ)

[
(z̄i − rpi,t) + ϕi(e

2KU − 1)(zi − rpi,t)

ρσ2
i

]
(26)

Note that HSi,t and HU,i,t are the holding levels of asset i for each investor type at

time t. While both types of investors make the same returns on the passive assets and have

the same holdings per capita of passive assets, sophisticated investors make higher expected

returns and have higher expected holdings per capita of active assets (i.e., the ones with

maximal expected gains) relative to unsophisticated investors. Thus, if KS > KU this implies

E[HS,i,t/λ] > E[HS,i,t/(1 − λ)], which implies
∑N

i=1E[ΠS,i,t] >
∑N

i=1E[ΠU,i,t]. Heterogene-

ity in information capacity between investors (the fact that KS > KU ) drives differences in

capital returns. Sophisticated investors generate higher capital returns than unsophisticated

investors because of two reasons: (i) they achieve higher profits because they hold a different

average portfolio (i.e., sophisticated investors have better information to identify profitable

assets, so they invest in high risk - high return assets more), and (ii) they benefit more from

positive shocks and are more sheltered from negative shocks (i.e. because they tilt their

portfolios towards profitable assets more than unsophisticated investors do). In other words,

sophisticated investors, relative to unsophisticated investors, learn more so they gain more

(and lose less) from positive (negative) shocks relative to their prior expectations.

Prediction 2. An absolute (symmetric) increase in information sophistication leads to

growing expected capital income heterogeneity. That is, if both KS and KU increase propor-

tionally by the same per cent difference, K ′
S = (1+ξ)KS and K ′

U = (1+ξ)γKS , where 0 < ξ ≤
1 and 0 < γ < 1 expected income heterogeneity increases, d

(
E[Π′

S,i,t]− E[Π′
U,i,t]

)
/dKS > 0.

The complete proof and other derivations are in Appendix A.2.2. The expected capital

income differential increases with the overall growth in aggregate market sophistication, which

can be interpreted as general progress in information processing technology. This holds even

when relative sophistication stays constant. The intuition for this is that the more an investor

learns and knows, the easier it is for this investor to learn on the margin. Thus, the effect

of achieving even higher profits is strengthened because sophisticated investors already start

from a higher level of capacity to process information to begin with.

Prediction 3. A relative (asymmetric) increase in information sophistication leads to

greater realized capital income heterogeneity. That is, if KS and KU increase by δS and δU

respectively, such that K ′
S = KS + δS and K ′

U = KU + δU , where δS > δU , realized capital

income heterogeneity increases, ∂ (ΠS,i,t −ΠU,i,t)/∂(e
2KS − e2KU ) > 0.

As long as KS > KU and there is learning in equilibrium about asset i, such that ϕi ̸= 0,
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capital income heterogeneity is increasing in the capacity gap KS −KU .

∂ (ΠS,i,t −ΠU,i,t)

∂(e2KS − e2KU )
=

[
ϕi(zi − rpi,t)

2

ρσ2
i

]
> 0 (27)

The proof is in Appendix A.2.3. When sophisticated investors become even more sophis-

ticated, and the unsophisticated become even less sophisticated, capital income heterogeneity

increases. This result is somewhat mechanical. Intuitively, the higher the dispersion in infor-

mation capacity, K ′
S−KS > K ′

U −KU , the better the information that sophisticated investors

receive and the more they use it to achieve higher returns.

Prediction 4. An increase in absolute (and relative) sophistication predicts a growing

presence of sophisticated investors in risky asset classes. In other words,

dE
[
HS,i

λ − HU,i

(1−λ)

]
dKS

> 0 and
dE
[
HS,i

λ − HU,i

(1−λ)

]
dC

> 0 (28)

where HS,i is the holding level of a sophisticated investor of asset i, and HU,i is the

holding level of an unsophisticated investor of asset i.

The complete proof is in Appendix A.2.4. This result holds both for an absolute increase

in sophistication (i.e., where KS and KU grow by the same percentage difference), and also

– trivially – for a relative increase (i.e., where KS and KU grow by δS and δU < δS respec-

tively). The intuition for this result is that sophisticated investors increase their ownership of

equities in a specific order: they first start with the most volatile stocks they can afford, and

then continue with stocks with medium and lower volatility. Thus, when their sophistication

increases, they can afford to learn about and invest in even riskier asset classes.

Prediction 5. An absolute (and relative) increase in sophistication predicts a retrench-

ment of less sophisticated investors from trading and stock market ownership in general.

This follows from Prediction 4, as dE
[
HS,i,t

λ − HU,i,t

1−λ

]
/dKS > 0. The intuition for this

result is through a general equilibrium effect which involves prices adjusting to an increased

demand from sophisticated investors. In particular, investors expand their risky portfolio

holdings by moving down in the asset volatility space as total capacity in the economy expands.

Unsophisticated investors perceive an informational disadvantage in trading an asset after

sophisticated investors enter, because the new price adjusts to the greater demand from these

sophisticated investors. Therefore, unsophisticated investors withdraw into safer assets and

away from active trading in general. As asset prices increase, E[pi] is increasing in ϕiC, while
E[zi − rpi] is decreasing in ϕiC, both types of investors see their returns go down, but only
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unsophisticated investors will choose to decrease their portfolios because their signals are not

sufficiently good enough to sustain their previous position as an optimal choice anymore. The

proof is in Appendix A.2.5.

3 Data Description

The theoretical framework offers rich cross-sectional and time-series predictions on finan-

cial returns and portfolio composition of sophisticated and unsophisticated investors. How-

ever, empirically assessing the impact of progress in financial information technology on these

variables is difficult because of data limitations (i.e., one needs very detailed panel-level house-

hold portfolio holdings data that are usually only contained in sensitive tax records with de-

tailed trading information), but mostly because of identification (i.e., one needs local variation

in the diffusion of FinTech technologies).

The existing household finance literature has focused mainly on specific FinTech devel-

opments, such as robo-advisors. Reher and Sokolinski (2021) find robo-advisors do not benefit

poorer households; Rossi and Utkus (2020) find robo-advisors move poorer households into

bond holdings and wealthier households in high-fee active mutual funds that experience sig-

nificant performance gains. In this paper, we take a broader perspective and analyse the

interaction between investors (with different degrees of sophistication) and financial interme-

diaries offering heterogeneous forms of digital financial services.

Our empirical analysis uses a unique dataset merging information on household and

bank-specific characteristics. Data on households are gathered from Banca d’Italia’s Italian

Survey on Household Income and Wealth (SHIW) from 2004 to 2020.11 This survey contains

socio-demographic characteristics of households members (such as the province of birth and

residence, age, gender, education, marital status, work status, and risk aversion), detailed

information about all households’ income sources and wealth components (real and financial

assets, split into deposits, bonds, MMFs, public equity, private equity, etc., and debts). The

survey also collects information on households’ banks and on their remote connection to banks,

which we include as a relevant control to study the overall level of technological development.12

Figure (4) shows the diffusion of remote banking connections throughout Italy over time.

We complement these data with Banca d’Italia’s Regional Bank Lending Survey (RBLS)

which collects information on the digitalization of the Italian banking sector from a sample of

about 280 Italian banks, which cover the Italian credit market almost entirely.13 Using these

11We restrict our analysis to potential investors, i.e. households clients of banks, which represent
about 85 per cent of the total sample.

12For more details about the methodological aspects of the SHIW see Banca d’Italia (2022).
13The sample covers almost 90 per cent of deposits and 85 per cent of loans to firms and households.
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Figure 4: Early-stage FinTech: Remote banking connections

Source: Banca d’Italia’s Survey on Household Income and Wealth (SHIW).

data we build an indicator that represents a bank’s attitude to offer digital services to house-

holds. In particular, we use the share of digital services to households, among peer-to-peer

payments through mobile, loans for house purchases, consumer credit, and asset management,

offered by the household’s banks in a specific year.14

The average values of the digital financial services indicator for households in 2004, 2012,

and 2020 across Italian regions are reported in Figure (5).

As for the analysis of investors’ level of sophistication, we rely on survey information on

financial literacy. Financial literacy has been collected in the 2006, 2008, 2010, 2018 and 2020

editions of the SHIW using different sets of questions.15 Based on this information, we use

an indicator of financial literacy calculated as the share of correct answers provided by the

respondents. For missing years this indicator has been reconstructed using the predictions of a

weighted regression with relevant covariates, such as respondents’ socio-demographic charac-

teristics and household’s economic conditions.16 Using this indicator we define sophisticated

investors as those having a level of financial literacy in the last quartile; conversely, unsophis-

ticated investors have a level of financial literacy in the first quartile. Table B1 in Appendix

14For banks in the SHIW not surveyed in the RBLS, we reconstruct the indicator using a simple
regression model. In particular, following the results in Arnaudo et al. (2022), which show that the
intensity of technological innovation depends on bank-specific characteristics, we use the prediction
of a simple regression model where the digitalization index is estimated as a function of bank capital
adequacy (tier1 ratio), profitability (return on equity) and size, including time fixed effects. On the
methodology used to construct the combined dataset of the SHIW with the Supervisory Reports of
Italian banks see Eramo et al. (2022).

15The questions regarded the knowledge of the impact on the purchasing power of inflation, the
calculation of compound interests, the awareness of the degree of risk of different kinds of financial
assets, the ability to read a bank statement or to distinguish among different types of mortgages.

16For more details about the financial literacy indicator see Eramo et al. (2022).
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Figure 5: FinTech: digital financial services to households

Source: Banca d’Italia’s Regional Bank Lending Survey.

B reports summary statistics of all the variables used in the analysis for the two groups of in-

vestors (sophisticated and unsophisticated) and for the total sample. Sophisticated investors

have a higher level of income, have more children (when living in couples), are middle-aged

(41–65 years), live in larger cities, have a higher level of education, are more likely to be

employed or self-employed than unsophisticated investors.

3.1 Stylized facts: matching the model with the data

Before discussing the empirical strategy to test the model’s hypotheses, we first present

some preliminary evidence on ownership across risky asset classes, market values, stock

turnover, and trading intensity and discussion of the cross-sectional implications of the theo-

retical framework.

In the model, financial returns increase with investors’ sophistication via the ”information

channel” Arrow (1987). This happens because information matters more to sophisticated

investors, as they can better process information, and this can significantly affect returns.

