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Abstract 

We estimate the effect of weather shocks on corn, durum wheat, and wine grape yields 
based on two-way fixed effect models on annual Italian province-level panel data. Our 
estimates reveal substantial non-linearity in the effect of temperature on agricultural yields, in 
line with the literature. Grapevine, in particular, appears less sensitive to high temperatures 
than cereals. Combining our estimates with climate projections under the A1B scenario, we 
find that in 2030 the effects of climate change on crop yields will be non-negative. Corn crops 
appear the most exposed to the risk of reduced yield. 
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1 Introduction1

Agriculture is the most exposed sector to the physical risk generated by climate change

because temperature and precipitation are inputs in crop production (Deschênes and

Greenstone, 2007). The sign and extent of this risk likely varies across crops and

across regions, depending on crop-specific sensitivity to weather and on baseline cli-

mate (Schlenker and Roberts, 2009). Furthermore, farmers have the opportunity to

engage in adaptation activities to mitigate this risk (Burke and Emerick, 2016).

In advanced countries agriculture accounts for a small share of value added, but

it is more important than this crude statistic suggests for at least two reasons. First,

agriculture often provides a large share of intermediate inputs to other importan in-

dustries (e.g. food and beverages, hotel and restaurant). Second, agriculture likely

generates high consumer surplus. In fact, food prices are low, and so the GDP share

in agriculture, thanks to massive productivity improvements occurred over the last

decades (Jorgenson and Gollop, 1992; Taylor and Schlenker, 2021b). However, since

the demand for food is quite inelastic due to the minimum caloric intake necessary

to human life, a decrease in agricultural supply generated by climate change has the

potential to have substantial detrimental impacts on consumer welfare by making food

scarce. Moreover, agricultural products are essential inputs for other important sectors

of the economy, such as food processing and restaurants; as a result, food scarcity may

negatively impact the other industries through the supply chain.

The aim of this paper is to estimate the effects of climate change on Italian agricul-

ture by 2030 using weather shocks.2 First, we use annual panel data at the province

level for the period 2006-19 to estimate crop-specific sensitivity of yield to temperature

and precipitation, focusing on corn, durum wheat and grapevine. Second, we combine

our estimates with three external province-level forecasts of future climate under the

A1B scenario to project the effect over the period 2000-2030. The A1B scenario is
1The views expressed in this paper are our own and do not necessarily reflect those of the Bank

of Italy. For comments we are grateful to Federico Cingano, Luca Citino, Marta Crispino, Guido De
Blasio, Andrea Linarello and Salvatore Lo Bello.

2Climate is defined as the distribution of all possible weather, while observed weather is the
realization from such distribution.
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developed by the Intergovernmental Panel on Climate Change (IPCC) and is charac-

terized by very rapid economic growth at global level, low population growth, and by

a balanced use of fossil and renewable energy.

The empirical analysis uses panel data regressions of crop yield (from Istat - the

Italian Statistical Office) on weather variables in the growing season (constructed from

Agri4cast). The sample period is 2006-2019. In order to causally identify the effect of

precipitation and temperature on crop yield, we include province time and fixed effects

in all specifications. Inclusion of this set of fixed effects isolates year-to-year weather

shocks, which are plausibly uncorrelated with inputs of production, chosen by farmers

before weather is realized (Blanc and Schlenker, 2017; Dell et al., 2012). Furthermore,

we model yield as non linear (production) function of temperature and precipitation,

by using degree days variables as standard in the literature (Schlenker et al., 2006;

Schlenker and Roberts, 2009). In doing that, we take specification selection seriously:

among several estimated models with different shape of the production function, we

choose the one that minimizes out-of-sample prediction error.

In line with agronomic studies and past econometric evidence, we find that yield

is increasing in temperatures up to a certain threshold and then declining for higher

temperatures. For cereals the threshold is lower than for grapevine (28-29◦ against

32◦), and the decline that occurs at higher temperature much steeper. Our results

also suggest that precipitation affects yields to a lesser extent. In order to test for

adaptation over time, we also split the sample in two sub-periods and test whether

estimates are significantly different between the two. We find evidence that this is the

case only for grapevine, suggesting that this crop has become more heat resistant in

the the period 2013-2019.

Our projections using climate forecast under the A1B scenario suggest that by

2030 the average yield for all crops will increase or remain stable as a consequence of

the changing climate, depending on the climate model. The change relative to 2000

is estimated between -1 and 6 per cent for corn, 3 and 5 per cent for durum wheat,

and 10 and 12 per cent for grapevine. Most projections display limited geographical
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heterogeneity: the majority of provinces display changes in line with the national

average, although there are some differences across crops and across climate models.

For example grapevine, which is farmed almost everywhere in Italy, is expected to

display the largest increase in yield in the Alpine region, while most Southern provinces

will not experience a drop.

Our paper contributes to the large empirical literature in economics that investi-

gates the effect of climate change on agriculture. In particular, we provide evidence

on corn, durum wheat and grapevine in the Italian context using panel data methods.

Contrary to most existing studies in this literature, we focus on short-run effects (by

2030) and on a scenario of moderate global warming (A1B). Thus our predictions do

not heavily rely on extrapolation outside the support of the data, and can shed light

on the likely evolution of agricultural output in the immediate future.

Existing papers have found that climate change will negatively affect corn yield in

the United States. Relative to the period 1960-89 the change by the period 2020-49

ranges between -20 and -30 per cent approximately (Schlenker and Roberts, 2009).

Similar predictions are obtained using the long-difference approach to account for

adaptation (Burke and Emerick, 2016). To the best of our knowledge, the existing

literature did not apply panel data methods to study durum wheat and grapevine

yields.

Available evidence on Italian agriculture relies on the Ricardian (or hedonic) ap-

proach, that estimates the effect of weather on farmland value using cross-section data.

