Households’ energy demand and the effects of carbon pricing in Italy

by Ivan Faiella and Luciano Lavecchia
Households' energy demand and the effects of carbon pricing in Italy

by Ivan Faiella and Luciano Lavecchia
The series Occasional Papers presents studies and documents on issues pertaining to the institutional tasks of the Bank of Italy and the Eurosystem. The Occasional Papers appear alongside the Working Papers series which are specifically aimed at providing original contributions to economic research.

The Occasional Papers include studies conducted within the Bank of Italy, sometimes in cooperation with the Eurosystem or other institutions. The views expressed in the studies are those of the authors and do not involve the responsibility of the institutions to which they belong.

The series is available online at www.bancaditalia.it.
HOUSEHOLDS’ ENERGY DEMAND AND THE EFFECTS OF CARBON PRICING IN ITALY

by Ivan Faiella* and Luciano Lavecchia*

Abstract

This paper proposes a novel methodology to estimate the demand and elasticity of electricity, heating, and private transport fuels by aligning the microdata of the Italian Household Budget Survey with several external sources. These estimates are used to evaluate the effects of a set of one-off carbon taxes on energy demand and expenditure. According to our simulations, the increase in energy prices prompted by carbon taxation would decrease energy demand. Our simulations suggest that the effects of carbon taxation are generally regressive: expenditure would increase more for poorer households while their energy demand is compressed. The carbon tax could achieve a significant decrease in GHG emissions and raise revenues, which could be recycled to compensate vulnerable households or reinvested to support the energy transition.

JEL Classification: Q41, Q54, Q58.
Keywords: household energy demand, Italy, climate change, carbon tax, energy poverty.
DOI: 10.32057/0.QEF.2021.614

Contents

1 Introduction ... 5
2 Literature review ... 6
3 Households energy expenditure in Italy ... 7
 3.1 Data ... 7
 3.2 Survey-based information ... 8
4 Modelling energy demand .. 9
 4.1 Electricity .. 10
 4.2 Heating demand .. 11
 4.3 Private transport demand ... 12
 4.4 Total energy ... 13
5 Estimating elasticities .. 13
6 Households energy use and carbon taxation .. 16
 6.1 The rationale for carbon pricing ... 16
 6.2 The simulation of a one-off carbon tax .. 18
 6.2.1 Translating the carbon price in final energy prices 19
 6.2.2 The simulation design .. 20
 6.2.3 Simulation results ... 21
7 Conclusions ... 22
References ... 24
A Tables and Figures .. 28

* Banca d’Italia, DG Economics, statistics and research and OIPE-Levi Cases. The views expressed are those of the authors and do not necessarily reflect those of the institutions to which they belong.
1 Introduction *

Energy is a fundamental requirement for human welfare: we depend on energy services for heating, cooling, cooking, lighting, food conservation and transportation.

Energy demand will change in the near future because of climate change and demographics. In the Mediterranean countries, climate change is expected to increase the frequency of extreme weather events, such as heatwaves; this, in turn, will put pressure on vulnerable people (e.g. the elderly), requiring sizable investments for adaptation (Carleton et al., 2020) and an increase in energy expenditure to achieve a standard thermal comfort. The IEA (2018) estimates that energy demand for cooling services will drive future electricity demand, while Randazzo et al. (2020) find that households adapt to hotter spells installing AC systems and spending between 35 per cent and 42 per cent more on electricity. Indeed, climate change is already affecting energy demand; IEA (2019) estimates that one-fifth of the growth in global energy use in 2018 was due to hotter summers, pushing up demand for cooling and cold snaps leading to higher heating needs, i.e. climate change will likely shift (and maybe increase) energy consumption from space heating to space cooling. An aging population can also alter the patterns of energy demand (Bardazzi and Pazienza, 2019). In Italy, where the life expectancy is one of the highest in the world, almost one quarter of the population is aged 65+; in 2050 it will be more than one third (ISTAT, 2020). This change can influence energy demand in two opposite directions: elderly people spend more time at home, demanding more energy while using less energy for private transport (Faiella, 2011). This pattern is similar to what is expected in a post-COVID scenario where teleworking becomes more frequent (Hook et al., 2020).

In terms of household budgets, the share of energy purchases is typically higher for less affluent households, private transport being an exception (Faiella, 2011). These households will probably see a larger part of their budgets being eroded because of the energy transition. In fact, the climate policies needed to achieve the ambitious target of the European Green Deal (a 55 per cent cut in greenhouse gas emissions by 2030 compared with 1990) will put further pressure on energy prices (to finance the support of low carbon sources or because of carbon pricing).

Understanding how households demand for and spending on energy services requires granular information: do they reside in areas subject to extreme weather? Are they living in the countryside or in big cities? What is their household structure? And, more importantly, will they be able to absorb a progressive increase in energy prices without compressing other basic needs or eroding their income?

In order to try to answer some of these questions, we build a household-level dataset covering the last twenty years where we estimate and calibrate with external sources the energy demand for electricity, heating and private transport. We merge this data with the corresponding prices in order to estimate a set of price elasticities that differs according to households' characteristics and

* We would like to thank Elizabeth Mary Bevan, Alice Chambers, Sabrina Pastorelli, Luigi Federico Signorini, Carlo Stagnaro, and participants in seminars at the Università di Palermo and Banca d’Italia for their useful comments.
economic vulnerability. In particular, we model energy demand through a quasi-panel (Deaton, 1985), focusing on conditional demand (i.e. taking the choice of appliances as given; Dubin and McFadden, 1984; Rehdanz, 2007). We use these estimates to assess the effects of four different carbon taxes, corresponding to €50, €100, €200 and €800 per ton of CO2 (in 2015 values). The first two are in line with the experience of some European countries, while the other taxes are consistent with the NGFS scenarios (NGFS, 2020), prepared for central banks for their climate-stress test exercises.

The structure of the paper is the following. After having presented the literature on energy demand (Section 2), we describe households’ energy expenditure in our dataset (Section 3). In Section 4, we present our estimation strategy based on the integration of expenditure, quantities and price data for three different energy services (electricity, heating and transport). Section 5 introduces the model for estimating the elasticities that are then used in Section 6 to assess how different households would react to an one-off introduction of a carbon tax. Section 7 draws the main conclusions and sets the future research agenda.

2 Literature review

There is a significant amount of research on households energy demand, especially on electricity (Ewald, 2018), the first work dating back to Houthakker (1951). Fisher and Kaysen (1962) analyse the determinants of the increase in household appliances in the US, finding an effect for income and population growth but not for electricity prices. Halvorsen (1975) shows that an increase in electricity prices decreases demand, with elasticity estimates ranging between -1.0 and -1.21 (and income elasticities between 0.47 and 0.57). The number of studies increased considerably in the 1970s, after the ”oil shocks” (Dahl, 1993), using different datasets, models and techniques, and were far from conclusive. Surveying the estimates of price and income elasticities for electricity, Taylor (1975) observes that price elasticity is larger in the long run. Dubin and McFadden (1984) use a discrete choice to model the propensity to purchase home appliances and a linear model to estimate the demand for electricity (a sequential discrete-continuous model). Dahl (1993) reviews the energy demand for different fuels (natural gas, oil, carbon, electricity), showing a great uncertainty in the estimates\(^1\), especially for long-run price elasticity. Only residential energy and gasoline demand studies exhibit some consistency. Espey and Espey (2004) report a meta-analysis of 36 papers, with more than 123 short-run and 96 long-run price elasticities estimates of residential electricity demand: short-run elasticities range between -2.01 and -0.004 (mean: -0.35) while long-run elasticities range between -2.25 and -0.04 (mean: -0.85). Madlener et al. (2011) report a short-run price elasticity of -0.1 and a long run elasticity of -0.4.

Analyses on natural gas - commonly used for space, water heating and cooking - are scant, although it accounts for one third of households’ final energy

\(^1\)Dahl (1993) states that ”yet despite our attempts, it appears that demand elasticities are like snowflakes, no two are alike.”
consumption. Rehdanz (2007), focusing on heating oil and natural gas demand for space heating in Germany, finds a bigger price elasticity for oil than for natural gas (-1.68 vs -0.44). Meier and Rehdanz (2010) analyse the demand for space heating in the UK, observing that the price elasticity for natural gas ranges between 0.34 and 0.56 while that for oil between 0.40 and 0.49. Using data on German households, Schulte and Heindl (2017) find a price elasticity for natural gas equal to -0.50 (-0.43 for electricity), with weaker response for low-income households (and a higher one for top-income ones).

