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Abstract 
In the context of the data quality management of supervisory banking data, the Bank of 
Italy receives a significant number of data reports at various intervals from Italian banks. If 
any anomalies are found, a quality remark is sent back, questioning the data submitted. 
This process can lead to the bank in question confirming or revising the data it 
previously transmitted. We propose an innovative methodology, based on text mining 
and machine learning techniques, for the automatic processing of the data confirmations 
received from banks. A classification model is employed to predict whether these 
confirmations should be accepted or rejected based on the reasons provided by the reporting 
banks, the characteristics of the validation quality checks, and reporting behaviour across 
the banking system. The model was trained on past cases already labelled by data 
managers and its performance was assessed against a set of cross-checked cases that were 
used as gold standard. The empirical findings show that the methodology predicts the 
correct decisions on recurrent data confirmations and that the performance of the 
proposed model is comparable to that of data managers currently engaged in data analysis. 
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1. Introduction and motivation1 

Central banks (CBs) are in charge of the production of high quality statistics based on reliable and timely data 

reported by financial institutions. Over the last few decades, data collections have experienced a rapid and 

unprecedented surge in the volume, granularity and frequency of data that reporting agents (RAs) are required 

to transmit to the authorities. In turn, this has made the activity of ensuring high data quality standards 

progressively more challenging and time consuming for statisticians working at a CB. As a result, CBs have 

started to investigate innovative approaches to make their statistical production processes more accurate and 

efficient (Chakraborty and Joseph, 2017; Bank of International Settlements, 2019). 

Recent research in the field of applied statistical analysis has shown that non-traditional techniques based on 

machine learning and artificial intelligence can offer concrete advantages to CBs in terms of both improving 

the quality of their statistics and the efficiency of the related processes to compute them, in particular in the 

new context of increasingly granular surveys. These techniques capture any complex relationships existing in 

the data reported by financial intermediaries that can be exploited for the prompt detection of potential outliers. 

Prior studies in this field have applied both supervised and unsupervised algorithms to detect potential 

anomalies in various types of datasets including securities holdings (Cagala, 2017), balance sheet items 

(Cusano et al., 2021), and payment services (Zambuto et al., 2020).  

The identification of potential anomalies represents only the first step of the data quality management (DQM) 

process. Generally speaking, outliers correspond to observations that differ “significantly”, from a statistical 

point of view, from the expected data points; however, not all of them necessarily correspond to actual 

reporting errors, to the extent that some might be due to specific economic or methodological factors (“false 

positives”). This is why CB data managers submit the potential outliers they have detected to RAs; for each 

anomaly, the RA can either revise the information previously sent or confirm the data reported. In the latter 

case, it must add the motivation, which is then analysed by data managers and can be either rejected (a 

resubmission of the data by the RA is expected) or accepted (the remark is cancelled).  

Analysing the motivations received on quality remarks is, thus, a critical step in ensuring a high quality 

standard and improving the overall DQM system. This process can be highly time-consuming and subject to 

various inefficiencies, in particular in the presence of more complex surveys. First, the increasing granularity 

of surveys and the proliferation of validation checks are making the interactions with RAs very complex 

because the number of potential outliers can be quite large. Second, the cases of “false positives” can become 

recurrent in the system when the validation checks rely on assumptions that are not valid for all plausible 

reporting patterns; in turn, a reporting exception, although already known, can affect the data submitted by 

                                                      

1 We are grateful to Professors Gianluca Cubadda and Alessio Farcomeni (University of Tor Vergata, Rome) for useful comments and fruitful 

discussions on a preliminary draft of the paper. The views expressed herein are those of the authors and do not necessarily reflect those of the Bank of 

Italy. 
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several RAs. Third, the process inevitably requires some degree of judgment by data managers and, then, it is 

prone to errors that can affect data quality (actual reporting errors are flagged as “normal” data points) or 

impose an unnecessary burden on RAs (correct data are flagged as outliers). Additionally, the presence of 

some degree of judgment in the decisions taken by data managers can lead to heterogeneous patterns if similar 

cases are treated differently over time and across data collections and reporting agents. 

In order to address these issues, this study explores the application of machine learning techniques for the 

automatic processing of confirmations of quality remarks received from RAs. Previous papers in this statistical 

literature have shown the importance of implementing innovative approaches to identify outliers, while 

keeping the number of false positives as low as possible in order to mitigate the costs associated with DQM 

(see, for instance, Zambuto et al., 2020). This work contributes to the stream of the empirical literature by 

showing that machine learning techniques can also be applied in the DQM process after the notification of 

quality remarks to RAs. Specifically, we propose a classification model to replicate the decision-making 

process of data managers regarding the acceptance (in the case of false positives) or rejection (in the case of 

true positives) of confirmations based on the textual explanation provided by RAs, the characteristics of 

validation checks and the overall reporting behaviour in the system.  

This new approach contributes to the improvements of DQM operations in three ways. First, it reduces the 

need for human intervention in the process by allowing the automatic processing of confirmations 

corresponding to recurrent cases of true and false positives in the DQM system. Second, by generalizing past 

decision-making by data managers, the method reduces subjective judgments and ensures a more consistent 

treatment of similar cases over time and across data collections. Third, since data managers do not have to 

evaluate an excessive number of confirmations, they can concentrate on new cases that require extensive 

analyses and identify new exceptions or fallacies in the system. 