The approach, initially proposed by Mendelsohn et al. (1994), has come under severe

scrutiny for three reasons (Auffhammer, 2018): a) it is prone to omitted variable bias

(Deschênes and Greenstone, 2007; Ortiz-Bobea, 2020); b) it implicitly assumes cost-

less adaptation, while switching to crops or varieties less sensitive to hot weather is

likely to have some fixed cost; c) it assumes that only past weather is capitalized into

farmland price, while nowadays farmers can also incorporate expectations of future

climate (Severen et al., 2018). Using the Ricardian approach, Bozzola et al. (2018)

find that irrigated Italian farms will lose between 8 and 25 per cent of their value in
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the period 2031-2060 relative to the period 1971-2000 in a low emission scenario (RCP

4.5), while rain-fed Italian farms will experience an increase in the range 0-20 per

cent. Such estimates are heterogeneous across Italian regions, but the heterogeneity

is not constant across climate models: in some models damages are concentrated in

the North, while in others in the South. In a similar paper that covers most European

countries and focuses on long-run effect in a high-warming scenario (A2) (Van Passel

et al., 2017), Italy is the country that experiences the largest drop in farmland value

(between -60 and -80 per cent in 2071–2100 relative to 1961–1990) together with Spain,

Greece and, to a lesser extent, France.

It is hard to systematically compare our estimates of future damages with those

in the literature, due to differences in the time horizon, in the underlying scenario,

and in the climate models. However, we argue that our results are not necessarily

inconsistent with previous evidence, because the effect of weather on agricultural out-

put is highly non-linear. As warming increases, the effects are positive at first, but

eventually become negative after temperature increases above a tolerance threshold.

Our estimates suggest that in the next ten years increasing temperature will be on

average beneficial for corn, durum wheat and grapevine farmed in Italy; this results

does not exclude that in later decades, as the upward trend in temperature continues,

the effects will become negative and more than offset the initial gains.3

In interpreting our estimates, the reader must also keep in mind some caveats.

First, greenhouse gases emissions do not affect agricultural output only via climate

change. In particular the stock of CO2 in the atmosphere positively affects photosyn-

thesis and thus vegetation growth, a process known as CO2 fertilization; the effect is

stronger for C3 crops (e.g. wheat, rice, trees) than for C4 crops (e.g. corn). Most

studies in economics, including the present one, abstract from CO2 fertilization, but in

a recent contribution, Taylor and Schlenker (2021a) provides causal evidence that this

process is responsible for very large shares of the productive improvements recorded
3To fully appreciate this point, it is useful to remind the reader that climate change is a function

of the stock of greenhouse gases, not of its flow ; thus, reducing greenhouse gas emissions will not stop
global warming immediately.
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in corn and wheat production in the US since 1940. Second, climate change does not

only affect the average level of temperature and precipitation, but also their variabil-

ity, both within and across years. As in most previous studies, our empirical analysis

based on degree days only captures mean temperature shifts from one year to the next,

but does not allow for heterogeneous effects that depends on the exact week where hot

days occur, or on the cumulative effects of several hot days in a row. However, in a

recent contribution Miller et al. (2021) show that models that takes such heterogeneity

into account predict that climate damages in agriculture may be 5–10 times larger than

estimated by previous models. Third, our only outcome variable is yield, but weather

can also affect crop quality, and thus its value. Using micro data on apple prices in

Switzerland, Dalhaus et al. (2020) show that quality can be much more sensitive to

weather relative to yield. Quality is likely less important for commodity cereals, but

more for wine. Using data on Bordeaux wine over the period 1800-2009, Chevet et al.

(2011) find that over time the effect of weather on yield has decreased, while the effect

on prices has increased. In a recent review, Ashenfelter and Storchmann (2016) con-

clude that climate change will likely improve quality of wine produced in continental

Europe, and harm quality of wine produced in the Mediterranean region. Fourth, our

analysis does not take into account adaptation, but farmers can adopt several strate-

gies to make yields less sensitive to weather. Our simple test of adaptation can only

provide suggestive evidence, considering the short length of our time series (14 years).

Estimating adaptation is particularly challenging and represents the current frontier

of research in this field.

The rest of the paper is organized as follows: Section 2 provides background infor-

mation on the Italian agriculture; Section 3 illustrates the empirical strategy and the

data; Section 4 presents the results; Section 5 concludes.

2 Italian agriculture

Like many in advanced economies, the direct role of the agricultural sector in Italy is

quite limited. The value added generated by the primary sector accounts for roughly
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2 per cent, a percentage that has slightly increased in the last 15 years.

Despite such limited share, Italian agriculture has played a relevant role as a stabi-

lizing factor for the economy. Between 2007 and 2019 the agricultural value added has

slightly increased (+1 per cent) while GDP has shrank by -5 per cent due to the com-

bined effects of the financial and the sovereign debt crises; export performance showed

a similar pattern: the value of exported agricultural goods has increased by almost 40

per cent while sales abroad by other sectors registered a rise by slightly more than 30

per cent. The resilience of the agricultural sector proved substantial even during the

recent Covid-19 crisis: in 2020 the drop of the primary sector value added (-6.3 per

cent) was more limited in comparison the overall economy (-8.9 per cent).

Italian agriculture has also an important role in providing intermediate goods for

other crucial sectors. Domestically produced agricultural products account for more

than 70 per cent and almost 100 per cent of all primary sector inputs in, respectively,

the agroindustrial and hotel and restaurants industries. The agroindustry sector ac-

counts for 3 per cent of the Italian GDP and 9 per cent of total exports; hotel and

restaurants is a crucial industry for the Italian touristic sector (6 per cent of total

GDP).

Finally, agricultural products account for a large share (more than 80 per cent) of

final consumption of agricultural goods by households. This implies that fluctuations

in quality, quantity, and prices for Italian agriculture have a direct impact on the

welfare of final consumers.

The most important crops in terms of quantity produced are shown in Table 1.

In this paper we focus on three main crops (Corn, Durum Wheat, Grapevine) due

to their heterogeneities in terms of growing conditions and representativeness in the

geographical distribution of crops.