Labandeira et al. (2017) carry out a meta-analysis for a dozen surveys on energy demand; they report a -0.126 (-0.365) short (long) run price elasticity for electricity, -0.180 (-0.684) for natural gas, -0.293 (-0.773) for gasoline, -0.153 (-0.443) for diesel and -0.017 (-0.185) for heating oil.

In developing a Carbon Tax Assessment Model (CTAM), the State of Washington’s Department of Commerce keeps a list of studies, providing an expert opinion on the price elasticity of different fuels (electricity, natural gas, motor fuel) and sector (residential, commercial, industrial and electric sector). Their latest release for the residential sector reports estimates ranging between -0.38 for natural gas to -0.62 for gasoline (and -0.43 for electricity demand).

For Italy, Faiella (2011), by analysing the shares of expenditures for energy purchases, finds that the effect of prices on the shares is negative for heating and positive for private transport. For electricity, the effect is negative for the 1997-2004 period and positive for the 2005-2007 subsample. Bigerna (2012) observes that the price effect of electricity on demand depends on the time of the day (due to the tariffs system in place up to 2016, encouraging off-peak use) and on the geographical zones, ranging between -0.03 and -0.10. Bardazzi and Pazienza (2019) observe that, with respect to the age of the head of the household, electricity demand is hump-shaped, reaching a peak when the head of a household is 50 years old, while natural gas demand keeps increasing with age, as the time spent at home increases. They also show that elasticities for electricity and natural gas (at the national level equal to -0.705 and -0.621 respectively) are higher in the Centre and in the Southern regions.

3 Households energy expenditure in Italy

3.1 Data

According to the National Accounts, in 2019 households energy purchases amounted to €77 billion (€37 billion for electricity and heating and €40 billion for liquid fuels for private transport). In the last 20 years, purchases for electricity and heating have decreased by 16 per cent while the expenditure for liquid fuels has dropped by a resounding 37 per cent, taking the corresponding share on total expenditure to roughly 3.5 and 3.8 per cent respectively (from 4.1 and 6.0 per cent in 2000).

2 The last update was published in 2015 and lists more than 50 studies.
3 In real terms, euros for 2015.
To understand what the drivers of these figures are (e.g. the demographics, the economic situation, and so on), one can use the microdata from the Italian Household Budget Survey (HBS), conducted yearly by Istat. The HBS collects information from about 23,000 (16,000 from 2014) households interviewed in different periods of the survey year. The HBS data collection is very accurate and it involves a combination of personal and telephone interviews with weekly diaries or logs compiled by households.

3.2 Survey-based information

We define the energy expenditure of household \(i\) at time \(t\) as the resources the household earmarks for electricity \((E_{i,t}^E)\), heating \((E_{i,t}^H)\) and liquid fuels for private transportation \((E_{i,t}^T)\). Heating includes all heating fuels, such as natural gas (either from a pipeline or tanks), coal, kerosene or wood, while private transport includes gasoline, diesel, LPG and natural gas (which is used by almost 9 per cent of cars in Italy). Let \(Exp_{i,t}\) be the total expenditure. The household-level share of energy expenditure, \(S_{i,t}^E\) is:

\[
S_{i,t}^E = \frac{(E_{i,t}^E + E_{i,t}^H + E_{i,t}^T)}{Exp_{i,t}}
\]

Between 1997 and 2018 the average Italian household spent around 10 per cent of its budget for energy, a roughly constant fraction, with the notable exception of 2012-13, when energy prices peaked (Figure 1) and the share of energy consumption reached 12 per cent. In 2018, the purchase of fuels for private transport represented half of households’ energy expenditure, followed by heating (30 per cent) and electricity (17 per cent).

In order to evaluate how this share changes with households’ welfare, we look how the share of energy expenditure is different across the tenth of the expenditure distribution (computing for each \(i\)-th household the equivalized expenditure as \(Exp_{i,t}^* = Exp_{i,t}/\gamma_{i,t}\) where \(\gamma_{i,t}\) is the equivalent person). Indeed, in 2018, when the share of energy was just below 10 per cent for the median household, the bottom tenth showed a share of 13 per cent compare with the 7 per cent of the top tenth (Figure A). Compared with the previous decade - when oil prices were record-high and the share of energy was 10.8 per cent - the situation improved almost uniformly, with a reduction of 1 p.p. for all the tenth of the distribution, except for the extremes. The share of electricity decreases

4In this work, we use the Indagine sui consumi delle famiglie for the years between 1997 and 2013 and the Indagine sulla spesa delle famiglie from 2014 onwards.

5Some information on energy expenditure is also available in the EU Survey on Household Income and Living (EU-SILC), but data on energy expenditure are collected with far fewer details and for a shorter period (IT-SILC started in 2004).

6Between 1996 and 2018, natural gas accounted for 83.4 per cent of total heating expenditure, followed by district heating (8.6 per cent), wood and coal (4.8 per cent) and kerosene and gasoil (3 per cent).

7We use the Carbonaro scale, which assigns a weight equal to 0.6 for a single person household, 1 for a couple, 1.33 for a household with 3 members, 1.63 with 4 members and up to 2.4 for a household with 7 or more members.
steeply across the expenditure distribution, while the liquid fuels share appears fairly stable; the share of heating stays between the two (Figure 3).

4 Modelling energy demand

To better understand the relationship between energy use and households’ characteristics, we propose a model to explain the determinants of households’ energy demand.

Following Faiella (2011), let’s define \(Q_{i,z}^E \) as the energy demand of households \(i \) for fuel \(z \) (where \(z = 1 \) with fuels for heating, \(z = 2 \) with electricity and \(z = 3 \) with gasoline, diesel and other fuels for private transportation). For each \(i-\)th household this quantity (expressed in energy units, such as joules or ton of oil equivalent) can be represented as a function of other variables (time subscript are omitted for clarity):

\[
Q_{i,z}^E = f(P_z, Z_i, B_i, T)
\]

(2)

where \(P_z \) is a vector of prices, \(Z_i \) a set of characteristics of the \(i-\)th household, \(B_i \) are consumer preferences and \(T \) some exogenous variables relating to climatic conditions. In the short term, energy demand might be rather inelastic, showing a low degree of substitution, while in the medium term, the rise of energy prices \((P_z) \) could convince a household to either invest in energy-efficient appliances or switch to different fuels.

Energy demand also varies according to individual preferences \((B_i) \). Some consumers are more environmentally aware (for example improving the energy efficiency of their dwelling), while others prefer higher indoor temperatures. In general, more affluent households, with a larger number of appliances and living in bigger dwellings, use more energy.

Climatic conditions \((T) \) also matter and they will become increasingly important in the future because of climate change: the increase in surface temperatures reduces heating demand but increases cooling services. Cooling is expected to become the top driver of global electricity demand in the near future (IEA, 2018). This is also true for Italy: according to HBS data, the share of households that owns an AC appliance increased from 6 per cent in 1997 to 41 per cent in 2018. Bearing in mind these determinants, in the following sections, we present our strategy for deriving the energy demand (in energy units) for electricity, heating and liquid fuels for private transport in Italy. Because we have only data on expenditure, we need to merge the HBS dataset with information on the energy prices for the three energy services considered in the analysis.\(^8\)

\(^8\)The electricity and natural gas retail markets have been liberalized since 1 July 2007. Customers are free to choose their preferred supplier or, if they wish, to be supplied, as the default option, by the local distribution system operator (DSO) at a price set by the regulator (ARERA), a scheme known as maggior tutela (“enhanced protection”) which covered almost half the customers in 2019. This default option has been criticized on the grounds of being an implicit barrier to switching, thereby restricting competition (Stagnaro et al., 2020).
In Italy, power retail prices are structured as an efficient two-part scheme (Feldstein, 1972): a variable volumetric price, covering the marginal cost of each additional kWh consumed, and a fixed monthly fee, covering the fixed costs such as transmission and distribution. Poor households (i.e. those with an indicator of the economic condition of the family below a certain threshold) are supported through a discount applied by the local distribution system operator (DSO), known as "bonus elettrico" (electricity bonus).