The empirical analysis focuses on the Single Supervisory Mechanism (SSM) data that the Bank of Italy collects 

from Italian banks2. Our dataset includes information on the outliers confirmed by RAs and regularly stored 

in the context of the DQM process. This dataset is characterized by a large number of recurrent outliers that 

are confirmed by RAs and for which the conditions to accept or reject a confirmation have been clarified by 

the European Banking Authority (EBA). The algorithm is trained on past cases already labelled by data 

managers as “accepted” or “rejected” and its performance is assessed on a left-out set for which the “true” 

label was cross-checked and used as gold standard. The empirical findings of the analysis show that the 

algorithm is able to correctly predict the right decision for the confirmations processed with performance levels 

(in terms of both sensitivity and specificity) that are comparable, or sometimes even slightly superior, to those 

of data managers. These results confirm that machine learning techniques can be adopted to improve the overall 

efficiency of DQM systems and provide advantages that extend beyond the mere identification of potential 

outliers. 

                                                      

2 The SSM is the harmonised framework for banking supervision in the EU and comprises the ECB and the participating member states.  
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The reminder of the paper is organized as follows. In Section 2 the current process for the management of 

quality remarks and the classification of confirmations is presented. Section 3 describes the new approach 

based on machine learning models to automatically classify the confirmations of quality remarks. Section 4 

shows the empirical results of our analyses. Section 5 gives some concluding remarks regarding the 

implementation aspects and highlights directions for future research.   

2. The Bank of Italy’s process to ensure data quality in supervisory reporting: 

quality remarks and data confirmations 

The Bank of Italy regularly collects supervisory data from RAs under EU Commission Implementing 

Regulations (ITS), laying down implementing technical standards drafted by the EBA. Data collection relies 

on the technical documentation published by the EBA, which comprises the description of data according to 

the Data Point Model (DPM) and the related XBRL taxonomy. The Bank of Italy collects information through 

a number of “surveys”, each corresponding to an XBRL module. 

In order to validate the data collected from RAs, the current data quality management is based on a highly 

automated two-step process. First, the data are validated via a set of quality checks that are carried out 

automatically upon receipt of the reports. Second, the identified anomalies are communicated to RAs via 

automatically generated “remark messages”. At the end of the validation process, the data are released to the 

DWH and made available to internal users and to the ECB. 

Figure 1 shows the DQM workflow process executed on each reported file. Quality checks of supervisory data 

essentially comprise formal and deterministic checks. The former verify whether technical standards laid out 

in a document published by the EBA (the “XBRL filing rules”) are fulfilled or not, in which case the reported 

file is rejected. Deterministic checks are defined in order to verify data correctness and consistency under 

various aspects such as equivalence or inequality between two aggregates, correct sign of a data point, admitted 

value of a domain, existence of a data point, and so on. The near totality of deterministic checks consists of 

validation rules defined by both the EBA and the ECB in cooperation with the national competent authorities 

(NCBAs). The violation of a deterministic check is notified to the RA by a specific message (“remark”), but 

it does not imply the rejection of the file. 

When a RA receives a remark message related to a deterministic check, it has to verify whether the data 

indicated in the remark are correct and can react either by correcting the data and resubmit the full report, or 

by confirming that the reported data are correct. In this case, the RA has to send a structured message 

(“confirmation”) including the remark reference and the related explanationexplanation, i.e. a free text 

comment that explains why data are correct. Each individual confirmation is analysed by the Bank of Italy’s 

data manager, who can accept or refuse it. If the confirmation is accepted the remark is considered closed, 

otherwise a resubmission of the data by the RA is expected. The analysis takes into account the data reported 

by the RA and the available information about the validation rule and the conditions that make it not applicable.  
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In practice, most confirmations refer to recurring issues, for which the conditions to admit or reject a 

confirmation are known. In particular, some issues have already been clarified in the EBA Q&A process 

together with the conditions under which the violation of a validation check can be regarded as “acceptable”. 

Moreover, it is possible that either the RA that receives the remark or other RAs have already sent 

confirmations for previous reference dates with a similar explanation. 

Figure 1. DQM workflow executed on each reported file. 

 

In the current approach, the analysis of the flow of confirmations in the DQM system is based on a manual 

process where the data manager has to examine confirmations one by one in order to assess whether they refer 

to known issues. This activity is quite demanding, in terms of resources and time; moreover, the decision 

process is based on subjective judgments with the risk of having heterogeneous treatments of similar cases and 

different reporting burdens on RAs. Any mistake in the outcome of this process has a negative impact on data 

quality and on the efficiency of the interactions with RAs with a consequent reputational risk.. This is why it 

is important to increase the level of automation of the DQM process by resorting to advanced statistical 

techniques that carry out the same steps of the current decision-making process.  

The approach we propose in this paper aims at exploiting all the available information in order to classify 

recurrent cases of confirmations as “to be accepted” or “to be refused” by the data manager. In this way, the 

data manager will save time in the treatment of known issues and can focus on those for which an in-depth 
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analysis must be carried out3. In this respect, it is important to emphasize from the outset that the approach is 

data-driven, that is it is based on algorithms that learn how to replicate the decision-making process based on 

past examples of labelled confirmations. As such, the methodology can be effective in predicting new labels 

only for those “unseen” confirmations whose characteristics are identical to those of the learning examples. 

From an operational perspective, this implies that the automated approach we propose is complementary to the 

analyses carried out by data managers that can focus on the identification and analysis of cases of confirmations 

corresponding to new issues. Periodically, information on such cases can be integrated into the automated 

procedure by enlarging the set of learning examples used to define the algorithm. 