Corn requires relatively high temperatures and abundant water, especially in sum-

mer. These conditions are more frequently met in rainy areas, or where irrigation is

available at low cost, with relatively warm summers. For this reason, in Italy, corn

production is concentrated in the North, especially in the Po Valley (figure 1).
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Table 1: Top ten crops in terms
of quantity produced (average
2006-19)

Crop Production
Corn 81.1
Wine grape 66.6
Open air tomato 51.7
Durum wheat 42.5
Sugar beet 32.7
Soft wheat 30.9
Olive 29.8
Apple 23.0
Orange 20.5
Rice 15.2

Source: Istat.
Note: millions of tons.

Durum wheat requires warm conditions but suffers when temperatures above 30◦with

dry winds. For these reasons, it is mostly farmed in the South of Italy.

Figure 1: Farmed surface (average 2006-2019)

Corn Durum wheat Grapevine

Note: sixteen quantiles. Darker areas have more absolute surface devoted to the specific crop.

Grapevine is able to grow under very heterogeneous conditions but it generally

requires fresh springs and not particularly hot summers. Water requirements can also

be very variable depending on type. For these reasons, it can be cultivated almost

everywhere in Italy.
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3 Empirical strategy and data

Our approach estimates the effect of weather on a crop by crop basis. As explained in

the previous section, we focus on Corn, Durum wheat, and Wine grape, which are the

most relevant Italian agricultural products; they are also characterized by different

growing conditions and, as a consequence, they are also likely to be affected in an

heterogeneous way by climate change. In order to analyze the impact of temperature

and rain shocks on yields, we estimate the following equation:

ycit = µi + λt + β1GDDit + β2KDDit+

+ γ1Rain
above
it + γ2Rain

below
it + γ3Rain

above
it × Ii + γ4Rain

below
it × Ii + εit (1)

where i and t indicate, respectively, the geographical area of analysis (Italian

NUTS3 regions; i.e. provinces) and time (year). We estimate our specification via

weighted lest squares (WLS), with the time-invariant weights being equal to the aver-

age surface devoted to the crop under investigation. This kind of weighting is common

in the literature (Burke and Emerick, 2016) and allows to recover the effect of climate

change on the Italian agriculture as a whole when we extrapolate the estimates in to

the future. We cluster our standard errors to account for arbitrary spatial correlation

with a spatial cut-off of 300 kilometers (Conley, 1999; Colella et al., 2019).

3.1 Variables and data

We download crop-specific data on total production and farmed surface from Istat

(Italian Statistical Bureau) to construct the dependent variable. Data is at the annual

frequency and the level of disaggregation is province. The outcome variable ycit is the

log yield:

ycit = ln
(Productioncit

Landcit

)
, (2)

where both numerator and denominator refer to a specific crop c (e.g. corn).
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GDDit (growing degree days) and KDDit (killing degree days) are variables that

approximate the impact of temperature on yields (Schlenker and Roberts, 2009; Burke

and Emerick, 2016; Blanc and Schlenker, 2017). Degree days are constructed from daily

readings of minimum and maximum temperature. We assume that at the beginning

of the day the temperature is at its minimum, and then it grows linearly until midday,

when it reaches its maximum; after that, we assume it decreases back to the minimum

at the same rate. The within day distribution of temperature is depicted in figure 2,

where time of the day is on the horizontal axis, and temperature on the vertical axis.

Figure 2: Construction of degree days for one example day

Note: temperature on the vertical axis, and time of the day on the horizontal axis. The black line is the assumed
within-day temperature distribution, constructed from the observed minimum and maximum temperatures of the day.
Here the value of τmin and τmax is picked just for illustrative purposes.

To define our degree days, we must pick two temperature thresholds for each crop:

bound min τmin and bound max τmax (more on how we select the bounds in Section

3.2). We assume that when the temperature is below bound min or above bound

max, the weather is too cold or too hot for the crop and so it is detrimental for its

growth; such a negative effect is stronger the more the temperature deviates from the

bounds. When instead the temperature is between the two thresholds, the weather

is appropriate for the crop and makes the plants grow; in particular, it is the more

favorable the higher the temperature, conditional on being below bound max.

GDDit is calculated for each day as the green area in Figure 2; the horizontal side

of the triangles measures the temporal exposure to the good temperature, while the

vertical side measures the intensity of the exposure. The annual GDD is calculated as
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the sum of all green areas over the entire growing season. KDDit is the variable that

captures the negative effects from hot temperature, and corresponds to the red area.

The effect of precipitation on agricultural yields depends crucially on the availabil-

ity of irrigation (Schlenker et al., 2005). We download information on the availability

of irrigable land (e.g. due to underground water, river, aqueduct etc.) from the 2010

Agricultural census and construct a dummy Ii equal to one if more than half of agri-

cultural land (all crops) is irrigable. Availability of irrigation is not uniform: highly

irrigable provinces are located in the North in the vicinity of the Po river, and they

record on average 26 per cent more precipitation than the rest of the provinces. We will

allow for the effect of precipitation to be different in high vs. low irrigable provinces.

Note that, contrary to actual irrigation, availability of irrigation is fixed in the short

run, because it depends on the presence of rivers, lakes, basins, wells, canals or other

natural or artificial infrastructure.

The effect of precipitation on agricultural yields is captured by Rainaboveit and

Rainbelowit . The two variables are constructed as follows:

Rainaboveit = Precipitationit × 1(Precipitationit > π) (3)

Rainbelowit = Precipitationit × 1(Precipitationit < π) (4)

where π is a chosen threshold and Precipitation is the total precipitation in province

i over the growing season in year t. This formulation allows the estimated relationship

to have a different slopes on the two sides of the threshold, and thus can accommodate

positive effects of additional rain when precipitations are low, and null or even negative

effects when precipitations are high.

The source of our weather data is the JRC Agri4cast MARSMeteorological Database,

a gridded database with 25×25 km cells which covers the European Union and neigh-

boring countries. It contains daily observations on precipitation and minimum and

maximum temperatures.