Only one third of the price paid by an Italian household is linked to energy costs; one fourth is for remunerating the transmission, distribution and metering services while the remaining part finances the subsidies to renewable energy sources and other costs (26 per cent, the "onere generali di sistema" or general system charges) and taxes 14 per cent. Therefore, taxes and other levies stifle competition by hampering the price signal (Stagnaro et al., 2020).

From the HBS, we observe the monthly electricity expenditure of the i-th household at a time (month) t, $E_{i,t}^E$:

$$E_{i,t}^E = (P_{i,t}^v E_{i,t} Q_{i,t}^E + P_{i,t}^f E_{i,t}) (1 + T_t)$$

(3)

where $P_{i,t}^v E_{i,t}$ is the variable price in euros per kWh, $Q_{i,t}^E$ is the quantity of electricity demanded (unknown), $P_{i,t}^f E_{i,t}$ is a fixed price component and $(1 + T_t)$ are taxes. Solving for $Q_{i,t}^E$, it follows

$$Q_{i,t}^E = \frac{E_{i,t}^E}{1 + T_t} - \frac{P_{i,t}^f E_{i,t}}{P_{i,t}^v E_{i,t}} \times \frac{1}{P_{i,t}^v E_{i,t}}$$

(4)

As previously mentioned, from the HBS we observe $E_{i,t}^E$, while T_t is the VAT rate, equal to 0.1 in the case of electricity. Unfortunately, we do not observe either $P_{i,t}^v E_{i,t}$ or $P_{i,t}^f E_{i,t}$, and, we will therefore have to estimate them.

As for $P_{i,t}^v E_{i,t}$, the variable price, we use the average, semi-annual, prices released by Eurostat from 2008 onwards. These data are available for three consumption bands: we take a weighted average of these prices, using the share of domestic consumption per band provided by the Italian energy authority (ARERA), obtaining a unique, semi-annual, average price for electricity. The data between 1996 and 2007 are imputed by regressing the price for the period 2008-2018 on the monthly electricity price index (from ISTAT) and on a set of time

9Up to 2016, the variable part increased with consumption, a common, albeit inefficient, scheme (Levinson and Silva, 2019). This scheme was abolished by the end of 2016, with a progressive transition towards a volumetric system completed by 1 January 2019.

10Power load of 3.3 kW and annual consumption of 2.700 kWh as defined by the Italian energy regulator, ARERA.

11Since 2010, both the variable and the fixed part have included the funding of renewable energy sources which peaked in 2016 at €14.4 billion or 0.9 p.p. of GDP. According to the energy agency in charge of managing the RES incentives, the average household paid €75 to support this policy, i.e. one eighth of the average electricity bill (GSE, 2018).

12There are other levies which are small in size. Moreover, VAT is applied to the levies as well. Therefore, for the sake of simplicity, we omit these levies and focus on the VAT.
dummies (year and semester). The part of the bill that does not change with consumption \(P_{FE}^{i,t} \) includes a fixed instalment and a component depending on the power load,\(^{13}\) whose parameters have been updated quarterly by ARERA since 2007. We first estimate the amount paid by a representative Italian household (domestic contract, power load of 3.3 kW); as these pieces of information are only available for each quarter from 2007 onwards, we compute the share of the electricity expenditure due to the fixed component, \(\alpha_t \), in the period 2007-2018. Then, we regress it over total electricity expenditure, prices and a year dummy, to estimate \(\alpha_t \) for the period 1997-2007. This ranges stood at 8 per cent in 1997 and increased to 27 per cent in 2018, following the 2016 reform of the electricity tariff. We multiply this coefficient by the electricity expenditure in order to obtain an estimate of the fixed price component for each household or,

\[
P_{FE}^{i,t} = \alpha_t \times E_{E}^{E,i,t} \tag{5}
\]

and then we substitute it back into the formula for \(Q_{E}^{E,i,t} \).

Finally, we winsorize the extremes and calibrate \(Q_{E}^{E,i,t} \) to align our micro-data with the annual information on households’ electricity consumption from the National Energy Balance. The calibration increases average households’ consumption by roughly one third.

4.2 Heating demand

We consider all heating-related fuel expenditure (natural gas, which is the main fuel, district and central heating, wood, coal and kerosene) obtaining a comprehensive heating expenditure for household \(i \) at month \(t \), \(E_{H}^{i,t} \). Unfortunately, as for electricity, only semi-annual prices for natural gas, published by Eurostat, are available.\(^{14}\) However, prices for natural gas can be considered a reasonably good proxy for other fuels (such as wood and pellets)\(^{15}\). Therefore, we model heating demand as a function of natural gas prices.\(^{16}\)

As for electricity, households heating expenditure is equal to

\[
E_{H}^{i,t} = (P_{vH}^{i,t} Q_{H}^{i,t} + P_{fH}^{i,t})(1 + T_t) \tag{6}
\]

where, \(P_{vH}^{i,t} \) is the variable price (EUR per gigajoule), \(Q_{H}^{i,t} \) is the quantity of heating demanded (unknown), \(P_{fH}^{i,t} \) is the fixed price component and \((1 + T_t) \)

\(^{13}\)92 per cent of domestic customers in Italy had a 3.3 kW power load installed at the end of 2018 (ARERA, 2019).
\(^{14}\)As for electricity, we take a weighted average of these prices, using the share of domestic consumption per each band.
\(^{15}\)According to the Survey on households energy use, a one-time sample survey carried out in 2013, the price for wood and pellets in 2013, in energy equivalent terms, was very similar to that of natural gas.
\(^{16}\)The share of heating costs due to natural gas from the pipeline has increased from 54 per cent in 1997 to 70 per cent in 2017.
is the VAT rate, which, changed three times between 1997 and 201817. As before, we estimate the share of fixed costs as part of the total expenditure, β_t, depending on where the household lives, for the period 2010-201818. For the period 1996-2009, we regress β_t on total heating expenditure, natural gas prices and the year dummy and then forecast the values. We solve for Q_{it}^H and calibrate the results with the total heating demand from the to align our microdata with the annual information on households’ heating consumption from the National Energy Balance.

4.3 Private transport demand

From the HBS, we observe each households’ expenditure for transport fuels in Italy19. The share of expenditure on private transport is sizeable, almost equal to the sum of the share of heating and electricity (Figure 1). However, this share has its own specificity compared with other energy use; in fact the share of vehicle’ owners is scant in the bottom part of the expenditure distribution. In the bottom tenth, less than two thirds of households own a car while in the top tenth this share is 9 out of 10. The price of liquid fuels in Italy is fully liberalized, but taxes and levies weigh for more than two thirds of the final price. There is a reasonable level of price competition among the 15,000 petrol stations around the country20. We took the average national monthly price for petrol and diesel, as published by the Italian Ministry of economic development (MISE) to estimate the quantity of fuel demanded. We consider the joint demand for transport fuels for private transportation, $Q_{it}^T = \frac{E_{gi,t}}{P_{gi,t}} + \frac{E_{di,t}}{P_{dt,t}}$, and a unique price for liquid fuels, as a weighted average (with w as the weight) of petrol and diesel prices21 using their respective share of total expenditure as weights. Finally, we calibrate the results with the total demand for liquid fuels published yearly by the business association of oil and gas companies (\textit{Unione Energie per la Mobilità}).

17The VAT rate was 19 per cent up to 1 October 1997 then 20 per cent up to 17 September 2011, and then 22 per cent since 1 October 2013).

18ARERA has been providing fixed costs for six different macro-regions, known as \textit{Ambito territoriale}. Sardinia, which is not included in the price regulation because it is not on the gas grid, has been assigned to the macro-region of Sicily and Calabria, which is the most expensive.

19At the end of 2019, according to the \textit{Automobile club d’Italia}, some 46 per cent of cars used petrol and 44 per cent diesel. There is also a 9 per cent share of dual-fuel vehicles, using petrol with methane (CNG) or LPG.