This is consistent with empirical evidence from households’ tax returns in Scandinavia and

India (Fagereng et al. (2020), Di Maggio et al. (2018), and Campbell et al. (2018)).

As predicted by the theoretical model, heterogeneity in information capacity between

investors causes differences in their financial returns for Italian households.17 Figure (6)

reports the (unconditional) average rate of financial returns for sophisticated and unsophis-

17The SHIW imputes financial returns by assuming that the family held a constant value of financial
assets throughout the year (equivalent to the reported amount at the end of the year) and assuming a
fixed rate of return for each asset type. For more information on how financial returns are estimated
in the SHIW, please refer to Appendix A in Frost et al. (2022).

23



ticated investors. The difference in financial returns between the two groups of investors is

always positive over the sample period: on average around 42 basis points. Interestingly, this

difference vanishes in recent years, which are characterised by low or negative interest rates.

Figure 6: Average rates of financial returns by investors’ sophistication

Source: Banca d’Italia Survey on Household Income and Wealth 2004-20.

As risk-tolerant wealthy investors take on higher-risk strategies (Chiappori and Paiella,

2011), it is important to control for the different degrees of risk aversion between sophisticated

and unsophisticated investors. From the SHIW we can observe directly this investor-specific

characteristic:18 while 69 per cent of unsophisticated investors have high risk aversion, this

percentage drops to 46 for sophisticated investors.

The lower degree of risk aversion for sophisticated investors is associated with a higher

percentage of risky investments in their portfolios. Figure (7) shows the (unconditional)

average share of risky assets for sophisticated and unsophisticated investors. The difference

in the share of risky assets between the two groups of investors is quite remarkable: on average

9 percentage points over the whole sample period. Interestingly, this difference has reduced

over time, from 17 percentage points in 2004 to 5 percentage points in 2020. The reduction

of the difference in terms of share of risky assets is significant in the period up to the global

financial crisis. In the last part of the sample, characterised by very low returns, the difference

is instead more stable. To account for the market movements that occurred in the analysed

period we include time-fixed effects in our models.

18Risk aversion is measured through the following question: In managing your financial investments,
would you say you have a preference for investments that offer: 1 = very high returns, but with a high
risk of losing part of the capital (no risk aversion); 2 = a good return, but also a fair degree of protection
for the invested capital (low risk aversion); 3 = a fair return, with a good degree of protection for the
invested capital (medium risk aversion); 4 = low returns, with no risk of losing the invested capital
(high risk aversion).
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An examination of the household portfolio composition by investor financial literacy us-

ing SHIW data in Figure (8) confirms that sophisticated households in Italy hold different

assets compared to less sophisticated households. Low-risk assets, such as deposits and saving

accounts, represent the largest share held by the lowest half of the financial literacy distri-

bution. The lower quartile holds very few medium-risk assets such as government securities

or bonds and high-risk assets such as equity shares, fund shares, or other complex securities.

The middle classes have more exposure to medium-high risk assets, but low-risk assets still

dominate their portfolio. At the top quartile, the share of high-risk assets rises.

Another prediction of the model is that a general improvement in financial information

technology (reflected in the digital services provided by banks) could benefit sophisticated

investors more than unsophisticated ones and this could contribute to a decrease in overall

household stock-market participation.

Figure 7: Average share of risky assets1 by investors’ sophistication

Legend: (1) Risky financial assets: shares and equity, managed portfolio, funds (in equities, mixed or
in foreign currencies), foreign securities and other financial assets (option, futures, etc.). Source:
Banca d’Italia’s Survey on Household Income and Wealth 2004-20.
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Figure 8: Portfolio composition across financial literacy quartiles

Legend: The figure shows the financial portfolio composition across households’ financial literacy
quartiles averaged over 2004-20. Low risk: deposits, saving accounts; Medium risk: government
securities, bonds, funds (in bonds, money market and liquidity in euros), loans to cooperatives, High
risk: shares, equity, managed portfolio, funds (in equities, mixed or in foreign currencies), and other
complex securities (options, futures, etc.). Source: Banca d’Italia’s Survey on Household Income and
Wealth 2004-20.

This is consistent with a puzzling phenomenon of the last two decades of a growing

retrenchment of less sophisticated, retail investors from trading and stock market ownership

in general, as shown in Figure (9). This is also consistent with trends from the US (Wolff

(2014) and Mihet (2018)), which are puzzling in light of the fact that direct participation

costs have fallen significantly over the last two decades.

In the model, aggregate information technology improvements increase the share of so-

phisticated investors into high-risk, high return asset classes. Unsophisticated investors per-

ceive their information disadvantage through asset prices and allocate their investments away

from the allocations of informed investors. As a result, sophisticated investors earn higher

returns, and over time, their financial income diverges from that of unsophisticated investors

with relatively lower levels of information.

Figure (10) shows the cumulative financial returns for the two groups of investors (sophis-

ticated and unsophisticated) of 100 Euros invested in 2002. At the end of 2020, sophisticated

investors have cumulative financial returns that are 5 percentage points higher than unsophis-

ticated investors, despite the poor performance of the Italian Stock Market in the analysed

period (-25%). This model prediction fits well also with empirical evidence for other countries,

which documents a presence of sophisticated market players that have doubled in risky asset

classes over the last decades (Gompers and Metrick (2001), Garleanu and Pedersen (2018)).
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Figure 9: Stock market participation over time

Source: Banca d’Italia’s Survey on Household Income and Wealth 2004-20.

Figure 10: Cumulative financial returns by investors’ sophistication

(100=2002, per cent)

Source: Banca d’Italia’s Survey on Household Income and Wealth 2004-20.

In the time-series, the dispersion in returns is predicted to grow with advances in financial

information technologies. Our theoretical model implies a growing disparity in capital incomes

across households. This result is confirmed by computing inequality measures for financial

returns in Italy: between 2004 and 2020, the Gini index of financial returns has increased

from 0.80 to 0.84 and the quintile ratio (p80/p20) from 16 to 30.
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4 Empirical Findings

The patterns described above are broadly in line with the predictions of the theoreti-

cal model. However, these findings can only be suggestive as the unconditional means do

not control simultaneously for all relevant factors that influence the link between financial

technologies, the investors’ degree of sophistication, and their portfolio choices and financial

returns. This section econometrically analyses the five qualitative predictions of the model

discussed in Section 2.3.

Prediction 1. Heterogeneity in information sophistication leads to differences

in capital income and portfolio composition.

In the model, we have seen that heterogeneity in information capacity between investors

drives differences in capital returns and portfolio composition. Sophisticated investors gen-

erate higher capital returns than unsophisticated investors because of two reasons: (i) they

achieve higher profits because they hold a different average portfolio (i.e., sophisticated in-

vestors have better information to identify profitable assets, so they invest more in high

risk-return assets), and (ii) they react better to unexpected shocks. In other words, sophisti-

cated investors, relative to unsophisticated investors, receive higher-quality signals and as a

result, they respond more strongly to positive/negative realized excess returns.

In our baseline regressions, we study if sophisticated investors have a systematically

higher level of financial returns and invest more in risky assets.

The baseline model specification is the following:

Yi,j,t = α0 ⋆ Remotei,j,t + α1 ⋆ Sophisticatedi,j,t +Controlsi,j,t + θj + ξt + ϵi,j,t (29)

where Yi,j,t denotes either financial returns or the portfolio share invested in risky asset classes

(such as shares, equity, managed portfolio funds and other complex securities such as options,

future, etc.) of household i in the region j at calendar year t. Remotei,j,t is a dummy that takes

the value of 1 for investors that have access to remote banking and Sophisticated i,j,t is a dummy

that takes the value of 1 for investors in the upper quartile of the distribution of financial

education and 0 elsewhere. The vector Controls i,j,t, include investor-specific characteristics

(gender, education, age, work status, risk aversion, equivalent income quintile, household

type, size of the municipality of residence, dummy if the investor is born abroad). θj , and ξt

denote region and time fixed effects. The inclusion of time dummies is particularly relevant

to control for general market conditions. The model implies that α1 > 0.

Table 1 reports the results. All models are estimated using a linear regression approach
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with standard errors adjusted for clustering at the regional level. The first part considers the

rate of returns as the dependent variable. Sophisticated investors, other things being equal,

earn 13 basis points more than unsophisticated investors. Having access to remote banking

increases the rate of returns by an additional 7 basis points. As expected, financial returns

are also increasing in the level of education: interestingly, when we control for the level of

investor’s financial sophistication, the differences among education levels are not so large.

An investor with a university degree earns only 7 basis points more than an investor with a

primary school education. Financial returns are also increasing in investor’s age: controlling

for income and other concomitant factors, investors with an age above 65 tend to earn 12

basis points more than those aged 30 or lower. Finally, the results point to the high relevance

of the heterogeneity in risk aversion: investors with high risk aversion earn 22 basis points

less than those classified with no risk aversion (risk neutral investors).

The second part of Table 1 considers the share of risky assets as the dependent vari-

able.19 Sophisticated investors, other things being equal, have a share of risky assets that is

4 percentage points larger than unsophisticated investors. Having access to remote banking

increases the share of risky assets further by 4 percentage points. Also in this case, the share

of risky assets increases with the level of education and age and decreases with risk aversion.

Other things being equal, a risk-neutral investor with more than 65 years and with a uni-

versity degree has a portfolio with a share of risky assets 20 percentage points larger than a

risk-averse young investor with very limited education.

The robustness of the above results has been checked in several ways. In particular,

we have: (1) controlled for heterogeneity among Italian regions using province dummies; (2)

tested for an alternative definition of the sophistication dummy (equal to 1 above the median

rather than the upper quartile); (3) used robust standard errors rather than standard errors

clustered at the regional level; (4) used in the share of risky assets all risk-bearing financial

assets including bonds, investment funds and equity shares. In all cases, results are very

similar.