In order to map cells into Italian provinces, we first aggregate our degree days

variables and the precipitation variable at the cell-year level, restricting the dataset to
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the growing season of each crop. Since provinces typically span over more than one

cell, we proceed as follows. First, we superimpose a finer 8.3× 8.3 km grid, and assign

the centroid of each sub cell to the province where it lies. Second, for each variable

we construct its weighted average using values of all cells that intersect the province

territory; the weights are the number of sub cell centroids from the same cell, and are

thus proportional to the portion of province territory that belongs to that cell.

From the same source, we download data on model-based future weather in 2000

(the benchmark year used for validation) and 2030 under the A1B scenario, which

assumes very rapid economic growth at global level, low population growth, and a bal-

anced use of fossil and renewable energy (Duveiller et al., 2017). The dataset features

30 synthetic years drawn from the statistical distribution of meteorological variables

in 2000 and 2030, as predicted by the climate models. In particular, the dataset con-

tains predictions from three climate models: DMI-HIRHAM5-CHAM5, ETHZ-CLM-

HadCM3Q0 and METO-HC-HadRM3Q0-HadCM3Q0. For each synthetic year, the

data has the same frequency and geographical format as the actual weather data, and

thus we are able to use the same procedure to aggregate our variables of interest at

the province-synthetic year level. The bottom panel in Figure 3 shows the increase

in maximum temperature between 2000 and 2030 predicted by the three different cli-

mate models; in Italy the increase is more limited compared to countries like Spain

and France, and it is below 1◦everywhere in two models (side panels), and below 1.4

in one (central panel).

3.2 Identification and model selection

Our baseline specification eq. (1) is a two-way fixed effects (TWFE) model that

includes year fixed effects, province fixed effects and the weather variables.

The causal interpretation of the results crucially rests on the presence of province

fixed effects, whose inclusion effectively demean the outcome and the weather variables.

In this way, the specification identifies the effect of year-to-year weather variation

(shocks) (Blanc and Schlenker, 2017). These shocks are plausibly uncorrelated with
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Figure 3: Difference of average maximum temperatures (◦) in April-September

Source: Duveiller et al. (2017).

inputs of production controlled by farmers; in fact, these inputs are chosen in the

plantation season, well before weather in the growing season is realized (Dell et al.,

2012). Furthermore, province fixed effects control for time-invariant characteristics

that are correlated both with yield and with average weather, such as the availability

of irrigation or soil quality.

Year fixed effects control for the presence of aggregate shocks, such as changes

in national crop prices or institutional reforms. This set of fixed effects ensure that

the effect of weather is not identified by identical shocks that occur everywhere in

the same year. However, year fixed effects are not essential for identification because

our identifying assumption is not a parallel trend assumption like in a difference-in-

differences. On the contrary, we assume that weather shocks are orthogonal to other

inputs of production, and this only requires inclusion of province fixed effects, as

explained above.

TWFEmodels can be biased in case of treatment effects that are heterogeneous over

time (dynamic effects) or across units (de Chaisemartin and D’Haultfœuille, 2020). In
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our application, we do not expect that weather shocks have dynamic effects because

we analyze crops characterized by a vegetation cycle that begins and ends within

12 months. Weather shocks are unlikely to affect yields in subsequent years, which

effectively shuts down one of the source of bias in the TWFE model identified by

the recent econometric literature. We can expect instead that weather shocks have

heterogeneous effects across provinces, since Italian NUTS3 regions are well known to

be characterized by large differences in terms of baseline climate, irrigation availability,

firm structure, etc.

To cope with the potential bias of TWFE model, we propose an ad hoc approach

uniquely available in this context. The economic literature on the effects of climate

change have advocated for the use of out-of-sample prediction tests for model validation

(Schlenker and Roberts, 2009; Blanc and Schlenker, 2017). We do the same here, by

comparing the relative forecasting performance of the TWFE model and of the model

with only province fixed effects. If the former model has lower prediction error, we

conclude that the gain from controlling for nation-wide year shocks is larger than the

bias due to the potential cross sectional heterogeneity. Note also that, to the best of our

knowledge, most solutions proposed in the literature to cope with the TWFE bias are

not readily applicable in our context, characterized by several continuous endogenous

regressors.

In studying the effect of temperature on output, selecting the correct functional

form is often more challenging than finding a plausibly exogenous source of variation

(Newell et al., 2021). In fact, weather shocks are plausibly random, but their effect

on output is non linear in a non trivial way (Schlenker et al., 2006). In our case,

selecting the functional form amounts to choosing the thresholds τmin, τmax and π.

In order to do that, we perform a comparison of different models in terms of out-of-

sample forecasting accuracy against a benchmark that only includes time and year

fixed effects. Following Blanc and Schlenker (2017), for all years we drop one year at

the time from the estimating sample, predict that year, and then calculate the mean

squared error across all years. Note that in this setting the use of both previous and
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later years to estimate the coefficients is not problematic because the agricultural cycle

is such that weather shocks can not affect yields in subsequent years.

Finally, extrapolation of future damages is as follows. First, we construct degree

days and precipitation variables for each synthetic year. Second, we take the average

over synthetic years for 2000 and 2030. Third, for each variable we calculate the

difference between 2000 and 2030. Fourth, we use the estimated coefficients of our

preferred specification to project these differences in to changes in log yield.

4 Results

4.1 Thresholds selection

Corn. In Italy, the growing season for corn goes from May to mid September. Ac-

cording to agronomists, corn does not grow if temperature is below 10◦and suggest to

start sowing when average soil temperature is around 12◦. Temperature above 32◦is

particularly harmful for the crop. Abundant water, especially in summer, is essential

to reach maximum yield: the optimal amount is approximately 25mm per week. The

available econometric evidence is consistent with agronomic studies: for the United

States, Schlenker and Roberts (2009) find that τmin = 10◦, τmax = 29◦ and π = 635mm.