20The difference between the highest and lowest price for petrol (self-service) on 31 March 2020, at national level was almost 11 per cent - The price is available every day, for every petrol station, on the website of the \textit{Osservatorio Prezzi carburanti} of the Italian Ministry of economic development (MISE)

21In the period 1996-2013 the expenditure for liquid fuels was collected jointly with that for diesel.
4.4 Total energy

We are then able to derive the energy demand at the household level for the entire period considered (1997-2018) and we compare our estimates with the official data from the Physical Energy Flow Accounts (PEFA) from Eurostat. For 2018, our estimates for heating and electricity mimic the aggregate data pretty closely, while transport demand is slightly underestimated (our data are about 14 per cent lower compared with transport demand in the official statistics). Overall, our micro data covers the 95 per cent of the official household energy demand in 2018 as measured by the PEFA.

Knowing the energy demand at the micro level allows us to analyse the pattern of energy demand according to household characteristics (age of the head, household size, location, and so on.). Considering a measure of their welfare (proxied with their position in distribution of the equivalent expenditure) we find, not surprisingly, that energy demand (and energy expenditure) increases with households welfare (Figure 4). On average, households at the top of the expenditure distribution use more than twice the amount of energy demanded by poorer households (less than 5 GJ per month). In terms of fuel, the demand for electricity is pretty much uniform across the expenditure distribution, while heating and transport fuels demand is higher for more affluent households. Over the years, energy demand and expenditure has decreased across all quintiles. After having merged our data with energy prices and having derived energy demand, we can proceed and estimate the elasticity of energy demand for each energy service.

5 Estimating elasticities

With the energy demanded for each energy use \(z = E, H, T \) by each \(i \)th household at time \(t \), we can estimate the price elasticity, \(\epsilon_z \), as:

\[
\epsilon_z = \frac{\partial Q_z}{\partial P_z} \times \frac{P_z}{Q_z}
\]

(7)

In an ideal setting, we would observe the quantity demanded and the price for the same household over time. However, the HBS is a cross sectional survey without a panel component. Following Faiella and Cingano (2015) we adopt a quasi-panel approach (Deaton, 1985), which compares the values of population subgroups, grouped in strata, and estimate the demand elasticity for each group exploiting the change in time of energy demanded at stratum-level. In this approach, the unit of observation is no longer a single household but a cluster of households aggregated in a stratum according to some households characteristics.

In order to define each we consider the joint information on household types and their position in the expenditure distribution (split into fourths). There-

\footnote{In the HBS, households are classified into 11 types according to their size, composition and age (see Table 6). We further collapse this classification into nine groups to have a reasonable
fore, we identify $9 \times 4 = 36$ subgroups of households for each month of our time series, spanning 22 years (1997 to 2018), i.e. roughly 9,500 observations. Our model uses the following log-log specification where the s subscript indicates stratum, t the month and, as before, the different energy services $z = E, H, T$:

$$
\log Q_{s,t}^z = \lambda_s \log Q_{s,t-1}^z + \beta_s \log P_t^z + \gamma_s \log E_{s,t} + w + s + t + t^2 + \epsilon_{s,t} (8)
$$

The log of the quantity of energy demanded depends on:

- a lagged term, $\log Q_{s,t-1}^z$, which captures the fact that households demand tends to be fairly stable;
- the price of the fuel ($\log P_t^z$);
- households’ total expenditure ($\log E_{s,t}$);
- a set of trend (t and t^2) and seasonal dummies (w for autumn and winter months and s for summer);
- β_s is the stratum-level short run price elasticity, which should be read as the percentage change in energy demand due to a 1 percent change in the energy price.

This setting is a special case of the autoregressive distributed lag (ARDL) model, a partial adjustment model where the long-run elasticity is equal to $\frac{\beta_s}{(1-\lambda_s)}$ (see Greene 2008 for a discussion).

We estimate this model using LS for the total sample for each stratum. The results for the total sample are summarized in Table 1. According to LS estimates the demand for heating and electricity is more responsive to price changes: a 1 per cent rise in prices reduces the energy demanded by 0.36 (0.40) per cent for electricity (heating). The LS estimated elasticity for liquid fuels is lower (-0.17) and less precise.

Because we observe price and quantity at equilibrium, there might be an issue of endogeneity (price can be influenced both by supply and demand changes). We therefore also employ an IV estimator using wholesale prices as instruments, under the assumption that they are marginally influenced by households’ demand. This is obvious for international oil markets and it does not seem unreasonable for domestic electricity and gas markets (the share of households’ demand on the total is a fifth for electricity and a quarter for gas). As we have one instrumental variable for each equation, ours is just identified model.

23 Prices are expressed in 2015 values using the consumer price index.

24 For electricity we use the day-ahead price (“Prezzo unico nazionale” or PUN), for heating the price set at the Virtual Trading Point (“Punto di scambio virtuale” or PSV) and for liquid fuels the Brent dated price (free on board). All prices considered are in euros for 2015. When prices of electricity or gas are not available (before 2004 and 2013 respectively) we use oil prices (in euros for 2015 per MWh).
As a further robustness we check for a possible of non-stationarity of the time series component of our pseudo-panel. We test the residuals of our 3 regressions on the total sample with the Im-Pesaran-Shin test (Im et al., 2003), a specific test for unbalanced panels (not all strata are present in each period considered); the null hypothesis of non-stationarity (H0: each panel has a unit root) is never accepted.

IV estimates are comparable with LS except for liquid fuels, for which the instrumented coefficient is almost four times the LS estimate. The results are coherent with a robust-version of the Hausman (1978) test developed by Wooldridge (1995), testing for exogeneity: the null is strongly rejected only in the case of fuels for private transportation. We also tested whether our IVs are sufficiently correlated with the endogenous variable, i.e. testing for "weak instruments". Because the strategy proposed by Stock and Yogo (2005) is unfeasible (it only works under the assumption of i.i.d. errors), we look at the (robust) first stage F-statistic, taking into account the suggestion by Lee et al. (2020) of looking for a value above 104. This is exactly our case: we have values of 851, 2,306 and 12,031 for, respectively, the IVs for electricity, heating and transport fuels. Moreover, as pointed out by Andrews and Stock (2018), in the case with one endogenous variable (k=1), the robust F-statistics is equal to the F-statistic by Montiel Olea and Pflueger (2013).

In the long run energy demand is more reactive, as expected: all elasticities are greater than 1 and the use of transport fuels is the most responsive to price changes.

Our method allows us to compute stratum-level price and expenditure elasticity, running the model described in equation 8 separately for each stratum s. IV and LS estimates are closer when one considers the weighted average of stratum-level LS estimates (second column of Table 1 and last row of Table 7), the price elasticities of the three energy services become more uniform (ranging from -0.45 for transport fuels to -0.29 for electricity).

Table 7 and Figures 6, 7 and 8 report the LS price elasticities (and their standard errors/confidence intervals) for electricity, heating and transport (Table 8 reports the LS expenditure elasticities per stratum). In each graph, the red horizontal dotted line represents the corresponding elasticity estimated for the total sample reported in Table 1 while the green vertical lines, separate the estimates for each fourth of the equivalent expenditure distribution25. Less affluent households are more reactive to price increases for electricity (Figure 6), while for heating the demand responsiveness seems more uniform across the expenditure distribution, and more affluent households reduce their consumption more (Figure 7). For transport fuels, less affluent households again reacts more but confidence interval within the first fourth are pretty large (Figure 8). Having obtained a reaction function of energy demand to energy prices that differs according to households’ characteristics (we have computed 36 elasticities, one for each of the nine household types nested within the four fourths of

25Therefore the strata belonging to the bottom fourth are on the left of each figure, while those belonging to the top fourth quarter are on the right; households’ types are then reported within each fourth.
expenditure distribution, Table 6), we can exploit this information to simulate the introduction of a one-off carbon tax.