3. A machine learning approach for the classification of confirmations to quality 

remarks 

3.1 Data 

In order to perform our analyses we exploit the information related to SSM supervisory reporting data 

contained in the DQM system of the Bank of Italy. The data falling within the scope of our analysis include 

information on all the confirmations to remarks sent by the Bank of Italy to RAs for the reference periods 

between 2018-Q3 to 2019-Q44. This information set includes the various aspects that data managers consider 

in assessing confirmations (such as, when the confirmation was sent by reporting agents and the content of the 

text they included).  

The unit of analysis in our dataset is the individual confirmation corresponding to a specific remark sent to a 

given RA, for a given survey and reference period. For each confirmation, the information on the final 

assessment made by the data manager (i.e. whether it should be accepted or rejected) represent our target 

outcome5. We also extract the textual description provided by the RA illustrating the reasons for violating the 

check and build a corpus of confirmed remarks. In order to exploit such information into our analyses, we 

conduct a preliminary manipulation of the textual data through the following series of natural language 

processing steps:  

- conversion to lower case; 

- punctuation and stop word removal; 

- correction of typos based on ad hoc vocabulary of most common typing errors; 

- lemmatisation of words. 

                                                      

3 New issues refers to validation checks that have not been challenged in the Q&A process. As such, they can be identified with a deterministic rule. 

4 Until 2016 ITS data were collected by Bank of Italy according to a proprietary format and data model. Starting from XXX reference period onward 

the same data began to be collected according the EBA DPM and the related XBRL technical format. Our study focuses on this latter period in order to 

avoid structural breakdowns in the reporting schemes. 

5  The original label was revised by two additional reviewers in order to detect systemic errors in the dataset. Further details on this data quality 

management procedure are provided in Section 4. 
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In addition to textual data, we collect the following information on the DQM workflow executed on each 

confirmed remark: the time the remark was sent to the RA; the number of remark reminders sent; the time the 

RA sent the confirmation to the Bank of Italy. 

Data on the individual confirmations were complemented with information on the general features of the 

checks violated, namely the ID of the check, its level of severity and the time of first introduction into the 

system. Finally, for all the checks included in our dataset, we extract workflow information on all the remaining 

remarks sent to RAs (i.e. those that were not confirmed). 

Overall, the final dataset comprises 13.556 confirmations related to 387 individual checks for which a total of 

452.170 remarks were sent to RAs during the period of observation. Figure 2 shows the distribution of the 

number of confirmations over the considered time span, as well as the number of new validation checks 

confirmed individual new checks violated  in each reference period (i.e. those for which no confirmations have 

been received in previous quarters) since 2018-Q1. The variation in the number of confirmations across periods 

mainly reflects the amount of information reported by RAs (and thus of checks performed) and only to a lesser 

extent the introduction/revision of the system of checks. Indeed, while the number of confirmation tends to 

remain high during the period of observation, that of newly confirmed checks rapidly stabilizes at very low 

levels, showing that confirmations tend to be relatively persistent over time. 

Figure 2. Number of confirmations, checks and new confirmed checks for the period of observation. 

 

 

3.2 The prediction problem  

The goal of our analysis is to define a classification algorithm able to replicate as accurately as possible the 

decision-making process for the assessment of confirmations. This problem can be cast in a standard 

classification setting where the goal is to predict a categorical variable (G) assuming values in C (the set of K 

possible classes). An optimal decision rule, 𝐺, is sought that minimizes a suitable loss function: 
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𝐺(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑔𝜖𝐶 ∑𝐿(𝐺𝑘 , 𝑔)

𝐾

𝑘=1

𝑃𝑟(𝐺𝑘|𝑋 = 𝑥) 

(1) 

where 𝐺(𝑥) is a function of a set of observable predictors 𝑥 and is to be estimated from the data. If L is the 0-

1 loss function, the optimal solution to this minimisation problem is the Bayes classifier: 

 𝐺(𝑥) = 𝑚𝑎𝑥𝑔𝜖𝐶Pr⁡(𝑔|𝑋 = 𝑥) (2) 

which involves the estimation of the posterior probability of the classes and the assignment to the class 

corresponding to the largest probability (Hastie et al., 2009). In our context, the target variable G can take only 

two values (K=2) describing the decision to take on the confirmation, “accept” or “reject”, where the “reject” 

class is taken as the reference one. 

In order to estimate 𝐺(𝑥)⁡ we adopt both traditional and machine learning methods.  

Traditional statistical models aim at implementing the Bayes decision rule by directly modelling the probability 

of the classes. Typically these models rely on rigid structural assumptions on the functional form for the 

posterior probability and for this reason they offer greater interpretability of model outputs. The statistical 

models employed in our analysis are logistic regression and penalized logistic regression. In logistic regression 

the posterior probability of the reference class takes the following form: 

 
𝑃𝑟(𝐺 = 𝑅𝑒𝑗𝑒𝑐𝑡|𝑋 = 𝑥) =

exp⁡(𝛽0 + 𝛽𝑇𝑥)

1 + exp⁡(𝛽0 + 𝛽𝑇𝑥)
 

(3) 

Using the logit transformation, the logistic regression model can be re-expressed as a linear model of the log 

odds (probability of the reference class divided by the probability of the second one):  

 
⁡ln [

𝑃𝑟(𝐺 = 𝑅𝑒𝑗𝑒𝑐𝑡|𝑋 = 𝑥)

𝑃𝑟(𝐺 = 𝐴𝑐𝑐𝑒𝑝𝑡|𝑋 = 𝑥)
] = 𝛽0 + 𝛽𝑇𝑥 

(4) 

In this formulation, the parameters of the model are estimated through the maximum-likelihood and the 

decision rule 𝐺(𝑥)⁡ is described as a linear decision boundary identifying the set of points in the input space 

for which the posteriors of the two classes are equal. Ultimately, observations are classified depending on the 

sign of the log odds. 