We test the out-of-sample prediction performances of different models against a

benchmark model with only time and province fixed effects. We focus on parameters

in a neighborhood of the optimal values found in the agronomic and econometric lit-

erature. In particular, we consider the following temperature ranges: τmin = {6◦, 18◦}

and τmax = {23◦, 35◦}. Since in our data, the 99th percentile of precipitation in low-

irrigable provinces is equal to 610mm, that is very close to the optimal value identified

in the literature, we consider π = 500mm against a fully linear specification.

Results, reported graphically in Figure 4, are consistent with the existing literature.

The best performing models (yellow squares) are those with 10◦ ≤ τmin ≤ 13◦, and

29◦ ≤ τmin ≤ 30◦, and without break point in precipitation.4

4The coefficients on the two sides of the precipitation threshold are statistically indistinguishable
from one other.
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Figure 4: Out-of-sample prediction performance for corn yield
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Note: each square correspond to a different model. Colors are assigned based on the percentage change in MSE relative
to a benchmark that only includes time and province fixed effects. MSE are calculated on out-of-sample predictions
obtained by leaving one year out in every estimation step.

Durum Wheat. The growing season for dumum wheat goes from December to May.

According to agronomists, the minimum growing temperature is 0◦, but at least 2-4◦are

needed for the growing process to occur quickly. As we said before, temperatures above

30◦, especially when coupled with dry winds, can be very detrimental for the crop and

for the related yield. Durum wheat is more resistant to high temperatures compared

to soft wheat. The optimal amount of rain is between 450 and 650mm per season.5

We proceed as before and consider the following temperature ranges: τmin =

{0◦, 10◦} and τmax = {25◦, 34◦}. Since in our data, the 99th percentile of precipi-

tation in low-irrigable provinces is equal to 726mm, that is very close to the optimal

value identified in the literature, we consider again π = 500mm and also a fully linear

specification without break point.

Results, reported graphically in Figure 5, are broadly consistent with the informa-

tion from agronomic studies. The best performing models (yellow squares) are those

with 0◦ ≤ τmin ≤ 2◦, and 27◦ ≤ τmin ≤ 29◦, and without break point in precipitation.6

The forecasting performance is quite high relative to the benchmark.
5https://www.fao.org/land-water/databases-and-software/crop-information/wheat/en/
6Note that since negative temperature are not very frequent, GDD variables with τmin ≤ 2◦ are

highly correlated (in the order of 98 per cent). For this reason, it makes no sense to expand the search
for better prediction performance to τmin < 0.
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Figure 5: Out-of-sample prediction performance for durum wheat yield
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Note: each square correspond to a different model. Colors are assigned based on the percentage change in MSE relative
to a benchmark that only includes time and province fixed effects. MSE are calculated on out-of-sample predictions
obtained by leaving one year out in every estimation step.

Grapevine. The growing season varies depending on the area and type of grape;

for our purposes we consider weather in the period April-September. According to

agronomists, fast development of shoots starts when mean daily temperatures reach

l0◦. High temperatures might become detrimental when above 30◦approximately. To-

tal water requirements vary between 500 and 1200 mm, depending mainly on climate

and length of growing period.

As before, we test the out-of-sample prediction performances of different models

against a benchmark model with only time and province fixed effects, restricting our

focus on the following temperature ranges: τmin = {0◦, 15◦} and τmax = {26◦, 35◦}. We

also experiment with models where precipitation enters linearly or with break points

in the range π = {300, 700}.

The out-of-sample forecasts, reported graphically in Figure 6, are broadly consis-

tent with the agronomic values. The best performing models (yellow squares) are those

with 0◦ ≤ τmin ≤ 4◦, and 31◦ ≤ τmin ≤ 33◦; in terms of precipitation, the models with

a linear function and with break point at 400mm have similar performances.

4.2 Effect of weather shocks

Corn. Table 2 reports the estimated coefficients of four specifications with τmin =

12◦, τmax = 29◦, and no break point in precipitation. Column (4) refers to our pre-
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Figure 6: Out-of-sample prediction performance for grapevine yield
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Note: each square correspond to a different model. Colors are assigned based on the percentage change in MSE relative
to a benchmark that only includes time and province fixed effects. MSE are calculated on out-of-sample predictions
obtained by leaving one year out in every estimation step.

ferred specification that include province and year fixed effects. The coefficient on the

degree days variables have the expected sign, but the coefficient on KDD is imprecisely

estimated.7 The effect of precipitation is positive in provinces where the availability

of irrigation is low, but equal to zero elsewhere; in the former, a 1cm increase in rain

leads to a 0.4 per cent increase in yield. The results are very similar in column (2)

when year fixed effects are not included the model, suggesting that the bias produced

by the TWFE estimator in case of heterogeneous effects is minimal in this case.

In order to interpret the effect of temperature shocks, it is useful to use the esti-

mated coefficients to construct a mapping from minimum and maximum temperature

into yield. The left panel of Figure 7 plots the relationship between minimum tem-

perature and yield: the slope is positive, and become steeper above 12◦. The right

panel plots the relationship between maximum temperature and yield: the slope is

positive below 29◦and become negative beyond that point; the negative part of the

spline is steeper, suggesting that high temperature quickly become very detrimental

for the crop.8

Next we implement a simple test for adaption in the spirit of Roberts and Schlenker
7The standard errors become smaller when reducing the radius used to construct the clusters or

provinces, or when clustering at the province level.
8Note that this line has a unique peak at 29◦by construction. The true relationship might be

smoother, but the literature has found that the approximation used here is very close to what would
be estimated by more flexible models. (Schlenker and Roberts, 2009)
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Table 2: Effect of weather on log corn yield

Log corn yield

(1) (2) (3) (4)

GDD 12-29◦ 0.069∗∗ 0.108∗∗∗ 0.091∗∗∗ 0.102∗∗∗
(0.030) (0.022) (0.027) (0.029)

KDD >29◦ -0.425∗ -0.210 -0.340 -0.313
(0.254) (0.245) (0.282) (0.291)

Rain (cm) 0.010∗∗∗ 0.004∗
(0.003) (0.002)

Rain (cm) X irrigable (0/1) -0.004 -0.004
(0.003) (0.003)

Prov. FE X X X X
Year FE X X
N Obs. 1269 1269 1269 1269
R2 0.11 0.18 0.06 0.07

Note: Estimation via weighted linear regression; weights equal to the average surface
devoted to corn. Conley standard errors (radius 300 km) in parentheses. The sample
include 99 Italian provinces over the period 2006-2019.