6 Households energy use and carbon taxation

The ambitious EU target of achieving carbon neutrality by mid-century requires a sharp reduction in the carbon content of our activities, and an unprecedented change in the way we transform and use energy. In the decade 2008-2019 EU greenhouse gas (GHG) emissions decreased by 2.1 per cent per year; a 55 per cent cut in emissions by 2030 (compared with 1990) requires this rate to more than double (around -5 per cent per year in the next decade). Carbon taxation is considered the most efficient measure to reduce GHG emissions (for a review of the pros and cons of carbon taxation, see Burggraeve et al. 2020): by increasing the relative prices of fossil-related products, a carbon tax not only promotes the switch to lower-carbon fuels, but, by raising the costs of energy use, also encourages energy conservation. According to the IMF (2019), to limit global warming to 2°C countries with higher emissions should introduce a carbon tax set to rise quickly to $75 (about €66) per ton of CO2 by 2030. Similar figures are provided by the International Energy Agency in the World Energy Outlook (IEA, 2020): under the Sustainable Development Scenario, carbon pricing in advanced countries should be around $63 per ton of CO2 in 2025 increasing to $140 in 2040. Other simulations point to higher carbon prices ranging from $20 to $360 in 2030, and from $85 to $1,000 in 2050, depending on the stringency of the target, the smoothness of the transition and the availability of carbon removal technologies (Guivarcha and Rogeljb, 2017).

6.1 The rationale for carbon pricing

Indeed, there is a significant amount of literature on carbon pricing, especially carbon taxation. A global carbon price is the economists’ recommended choice26 for tackling climate change (Tirole 2017). Indeed, carbon pricing mitigates the mispricing of climate risks and provides an incentive for firms to move away from fossil-fuel technologies and adopt (or develop) carbon free technologies, fostering innovations (Nordhaus, 2021).

In theory, carbon pricing should reflect the social cost of carbon (SCC), i.e. the monetary damage caused by an additional ton of greenhouse gas emitted (Tol, 2019)27 or be the price that guide the economy towards the 1.5C or 2C scenarios (Stern and Stiglitz, 2021). Under perfect information, carbon pricing can be implemented either via a carbon tax - the price is set and the amount of

27 There are several methodological issues behind the models used to estimate the SCC, as underlined by Pindyck (2013, 2017) and Hernandez-Cortes and Meng (2020): the choice of the damage function and the discount rate applied, on top of the uncertainty relating to the estimation of climate sensitivity.
emissions consequently adjusts - or an Emissions Trading System (ETS) - the supply of emissions’ permits is established according to a cap on total emissions and the price of the permits reacts according to their demand. Many European countries have a carbon tax, covering emissions outside the perimeter of the EU-ETS system (Batini et al., 2020).

The effect of carbon pricing on the real economy is not conclusive: some empirical analyses find very small or nil negative effects on economic activity and job creation (Metcalf and Stock 2020); a recent meta-analysis points to firms’ competitive and distributional impacts of carbon pricing a being significantly negative (Penasco et al., 2021).

Despite the unanimous support from economists there is a widespread scepticism towards carbon pricing. Indeed, in the world there are currently 64 carbon pricing initiatives in place (31 ETSs), including the planned Chinese ETS, and covering almost 22 per cent of global GHG emissions (World Bank 2020). At the end of 2019, 25 countries were running a carbon tax scheme, covering 5.6 per cent of global emissions. In the United States there are some local schemes, such as the Regional Greenhouse Gas Initiative or the California State cap and trade scheme, but there is no Federal scheme. Moreover, recent proposals to introduce a local carbon tax have been rejected. As a consequence, the global average carbon price is too low ($2 per ton of CO2 according to the World Bank 2020).

In Europe, 30 countries (all EU-27 member states plus Iceland, Liechtenstein and Norway) are part of the EU-ETS which covers 45 per cent of all member states GHG emissions. Local carbon pricing initiatives exist in half of the EU member states, but various attempts to introduce or increase taxes on carbon emissions have faced stiff opposition (as happened in France with the gilets jaunes protests). A key point for increasing the social acceptance of this instrument is to carefully appraise its distributive impacts (Burke 2020) and devise compensatory measures. A policy of revenue recycling for the resources collected could increase the support for a carbon tax, even if set at $70 per ton of CO2 (Beiser McGrath and Bernauer, 2019).

For Italy, Faiella and Cingano (2015) shows that a carbon tax could significantly reduce transportation emissions and its revenues could finance the deploying of renewable energy, replacing the existing charges on electricity consumption, thus alleviating the cost burden for less-affluent households.

Moreover, a clearly communicated plan to progressively introduce an increasing carbon tax, would enhance transparency and predictability, helping firms and households’ in setting their expectations.

Studying the effects of carbon tax is essential to understand the effects on the financial system. Carattini et al. (2021) model the relationship between
macroprudential and environmental policies. In particular, they calibrate an environmental DSGE where the unexpected introduction of a USD 30.5 carbon tax creates a recession in a setup with financial frictions, leading to a credit crunch even in green activities. To avoid this, the authors propose a tax-and-subsidy scheme to shift banks’ portfolio composition away from brown assets (which is equivalent to a brown penalty/green supporting factor). These policies mitigate transition risk.

6.2 The simulation of a one-off carbon tax

Although in Italy emissions are only priced under the ETS system (that covered 43 per cent of domestic fuel combustion’s emissions in 2018), the implicit tax rate on energy (the average amount of taxes per unit of final energy) is among the highest in Europe. In 2018, according to Eurostat data, the tax burden per one ton-of-oil equivalent (42 GJ) was €371 against a European average of €246, the second highest value after Denmark. This corresponds to an implicit price of CO2 from energy uses of around €150 per ton (5 times the price of CO2 set on the EU-ETS by end 2020).

Nonetheless, the ambitious climate targets shared by Italy under the European Green Deal require a steeper reduction than the one planned in its latest National Energy and Climate Plans (a reduction of 34.6 per cent in the "effort sharing" sectors’ emissions by 2030 compared with 2005). Expanding the perimeter of carbon pricing, extending the coverage of EU-ETS or introducing a carbon tax on energy use, are key policies to achieve these targets. Our dataset and the elasticities previously estimated could help the policy makers to assess to what extent a carbon tax on households final energy use could: 1) reduce energy demand and GHG emissions 2) increase revenues and 3) impact vulnerable households (proxied by the location in the bottom part of the expenditure distribution).

We simulate the effects of a carbon tax on households energy expenditure, focusing on four possible amounts (in real euros for 2015): €50, €100, €200 and €800 per ton of CO2. In practice, carbon taxes are set in a specific year and then progressively increased according to predetermined steps. For the sake of simplicity, we assume a one-off introduction on final energy use on top of existing taxes on energy (and costs levied as part of the EU-ETS).

A carbon tax of EUR 50 is above the current emissions price on the EU-ETS (circa €37 per ton of CO2eq by January 2021), close to the value of the French carbon tax in 2020 (€56) and double the recently introduced German tax scheme (€25). This value might be not enough to meet the Paris targets: the IMF (2019) suggests a global carbon tax of EUR 62 ($ 75) by 2030 to meet the 2C target while The Carbon Pricing Leadership Coalition (2017) suggests a carbon price level ranging between €35 and €70 ($ 40-80) per ton of CO2 by 2020. In order to reach the new EU targets (a cut of 55 per cent in emissions by 2030 and carbon neutrality by 2050), higher levels of carbon pricing are needed:
some observers suggest introducing a carbon tax of up to €200 by 2050 while McKinsey (2020) forecasts that a carbon tax of €100 would only make 80 per cent of the required investments profitable. In the short term, a hypothesis of introducing a carbon tax ranging between €50 and €100 is therefore not unreasonable.

In order to grasp the long-term profile of carbon pricing, one should look at the Social Cost of Carbon that results from different climate scenarios. In 2020, the Network for Greening the Financial System (NGFS) released a set of representative scenarios (NGFS, 2020) that describe the possible paths for keeping the temperatures within the Paris targets (1.5-2°C), depending on the timing of mitigation actions - i.e. if the transition is orderly or disorderly - and on the availability and costs of carbon dioxide removal technologies (CDRs). These scenarios can be compared with a situation where no mitigation is undertaken (Hot house world) and are designed to provide central banks with basic information to carry on climate-stress test exercises. With an Orderly transition, i.e. a situation where there is an early and ambitious strategy to achieve carbon neutrality, the price of carbon reaches $100 by 2020 and $300 by 2050 (all values are expressed in real $2010 per ton of CO2). In the event of a Disorderly transition, i.e. where climate mitigation is delayed, the carbon price is lower in the first years but it skyrockets thereafter, reaching up to $800-1,200 by 2050. For these reasons, we will discuss the effects of a carbon price of €200 and €800 separately in our simulations, as a way to gauge the difference between an orderly versus a disorderly scenario.