Finally, we tested for the presence of sorting. For example, the results in Table 1 could

simply depend upon the fact that sophisticated investors have lower transaction costs than

unsophisticated investors or, more in general, the two types of investors match (endogenously)

with banks with different characteristics. To test for the possible existence of sorting effects,

we have run a linear probability model to represent the probability of an investor having a

highly digitalised bank. The right-hand side of the regression includes the dummy Sophis-

19Similar results are obtained using non-linear models such as Probit and Logit. However, in the
baseline regression, we prefer to use linear models because estimates from non-linear models are known
to be biased when there are a large number of fixed effects and interaction terms (Lancaster, 2000;
Gomila, 2021) and their coefficients are not readily interpretable.
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Table 1: Households’ rate of returns and portfolio share in risky financial assetsa

Dependent variable:

(Rate of returns) (Share of risky assets)

Remoteb 0.065∗∗∗ (0.012) 0.036∗∗∗ (0.005)
Sophisticatedc 0.126∗∗∗ (0.010) 0.034∗∗∗ (0.006)
Education [no schooling]

Primary school 0.044∗∗∗ (0.016) −0.002 (0.003)
Lower secondary school 0.077∗∗∗ (0.019) 0.005 (0.006)
Upper secondary school 0.125∗∗∗ (0.020) 0.016∗∗∗ (0.005)
University degree 0.118∗∗∗ (0.026) 0.017∗ (0.010)

Age [30 and under]
31-40 0.004 (0.016) 0.010∗∗∗ (0.004)
41-50 0.063∗∗∗ (0.020) 0.021∗∗∗ (0.005)
51-65 0.108∗∗∗ (0.022) 0.027∗∗∗ (0.008)
Over 65 0.125∗∗∗ (0.028) 0.031∗∗∗ (0.010)

Risk aversion [no risk aversion]
Low risk aversion −0.107∗∗ (0.052) −0.086∗∗ (0.034)
Medium risk aversion −0.078 (0.048) −0.110∗∗∗ (0.034)
High risk aversion −0.218∗∗∗ (0.052) −0.150∗∗∗ (0.036)

Other covariates d YES YES
Time fixed effects YES YES
Region fixed effects YES YES

Observations 52,129 52,129
Pseudo R-square 0.498 0.149

Note:∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; Standard errors (clustered by region) in brackets.
Source: Banca d’Italia’s Survey on Household Income and Wealth 2004-20.
a Risky financial assets: shares and equity, managed portfolio, funds (in equities, mixed or in
foreign currencies), foreign securities and other complex financial assets (option, futures, etc.)
b Dummy equal to 1 for investors that have access to remote banking.
c Dummy equal to 1 for investors in the upper quartile of the financial literacy distribution.
d Other covariates: equivalent income quintile, household type, gender, work status, size of
the municipality of residence, born abroad. Individual characteristics refer to the head of the
household defined as the main income earner with the exception of risk aversion and financial
literacy collected for respondents.

ticated i,j,t, a full set of controls for investor-specific characteristics (gender, education, age,

work status, risk aversion, equivalent income quintile, household type, size of the municipal-

ity of residence, dummy if the investor is born abroad) and time and regional dummies. The

results reported in Table B2 indicate that there is no significant correlation between being a

sophisticated investor and having a highly digitalised bank.
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Prediction 2. An absolute increase in information sophistication leads to a grow-

ing expected capital income heterogeneity.

The difference in financial returns between sophisticated and unsophisticated investors

increases with the overall growth in the level of financial technology and market sophistication.

This should hold even when relative sophistication stays constant. The intuition for this effect

is that the more an investor learns and knows, the easier it is for this investor to learn on the

margin. Thus, the effect under prediction 1 should be larger for sophisticated investors when

the aggregate level of financial technology increases.

The baseline model specification is therefore modified as follows:

Yi,j,t = α0 ⋆ Remotei,j,t + α1 ⋆ Sophisticatedi,j,t + α2 ⋆ FinTechi,j,t+

+ β1 ⋆ FinTechi,j,t ⋆ Sophisticatedi,j,t+

+Controlsi,j,t + θj + ξt + ϵi,j,t (30)

where Yi,j,t denotes in this case financial returns of household i in region j at calendar

year t. FinTechj,t is a dummy variable that takes the value of 1 if the investor j’s main

bank has an index of digital services to households above the regional mean, and 0 otherwise.

The interaction term between FinTechj,t and Sophisticatedi,j,t evaluate the different effects

of having a bank with a high level of digitalisation among different types of investors. The

prediction of the model implies that α0 > 0, α1 > 0 and β1 > 0.

The first column of Table 2 reports the results. Investors with access to remote banking

earn, ceteris paribus, 7 basis points more than other investors. Sophisticated investors earn

on average 13 basis points more than unsophisticated investors. The effect of having a bank

with a high level of digitalisation (FinTech) is of 2 additional basis points for sophisticated

investors with respect to other investors.

Prediction 3. A relative increase in information sophistication leads to a

growing realized capital income heterogeneity.

When sophisticated investors become even more sophisticated, and/or the unsophisti-

cated become even less sophisticated, capital income heterogeneity increases. The empirical

test can be derived by including a specific dummy ”Unsophisticated” in equation 29. This

dummy takes the value of 1 for those investors in the first quartile of the distribution by

financial literacy, and 0 elsewhere.
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Table 2: Households’ rate of returns and portfolio share in risky financial assetsa

Dependent variable:

(Rate of returns) (Share of risky assets)

Remoteb 0.065∗∗∗ (0.007) 0.064∗∗∗ (0.007) 0.036∗∗∗ (0.002)
Sophisticatedc 0.116∗∗∗ (0.008) 0.115∗∗∗ (0.006) 0.026∗∗∗ (0.002)
Unsophisticatedd −0.042∗∗∗ (0.007) −0.0002 (0.002)
FinTeche 0.005 (0.006) −0.005∗∗ (0.002)
Interactions:
Soph.*FinTech 0.020∗ (0.011) 0.016∗∗∗ (0.003)
Unsoph.*FinTech −0.003 (0.003)

Other covariates f YES YES YES
Time fixed effects YES YES YES
Regional fixed effects YES YES YES

Observations 52,129 52,129 52,129
Pseudo R-square 0.499 0.499 0.150

Note:∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; Standard errors (clustered by region) in brackets.
Source: Banca d’Italia’s Survey on Household Income and Wealth 2004-20.
a Risky financial assets: shares and equity, managed portfolio, funds (in equities, mixed or in
foreign currencies), foreign securities and other complex financial assets (option, futures, etc.)
b Dummy equal to 1 for investors that have access to remote banking.
c Dummy equal to 1 for investors in the upper quartile of the financial literacy distribution.
d Dummy equal to 1 for investors in the lower quartile of the financial literacy distribution.
e Dummy equal to 1 for investors’ main bank providing a number of digital services to house-
holds above the regional mean.
f Other covariates: equivalent income quintile, household type, gender, education, work sta-
tus, risk aversion, age class, size of the municipality of residence, born abroad. Individual
characteristics refer to the head of the household defined as the main income earner with the
exception of risk aversion and financial literacy collected for respondents.

The model becomes therefore:

Yi,j,t = α0 ⋆ Remotei,j,t + α1 ⋆ Sophisticatedi,j,t + γ1 ⋆Unsophisticatedi,j,t+

+Controlsi,j,t + θj + ξt + ϵi,j,t (31)

In this model, the coefficients of the dummies Sophisticated and Unsophisticated indicate

the difference in financial returns with respect to investors with an intermediate level of

financial literacy (those in the second and third quartile of the distribution). The prediction of

the model implies that α1 should be significantly greater than 0 while γ1 should be significantly

lower than 0.

The second column of Table 2 reports the results. Financial returns of an unsophisticated
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investor that moves to an intermediate level of financial literacy increase by 4 basis points.

Moving from an intermediate to sophisticated determines a further increase by 12 basis points.

Prediction 4. An increase in absolute (and relative) sophistication predicts a

growing expected presence of sophisticated investors in risky asset classes.

Sophisticated investors increase their ownership of assets in a specific order: they first

start with the riskiest assets and then continue with assets with medium and lower risk. The

empirical test of this prediction derives from the following equation:

Yi,j,t =α0 ⋆ Remotei,j,t + α1 ⋆ Sophisticatedi,j,t + α2 ⋆Unsophisticatedi,j,t

+ γ1 ⋆ FinTechi,j,t + β1 ⋆ FinTechi,j,t ⋆ Sophisticatedi,j,t+

+ β2 ⋆ FinTechi,j,t ⋆Unsophisticatedi,j,t+

+Controlsi,j,t + θj + ξt + ϵi,j,t (32)

where Yi,j,t denotes the share of risky assets of household i in region j at year t. The

prediction of the model implies that α1 > 0, α2 < 0, β1 > 0, and β2 < 0.

The third column of Table 2 reports the results. Sophisticated investors have on average

3 percentage points more of risky assets. The effect of having a bank with a high level of dig-

italisation (FinTech) is statistically different for sophisticated and unsophisticated investors.

Sophisticated investors operating with a FinTech bank have a share of risky assets that is 1

percentage larger (0.016 − 0.005 = 0.011∗∗∗), while the effect on unsophisticated investors is

negative for around half a percentage point (−0.005∗∗).

Prediction 5. An absolute (and relative) increase in sophistication predicts a

retrenchment of less sophisticated investors from trading and stock market own-

ership in general.

This prediction implies that unsophisticated investors reduce (relative to the sophisti-

cated ones) their risky portfolio holdings by moving down in the asset volatility distribution

as absolute financial technology capacity expands. Unsophisticated investors perceive an in-

formational disadvantage in trading an asset after sophisticated investors enter. Therefore,

unsophisticated investors will retrench into less risky assets and from active trading in general.

The baseline model specification is therefore modified as follows:

Yi,j,t = α0 ⋆ Remotei,j,t + α1 ⋆Unsophisticatedi,j,t + α2 ⋆ FinTechi,j,t+
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+ β1 ⋆ FinTechi,j,t ⋆Unsophisticatedi,j,t+

+Controlsi,j,t + θj + ξt + ϵi,j,t (33)

where Yi,j,t denotes the share of risky assets of household i in region j at calendar year t.

The results reported in the first column of Table 3 indicate that unsophisticated investors

have, on average, 1 percentage point less of risky assets. The effect of having a FinTech bank

with a high level of digitalisation is statistically different for unsophisticated investors with

respect to other investors. Unsophisticated investors operating with a FinTech bank have a

share of risky assets that is in practice equal to other investors not operating with a FinTech

bank (0.006-0.008=-0.002, not statistically significant), while the effect of having a FinTech

bank on the share of risky assets for other investors is positive for around 1 percentage point

(0.006∗∗∗).