Figure 7: Effect of temperature on corn yield
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Note: the left panel plots the relationship between minimum temperature and corn yield (normalized to 100 at 1◦),
keeping maximum temperature fixed at 22◦; the right panel plots the relationship between maximum temperature
and corn yield (normalized to 100 at 20◦), keeping minimum temperature fixed at 16◦. Shadow areas are 95 per cent
confidence intervals.

(2011). We estimate a new model where all explanatory variables are also interacted

with a dummy equal to one for the years 2013-2019. We thus allow weather shocks to

have different effects in the period 2006-2012 vs. the period 2013-2019. If adaptation

is at work, we should find that the estimated relationship between weather shocks

and yield become flatter over time, as farmers learn how to protect crops from the
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changing climate. As reported in the appendix, the coefficients on the interaction

terms are small and not statistically significant at conventional levels, suggesting that

there is no evidence of adaptation in corn production over this short period of time.

Durum wheat. Table 3 reports the estimated coefficients of four specifications with

τmin = 2◦, τmax = 28◦, and no break point in precipitation. Column (4) refers to

our preferred specification that include province and year fixed effects. The coefficient

on the degree days variables have the expected sign. The effect of precipitation is

approximately equal to zero both in provinces where the availability of irrigation is

low, that is in the areas where the production of durum wheat is concentrated, and

where irrigation is more diffuse.

Comparing columns (2) and (4) we notice that the estimated coefficients are some-

what sensitive to the inclusion of year fixed effects. In particular, the coefficient on

GDDit is equal to zero when year fixed effects are included, while the coefficient on

KDDit is larger in absolute value. Since these results might suggest the presence of

bias in the TWFE model due to the presence of heterogeneous effects (de Chaisemartin

and D’Haultfœuille, 2020), we perform a comparison of the two models in terms of

out-of-sample predictive performance in order to pick the most accurate. The results

(not reported) indicate that the TWFE model is up to 4 times more accurate than the

model without time fixed effects, suggesting the importance to control for year-level

shocks in this application.

The left panel of Figure 8 plots the linear positive relationship between minimum

temperature and yield. The right panel plots the relationship between maximum

temperature and yield: the slope is positive below 28◦and become negative beyond that

point; the negative part of the spline is much steeper, suggesting that high temperature

quickly become highly detrimental for the crop. However, the last day of the growing

season is May, thus maximum temperatures do not raise often much above the turning

point under the current climate.
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Table 3: Effect of weather on log durum wheat yield

Log durum wheat yield

(1) (2) (3) (4)

GDD 2-28◦ 0.001 -0.000 0.034∗ 0.032∗∗
(0.017) (0.017) (0.017) (0.016)

KDD >28◦ -3.945∗∗∗ -3.893∗∗∗ -2.285 -2.465∗
(1.359) (1.350) (1.398) (1.380)

Rain (cm) -0.001 -0.000
(0.001) (0.001)

Rain (cm) X irrigable (0/1) -0.003 -0.004
(0.003) (0.003)

Prov. FE X X X X
Year FE X X
N Obs. 1187 1187 1187 1187
R2 0.05 0.05 0.02 0.02

Note: Estimation via weighted linear regression; weights equal to the average surface
devoted to durum wheat. Conley standard errors (radius 300 km) in parentheses. The
sample include 99 Italian provinces over the period 2006-2019.

Figure 8: Effect of temperature on durum wheat yield
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Note: the left panel plots the relationship between minimum temperature and corn yield (normalized to 100 at 1◦),
keeping maximum temperature fixed at 14◦; the right panel plots the relationship between maximum temperature
and corn yield (normalized to 100 at 15◦), keeping minimum temperature fixed at 12◦. Shadow areas are 95 per cent
confidence intervals.

Grapevine. Table 4 reports the estimated coefficients of six specifications with

τmin = 2◦ and τmax = 32◦; for grapevine we present results from models with no

break point in precipitation and with break point at 400, because their out-of-sample

forecasting performance is comparable. Columns (5) and (6) refer to our preferred

specifications that include province and year fixed effects. In both cases, none of the
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coefficients on the precipitation variables is statistically different from zero. In model

(5) the coefficients on precipitation is small and positive both in areas with high irriga-

tion and in areas with low irrigation. In model (6), in low irrigable provinces the effect

of rain is positive (0.2 per cent for each additional cm) below 400 mm, and becomes

equal to zero for higher values; in the other provinces, the effect is also positive (0.4

per cent per 1 more cm) below the threshold and negative (-0.3 per cent) above. Thus

the non-linear pattern (consistent with the idea that more rain is good when there

is little precipitation, but eventually it becomes useless or even counterproductive)

is qualitatively similar in areas with high and low availability of irrigation. This is

consistent with the fact that in Italy irrigation is used in grape making only in case of

severe heat stress (irrigazione di soccorso), and to this extent is likely to be available

everywhere for a valuable crop such as grapevine.