6.2.1 Translating the carbon price in final energy prices

To estimate the impact of each carbon tax on final energy prices, we apply the specific carbon emission factors for each fuel considered. All prices are in euros for the year 2015. For electricity, we use the time series of the carbon emission factors of electricity demand estimated by ISPRA (2019). For heating, we use the emission factor for natural gas provided by the Italian Ministry for the Environment (Ministero dell’Ambiente, 2019), which reports a carbon emission factor of 0.055820 ton CO2 per GJ. As previously mentioned, we assume that the whole of heating demand is satisfied by natural gas. Finally, for transport fuels, we calculate the emission factors considering the energy content and the specific emission factors of petrol and diesel.

31 A Climate-Neutral EU by 2050, Shell Climate Change, a blog by David Hone, 5 May 2020.
32 Among the NGFS set of scenarios there is the Too little too late scenario where physical and transition risks are greatest; this scenario has still not been modelled.
33 These values, available only at the global level, express the social cost of carbon (SCC). The SCC is the welfare cost of future global climate change impacts that are caused by emitting one extra tonne of CO2 in a given year compared with a reference scenario.
34 Between 2010 and 2018, this average carbon emission factor amounted to 332 gCO2 per kWh, 388 gCO2 per kWh in 2010 down to 281 in 2018 as the result of the decarbonization process in the Italian power sector. As a conversion we use 1 kWh=0.0036 GJ
35 Energy conversion factors: 29.8 litres of petrol for 1 GJ, 26.1 litre of gasoil for 1 GJ; specific weights: 0.725 kg/dm3 for petrol and 0.825 for gasoil; carbon emission factors: 3.14
Using 2018 prices as baseline, the introduction of a carbon tax of €50 per ton, is equivalent to add: €0.014 to each kWh of electricity (+6 per cent); €2.8 to each GJ of gas (+12 per cent) and €0.12 to each litre of gasoline or gasoil (+8 per cent). Overall, heating prices increase more, between 12 and 48 per cent under a CT of €50-€200, and almost triple in the event of a carbon tax of €800, followed by transport fuels (8-32 per cent for a CT of €50-€200) and electricity (6-25 per cent).

6.2.2 The simulation design

Similarly to Faiella and Cingano (2015), our empirical strategy is the following: first, we combine the estimated stratum-elasticities (see Section 5) and the price increases described in the previous section to obtain the quantities that would have been demanded in a given year for each household if these different carbon taxes were in place; we use original data for 2018 (the latest year for which HBS microdata are available) as a baseline.

For each household i in stratum s, the energy demand for fuel z coherent with the price change τ^z_{CT} induced by the introduction of a carbon tax ($CT=€50$, €100, €200, €800) is given by the following equation:

$$\hat{Q}^z_{is|\tau=CT} = \hat{\beta}^z_s * \left[\log(P^z + \tau^z_{CT}) \right] + \hat{\epsilon}^z_s$$

where $\hat{\epsilon}^z_s \sim N(0, RMSE^z_s)$ and $\hat{\beta}^z_s$ are the estimated elasticities of energy vector z for each stratum s.

The estimated elasticities $\hat{\beta}^z_s$ are assigned to each household of the sample according to its stratum. In some strata the estimated parameters explain a fair share of the actual variance while in others the explaining power is lower (see for example Figure 8). For this reason, in addition to the estimated coefficient, each family belonging to a given stratum is assigned a stochastic component, $\hat{\epsilon}^z_s$, with a zero mean and a variability equal to the residual variance of the stratum-level regression ($RMSE^z_s$) for each fuel z, so that both the mean and the variance of the original distributions are preserved. Then we multiply this counterfactual demand by the new prices and we aggregate across different energy fuels in order to obtain an estimate of the energy expenditure under different levels of carbon taxation $E_{is|\tau=CT}$, where:

$$E_{is|\tau=CT} = \sum_{z=1}^{3} E^z_{is|\tau=CT}$$

(10)

where:

$$E^z_{is|\tau=CT} = E_{i,s} * \frac{\hat{Q}^z_{is|\tau=CT} * (P^z + \tau^z_{CT})}{\hat{Q}^z_{is|\tau=0} * P^z}$$

(11)

Finally, an estimate of the overall expenditure is derived under the assumption that the new level of energy expenditure affects total household expenditure kg of CO2 for 1 kg of petrol and 3.17 kgCO2 for 1 kg of gasoil. Finally, carbon emission factors, 0.067903 tonnes of CO2 per 1 GJ, 0.068301 tonnes of CO2 per GJ.
proportionally. Therefore, the total expenditure after the introduction of the carbon tax is equal to the difference between the new energy expenditure and the baseline:

\[\text{Exp}_{is}|\tau=CT = \text{Exp}_{is} + (E_{is}|\tau=CT - E_{is}|\tau=0). \]

(12)

6.2.3 Simulation results

The main results of our simulations are reported in Table 2: the baseline values are the original values of 2018. We will first discuss the results of the introduction of a one-off carbon tax of €50 or €100 per ton of CO2, followed by a discussion on the two options related to the level compatible with the NGFS (2020) scenarios (€200 and €800 per ton of CO2).

Under a carbon tax of €50 or €100, electricity prices will increase by between 6 and 13 per cent, heating between 12 and 24 per cent, and transport fuels between 8 and 16 per cent. Given that energy expenditure accounts for one-tenth of the households’ total budget, overall inflation would increase by between 0.7 and 1.4 per cent.

The increase in energy prices would decrease the quantity demanded for all energy use (see Figure 11). Heating demand will decrease more, with a cut of between 5 and 10 per cent of the original demand, followed by transport fuels (between 3 and 5 per cent) and electricity (between 2 and 3 per cent).

Energy expenditure would increase for all energy uses, and particularly for heating (7-13 per cent), followed by transport fuels (5-10 per cent) and electricity (5-9 per cent) (see Figure 10). Under the hypothesis that the energy share as a percentage of the overall budget, remains stable, total expenditure would increase by 0.5-1 per cent.

Carbon taxation would decrease CO2 emissions by between 4 and 7 per cent, corresponding to a reduction of 5-9 MtCO2eq or between 4 and 8 per cent of total household emissions, a value in line with that obtained by Metcalf and Stock (2020).

A carbon tax of €50-€100 would raise between €4 and €8 billion, equivalent to 0.2-0.5 p.p. of GDP, which could be used to reduce the impact of the tax on vulnerable households, other taxes (e.g. on labour) or to support the deployment of low-carbon energy sources (as suggested in Faiella and Cingano 2015).

As for the distributive effects, our simulations suggest that carbon taxation in Italy would be regressive overall.

Indeed, total expenditure would increase more for poorer households belonging to the bottom deciles of the expenditure distribution (Figure 9 and Table 5), under all the levels of carbon pricing. The effects measured on the expenditure are just a part of the story as poorer households would also further reduce their energy demand, and across all energy uses36 (Figure 11 and Table 3).

36 One-fourth of all households belonging to the bottom fifth of the distribution owns no vehicles, therefore an increase in transport fuel prices might affect them less.
All in all, these results seem to suggest that the implementation of any carbon tax requires a careful design for the compensation measures. Indeed, without any revenues recycling mechanisms, a carbon tax would make vulnerable households worse off, thereby decreasing its social acceptability. To avoid this, the revenues of the carbon taxes might be used to compensate poor households, either via targeted direct payments or using indirect schemes (e.g. increasing the energy efficiency of their dwellings) (Burke, 2020).

Finally, we also test the effects of applying a set of carbon taxess consistent with the NGFS (2020) scenarios: €200 for an Orderly transition vis-à-vis an €800 carbon tax consistent with a Disorderly scenario. Energy prices will increase between 25 and 47 per cent under a €200 CT and more than double under a €800 CT. Energy demand would be cut by 14-38 per cent, while total energy expenditure would increase between 20 and 60 per cent. Emissions would drop significantly, with a cut of 17-48 MtCO2eq or between 15 and 42 per cent of all households emissions in 2018. The carbon taxes would raise between 0.9 and 2.4 p.p. of GDP and, without any compensating mechanisms, would be highly regressive (see left hand panel of Figure 10).