Penalized logistic regression is an extension of the traditional logistic regression model which is aimed at 

improving predictive performance. The functional form of the model remains the same, but the objective 

function to optimize is “altered” with the addition of a penalty term whose effect is shrinking the magnitude 

of the estimated coefficients and improving out-of-sample prediction accuracy (Hastie et al., 2009). 

In contrast to statistical models, machine learning (ML) methods do not rely on rigid assumptions on the 

functional form underlying the model and the parameters of interest are estimated by minimizing the empirical 
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version of equation (1) (also known as empirical risk). While this comes with a loss of the interpretability of 

the model, it provides greater flexibility in function estimation as the models can pick up even very complex 

(non-linear) relationships in the data. In the classification context, this means that models can generate 

classification rules that partition the input space through non-linear decision boundaries that typically result 

also in greater out-of-sample prediction accuracy. 

In our setting we employ two very popular ML methods: random forest and gradient boosting. Both techniques 

are based on partitioning algorithms, known as classification and regression trees (CART), that recursively 

split the input space X into smaller non overlapping regions 𝑅𝑗 (called leafs) and then approximate the

prediction function 𝐺(𝑥) in each leaf with a constant 𝛾𝑗. For classification, the constant is the modal class of

observations falling in the leaf. During the growing of the tree each observation is assigned to the majority 

class in the leaf and a binary splitting criterion – in terms of variable and cut-off point – is determined by 

minimizing an impurity measure (based on the Gini index or cross-entropy). More formally, the prediction 

function of a tree can be defines as: 

𝐺(𝑥) = 𝑇(𝑥, 𝜃) =∑𝛾𝑗𝐼(𝑥 ∈ 𝑅𝑗)

𝐽

𝑗=1

(5) 

with 𝜃 = {𝛾𝑗, 𝑅𝑗}1
𝐽
⁡. Recursive binary splitting can then be understood as an approximated optimization 

procedure to minimize the empirical risk (Hastie et al., 2009): 

𝜃 = argmin𝜃∑𝐿(𝐺𝑖 , 𝑇(𝑥𝑖 , 𝜃))⁡

𝑁

𝑖=1

(6) 

where 𝐺𝑖 and 𝑥𝑖 indicate, respectively, the observed class and the vector of predictors for the i-th observation

in the dataset. Classification trees can fit the data extremely well (i.e. they have low bias) but they also have 

high variance because their performance is highly sensitive to small changes in the data. The random forest 

algorithm overcomes the limitations of CARTs by growing an ensemble of trees and combining their 

predictions. In order to decorrelate the predictions of the tree in the ensemble, every tree is grown on a 

bootstrapped sample of the data and at each split a random subset of the variables in the input space is 

considered (Breiman, 2001).   

Similarly to the RF algorithm, the gradient boosting model also grows and combines predictions from an 

ensemble of trees but in a different way. Boosting weak classifiers (i.e. very simple trees) are sequentially 

applied to repeatedly modified versions of the data and then combined through a weighted majority vote to 

produce a final prediction at each step (Friedman et al., 2000). The prediction function is thus formalized as 

follows: 
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𝐺𝑀(𝑥) = ∑ 𝑇(𝑥, 𝜃𝑚)

𝑀

𝑚=1

 

 

(7) 

The sequence of M trees are obtained through a forward stagewise additive modelling procedure where the 

loss function is minimized iteratively by fitting an additive expansion in a set of elementary basis functions to 

the data: 

 

𝜃𝑚 = argmin𝜃𝑚 ∑𝐿(𝐺𝑖

𝑁

𝑖=1

, 𝐺𝑚−1 + 𝑇(𝑥𝑖, 𝜃𝑚)) 

 

(8) 

In gradient boosting, the basis functions are obtained through a fast approximation procedure, analogous to 

steepest descent optimization algorithm, such that at each iteration the term in the expansion is obtained by 

fitting a tree to the negative gradient of a suitable loss function (for classification the deviance) through OLS 

regression (Friedman, 2001). 

 

3.3 Model specification 

In this section we discuss in more detail the structure of our classification model in terms of the explanatory 

variables that we include in equation (1) in order to predict the final decision of the data manager on each 

confirmation.  

Within the DQM process of SSM supervisory data the assessment of confirmations is performed on the basis 

of general operational guidelines set to ensure the treatment of confirmations is as uniform as possible across 

different surveys. These guidelines can be synthetized as an ordered series of conditions that have to be 

checked as the analysis proceeds. In the first place, data managers evaluate whether the explanationreasons 

provided by the RA is formally correct on the basis of relevant references (reporting instructions, usual 

business operations such as “writedown” or “winding up”, EBA Q&As, and so on). If the confirmation is not 

formally correct it is rejected, otherwise, data managers assess whether the specific case (independently of 

rejection or acceptance) is consistent with those included in the set of issues that are already known. For 

confirmations corresponding to known issues a final decision is taken, while in presence of new issues a 

further, ad hoc analysis is conducted by taking on board not only the consistency of the explanationexplanation 

provided by the RAs with the reporting regulation, but also contextual factors related to the overall reporting 

behaviour of RAs (e.g. whether the check was introduced recently, how many RAs violate and confirm it, etc.). 