The coefficients on GDD and KDD are similar irrespective of the way we model

precipitation. The coefficient on GDD is positive, large, and quite precisely estimated;

the coefficient on KDD is positive but very imprecisely estimated and not statistically

significant. Interpreting these coefficients in isolation is hard, since the standard ceteris

paribus interpretation used in regression analysis is misleading here: KDD can not

change while GDD remains fixed, because they are both functions of the maximum

temperature. Thus we use coefficients to create a mapping from temperatures to

yield, as we did for other crops. Figure 9 shows a positive relationship for maximum

temperature below 32◦. For higher temperatures, the relationship becomes negative,

but the decline in yield is moderate, convex and flattens out quickly. The change of

sign in the graph is generated by the drop in GDD that occurs when the maximum

temperatures exceeds 32◦, since the coefficient on KDD is also positive. Additional

analyses show that in order to obtain a negative coefficient on KDD (and thus a

function which is strictly increasing below the cutoff and strictly decreasing above)

it is necessary to increase the threshold τmax to at least 34◦. The most important

takeaway is that the data, irrespective of the exact specification, supports the idea

that grapevine yield in Italy is on average quite resistant to heat.
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Table 4: Effect of weather on log grapewine yield

Log grapevine yield

(1) (2) (3) (4) (5) (6)

GDD 2-32◦ 0.036∗∗ 0.045∗∗∗ 0.045∗∗∗ 0.078∗∗∗ 0.083∗∗∗ 0.084∗∗∗
(0.015) (0.015) (0.015) (0.017) (0.019) (0.019)

KDD >32◦ -0.328 -0.151 -0.122 0.320 0.366 0.385
(0.430) (0.420) (0.419) (0.479) (0.519) (0.525)

Rain (cm) 0.003∗∗ 0.001
(0.002) (0.002)

Rain (cm) X irrigable (0/1) 0.000 0.001
(0.003) (0.002)

Rain above (cm) 0.001 0.000
(0.002) (0.002)

Rain above (cm) X irrigable (0/1) -0.003 -0.003
(0.007) (0.006)

Rain below (cm) 0.004∗ 0.002
(0.002) (0.002)

Rain below (cm) X irrigable (0/1) 0.004 0.004
(0.004) (0.004)

Prov. FE X X X X X X
Year FE X X X
N Obs. 1390 1390 1390 1390 1390 1390
R2 0.04 0.04 0.05 0.04 0.04 0.04

Note: Estimation via weighted linear regression; weights equal to the average surface devoted to corn. Conley standard
errors (radius 300 km) in parentheses. The sample include 99 Italian provinces over the period 2006-2019.

Figure 9: Effect of temperature on grapevine yield
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Note: the left panel plots the relationship between minimum temperature and grape wine yield (normalized to 100 at
1◦), keeping maximum temperature fixed at 14◦; the right panel plots the relationship between maximum temperature
and corn yield (normalized to 100 at 20◦), keeping minimum temperature fixed at 15◦. Shadow areas are 95 per cent
confidence intervals.

The results for GDD and KDD are quite different in columns (2) and (3) when

year fixed effects are not included in the model; however, the out-of-sample forecasting

performance of these specifications are approximately equal to the benchmark model

with only time and province fixed effects, and thus sensibly worse than the models in

columns (5) and (6).
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The evidence from the simple test for adaptation implemented before for other

crops suggests that in the case of grapevine the effect of KDD is negative in the period

2006-2012, and turns positive afterwards (see Appendix). The difference between the

two is statistically significant, and thus we could interpret this as evidence that farmers

are adopting measures able to limit the detrimental effects of high temperature.

4.3 Projection of future effects

Corn. Combining our estimates with predictions on future climate, we obtain a

projection of the effects of climate change on corn yield in 2030 relative to 2000 under

the A1B scenario. The point estimates range from - 0.8 to 6 per cent, depending on

the climate model (see Figure 10). The confidence interval are quite wide, even though

they do not consider the uncertainty in the climate projections. When using the two

climate models that predict less warming (1 and 3), the effect on corn yield is positive;

it turns negative in model 2, that predicts 1◦higher maximum temperature. This

pattern is consistent with the relationship depicted in Figure 7: higher temperature

increases corn yield up to approximately 29◦, but beyond that further increases are

detrimental for the crop. Our results suggest that in the period 2000-2030 the Italian

climate is still to the left of the peak, and so agriculture productivity is gaining from

more warming. However, the difference in results between models 1-3 and model 2

suggest that if the temperature keeps raising after 2030, the effects on corn production

will become negative, even under model 1 and 3. Figure 11 shows some degree of

heterogeneity across provinces. In model 1 most Northern provinces around the Po

river, where most corn production is concentrated, display positive effects, while they

are negatively affected in in model 2.

Durum wheat. Under the A1B scenario, the point estimates range between 3 and

5 per cent, depending on the climate model (see Figure 12). Even in this case, the

confidence interval are quite wide, even though they do not consider the uncertainty in

the climate projections. The effect is larger for climate model 2, that predicts higher
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Figure 10: Average effect of climate on corn yield 2030-2000
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Note: Models 1, 2 and 3 refer respectively to DMI-HIRHAM5-CHAM5, ETHZ-CLM-HadCM3Q0 and METO-HC-
HadRM3Q0-HadCM3Q0.

Figure 11: Province-by-province effect of climate on corn yield 2030-2000
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Note: Models 1, 2 and 3 refer respectively to DMI-HIRHAM5-CHAM5, ETHZ-CLM-HadCM3Q0 and METO-HC-
HadRM3Q0-HadCM3Q0. Effects are in percentage.

warming. Our results suggest that until 2030 the Italian durum wheat production is

not endangered by climate change, and if anything agriculture productivity will be

improving. Figure 13 presents the province-by-province projections: the only areas

where the effect is negative are located in the North, where durum wheat production

is low, while the effect is positive everywhere in the South.
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Figure 12: Average effect of climate on durum wheat yield 2030-2000
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Note: Models 1, 2 and 3 refer respectively to DMI-HIRHAM5-CHAM5, ETHZ-CLM-HadCM3Q0 and METO-HC-
HadRM3Q0-HadCM3Q0.

Figure 13: Province-by-province effect of climate on durum wheat yield 2030-2000
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Note: Models 1, 2 and 3 refer respectively to DMI-HIRHAM5-CHAM5, ETHZ-CLM-HadCM3Q0 and METO-HC-
HadRM3Q0-HadCM3Q0. Effects are in percentage.