The second column of Table 3 presents the results of a different test, where we do

not consider the specific characteristics of the main bank of the investor but the general

characteristics of banks operating in the region where the investor resides. In this case,

the dummy FinTech is replaced by a regional indicator of the level of bank digitalisation

(RegionFinTech). This indicator is given by the regional average of the share of digital services

to households provided by investors’ main banks representing the general supply capacity of

FinTech technology services in a geographical area. Moreover, the use of a share rather than

a dummy (FinTech) allows us to include a quadratic term in the specification.

The model becomes:

Yi,j,t = α0 ⋆ Remotei,j,t + α1 ⋆Unsophisticatedi,j,t + α2 ⋆ RegionFinTechj,t+

+ β1 ⋆ RegionFinTechj,t ⋆Unsophisticatedi,j,t+

+ β2 ⋆ (RegionFinTechj,t ⋆Unsophisticatedi,j,t)
2+

+Controlsi,j,t + ξt + ϵi,j,t (34)

The results in the second column of Table 3 indicate that the share of risky assets for

unsophisticated investors is always negatively correlated with the regional level of FinTech.

The effect on the share of risky assets for plausible values of the regional bank digitalisation

index (0.04-0.90) is between -1.0 and -2.4 percentage points.
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Table 3: Households’ portfolio share in risky financial assetsa

Dependent variable:

(Share of risky assets)

Remoteb 0.045∗∗∗ (0.002) 0.046∗∗∗ (0.002)
Unsophisticatedc −0.011∗∗∗ (0.002) −0.028∗∗∗ (0.005)
FinTechd 0.006∗∗∗ (0.002)
RegionFinTeche 0.086∗∗∗ (0.009)
Interactions:
Unsophisticated*FinTech −0.008∗∗∗ (0.003)
Unsophisticated*RegionFinTech 0.087∗∗∗ (0.028)
(Unsophisticated*RegionFinTech)∧2 −0.092∗∗∗ (0.030)

Other covariates f YES YES
Time fixed effects YES YES
Regional fixed effects YES NO

Observations 52,129 52,129
Pseudo R-square 0.126 0.128

Note:∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; Standard errors in brackets.
Source: Banca d’Italia’s Survey on Household Income and Wealth 2004-20.
a Risky financial assets: shares and equity, managed portfolio, funds (in equities, mixed or in
foreign currencies), foreign securities and other complex financial assets (option, futures, etc.)
b Dummy equal to 1 for investors that have access to remote banking.
c Dummy equal to 1 for investors in the lower quartile of the financial literacy distribution.
d Dummy equal to 1 for investors’ main bank providing a number of digital services to house-
holds above the regional mean.
e Regional mean of the index of digital services to households provided by investors’ main
bank.
f Other covariates: equivalent income quintile, household type, gender, education, work sta-
tus, risk aversion, age class, size of the municipality of residence, born abroad. Individual
characteristics refer to the head of the household defined as the main income earner with the
exception of risk aversion and financial literacy collected for respondents.

5 Conclusions

By offering an easier access to different savings and investment opportunities, and a

multitude of data sources for informed investment, FinTech promises to democratize the in-

vestment management sector and level-out the playing field. On the other hand, investors

with a different degree of financial sophistication could benefit differently from financial tech-

nological advances, with effects on financial income inequality that are a priori uncertain.

In this paper, we present a simple micro-founded model that derives testable predictions
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on the links between financial technologies, investors’ degree of sophistication, and their port-

folio choices and financial returns. Using microdata from the Survey on Household Income

and Wealth conducted by Banca d’Italia over the period 2004-20, we test the theoretical

predictions of the model and find that the gaps in financial returns and share of risky as-

sets between sophisticated and unsophisticated investors increase with progress in financial

technology. This means that inequality is reduced only if financial technology is accessible to

everyone, and if all investors have the same capacity to use it.
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Appendix A Detailed Proofs and Other Results

A.1 Solving for equilibrium

A.1.1 Portfolio choice

Proof of Proposition 1 The solution to this problem is given by

qi =
(E[zi|Ij ]− rpi)Wt,j

ρσ̂i
2

Proof: Each investor chooses a portfolio allocation to maximize:

max E2j
1

1− ρ
W 1−ρ

t+1,j

subject to the budget constraint

Wt+1,j = r

(
Wt,j −

N∑
i=1

piqji

)
+

N∑
i=1

ziqji

We first compute expected utility. For this, we need to express terminal wealth in log-

terms and then use an approximation of the log return.

Wt+1,j = Wt,je
log

[
r

(
1−

∑N
i=1 pi

qji
Wt,j

)
+
∑N

i=1 zi
qji
Wt,j

]
=

= Wt,je
log

[
r+ 1

Wt,j

∑N
i=1 piqji

zi−rpi
pi

]

The only stochastic term in the above equation is z. We can define

F (zi − rpi) = log

[
r +

1

Wt,j

N∑
i=1

piqji
zi − rpi

pi

]
and

G(qi) =

[
r +

1

Wt,j

N∑
i=1

qji(z̄i − rpi)

]

The second-order Taylor approximation of the F function is

F (zi − rpi) = f(z̄i − rpi) + (zi − z̄i)F
′(z̄i − rpi) +

1

2
(zi − z̄i)

2F ′′(z̄i − rpi) +O(zi − rpi)

Plugging in the terms

F ′ =
qi

Wt,j

1[
r + 1

Wt,j

∑N
i=1 qji(z̄i − rpi)

]
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F ′′ = − q2i
W 2

t,j

1[
r + 1

Wt,j

∑N
i=1 qji(z̄i − rpi)

]2
we get that the Taylor approximation is

F (zi − rpi) = log

[
r +

1

Wt,j

N∑
i=1

qji(z̄i − rpi)

]
+ (zi − z̄i)

qi
Wt,j

1[
r + 1

Wt,j

∑N
i=1 qji(z̄i − rpi)

]
− 1

2
(zi − z̄i)

2 q2i
W 2

t,j

1[
r + 1

Wt,j

∑N
i=1 qji(z̄i − rpi)

]2 +O(zi − rpi)

And substituting in the G function, the Taylor approximation of the F function can be written

concisely as

F (zi − rpi) = logG(qi) + (zi − z̄i)
qi

Wt,j

1

G(qi)
− 1

2
(zi − z̄i)

2 q2i
W 2

t,j

1

G(qi)2

Thus, to compute expected utility, we can write

(
e[F (zi−rpi)]

)1−ρ
= G(qi)

(1−ρ)e
(1−ρ)(zi−z̄i)

qi
Wt,j

1
G(qi)

− (1−ρ)
2

(zi−z̄i)
2 q2i
W2

t,j

1
G(qi)

2

In the above, we can approximate the term (zi − z̄i)
2 by its expected conditional volatility

σ̂i
2. At the approximation point, we can ignore variation in the term G(qi) because it is a

constant and thus,

logEW 1−ρ
j,t+1 = c0(1− ρ)

[
N∑
i=1

qi
Wt,j

(E[zi|Ij ]− rp) + (1− ρ)

N∑
i=1

q2i σ̂i
2

Wt,j

1

2W 2
t,j

−
N∑
i=1

q2i σ̂i
2

2W 2
t,j

]

= c0(1− ρ)

[
N∑
i=1

qi
Wt,j

(E[zi|Ij ]− rp)− ρ

N∑
i=1

q2i σ̂i
2

2W 2
t,j

]
(35)

Taking the first order condition of this utility function with respect to the portfolio choice

variable qi gives the equation

qi =
(E[zi|Ij ]− rpi)Wt,j

ρσ̂i
2 (36)

where σ̂i
2 = var[zi|Ij ] is the expected variance of asset i’s payoff conditional on the investor’s

information set.

QED.
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A.1.2 Information choice

Proof of Proposition 2 Each investor specializes by allocating his entire capacity to

learning about a single asset. Not all assets are learned about in equilibrium (but they can be

traded passively. All assets actively traded belong to the set of asset with maximal expected

gains.

Proof: We can write in matrix form

U =
(rWt,j)

1−ρ

1− ρ
exp

{
1− ρ

ρ

1

2

[
(R− R̂)Σ̂−1(R− R̂) + 2R̂Σ̂−1(R− R̂) + R̂Σ̂−1R̂

]}
Taking expectations, this becomes

EU =
(rWt,j)

1−ρ

1− ρ
|I − 2V̂

(1− ρ)

2ρ
Σ̂−1|−

1
2 exp

[
(1− ρ)2

2ρ2
R̂σ̂−1

(
I − 2V̂

(1− ρ)

2ρ
Σ̂−1

)−1

V̂ R̂Σ̂−1

]

exp

[
+
(1− ρ)

2ρ
R̂Σ̂−1R̂

]
Expressing the determinant and grouping terms, the above becomes

EU =
(rWt,j)

1−ρ

1− ρ
Π

−1/2
i

(
1− V̂i

(1− ρ)

ρ
σ̂i

−1

)− 1
2

exp

[
(1− ρ)

2ρ

∑
R̂2

i σ̂
−1

(
1 +

(1− ρ)

2ρ
V̂iσ̂

−1
i

)−1
]

Taking the natural log of the negative of the above expression yields

constant +
1

2

N∑
i=1

log

(
1 +

(1− ρ)

2ρ
V̂iσ̂

−1
i

)
+

N∑
i=1

(ρ− 1)

2ρ

ρR̂2
i

ρσ̂i + (ρ− 1)V̂i

Therefore, an investor’s information choice problem is to maximize

max
σ̂−1
i

1

2

N∑
i=1

log

(
1 +

(1− ρ)

2ρ

V̂i

σ̂i

)
+

N∑
i=1

(ρ− 1)

2ρ

ρR̂2
i

ρσ̂i + (ρ− 1)V̂i

subject to
N∏
i=1

σi
σ̂i

≤ exp(2Kj)

The solution is a corner solution, because the objective function is convex and strictly

decreasing in the choice variable σ̂i.