Based on the above considerations, our model can be described through the following equation 

 𝐺(𝑋) = 𝐺⁡(𝑋𝑓 , 𝑋𝑠, 𝑋𝑣 , 𝑋𝑟) (9) 
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where the decision rule is a function of variables capturing four dimensions: the formal validity of the 

explanationexplanation provided (𝑋𝑓), its semantic content (𝑋𝑠), the characteristics of the validation check 

(𝑋𝑣)⁡and the reporting behaviour on the considered check at both individual and system level (𝑋𝑟).  

To measure the formal validity of confirmations, we define various variables describing the general structure 

of the text provided by the RA. In particular, we include the total number of characters, the number of 

alphanumeric characters, the number of digits, the total number of words, the ratio between the number of 

unique words and the total number of words and the number of misspelled words. Moreover, we count the 

number of occurrences of references to regulations, of competent authorities, of EBA Q&As, of reporting 

templates and of email exchanges. 

In order to capture the semantic content of the explanations provided by RAs we exploit Latent Dirichlet 

allocation (LDA). LDA specifies a generative probabilistic model of a collection of documents, wherein each 

document is conceptualized as a random mixture over a set of (latent) topics and each topic represented as a 

distribution over words (Blei et al., 2003). The ultimate goal of the model is to obtain a low dimensional 

representation of the collection able to preserve the essential statistical relationships in the data. The 

representation takes the form of a vector specifying the posterior distribution over the topics of each document 

and can be subsequently employed in other learning tasks. 

To implement LDA in our context we first define a vocabulary of the terms occurring in the corpus of 

confirmations (including also bigrams) and build a document-term matrix reporting for each confirmation the 

absolute frequency of each word. Document-word co-occurrences are provided as an input to an LDA model 

with a pre-specified number of topics (k) and for each confirmation a k-dimensional representation is obtained. 

Accordingly, k explanatory variables are included in our specification each indicating the probability that a 

confirmation was generated by the k-th topic.  

To account for the characteristics of the checks violated we include two categorical variables – indicating the 

ID of the check and its level of severity, respectively – and control for the number of months since the check 

was first implemented in the DQM system. 

We also control for specific aspects of the DQM workflow in order to capture common reporting patterns on 

the remarks and the check confirmed. To characterize the reporting behaviour at the remark level for each 

confirmation we compute the number of days between the reference date and the time the confirmation was 

sent by the RA and the number of remarks reminders sent to the RAs during this span of time. To capture 

general reporting patterns at the system level we compute the total number of RAs for which the check was 

executed at the prior reference date and the corresponding share of RAs that violated the check or that sent 

confirmations. Similarly, we compute the number of RAs violating the check for the current reference date at 

the time the confirmation was sent and the corresponding share of RAs that sent confirmations. In addition, 

we compute the ratio, at the time the confirmation was sent, between the number of RAs violating the check 

for the current reference and those that have violated it in the testing environment. Finally, we add to our 
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specification a categorical variable indicating the survey and a trend variable calculated as the number of 

months since the first reference date in our dataset.  

4. Empirical Results 

4.1 Estimation and model selection 

As explained in the previous section, we estimate 𝐺(𝑥)⁡through different algorithms: the traditional logit model 

(LOGIT), the penalized logit model (LOGITp), the random forest (RF) and the gradient boosting (GB). The 

parameters of the models were fit on a subsample of the data used as training set, while left-out samples were 

used as test set to evaluate out of sample performance of the best performing model.  

In our estimation procedure two important methodological issues have to be addressed. The first concerns the 

potential correlation that exists among the observations pertaining to the same RA. Indeed, due to the persistent 

nature of confirmations in the DQM process, some RAs tend to justify the same issues over time by employing 

similar lexical forms. This situation could lead to overestimate model performance if very similar observations 

fall both in the training and the held out sets. As a result, the overall procedure would be likely to overfit the 

data and result in poor out-of-sample performance on new, unseen data. In order to address this issue the 

splitting procedure described above was carried out block-wise. Specifically, to obtain the test set we initially 

sampled 20% of the RAs in our dataset and then included in the final test set all the original observations 

corresponding to the selected RAs. The same two step approach was adopted to obtain each fold during the 

cross validation procedure. The final number of observations in the training and test set is reported in Table 1, 

along with the fraction of rejected confirmation in the two subsamples. 

Table 1. Sample observations (training and test set) 

  
N. of 

observations 

Percentage of  

rejected confirmations 

Training set 10.679 19,8% 

Test set 2.877 15,0% 

Total sample 13.556 18,8% 

The second issue is related to the fact that a relatively small fraction of confirmations in our dataset are rejected 

by data managers. Such class imbalance may adversely affect the learning process by obscuring any relevant 

pattern in the data because the algorithm may be pushed towards always predicting the predominant class 

(Kuhn and Johnson, 2013). In order to mitigate this problem, we ground our model selection procedure on a 

performance metric that places more emphasis on the minority class, i.e. the F1 score of the rejected class.  
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During the estimation phase some of the models also required the calibration of additional hyperparameters 

employed to control the learning process during model fitting. These parameters include the number of 

variables considered at each split during tree growing for the RF model, and the depth of individual trees and 

the number of iterations for the GB model. Similarly, the penalization term has to be calibrated for the LOGITp 

model. Calibration of all these metaparameters was carried out on the training set by employing 10-folds cross 

validation. 