Grapevine. Across the three climate models, the point estimates are remarkably

similar and equal to approximately 11 per cent (see Figure 14). The results are similar

across climate models because the KDD coefficient is small in absolute value; a small

KDD coefficient does not project large differences in global warming into large differ-

ences in yields. Furthermore, very few provinces display drops in yields (blue areas in
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Figure 15) or increases larger than 20 per cent (orange and red areas).

Figure 14: Average effect of climate on grapevine yield 2030-2000

5
10

15
20

Av
er

ag
e 

ch
an

ge
 in

 y
ie

ld
 2

00
0 

vs
 2

03
0 

(%
)

1 2 3
Climate model

Point estimate 95% CI

Note: Models 1, 2 and 3 refer respectively to DMI-HIRHAM5-CHAM5, ETHZ-CLM-HadCM3Q0 and METO-HC-
HadRM3Q0-HadCM3Q0.

Figure 15: Province-by-province effect of climate on grapevine yield 2030-2000
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HadRM3Q0-HadCM3Q0. Effects are in percentage.
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5 Conclusion

Climate change is likely to have detrimental effect on agriculture output at the global

level. Using data over the period 2006-2019, we provide evidence that in Italy corn,

durum wheat and, to a lesser extent, grapevine yields are increasing in temperature

until approximately 30◦, and decreasing thereafter. Under a moderate warming sce-

nario (A1B), our estimates do not translate into a reduction in average yield over the

period 2000-2030, likely because climate in these years is still to the left of the op-

timum peak. Our estimates necessarily imply that under more pessimistic scenarios

and/or over longer horizons, the effect of global warming on Italian agriculture will

become more negative.
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Appendix A Temperature graph
The graph is produced as follows:

• We fix a minimum temperature and calculate GDD and KDD for a range of
maximum temperatures around bound max. In other words, these are the level
GDD and KDD for a day with these temperatures.

• We take the difference in GDD and KDD between pairs of days characterized by
1◦ difference in maximum temperature. Define these differences as ∆GDD and
∆KDD

• We use the estimated coefficients to calculate the projected change in (log) yield
induced by having one day with maximum temperature equal to x◦ relative to
one day with maximum temperature equal to x − 1◦: percent∆ y = βGDD ×
GDD + βKDD ×KDD

• We fix the yield at the lowest maximum temperature equal to 100, and apply
the percent∆ y cumulatively to all other maximum temperatures
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Appendix B Adaptation

Table 5: Effect of weather on log corn yield

Log corn yield

GDD 12-29◦ 0.092∗∗∗ 0.090∗∗∗
(0.023) (0.030)

GDD 12-29◦X 2013-2019 (0/1) -0.005 0.001
(0.019) (0.018)

KDD >29◦ -0.430 -0.337
(0.306) (0.329)

KDD >29◦X 2013-2019 (0/1) 0.150 -0.054
(0.266) (0.247)

Rain (cm) 0.005∗ 0.004
(0.003) (0.003)

Rain (cm) X 2013-2019 (0/1) 0.000 -0.001
(0.002) (0.002)

Rain (cm) X irrigable (0/1) -0.002 -0.002
(0.003) (0.003)

Rain (cm) X irrigable (0/1) X 2013-2019 (0/1) -0.002 -0.002
(0.001) (0.001)

Prov. FE X X
Year FE X
N Obs. 1269 1269
R2 0.25 0.08

Note: Estimation via weighted linear regression; weights equal to the average surface
devoted to corn. Conley standard errors (radius 300 km) in parentheses. The sample
include 99 Italian provinces over the period 2006-2019. .
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Table 6: Effect of weather on log durum wheat yield

Log durum wheat yield

GDD 2-28◦ -0.016 0.033∗∗
(0.018) (0.016)

GDD 2-28◦X 2013-2019 (0/1) 0.023∗∗∗ 0.014∗∗
(0.009) (0.007)

KDD >28◦ -3.685∗∗∗ -2.444∗
(1.093) (1.459)

KDD >28◦X 2013-2019 (0/1) 3.100 0.045
(2.263) (3.286)

Rain (cm) -0.002 0.001
(0.002) (0.002)

Rain (cm) X 2013-2019 (0/1) 0.002 -0.001
(0.002) (0.002)

Rain (cm) X irrigable (0/1) -0.002 -0.003
(0.004) (0.004)

Rain (cm) X irrigable (0/1) X 2013-2019 (0/1) 0.000 -0.000
(0.002) (0.002)

Prov. FE X X
Year FE X
N Obs. 1187 1187
R2 0.09 0.03

Note: Estimation via weighted linear regression; weights equal to the average surface
devoted to durum wheat. Conley standard errors (radius 300 km) in parentheses. The
sample include 99 Italian provinces over the period 2006-2019. .
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Table 7: Effect of weather on log grapevine yield

Log grapevine yield

GDD 2-32◦ 0.027∗ 0.078∗∗∗
(0.015) (0.018)

GDD 2-32◦X 2013-2019 (0/1) 0.013∗∗ 0.005
(0.006) (0.004)

KDD >32◦ -0.535 -0.239
(0.518) (0.509)

KDD >32◦X 2013-2019 (0/1) 0.956 1.854∗∗∗
(0.617) (0.626)

Rain (cm) 0.000 -0.001
(0.002) (0.002)

Rain (cm) X 2013-2019 (0/1) 0.003∗ 0.003∗∗∗
(0.002) (0.001)

Rain (cm) X irrigable (0/1) 0.003 0.002
(0.002) (0.002)

Rain (cm) X irrigable (0/1) X 2013-2019 (0/1) -0.003∗∗∗ -0.002∗∗∗
(0.001) (0.001)

Prov. FE X X
Year FE X
N Obs. 1390 1390
R2 0.09 0.08

Note: Estimation via weighted linear regression; weights equal to the average surface
devoted to grapevine. Conley standard errors (radius 300 km) in parentheses. The
sample include 99 Italian provinces over the period 2006-2019. .

38


	Pagina vuota