QED.
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A.1.3 Expected utility

Plugging in the posterior uncertainty into an investor’s expected utility function and

after some manipulation, we obtain

1

2

N∑
i=1

log

(
1 +

(1− ρ)

2ρσi
V̂iexp(2Kji)

)
+

N∑
i=1

(ρ− 1)

2

R̂2
i

ρexp(−2Kji)σi + (ρ− 1)V̂i

The expected utility function is clearly increasing in Kj as the first term of the above expres-

sion is increasing in Kj and the second term is also increasing in Kj .

To show that increasing returns arise, we can redefine the choice variable to be the

amount of entropy capacity devoted to learning about each asset. The investor j chooses

[Kj1,Kj2, ...,KjN ] ≥ 0, where the choice variable measures the increase in precision σ̂−1
i =

exp(2Kji)σ
−1
i subject to the constraint that

∑
iKji = Kj and the no-forgetting constraint.

The Lagrangian of this problem is

L =
1

2

N∑
i=1

log

(
1 +

(1− ρ)

2ρσi
V̂iexp(2Kji)

)
+

1

2

N∑
i=1

(ρ− 1)R̂2
i

ρexp(−2Kji)σi + (ρ− 1)V̂i

+ ξ(Kj −
∑
i

Kji) + ϕiKji

where ξ and ϕ are the Lagrange multipliers on the capacity constraint and the no-forgetting

constraint. The first-order condition of this problem is

∂Uj

∂Kji
=

−(ρ− 1)V̂iexp(2Kji)(
2ρσi − (ρ− 1)V̂iexp(2Kji)

) − (ρ− 1)ρσiR̂
2
i exp(−2Kji)(

ρexp(−2Kji)σi + (ρ− 1)V̂i

)2 − ξ + ϕi = 0

This first order condition does not characterize the solution to the problem, because the

second-order condition is not satisfied. The second-order derivative is positive if ρ > 1, hence

the Lagrangian is a convex function. Thus, by Proposition 2, we know the investor will devote

all capacity to learning about the asset with the highest expected gains.

A.1.4 Maximal expected gain Ai

Proposition 3 All assets that are actively learned about in equilibrium (actively traded)

belong to the set of assets with maximal expected gains, A, or in other words, the ones with

the highest expected return and lowest initial uncertainty. Not all assets are learned about in

equilibrium (but they can be traded passively).
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Proof: Plugging in the optimal portfolio qi from equation (36) into expected utility in

(35) gives the following indirect utility function

Ut=2,j =
1

2ρ

N∑
i=1

(E[zji|Ij ]− rpi)
2

σ̂ji
2 (37)

which is maximized subject to the capacity constraint

N∏
i=1

σi
σ̂ji

≤ exp(2Kj) (38)

Taking expectations w.r.t. period 1 and rearranging using the fact that var (E2[zji|Ij ]− rpi) =

E1

(
(E2[zji|Ij ]− rpi)

2
)
−E1 (E2[zji|Ij ]− rpi)

2, alternatively written as V̂ji = E1[(E2[zji|Ij ]−
rpi)

2]− R̂2
ji the investor’s ex-ante utility is

Ut=1,j =
1

2ρ

N∑
i=1

V̂ji + R̂2
ji

σ̂ji
2 (39)

Before we can proceed with the information choice, we need to guess and verify the price

pi of each asset. Let us guess and verify that the price of each asset is a linear combination

of the asset’s stochastic return and its stochastic supply

pi = ai + bizi − cixi (40)

We will solve for the coefficients ai, bi and ci later. For now, we can derive the time t = 1

expectations and variances about excess returns

R̂i = z̄i − rp̄i, and will be the same across all investors j (41)

V̂ji = vart=1,j (Et=2,j [zi|Iji]) + r2σ2
pi − 2r × cov (Et=2,j [zi|Iji], pi) (42)

Note that the ex-ante variance of posterior beliefs is given by

vart=1,j (Et=2,j [zi|Iji]) =
cov2(zi, sji)

var(sji)
=

var2(sji)

var(sji)
= vart=1,j(sji)

Moreover, we can write

cov (Et=2,j [zi|Iji], pi) =
cov (Et=2,j [zi|Iji], zi)× cov (zi, pi)

σ2
i

=
var(sji))× biσ

2
i

σ2
i

=

= bivar(sji)) (43)
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Plugging (43) into the variance of posterior beliefs (42)

V̂ji = vart=1,j(sji) + r2σ2
pi − 2rbivar(sji)) =

= (1− 2rbi)vart=1,j(sji) + r2σ2
pi =

= (1− 2rbi)σ
2
sji + r2σ2

pi = (1− 2rbi)(σ
2
i − σ2

ϵji) + r2σ2
pi =

= (1− 2rbi)σ
2
i + r2σ2

pi︸ ︷︷ ︸
V̂i

−(1− 2rbi)σ
2
ϵji =

= V̂i − (1− 2rbi)σ
2
ϵji (44)

where V̂i = (1− 2rbi)σ
2
i + r2σ2

pi is a component common across all investors.

The investor’s objective function (39) then becomes

Ut=1,j =
1

2ρ

N∑
i=1

V̂ji + R̂2
ji

σ̂ji
2 =

1

2ρ

N∑
i=1

V̂i − (1− 2rbi)σ
2
ϵji + R̂2

ji

σ2
ϵji

=

=
1

2ρ

N∑
i=1

V̂i + R̂2
ji

σ2
ϵji

− 1

2ρ

N∑
i=1

(1− 2rbi)σ
2
ϵji

1

σ2
ϵji

=
1

2ρ

N∑
i=1

V̂i + R̂2
ji

σ2
ϵji

− 1

2ρ

N∑
i=1

(1− 2rbi)︸ ︷︷ ︸
can ignore as independent of σ2

ϵji

Thus the investor’s objective function is to choose the variance σ2
ϵji to maximize ex-ante

utility:

max
σ2
ϵji

N∑
i=1

V̂i + R̂2
ji

σ2
ϵji

(45)

s.t.
N∏
i=1

σ2
i

σ2
ϵji

≤ exp(2Kj) (46)

where V̂i = (1−2rbi)σ
2
i +r2σ2

pi and R̂i = z̄i−rp̄i are components common across all investors

as these are average ex-ante variances and expectations of posterior excess returns.

As we have seen already in Proof (A.1.2), the solution to this problem is a corner solution

because the objective function is convex and decreasing in the choice variable σ2
ϵji. Thus, an

investor allocates his entire capacity to learning about a single asset and all assets that are

actively traded in equilibrium belong to the set of assets with maximal expected gains:

A =

{
i|i ∈ argmax

i
Ai

}
, where
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Ai =
V̂i + R̂2

ji

σ2
ji

(47)

QED.

A.1.5 Asset market equilibrium

We guessed above and we verify in this section that the price of asset i is a linear function

of the stochastic asset payoff and the stochastic supply.

pi = ai + bizi − cixi

The market clearing condition for each asset is such that the demand from investors who

learn (who can be sophisticated and unsophisticated) plus the demand from investors who

do not learn at all has to equal the total supply for each asset. Let ϕi denote the mass of

investors who learn about asset i. Plugging in the optimal portfolio choice (36) and investors’

posterior beliefs about payoffs, (41), which depend on whether they learn or not, the market

clearing condition equating demand and supply is

(1− ϕi)

(
z̄i − rpi
ρσ2

i

)
︸ ︷︷ ︸

do not learn

+

∫
MSj

(
sji − rpi

ρσ2
i exp(−2KS)

)
dj +

∫
MUj

(
sji − rpi

ρσ2
i exp(−2KU )

)
dj︸ ︷︷ ︸

sophisticated and unsophisticated who learn

= xi (48)

Bayes’ law gives that each signal received by an investor j will be a weighted average

between the prior and its true realization:

E(sji|zi) = exp(−2Kj)z̄i + (1− exp(−2Kj))zi (49)

Given that ϕi is the measure of investors learning about asset i ∈ A, we have∫
MSj

sjidj = λϕi [exp(−2Ks)z̄i + (1− exp(−2Ks))zi]∫
MUj

sjidj = (1− λ)ϕi [exp(−2Ku)z̄i + (1− exp(−2Ku))zi]

Plugging these back into the market clearing condition and solving for the price coefficients

ai, bi and ci for the price of each asset, where pi = ai + bizi − cixi we obtain

ai =
z̄i

r {1 + ϕi [λ (e2Ks − 1) + (1− λ) (e2Ku − 1)]}

bi =
ϕi

[
λ
(
e2Ks − 1

)
+ (1− λ)

(
e2Ku − 1

)]
r {1 + ϕi [λ (e2Ks − 1) + (1− λ) (e2Ku − 1)]}
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ci =
ρσ2

i

r {1 + ϕi [λ (e2Ks − 1) + (1− λ) (e2Ku − 1)]}

Letting C =
[
λ
(
e2Ks − 1

)
+ (1− λ)

(
e2Ku − 1

)]
denote the total capacity in the economy, we

can compactly rewrite the price coefficients as

ai =
z̄i

r (1 + ϕiC)
; bi =

ϕiC
r (1 + ϕiC)

; ci =
ρσ2

i

r (1 + ϕiC)
(50)

and thus the price of each asset i takes the form

pi =
z̄i + ziϕiC − xiρσ

2
i

r (1 + ϕiC)
(51)

where C =
[
λ
(
e2Ks − 1

)
+ (1− λ)

(
e2Ku − 1

)]
denotes the total capacity in the economy, and

ϕi is the measure of investors learning about asset i ∈ A, that we still have to solve for in

equilibrium.

QED.

A.1.6 Actively traded assets

Proposition 4 Among the assets that are actively traded, i ∈ A, not all are given the

same attention by investors. The market endogenously learns about a select number of assets,

and the mass of investors ϕi choosing to learn about asset i will vary with the volatility and

liquidity of the asset.