7 Conclusions

This work explored households' energy demand and expenditure using survey-based microdata covering all Italian households in the period 1997-2018. The details available in the HBS, with the external information on prices and aggregate quantities used in the exercise, allowed us to analyse three different energy services (electricity, heating and private transport) correlating energy quantities with households socio-economic traits.

We present a novel methodology for estimating the price elasticities of these energy services for each stratum of households, which differs according to their characteristics and economic vulnerability.

We then use these estimates to assess the effects of four levels of carbon taxation corresponding to €50, €100, €200 and €800 per ton of CO2.

According to our simulations, the increase in energy prices of a €50-€100 carbon tax would decrease the energy demanded and CO2 emissions (-4/-8 per cent) and increase energy expenditure (+5/+11 per cent), raising between €4 and €8 billion, which could be used to mitigate the impact on vulnerable households, to reduce other taxes (e.g. on labour) or to support low-carbon energy sources.

In all simulations the price increase triggered by the carbon tax is regressive: poorer households expenditure increases more while they also suffer a greater drop in their energy use.

The results of introducing of higher taxes (€200 and €800, consistent with NGFS (2020) scenarios), are in line with these general outcomes although considerably bigger.

From a political economy point of view, the successful introduction of a carbon tax requires a commitment to keep the scheme in place; the price should
gradually increase over time following a clear path (disclosure) which would reduce uncertainty, helping firms to adjust their investments and achieving an orderly transition.

An important point to explore is to evaluate whether the tax should be levied on final use and if it should be added on top of the existing energy taxation (which in Italy, per unit of energy use, is one of the highest in Europe). As an alternative, it could be imposed on the upstream activities, as suggested by The Carbon Pricing Leadership Coalition (2017).

We confirm the literature results showing that the introduction of a carbon tax would be regressive. In order to increase its political acceptability, the effects of the tax should be compensated by transferring the accrued resources to vulnerable households (and firms), for example with lump-sum transfers or by funding low-carbon energy solutions.
References

Bardazzi, R. and M. G. Pazienza (2019). When I was your age...Population Dynamics and Household Energy Consumption. Working papers, Universita degli Studi di Firenze.

Pindyck, R. S. (2013, September). Climate change policy: What do the models tell us? *Journal of Economic Literature* 51(3), 860–72.

A Tables and Figures
<table>
<thead>
<tr>
<th></th>
<th>Short run price elasticities</th>
<th></th>
<th></th>
<th>long run</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LS</td>
<td>stratum-level LS</td>
<td>2SLS</td>
<td></td>
</tr>
<tr>
<td>Electricity</td>
<td>-0.36***</td>
<td>-0.29*</td>
<td>-0.40***</td>
<td>-1.17***</td>
</tr>
<tr>
<td>Heating</td>
<td>-0.40***</td>
<td>-0.44**</td>
<td>-0.44***</td>
<td>-1.23***</td>
</tr>
<tr>
<td>Transport</td>
<td>-0.17**</td>
<td>-0.45**</td>
<td>-0.66***</td>
<td>-1.46***</td>
</tr>
</tbody>
</table>

* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$

Table 1: Price elasticities
Carbon taxes

<table>
<thead>
<tr>
<th>€ per ton of CO2</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price variation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity</td>
<td>+6.3</td>
<td>+12.6</td>
<td>+25.2</td>
<td>+100.8</td>
</tr>
<tr>
<td>Heating</td>
<td>+11.8</td>
<td>+23.6</td>
<td>+47.2</td>
<td>+188.7</td>
</tr>
<tr>
<td>Transport fuels</td>
<td>+7.9</td>
<td>+15.9</td>
<td>+31.8</td>
<td>+127.2</td>
</tr>
<tr>
<td>Effect on inflation (2018)*</td>
<td>+0.7</td>
<td>+1.4</td>
<td>+2.8</td>
<td>+11.3</td>
</tr>
</tbody>
</table>

* Additional percentage points to the Italian consumer price index (NIC).

<table>
<thead>
<tr>
<th>% change compared with the baseline year (2018)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
</tr>
<tr>
<td>Demand</td>
</tr>
<tr>
<td>Price variation</td>
</tr>
<tr>
<td>Electricity</td>
</tr>
<tr>
<td>Demand</td>
</tr>
<tr>
<td>Price variation</td>
</tr>
<tr>
<td>Heating</td>
</tr>
<tr>
<td>Demand</td>
</tr>
<tr>
<td>Price variation</td>
</tr>
<tr>
<td>Transport fuels</td>
</tr>
<tr>
<td>Demand</td>
</tr>
<tr>
<td>Price variation</td>
</tr>
<tr>
<td>Total energy demand</td>
</tr>
<tr>
<td>Expenditure</td>
</tr>
<tr>
<td>Electricity</td>
</tr>
<tr>
<td>Expenditure</td>
</tr>
<tr>
<td>Heating</td>
</tr>
<tr>
<td>Expenditure</td>
</tr>
<tr>
<td>Transport fuels</td>
</tr>
<tr>
<td>Expenditure</td>
</tr>
<tr>
<td>Total energy expenditure</td>
</tr>
<tr>
<td>CO2 Emissions and revenues</td>
</tr>
<tr>
<td>% var</td>
</tr>
<tr>
<td>Emissions (∆MtCO2e)</td>
</tr>
<tr>
<td>Revenues (billion of €)</td>
</tr>
<tr>
<td>+4.2</td>
</tr>
<tr>
<td>+8.2</td>
</tr>
<tr>
<td>+15.5</td>
</tr>
<tr>
<td>+42.1</td>
</tr>
</tbody>
</table>

Table 2: Main results: effects of carbon taxation on prices, demand and expenditure.

<table>
<thead>
<tr>
<th>Tenth of equiv. expenditure</th>
<th>Electricity</th>
<th>Heating</th>
<th>Transport fuels</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>€/ton CO2</td>
<td>€/ton CO2</td>
<td>€/ton CO2</td>
</tr>
<tr>
<td>100</td>
<td>500</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td>1000</td>
<td>5000</td>
<td>10000</td>
<td>20000</td>
</tr>
<tr>
<td>20000</td>
<td>50000</td>
<td>100000</td>
<td>200000</td>
</tr>
<tr>
<td>40000</td>
<td>80000</td>
<td>160000</td>
<td>320000</td>
</tr>
<tr>
<td>80000</td>
<td>160000</td>
<td>320000</td>
<td>640000</td>
</tr>
<tr>
<td>160000</td>
<td>320000</td>
<td>640000</td>
<td>1280000</td>
</tr>
<tr>
<td>320000</td>
<td>640000</td>
<td>1280000</td>
<td>2560000</td>
</tr>
<tr>
<td>640000</td>
<td>1280000</td>
<td>2560000</td>
<td>5120000</td>
</tr>
<tr>
<td>1280000</td>
<td>2560000</td>
<td>5120000</td>
<td>10240000</td>
</tr>
<tr>
<td>Total</td>
<td>-1.7</td>
<td>-3.4</td>
<td>-6.3</td>
</tr>
</tbody>
</table>

Table 3: Energy demand as % change compared with the baseline under 4 carbon taxes.
<table>
<thead>
<tr>
<th>Tenth of equiv. expenditure</th>
<th>Electricity (€/ton CO2)</th>
<th>Heating (€/ton CO2)</th>
<th>Transport fuels (€/ton CO2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>1</td>
<td>3.6</td>
<td>6.9</td>
<td>13.2</td>
</tr>
<tr>
<td>2</td>
<td>3.6</td>
<td>7.0</td>
<td>13.5</td>
</tr>
<tr>
<td>3</td>
<td>4.1</td>
<td>8.0</td>
<td>15.4</td>
</tr>
<tr>
<td>4</td>
<td>4.6</td>
<td>9.1</td>
<td>17.9</td>
</tr>
<tr>
<td>5</td>
<td>4.7</td>
<td>9.2</td>
<td>18.0</td>
</tr>
<tr>
<td>6</td>
<td>5.1</td>
<td>10.1</td>
<td>20.0</td>
</tr>
<tr>
<td>7</td>
<td>5.1</td>
<td>10.1</td>
<td>19.9</td>
</tr>
<tr>
<td>8</td>
<td>4.8</td>
<td>9.6</td>
<td>18.8</td>
</tr>
<tr>
<td>9</td>
<td>4.5</td>
<td>9.0</td>
<td>17.5</td>
</tr>
<tr>
<td>10</td>
<td>4.7</td>
<td>9.2</td>
<td>18.0</td>
</tr>
<tr>
<td>Total</td>
<td>4.5</td>
<td>8.9</td>
<td>17.3</td>
</tr>
</tbody>
</table>