Besides the hyperparameters specific to the algorithms employed in order to properly identify our model 

specifications, our procedure requires to set the number of topics from the LDA model (k). Prior research on 

LDA has suggested different approaches to set the number of topics based on the optimization of specific 

measures of “fit” for the topics identified. One of the most commonly employed approaches is to set k as to 

minimize the perplexity measure, which mathematically is equivalent to the inverse of the geometric mean 

per-word likelihood (Blei et al., 2003). However, it has been shown that minimizing perplexity is often not 

correlated with human judgment of the selected topics. Also, in case the topics-based representation of 

documents is employed as additional features in downstream models, the chosen k does not guarantee optimal 

performance in the ultimate learning task. Thus, since in our context the ultimate goal is classification, we 

adopt a different approach and choose over a grid of possible numbers of topics based on cross-validation. 

The results of the cross validation procedure are summarized in Figures 3 and 4. First, in Figure 3 we show a 

comparison between the average cross validation F1 score obtained with different number of topics and the 

perplexity score6. For illustrative purposes, the F1-scores are presented only for the GB model, although similar 

patterns can be observed also for the other models employed. The curve for the F1 score (in red) displays a 

sharp increase after five topics and reaches a local maximum at twenty topics. A similar pattern is observed 

for the perplexity score, with the perplexity curve (in blue) showing an elbow at ten topics and then remaining 

fairly stable for higher values of k. Overall, these results confirm that in our context setting k to twenty topics 

should be a reasonable choice. 

                                                      

6 The score is computed on a held-out test set taken from the overall corpus of confirmation. 
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Figure 3. Perplexity and average cross-validation F1 scores for different numbers of topics. 

 

Next, we present in Figure 4 a comparison across the different models employed to estimate 𝐺(𝑋)⁡holding the 

number of topics fixed. For each model a boxplot is reported describing the distribution of the F1 score 

computed for the observations iteratively left out during the process. Overall, both the RF model and the GB 

model show a clear improvement in the performance compared with the more traditional statistical models 

(LOGIT and LOGITp), while no material differences seem to exist between the latter two. The GB model has 

the highest performance on average and it is also characterized by a lower dispersion in the F1 score. These 

results are further investigated in Table 2, which reports additional descriptive statistics on the cross-validated 

F1 score and the paired t-test on the differences in performance with the best performing model. The estimates 

confirm that on average the GB model has a higher F1-score and that all the differences with the other models 

are statistically significant. Based on these measures of performance, the GB model was selected and its out-

of-sample performance evaluated in the test set.  

Figure 4. Boxplots for the cross-validation F1 score of the four models estimated. 
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Table 2. Descriptive statistics of the cross-validation F1 and paired t-test for the difference in 

performance relative to the best performing model. 

  Median Mean Difference p-value 

LOGIT  0,75 0,71 -0,14 0,01 

LOGITp 0,76 0,72 -0,13 0,02 

RF 0,84 0,81 -0,03 0,10 

GB 0,87 0,85     

 

4.2 Out-of-sample performance 

The performance of the algorithm was evaluated by employing the selected model to predict the final decision 

on new, “unseen” confirmations in the test set. For benchmark purposes, the performance of the model was 

compared with the average performance of the data managers on the same set of observations. To estimate the 

performance of data managers, an iterative data quality management procedure was carried out in order to 

detect cases of wrong assessments. Specifically, in each iteration, we identified all observations in the test set 

whose predicted class was different from the original decision taken by the data manager and, for these 

observations, we asked two additional reviewers to provide a final assessment to be used as ground truth. The 

procedure was repeated until no more systematic errors were detected. The final results are summarized in 

Table 3, which reports various performance metrics for two alternative cut-offs levels employed for 

classification by the model. 

Table 3. Performance of the gradient boosting model on the test set. 

  (1)   (2) (3) 

 Data manager 
 

GB 

(Cut-off) - 
 

p=0.5 p=0.10 

F1 0,662 
 

0,829 0,821 

Sensitivity 0,568 
 

0,726 0,910 

Specificity 0,974 
 

0,996 0,946 

Precision (positive class) 0,793 
 

0,966 0,748 

Precision (negative class) 0,928 
 

0,954 0,983 

Accuracy 0,913   0,955 0,941 

 

Overall, the model has very good predictive ability, in the sense that its performance is comparable with 

(sometimes even better than) that of data managers. With a standard cut-off probability of 0.5, the GB model 

shows a F1 score of 0.82, corresponding to an overall accuracy of 95.5 percent. Both figures are higher than 
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the corresponding scores for the data managers. A deeper investigation of the predictive performance by 

classes of the target variable confirms that the algorithm is able to discriminate accurately the minority class. 

In particular, the specificity (recall) score indicates that more than 72 percent of rejected confirmations are 

correctly identified as such by the model, while the rejected class is predicted correctly over 96 percent of the 

times (precision of the positive class). The model does even better in predicting the majority class, as it is able 

to classify 99.6 % of the accepted confirmations as such while maintaining a precision for the negative class 

of 95.4 percent. 