Proof: Solving for R̂i, V̂i and the variance of posterior beliefs V̂ji in equations (41) and

(44) using the price equation (51), we obtain

R̂i = E[zi − rpi] = z̄i −
z̄i + z̄iϕiC − x̄iρσ

2
i

(1 + ϕiC)
=

x̄iρσ
2
i

(1 + ϕiC)
(52)

V̂i = (1− 2rbi)σ
2
i + r2σ2

pi =

(
1− ϕiC
1 + ϕiC

)
σ2
i + r2σ2

pi =
σ2
i (1 + ρ2σ2

i σ
2
xi)

(1 + ϕiC)2
(53)

V̂ji = V̂i − (1− 2rbi)σ
2
ϵji =

σ2
i (1 + ρ2σ2

i σ
2
xi)− σ2

ϵji(1− ϕ2
i C2)

(1 + ϕiC)2
(54)

where we plugged in σ2
pi as

σ2
pi = var(pi) = var

(
ziϕiC − xiρσ

2
i

r (1 + ϕiC)

)
=

σ2
i

(
ϕ2
i C2 + ρ2σ2

i σ
2
xi

)
r2 (1 + ϕiC)2

(55)
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Substituting in equations (52) and (53) for R̂i and V̂i, we obtain the gain factor Ai is

Ai =
V̂i + R̂2

ji

σ2
ji

=
1 + ρ2σ2

i (σ
2
xi + x̄2i )

(1 + ϕiC)2
(56)

Since ϕi > 0 and C > 0, then

∂Ai

∂C
= −

2ϕi

(
1 + ρ2σ2

i (σ
2
xi + x̄2i )

)
(1 + ϕiC)3

< 0

∂Ai

∂ϕi
= −

2C
(
1 + ρ2σ2

i (σ
2
xi + x̄2i )

)
(1 + ϕiC)3

< 0

∂Ai

∂σ2
i

=
ρ2(σ2

xi + x̄2i )

(1 + ϕiC)2
> 0

∂Ai

∂σ2
xi

=
ρ2σ2

i

(1 + ϕiC)2
> 0

Letting Σi = σ2
i (σ

2
xi + x̄2i ), we can write the gain factor

Ai =
(
1 + ρ2Σi

)
(1 + ϕiC)−2 (57)

Thus, the gain factor Ai, is decreasing in the total capacity of the economy, C, as well as in

the mass ϕi of investors who learn about asset i. However, the gain factor increases with the

volatility of the asset σ2
i , as well as with the volatility of the stochastic supply σ2

xi.

QED.

A.1.7 Learning equilibrium

Following Kacperczyk et al. (2018), we sort the N assets in terms of their volatility,

Σi > Σi+1, so now can compute the threshold for learning about asset i+1 given that asset i

has been learned about. If asset i has been learned about, then ϕi = 1 and ϕi+1, ..., ϕN = 0.

This implies that the gain for asset i is larger than the gain for the next asset i+1 such that

Ai > Ai+1 implying that (
1 + ρ2Σi

)
(1 + ϕiC)2

>

(
1 + ρ2Σi+1

)
(1 + ϕi+1C)2

For asset i+1 to be learned about in equilibrium, it has to be that the above inequality holds.

Therefore, for any asset learned about in equilibrium, the gain factors must be equated and
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thus (
1 + ϕi+1C
1 + ϕiC

)2

=

(
1 + ρ2Σi+1

)
(1 + ρ2Σi)

(58)

Solving for ϕi+1 we get that the measure of investors that learn about asset i+ 1 is

ϕi+1 =

√
(1 + ρ2Σi+1) (1 + ϕiC)2

(1 + ρ2Σi) C2
− 1

C
(59)

Any asset i+ 1 that is not learned about in equilibrium has a strictly lower gain factor such

that (
1 + ρ2Σi

)
(1 + ϕiC)2

>
(
1 + ρ2Σi+1

)
(60)

If only one asset is learned about in equilibrium, the one with the highest gain factor, the

measure of investors learning about this asset is ϕ1 = 1, while ϕi = 0, ∀i ∈ {2, 3, ..., N} and

the capacity of this economy with only one active asset is given by:

C1 =

√
(1 + ρ2Σ1)

(1 + ρ2Σ2)
− 1 (61)

If two assets are learned about in equilibrium then the capacity of this economy with two

active assets is given by C2 below

C2 =

√
(1+ρ2Σ1)
(1+ρ2Σ2)

− 1

ϕ1 − ϕ2

√
(1+ρ2Σ1)
(1+ρ2Σ2)

=
C1

ϕ1 − ϕ2

√
(1+ρ2Σ1)
(1+ρ2Σ2)

(62)

and so on and so forth. Notice that 0 < C0 < C1 < ... < CN .

This implies that for any aggregate information capacity C ≥ C1, at least two assets will

be learned about in equilibrium. As aggregate capacity increases, investors learn about new

assets in a decreasing order of the assets’ gains.

QED.

A.1.8 Mass of active investors ϕi

We can now fully characterize the equilibrium, following Van Nieuwerburgh and Veld-

kamp (2010) and Kacperczyk et al. (2018). Let the first n ≤ N risky assets be learned about
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in equilibrium such that

n≤N∑
i=1

ϕi = 1 (63)

then all the gain factors on each of the first n ≤ N risky assets will be equal in equilibrium.

This implies

1 + ρ2Σ1

(1 + ϕ1C)2
=

1 + ρ2Σ2

(1 + ϕ2C)2
= ... =

1 + ρ2Σi

(1 + ϕiC)2
= ... =

1 + ρ2Σn

(1 + ϕnC)2

This implies that, labeling Cn as the total capacity of the economy such as n ≤ N assets are

learned about in equilibrium

1 + ϕiCn
1 + ϕ1Cn

=

√
1 + ρ2Σi

1 + ρ2Σ1︸ ︷︷ ︸
Call this c1i

, ∀ i ≤ n ≤ N

So c1i =
√

1+ρ2Σi

1+ρ2Σ1
.

Solving for ϕi gives

ϕi =
c1i(1 + ϕ1Cn)− 1

Cn
=

=
(c1i + ϕ1c1iCn)− 1

Cn
=

= ϕ1c1i +
(c1i − 1)

Cn
=

= ϕ1

√
1 + ρ2Σi

1 + ρ2Σ1
+

√
1+ρ2Σi

1+ρ2Σ1
− 1

Cn
=

=

√
1+ρ2Σi

1+ρ2Σ1
(1 + ϕ1Cn)− 1

Cn
(64)

and plugging into the constraint equation (63) implies that

n≤N∑
i=1

ϕi = 1 =

n≤N∑
i=1

c1i(1 + ϕ1Cn)− 1

Cn
=⇒

1 =

n≤N∑
i=1

c1i
Cn

+ ϕ1

n≤N∑
i=1

c1i −
n≤N∑
i=1

1

Cn
=⇒

ϕ1 =
1− 1

Cn
∑n≤N

i=1 (c1i − 1)∑n≤N
i=1 c1i

=⇒
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ϕ1 =
1− 1

Cn
∑n≤N

i=1 (
√

1+ρ2Σi

1+ρ2Σ1
− 1)∑n≤N

i=1

√
1+ρ2Σi

1+ρ2Σ1

(65)

Substituting ϕ1 back into (64) we obtain the measure of active investors for each asset i as

a function of primitives, assuming that i = 1, 2, ...n are the n ≤ N assets learned about in

equilibrium and denoting Cn as the total market capacity where n assets are learned about in

equilibrium

ϕi =
c1i(1 + ϕ1Cn)− 1

Cn
=

√
1+ρ2Σi

1+ρ2Σ1
(1 + ϕ1Cn)− 1

Cn

=

√
1 + ρ2Σi

1 + ρ2Σ1

(
1

Cn
+ ϕ1

)
− 1

Cn

=

√
1 + ρ2Σi

1 + ρ2Σ1

 1

Cn
+

1− 1
Cn
∑n≤N

i=1

(√
1+ρ2Σi

1+ρ2Σ1
− 1
)

∑n≤N
i=1

√
1+ρ2Σi

1+ρ2Σ1

− 1

Cn
(66)

Lastly, the measures of sophisticated and unsophisticated investors that learn about asset i

as

MSj = λϕi = λ


√

1 + ρ2Σi

1 + ρ2Σ1

 1

Cn
+

1− 1
Cn
∑n≤N

i=1

(√
1+ρ2Σi

1+ρ2Σ1
− 1
)

∑n≤N
i=1

√
1+ρ2Σi

1+ρ2Σ1

− 1

Cn

 (67)

MUj = (1− λ)ϕi = (1− λ)


√

1 + ρ2Σi

1 + ρ2Σ1

 1

Cn
+

1− 1
Cn
∑n≤N

i=1

(√
1+ρ2Σi

1+ρ2Σ1
− 1
)

∑n≤N
i=1

√
1+ρ2Σi

1+ρ2Σ1

− 1

Cn


(68)

We are now done characterizing the equilibrium of this economy.

QED.

A.2 Proofs of Theoretical Predictions

A.2.1 Prediction 1

Heterogeneity in information sophistication leads to differences in realized and expected

capital income, as well as in expected portfolio holdings. That is, if KS > KU , then∑N
i=1ΠS,i,t >

∑N
i=1ΠU,i,t, and

∑N
i=1E[ΠS,i,t] >

∑N
i=1E[ΠU,i,t] and E[HS,i,t/λ] ≥ E[HS,i,t/(1−

λ)].
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Proof: Let Πj,i,t be the average profit per capita for investor j from trading asset i at

time t:

ΠS,i,t =
HS,i,t(zi,t − rpi,t)

λ
for sophisticated investors and (69)

ΠU,i,t =
HU,i,t(zi,t − rpi,t)

(1− λ)
for unsophisticated investors (70)

where Hj,i,t is the holding level of asset i for investors of type j at time t, obtained by

integrating optimal portfolio choices qji across investors of type j, and ϕi denotes the mass of

investors learning about asset i

HS,i,t = λ

[
(z̄i − rpi,t) + ϕi(e

2KS − 1)(zi − rpi,t)

ρσ2
i

]
(71)

HU,i,t = (1− λ)

[
(z̄i − rpi,t) + ϕi(e

2KU − 1)(zi − rpi,t)

ρσ2
i

]
(72)

Substituting Hj,i,t in the profit functions we get

ΠS,i,t =

[
(z̄i − rpi,t)(zi,t − rpi,t) + ϕi(e

2KS − 1)(zi − rpi,t)
2

ρσ2
i

]
(73)

ΠU,i,t =

[
(z̄i − rpi,t)(zi,t − rpi,t) + ϕi(e

2KU − 1)(zi − rpi,t)
2

ρσ2
i

]
(74)

Capital income heterogeneity is thus given by the equation below

N∑
i=1

ΠS,i,t −ΠU,i,t =
N∑
i=1

[
ϕi(e

2K1 − e2K2)(zi − rpi,t)
2

ρσ2
i

]
(75)

Thus, if KS > KU , e2KS > e2KU and
HS,i,t

λ >
HU,i,t

(1−λ) which implies
∑N

i=1ΠS,i,t >∑N
i=1ΠU,i,t.