The performance on the majority class is comparable to those of data managers, while the model seems to do 

a better job in discriminating the minority class. A possible interpretation of these findings is that the 

classification rules learned by the algorithm can generalize to some extent “rejection policies” and they are 

able to “correct” cases where these policies have been applied heterogeneously across different surveys and 

time periods. Also, the different precision in the classification of the minority class could be explained by the 

fact that data managers may have a bias towards rejection (i.e. rejecting more often than needed) since false 

negatives could be perceived as having higher costs (in terms of lowering the quality of data) than false 

positives (which may eventually be confirmed more than once by RAs). 

Considering that false negatives and false positives could be characterized by asymmetric costs in terms of 

DQM it is also interesting to understand to what extent this information could be incorporated in the 

classification rule determined by the model. In order to do so we evaluate how the performance of the model 

changes when the cut-off probability for the rejection of confirmations is set to lower levels. The new cut-off 

was determined based on the ROC curve of the model (reported in Figure 5) by selecting the level of probability 

corresponding to the point in the curve closest to the top left corner (representing the perfect classification 

model). The results of this simulation are presented in column 3 of Table 3 and indicate that the alternative 

cut-off is associated with only a modest increase in the level of precision for the negative class and more 

significant reduction in level of precision for the positive class. However, whether the new balance is more 

preferable or not ultimately depends on the relative costs of false negatives and false positives. For this reason, 

the selection of an optimal cut-off level is highly dependent on the specific business processes considered (e.g. 

an optimal threshold for the DQM of SSM supervisory data may not work as well for statistical data) and thus 

it goes beyond the scope of our analysis. Nonetheless, the simulation exercise shows that such differences 

could be handled through the algorithm in a flexible way. 
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Figure 5. ROC curve for the gradient boosting model computed in the test data. 

  

 

4.3 Robustness checks 

In this section we discuss the performance on the test set of alternative models used to automatically classify 

confirmations. The goal of these additional analyses is to assess the robustness of our procedure with respect 

to alternative model specifications and estimation techniques.  

Model specification is an important aspect to consider because different approaches may be used to capture 

the semantic content of confirmations through numeric features. To explore this issue we compare the 

performance of our GB model based on the LDA representation with two alternative approaches. The first is 

a Bag of Words (BoW) model wherein each confirmation is represented by a vector indicating all the terms 

appearing in the text and their observed frequencies. More specifically, for each term i in document j the term 

frequency-inverse document frequency (TF-IDF) measure is reported: 

 
𝑇𝐹_𝐼𝐷𝐹𝑖𝑗 = 𝑡𝑓𝑖𝑗 ∗ 𝑙𝑜𝑔2 (

𝑀

𝑑𝑖
) 

(10) 

where 𝑡𝑓𝑖𝑗 indicates the number of occurrences of term i in confirmation j, 𝑑𝑖 is the number of confirmations 

including word i and M is the total number of confirmations in our corpus. Such metric has the advantage of 

putting greater emphasis on relatively rare words while mitigating the effect of more common terms.  

However, while the simplicity of the BoW representation is attractive, it does not take into account word 

similarity (e.g. synonyms). As a result, documents tend to be closer in the vector space only if they use the 

same key words. To address this shortcoming the second alternative approach we consider is Latent Semantic 

Analysis (LSA). The central idea of LSA is that words carrying the same or related meanings will often occur 
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in very similar contexts (Berry et al.). Based on this assumption, the model leverages words co-occurrences 

within documents to obtain a semantic representation of both words and documents. In this representation two 

words can be highly related even if they never co-occur together but rather share similar context words. 

Similarly, documents will be closer in the vector space if they employ very similar words. Mathematically, 

this is obtained by running the singular value decomposition (SVD) of the term-document matrix (W): 

 𝑊 = 𝑈𝑆𝑉𝑇 ≈ 𝑈𝑘𝑆𝑘𝑉𝑘
𝑇 (11) 

In which the matrix W is mapped into three components: U and V are the eigenvectors of 𝑊𝑊𝑇 and 𝑊𝑇𝑊 

respectively, and S is a diagonal matrix made by the root of the eigenvalues of 𝑊𝑊𝑇. Typically, a truncated 

SVD is ultimately used wherein only a portion (k) of the singular values are retained in order to perform a 

dimensionality reduction that minimizes reconstruction error of the original data. The vectors in US and SV 

are then employed to represent words and documents respectively7. The performance metrics for the GB model 

based on the LDA, BoW and LSA vector representation are reported in Table 4 (columns 1-3). Both BoW and 

LSA do not appear to offer significant improvements to model performance. The two approaches are 

comparable to LDA in terms of specificity and precision for the negative class (“accept”), while they show 

lower performance in terms of Sensitivity and precision of the positive class (“reject”). In addition, both 

approaches are less efficient than LDA as they imply highly dimensional vector representations for the 

documents and ultimately higher computational costs.    