We can also compute expected per capita profits for sophisticated and unsophisticated

investors.

E [ΠS,i,t] = E

[
(z̄i − rpi,t)(zi,t − rpi,t) + ϕi(e

2KS − 1)(zi − rpi,t)
2

ρσ2
i

]
=

ρ2Σi − ϕiCσ2
i + ϕi(e

2KS − 1)(ρ2Σi + σ2
i )

ρ(1 + ϕiC)2
(76)

E [ΠU,i,t] = E

[
(z̄i − rpi,t)(zi,t − rpi,t) + ϕi(e

2KU − 1)(zi − rpi,t)
2

ρσ2
i

]
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=
ρ2Σi − ϕiCσ2

i + ϕi(e
2KU − 1)(ρ2Σi + σ2

i )

ρ(1 + ϕiC)2
(77)

The fact that sophisticated investors achieve higher profits is because they are better able

to identify profitable assets (so they invest in high risk, high return assets more). Assume that

the first 1 < n ≤ N risky assets are learned about in equilibrium (remember that we sorted

the assets in terms of their idiosyncratic volatility such that Σ1 > Σ2 > ... > Σn > ... > ΣN )

then,

ϕi = 0, ∀i ∈ {n+ 1, ..., N} =⇒
HS,i,t

λ
=

HU,i,t

(1− λ)
=⇒

N∑
i=n+1

(
ΠS,i,t −ΠU,i,t

)
= 0 (78)

ϕi > 0, ∀i ∈ {1, ..., n} =⇒ E

[
HS,i,t

λ

]
> E

[
HU,i,t

(1− λ)

]
=⇒

N∑
i=n+1

[
E[ΠS,i,t −ΠU,i,t

]
> 0

(79)

So, while both types of investors make the same returns on the passive assets and have the same

holdings per capita of passive assets, sophisticated investors make higher expected returns

and have higher expected holdings per capita of active assets compared to unsophisticated

investors. As we saw before, active assets are high-risk, high-return assets (with maximal

gains). And investors on average tilt their portfolios more towards profitable assets compared

with unsophisticated investors

if i, i′ ∈ {1, ..., n} with E[zi − rpi] > E[zi′ − rpi′ ] =⇒ E

[
HS,i,t

λ
−

HS,i′,t

λ

]
> E

[
HU,i,t

1− λ
−

HU,i′,t

1− λ

]
(80)

Lastly, we mentioned that sophisticated investors also achieve larger gains from positive

shocks and smaller losses from negative shocks

HS,i,t

λ
−

HU,i,t

(1− λ)
=

ϕi(e
2KS − e2KU )(zi − rpi)

ρσ2
i

(81)

and
∂
HS,i,t

λ − HU,i,t

(1−λ)

∂(zi − rpi)
=

ϕi(e
2KS − e2KU )

ρσ2
i

> 0 (82)

QED.

A.2.2 Prediction 2

An absolute (symmetric) increase in information sophistication leads to growing expected

capital income heterogeneity. That is, if both KS and KU increase proportionally by the same
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percent difference, K ′
S = (1 + ξ)KS and K ′

U = (1 + ξ)γKS , where 0 < ξ ≤ 1 and 0 < γ < 1

expected income heterogeneity increases, d
(
E[Π′

S,i,t]− E[Π′
U,i,t]

)
/dKS > 0.

Proof. Assume KS and KU = γKS , with γ < 1. For example, let KS = 100 and

γ = 0.8 < 1, which implies KU = 80. Now, assume a symmetric increase in capacity, such

that the new K ′
S = (1+0.5)KS = 150, a 50% increase, and the new K ′

U = (1+0.5)KU = 120,

also a 50% increase. We are thus interested in comparative statics with respect to KS . Then

new total capacity in the economy becomes

C′ =
[
λ
(
e2KS − 1

)
+ (1− λ)

(
e2γKS − 1

)]
The difference in profits is

n∑
i=1

ΠS,i,t −ΠU,i,t =
n∑

i=1

[
ϕi(e

2KS − e2γKS )(zi − rpi,t)
2

ρσ2
i

]
(83)

So let’s take the derivative of ϕi with respect to aggregate capacity C. From equation

(66)

ϕi =

√
1 + ρ2Σi

1 + ρ2Σ1

 1

Cn
+

1− 1
Cn
∑n≤N

i=1

(√
1+ρ2Σi

1+ρ2Σ1
− 1
)

∑n≤N
i=1

√
1+ρ2Σi

1+ρ2Σ1

− 1 (84)

= c1i

(
1

C
+

1− 1
C
∑n≤N

i=1 (c1i − 1)∑n≤N
i=1 c1i

)
− 1 (85)

where c1i =
√

1+ρ2Σi

1+ρ2Σ1
< 1 so

dϕi

dC
= −c1i

(
1

C2
+

1

C2

∑n≤N
i=1 (1− c1i)∑n≤N

i=1 c1i

)
< 0 (86)

and thus

dϕ1

dC
= − 1

C2

∑n≤N
i=2 (1− c1i)∑n≤N

i=1 c1i
< 0 (87)

Equations (87) and (63) imply that for at least one asset i ≤ n ≤ N , it has to be that dϕi

dC > 0.

Moreover, the amount of total information devoted to asset i is c1i

(
1 +

C−
∑n≤N

i=1 (c1i−1)∑n≤N
i=1 c1i

)
− 1
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and its derivative with respect to market capacity is

dCϕi

dC
= c1i

(
1∑n≤N

i=1 c1i

)
> 0 (88)

We are first going to show that dϕi(exp(2KS)−1)
dC > 0 and that dϕi(exp(2KS)−1)

dC > dϕi(exp(2KU )−1)
dC .

With this, we can then show that aggregate (symmetric) growth in financial technology mod-

eled as a common growth rate of KS and KU leads to growing capital income heterogeneity.

The derivatives of the amount of total information sophisticated and unsophisticated

investors respectively devote to asset i with respect to market capacity are

dϕi(e
2KS − 1)

dC
=

dϕi(e
2KS − 1)

dC
= 2e2KSϕi +

dϕi

dC
(e2KS − 1)

dC
dKS

(89)

dϕi(e
2KU − 1)

dC
=

dϕi(e
2γKS − 1)

dC
= 2γe2KSϕi +

dϕi

dC
(e2γKS − 1)

dC
dKS

(90)

where
dC
dKS

= 2λ(e2KS ) + 2(1− λ)γ(e2γKS ) > 0 (91)

Because ϕi > 0, and dϕi

dC > 0, and dC
dKS

> 0 and e2KS > γe2γKS , it follows that

dϕi(e
2KS − 1)

dC
>

dϕi(e
2KU − 1)

dC
(92)

We can now show that expected profits diverge for sophisticated and unsophisticated

investors. Using equations (76) and (77) for the expected profits of sophisticated and unso-

phisticated investors, we get that

E [ΠS,i,t]− E [ΠU,i,t] =

=
ρ2Σi − ϕiCσ2

i + ϕi(e
2KS − 1)(ρ2Σi + σ2

i )

ρ(1 + ϕiC)2
− ρ2Σi − ϕiCσ2

i + ϕi(e
2KU − 1)(ρ2Σi + σ2

i )

ρ(1 + ϕiC)2
=

=
ϕi(e

2KS − e2KU )(ρ2Σi + σ2
i )

ρ(1 + ϕiC)2

= ϕi(e
2KS − e2γKS )(ρ2Σi + σ2

i )ρ
−1(1 + ϕiC)−2
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Taking the derivative of the expected profit gap, we obtain that

d(E [ΠS,i,t]− E [ΠU,i,t])

dKS
=

(ρ2Σi + σ2
i )

ρ(1 + ϕiC)2

dϕi(e
2KS − 1)

dC
− dϕi(e

2KU − 1)

dC︸ ︷︷ ︸
positive by eqn. 92

+2ϕi(e
2KS − e2γKS )︸ ︷︷ ︸
positive

 > 0

(93)

Notice that this also holds for

d(E
[
Π′

S,i,t

]
− E

[
Π′

U,i,t

]
)

dKS
= (94)

=
(ρ2Σi + σ2

i )

ρ(1 + ϕiC)2

dϕi(e
2(1+ξ)KS − 1)

dC
− dϕi(e

2(1+ξ)KU − 1)

dC︸ ︷︷ ︸
positive by eqn. 92

+2ϕi(e
2(1+ξ)KS − e2γ(1+ξ)KS )︸ ︷︷ ︸

positive

 > 0

(95)

Q.E.D.

A.2.3 Prediction 3

A relative (asymmetric) increase in information sophistication leads to greater realized

capital income heterogeneity. That is, if KS and KU increase by δS and δU respectively, such

that K ′
S = KS + δS and K ′

U = KU + δU , where δS > δU , realized capital income heterogeneity

increases, ∂ (ΠS,i,t −ΠU,i,t)/∂(e
2KS − e2KU ) > 0.

Proof: In other words, consider an increase in the capacity gap K ′
S −K ′

U > KS −KU .

Plugging the holdings into the average profits yields

ΠS,i,t =

[
(z̄i − rpi,t)(zi,t − rpi,t) + ϕi(e

2KS − 1)(zi − rpi,t)
2

ρσ2
i

]
(96)

ΠU,i,t =

[
(z̄i − rpi,t)(zi,t − rpi,t) + ϕi(e

2KU − 1)(zi − rpi,t)
2

ρσ2
i

]
(97)

Capital income heterogeneity is thus given by the equation below

ΠS,i,t −ΠU,i,t =

[
ϕi(e

2KS − e2KU )(zi − rpi,t)
2

ρσ2
i

]
(98)

As long as KS > KU and there is learning in equilibrium about asset i, such that ϕi ̸= 0,
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equation (99) is increasing in the capacity gap KS −KU .

∂ΠS,i,t −ΠU,i,t

∂(e2KS − e2KU )
=

[
ϕi(zi − rpi,t)

2

ρσ2
i

]
> 0 (99)

QED.

A.2.4 Prediction 4

An increase in absolute (and relative) sophistication predicts a growing presence of so-

phisticated investors in risky asset classes. In other words,
dE

[
HS,i
λ

−
HU,i
(1−λ)

]
dKS

> 0 and
dE

[
HS,i
λ

−
HU,i
(1−λ)

]
dC >

0, where HS,i is the holding level of a sophisticated investor of asset i, and HU,i is the holding

level of an unsophisticated investor of asset i.

Proof: The proof for a relative increase in sophistication is trivial. We need to show that

the result also holds for an absolute increase in sophistication levels.

dE
[
HS,i,t

λ − HU,i,t

(1−λ)

]
dKS

> 0 (100)

Note that the excess return is given by

zi − rpi =
zi (1 + ϕiC)− z̄i − ziϕiC + xiρσ

2
i

(1 + ϕiC)
=

zi − z̄i + xiρσ
2
i

(1 + ϕiC)
(101)

Taking expectations we obtain expected excess returns as

E[zi − rpi] =
x̄iρσ

2
i

(1 + ϕiC)
(102)

and differencing with respect to KS we get

∂
x̄iρσ

2
i

(1+ϕiC)

∂KS
= (−1)x̄iρσ

2
i (1 + ϕiC)−2 ∂ϕiC

∂KS︸ ︷︷ ︸
<0

> 0 (103)

In equation (81) we calculated the difference in the holdings of an active asset i ∈ A.

Substituting in the price formula (15), we obtain

HS,i,t

λ
−

HU,i,t

(1− λ)
=

ϕi(e
2KS − e2KU )(zi − rpi)

ρσ2
i

(104)
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=
ϕi(e

2KS − e2KU )(zi − z̄i + xiρσ
2
i )

ρσ2
i (1 + ϕiC)

(105)

Taking expectations

E

[
HS,i,t

λ
−

HU,i,t

(1− λ)

]
=

ϕi(e
2KS − e2KU )(x̄iρσ

2
i )

ρσ2
i (1 + ϕiC)

(106)

=
ϕi(e

2KS − e2KU )x̄i
(1 + ϕiC)

(107)

and differencing with respect to KS

dE
[
HS,i,t

λ − HU,i,t

(1−λ)

]
dKS

=
dϕi(e

2KS−e2KU )x̄i

(1+ϕiC)

dKS
(108)

=
[dϕi(e

2KS − e2KU )x̄i/dKS × (1 + ϕiC)− ϕi(e
2KS − e2KU )x̄i × dϕiC/dKS

(1 + ϕiC)2
= (109)

=
[dϕi(e

2KS − e2KU )x̄i/dKS × (1 + ϕiC)
(1 + ϕiC)2

− ϕi(e
2KS − e2KU )x̄i × dϕiC/dKS

(1 + ϕiC)2
(110)

Note that we can write

dE
[
HS,i,t

λ − HU,i,t

(1−λ)

]
dKS

=
∂E
[
HS,i,t

λ − HU,i,t

(1−λ)

]
∂E[zi − rpi]

× ∂E[zi − rpi]

∂KS
= (111)

=
∂E
[
HS,i,t

λ − HU,i,t

(1−λ)

]
∂E[zi − rpi]︸ ︷︷ ︸

>0 from eqn. (82)

×
∂

x̄iρσ
2
i

(1+ϕiC)

∂KS︸ ︷︷ ︸
>0 from eqn. (103)

> 0 (112)

Q.E.D.

Equation (111) implies that when aggregate sophistication goes up, that is when KS

increases (remember that KU = γKS and all comparative statics are done without loss of

generality with respect to KS), the difference in the holdings of an active asset i ∈ A increases,

implying that sophisticated investors will a larger share, while unsophisticated investors will

hold a smaller share of active assets. The order in which learning happens suggests that these

active assets are the riskiest assets (see Appendix A.1.6, which shows that the active assets

are those with the highest gain factor, which increases with the volatility of the asset σ2
i ).

A.2.5 Prediction 5

An absolute (and relative) increase in sophistication predicts a retrenchment of less so-

phisticated investors from trading and stock market ownership in general.
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Proof: This follows nicely from equation (111). Equation (111) implies that when ag-

gregate sophistication goes up, that is when KS increases (remember that KU = γKS and

all comparative statics are done without loss of generality with respect to KS), the difference

in the holdings of an active asset i ∈ A increases, implying that sophisticated investors will

a larger share, while unsophisticated investors will hold a smaller share of active assets. The

order in which learning happens suggests that these active assets are the riskiest assets (see

the end of Appendix A.1.6, which shows that the active assets are those with the highest gain

factor, which increases with the volatility of the asset σ2
i ).

The mechanism works through the price such that prices increase with sophistication.

The expected price and excess return, given by

E[pi] =
z̄i(1 + ϕiC)− x̄iρσ

2
i

(1 + ϕiC)2
(113)

E[zi − rpi] =
x̄iρσ

2
i

(1 + ϕiC)
(114)

are increasing and decreasing respectively in ϕiC given that we have already proved that ϕiC
is increasing in C.

QED.
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Appendix B Tables

Table B1: Summary statisticsa

Sophisticatedb Unsophisticatedc All Sample
Mean Std Mean Std Mean Std

Financial literacy 0.91 0.10 0.18 0.15 0.57 0.30
FinTechd 0.50 0.49 0.34 0.48 0.44 0.50
RegionFinTeche 0.31 0.23 0.37 0.27 0.32 0.23
Remote f 0.40 0.48 0.10 0.31 0.22 0.42
Share of risky assetsg 0.10 0.23 0.01 0.08 0.05 0.17
Rate of financial returns 1.26 0.88 0.78 0.61 1.04 0.78
Equivalised income quintile

first quintile 0.06 0.24 0.26 0.45 0.16 0.37
second quintile 0.11 0.30 0.28 0.46 0.20 0.40
third quintile 0.16 0.36 0.22 0.42 0.21 0.41
fourth quintile 0.25 0.42 0.15 0.36 0.21 0.41
fifth quintile 0.42 0.48 0.09 0.29 0.22 0.41

Risk aversion
No risk aversion 0.01 0.11 0.01 0.08 0.01 0.09
Low risk aversion 0.12 0.32 0.11 0.32 0.11 0.32
Medium risk aversion 0.41 0.48 0.19 0.40 0.29 0.45
High risk aversion 0.46 0.49 0.69 0.47 0.59 0.49

Household type
Single person over 65 0.05 0.21 0.29 0.46 0.14 0.35
Single person under 65 0.14 0.34 0.12 0.32 0.14 0.34
Couple without children 0.22 0.40 0.21 0.42 0.22 0.42
Couple with children 0.49 0.49 0.25 0.44 0.39 0.49
Single parent with children 0.07 0.25 0.09 0.29 0.08 0.27
Other household type 0.04 0.18 0.03 0.18 0.04 0.19

Age class
30 and under 0.05 0.21 0.04 0.21 0.05 0.23
31-40 0.19 0.38 0.12 0.33 0.17 0.37
41-50 0.26 0.43 0.14 0.35 0.21 0.41
51-65 0.32 0.46 0.19 0.40 0.26 0.44
over 65 0.18 0.38 0.51 0.51 0.31 0.46

Municipality size (inhabitants)
Up to 20.000 0.42 0.48 0.50 0.51 0.47 0.50
From 20.000 to 40.000 0.11 0.31 0.16 0.37 0.14 0.35
From 40.000 to 500.000 0.32 0.45 0.23 0.43 0.27 0.44
Over 500.000 0.15 0.35 0.11 0.32 0.13 0.33

Continued on next page
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Table B1 – Continued from previous page

Sophisticatedb Unsophisticatedc All Sample
Mean Std Mean Std Mean Std

Gender
Male 0.74 0.43 0.55 0.50 0.67 0.47
Female 0.26 0.43 0.45 0.50 0.33 0.47

Born abroad 0.04 0.18 0.11 0.32 0.07 0.26
Education

No schooling 0.00 0.06 0.10 0.30 0.03 0.18
Primary school 0.06 0.23 0.37 0.49 0.18 0.39
Lower secondary school 0.26 0.43 0.33 0.48 0.37 0.48
Upper secondary school 0.41 0.48 0.15 0.37 0.28 0.45
University degree 0.27 0.43 0.05 0.22 0.13 0.34

Work status
Employee 0.55 0.49 0.35 0.48 0.48 0.50
Self-employed 0.19 0.38 0.05 0.23 0.12 0.32
Not employed 0.26 0.43 0.60 0.50 0.40 0.49

Source: Bank of Italy Survey on Household Income and Wealth 2004-2020.
a Individual characteristics refer to the head of the household defined as the main income
earner with the exception of risk aversion and financial literacy collected for respondents.
b Investors in the upper quartile of the financial literacy distribution.
c Investors in the lower quartile of the financial literacy distribution
d Dummy equal to 1 for investors with main bank providing a number of digital services to
households above the regional mean.
e Regional mean of the index of digital services to households provided by investors’ main
bank.
f Dummy equal to 1 for investors that have access to remote banking.
g Risky financial assets: shares and equity, managed portfolio, funds (in equities, mixed or in
foreign currencies), foreign securities and other complex financial assets (option, futures, etc.)
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Table B2: Households’ selection in high digitalised banks

Dependent variable:

(FinTecha)

Sophisticatedb −0.003 (0.008)

Other covariates c YES
Time fixed effects YES
Region fixed effects YES

Observations 52,129
Pseudo R-square 0.064

Note:∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; Standard errors (clustered by region) in brackets.
Source: Bank of Italy Survey on Household Income and Wealth 2004-2020.
a Dummy equal to 1 for investors with main bank providing a number of digital services to
households above the regional mean.
b Dummy equal to 1 for investors in the upper quartile of the financial literacy distribution.
c Other covariates: equivalent income quintile, household type, gender, work status, size of
the municipality of residence, born abroad. Individual characteristics refer to the head of the
household defined as the main income earner with the exception of risk aversion and financial
literacy collected for respondents.
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