While document representation is important to set proper model specifications, model estimation and selection 

techniques may be instead relevant to deal with class imbalances in the dataset. As explained, an imbalance in 

the number of examples of rejected and accepted confirmations may prevent our model from learning relevant 

patterns in the data. In our procedure such imbalance was addressed by choosing an appropriate evaluation 

metric during the training phase. An alternative and very popular approach is to employ sampling techniques 

directly aimed at balancing the fraction of positive and negative examples in the training set. In order to explore 

the robustness of our approach we thus combine our GB model with the following well established sampling 

procedures: up-sampling, down-sampling and SMOTE. In up-sampling the size of the train set is increased by 

sampling with replacement cases from the minority class until the two classes have approximately the same 

size (Ling and Li, 1998). The down-sampling procedure instead contracts the size of the training set by 

randomly subsampling observations from the majority class until it is reduced to the same size as the minority 

class (Kuhn and Johnson, 2013). SMOTE (Synthetic Minority Over-sampling Technique), instead, is a data 

sampling procedure that increases the size of the minority class by synthetizing new observations rather than 

simply selecting existing observations (Chawla et al., 2002). Specifically, every new data point is created by 

sampling one observation from the minority class and a generating a random combination of the predictors of 

                                                      

7 Since there is no general rule to set the number of dimension to retain we adopt the same approach used for the number of topics n LDA and set this 

parameter through cross-validation.  
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its nearest neighbours. The three sampling techniques were combined with the gradient boosting model and 

they were implemented within the cross-validation procedure described in section 4, that is, by sampling at 

each iteration only observations in the training set that were not included in the held out fold. The out of sample 

performance of the combined estimation procedures was then evaluated on the test set and is summarized in 

Table 4 (columns 4-6). The results indicate that none of the different combined procedures provides significant 

improvements in the performance compared to the baseline gradient boosting model with no additional 

sampling. A possible interpretation of this evidence is that the standard gradient boosting procedure, by 

iteratively focusing on observations that were incorrectly classified in the previous steps, automatically places 

more weight on examples of the minority class during model fitting.  

Table 4. Performance on the test data of the gradient boosting model combined with different 

sampling techniques. 

  (1)   (2) (3)   (4) (5) (6) 

 
LDA 

 
Bag of Words LSA 

 
Upsampling SMOTE Downsampling 

F1 0,829 
 

0,786 0,795 
 

0,848 0,823 0,837 

Sensitivity 0,726 
 

0,682 0,696 
 

0,796 0,740 0,821 

Specificity 0,996 
 

0,991 0,990 
 

0,986 0,990 0,975 

Pos.Pred.Value 0,966 
 

0,927 0,926 
 

0,907 0,927 0,853 

Neg.Pred.Value 0,954 
 

0,946 0,949 
 

0,965 0,956 0,969 

Accuracy 0,955   0,944 0,946   0,957 0,952 0,952 
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5. Conclusions 

Previous research has shown that machine learning techniques can contribute to the improvement of the quality 

of statistics produced by a central bank. These studies have focused on the application of more sophisticated 

algorithms to identify observations that correspond to potential reporting errors in the data collected from RAs.  

This paper contributes to this literature by exploring the advantages that a machine learning approach can offer 

in the next stage of the DQM process, i.e. once the potential outliers have been detected and communicated to 

the RAs. Specifically, an innovative methodology is proposed to process the data confirmations received from 

RAs in response to the Bank of Italy’s remarks on quality. Text mining and supervised learning techniques are 

combined to build a model that is able to replicate the decision-making process of data managers in order to 

automatically classify these confirmations based on the textual explanations provided by the RAs, the 

characteristics of validation checks, and reporting behaviour across the banking system. The methodology is 

applied to the analysis of the confirmations made in response to the quality remarks in relation to SSM 

supervisory data collected by the Bank of Italy from Italian banks. The model is trained on past cases of 

confirmations already labelled by data managers and it is tested on a set of confirmations that are cross-checked 

during the analyses and used as gold standard. 

The results show that the model correctly predicts the cases of data confirmations that should be accepted or 

rejected by data managers, with an accuracy comparable (and sometimes even higher) to that of data managers. 

The approach offers two fundamental advantages for the DQM process overall. 

Firstly, it makes the process more efficient by automatically classifying recurrent cases of confirmations that 

correspond to true and false positives generated by the DQM system. The automation of the process lowers 

the costs of interaction between data experts and RAs and ensures a uniform reporting burden across RAs. 

Secondly, by reducing the number of confirmations that have to be analysed directly, it leaves more room for 

data managers to focus on the analysis of new cases and identify potential fallacies in data quality checks. This 

improved ability to process and integrate the feedback loop from RAs is fundamental to continuously 

improving the DQM system and it is of great importance to statisticians as data becomes more and more 

granular and new checks are introduced. 

The complexity of DQM processes within central banks together with the variety of methodologies available 

in the machine learning literature, offers several opportunities to extend the present work in various directions. 

From an operational point of view, while the focus of our analysis is on a very specific type of data, the 

approach is quite general and can be adapted to other types of data collection with similar characteristics to 

those we have considered. 

Another important aspect to consider is the typology of confirmations that can be processed automatically by 

the model. The algorithms employed learn from past examples of decisions made by data managers and so 

they can provide correct labels only for confirmations related to known issues. Over time, some of these issues 
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may be fixed by amendments to reporting requirements and new exceptions in the DQM system may emerge. 

For this reason, it is important to complement the automatic management of confirmations with a full 

monitoring of the list of active issues in order to filter the type of cases that can be handled by the model.  

From a methodological perspective, the approach taken in this paper is a supervised one and is aimed at 

predicting the decision that a data manager would take in each case of confirmation (accept or reject). A natural 

extension could be to employ machine learning algorithms for the analysis of confirmations corresponding to 

new issues, not encountered previously. For example, recurring patterns in past cases of false positives 

confirmed by RAs could be exploited to estimate the probability that a new case represents a false positive. 

Similarly, a completely unsupervised approach could be taken to cluster confirmations to group together those 

containing similar explanations. All this additional information could be integrated into the DQM process to 

help prioritize the work of data managers and guide their analyses to detect any new fallacies in the DQM 

system promptly.  
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