Table 4: Expenditure as % change compared with the baseline under 4 carbon taxes

<table>
<thead>
<tr>
<th>Tenth of equiv. expenditure</th>
<th>Total energy expenditure (€/ton CO2)</th>
<th>Total expenditure (€/ton CO2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>4.5</td>
<td>8.6</td>
</tr>
<tr>
<td>2</td>
<td>4.5</td>
<td>8.7</td>
</tr>
<tr>
<td>3</td>
<td>5.0</td>
<td>9.6</td>
</tr>
<tr>
<td>4</td>
<td>5.4</td>
<td>10.4</td>
</tr>
<tr>
<td>5</td>
<td>5.3</td>
<td>10.3</td>
</tr>
<tr>
<td>6</td>
<td>6.0</td>
<td>11.8</td>
</tr>
<tr>
<td>7</td>
<td>6.0</td>
<td>11.6</td>
</tr>
<tr>
<td>8</td>
<td>5.7</td>
<td>11.1</td>
</tr>
<tr>
<td>9</td>
<td>5.5</td>
<td>10.6</td>
</tr>
<tr>
<td>10</td>
<td>5.6</td>
<td>10.8</td>
</tr>
<tr>
<td>Total</td>
<td>5.4</td>
<td>10.6</td>
</tr>
</tbody>
</table>

Table 5: Total energy Expenditure and total expenditure as % change compared with the baseline under 4 carbon taxes
<table>
<thead>
<tr>
<th>Stratum ID*</th>
<th>Households’ type</th>
</tr>
</thead>
<tbody>
<tr>
<td>x01</td>
<td>Single person under the age of 35</td>
</tr>
<tr>
<td>x02</td>
<td>Single person aged 35-64</td>
</tr>
<tr>
<td>x03</td>
<td>Single person aged 65 and over</td>
</tr>
<tr>
<td>x04</td>
<td>Childless couple with contact person under the age of 35 years old</td>
</tr>
<tr>
<td>x05</td>
<td>Childless couple with contact person aged 35-64</td>
</tr>
<tr>
<td>x06</td>
<td>Childless couple with contact person aged 65 and over</td>
</tr>
<tr>
<td>x07</td>
<td>Couple with 1 child</td>
</tr>
<tr>
<td>x08</td>
<td>Couple with 2 children</td>
</tr>
<tr>
<td>x09</td>
<td>Couple with 3 or more children</td>
</tr>
<tr>
<td>x10</td>
<td>Single parent</td>
</tr>
<tr>
<td>x11</td>
<td>Other types</td>
</tr>
</tbody>
</table>

* Stratum=Fourth of expenditure distribution (x=1,2,3,4)*100+Household type. In the estimates, strata x01 and x04 are collapsed into x02 and x05 to preserve a minimum sample size.

Table 6: Strata considered in the pseudo panel

![Figure 1: Share of expenditure by energy use](image-url)
<table>
<thead>
<tr>
<th>Strata*</th>
<th>Share</th>
<th>Electricity $\hat{\beta}_s$</th>
<th>σ_β</th>
<th>Heating $\hat{\beta}_s$</th>
<th>σ_β</th>
<th>Transport $\hat{\beta}_s$</th>
<th>σ_β</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>1.41</td>
<td>-0.493</td>
<td>0.317</td>
<td>-0.605</td>
<td>0.223</td>
<td>-0.843</td>
<td>0.467</td>
</tr>
<tr>
<td>103</td>
<td>3.51</td>
<td>-0.447</td>
<td>0.160</td>
<td>-0.403</td>
<td>0.163</td>
<td>-1.263</td>
<td>0.797</td>
</tr>
<tr>
<td>105</td>
<td>1.34</td>
<td>-0.665</td>
<td>0.260</td>
<td>-0.672</td>
<td>0.219</td>
<td>-0.472</td>
<td>0.193</td>
</tr>
<tr>
<td>106</td>
<td>3.13</td>
<td>-0.439</td>
<td>0.162</td>
<td>-0.538</td>
<td>0.151</td>
<td>-0.953</td>
<td>0.233</td>
</tr>
<tr>
<td>107</td>
<td>4.07</td>
<td>-0.305</td>
<td>0.161</td>
<td>-0.263</td>
<td>0.127</td>
<td>-0.315</td>
<td>0.113</td>
</tr>
<tr>
<td>108</td>
<td>5.37</td>
<td>-0.481</td>
<td>0.129</td>
<td>-0.294</td>
<td>0.130</td>
<td>-0.551</td>
<td>0.102</td>
</tr>
<tr>
<td>109</td>
<td>1.94</td>
<td>-0.489</td>
<td>0.189</td>
<td>-0.551</td>
<td>0.184</td>
<td>-0.535</td>
<td>0.154</td>
</tr>
<tr>
<td>110</td>
<td>2.37</td>
<td>-0.460</td>
<td>0.181</td>
<td>-0.487</td>
<td>0.148</td>
<td>-0.733</td>
<td>0.214</td>
</tr>
<tr>
<td>111</td>
<td>1.86</td>
<td>-0.167</td>
<td>0.207</td>
<td>-0.669</td>
<td>0.166</td>
<td>-0.313</td>
<td>0.188</td>
</tr>
<tr>
<td>202</td>
<td>2.28</td>
<td>-0.072</td>
<td>0.257</td>
<td>-0.536</td>
<td>0.195</td>
<td>-0.895</td>
<td>0.211</td>
</tr>
<tr>
<td>203</td>
<td>3.82</td>
<td>0.083</td>
<td>0.179</td>
<td>-0.524</td>
<td>0.178</td>
<td>-0.980</td>
<td>0.412</td>
</tr>
<tr>
<td>205</td>
<td>2.04</td>
<td>-0.541</td>
<td>0.195</td>
<td>-0.446</td>
<td>0.198</td>
<td>-0.204</td>
<td>0.147</td>
</tr>
<tr>
<td>206</td>
<td>2.94</td>
<td>-0.248</td>
<td>0.156</td>
<td>-0.490</td>
<td>0.155</td>
<td>-0.543</td>
<td>0.142</td>
</tr>
<tr>
<td>207</td>
<td>4.55</td>
<td>-0.286</td>
<td>0.127</td>
<td>-0.224</td>
<td>0.137</td>
<td>-0.303</td>
<td>0.092</td>
</tr>
<tr>
<td>208</td>
<td>4.74</td>
<td>-0.227</td>
<td>0.135</td>
<td>-0.212</td>
<td>0.120</td>
<td>-0.254</td>
<td>0.117</td>
</tr>
<tr>
<td>209</td>
<td>1.13</td>
<td>-0.840</td>
<td>0.260</td>
<td>-0.632</td>
<td>0.216</td>
<td>-0.525</td>
<td>0.143</td>
</tr>
<tr>
<td>210</td>
<td>2.14</td>
<td>-0.310</td>
<td>0.178</td>
<td>-0.610</td>
<td>0.186</td>
<td>-0.490</td>
<td>0.161</td>
</tr>
<tr>
<td>211</td>
<td>1.34</td>
<td>-0.587</td>
<td>0.258</td>
<td>-0.675</td>
<td>0.205</td>
<td>-0.250</td>
<td>0.186</td>
</tr>
<tr>
<td>302</td>
<td>2.92</td>
<td>-0.153</td>
<td>0.215</td>
<td>-0.428</td>
<td>0.192</td>
<td>-0.478</td>
<td>0.173</td>
</tr>
<tr>
<td>303</td>
<td>3.75</td>
<td>-0.221</td>
<td>0.169</td>
<td>-0.498</td>
<td>0.147</td>
<td>-0.654</td>
<td>0.290</td>
</tr>
<tr>
<td>305</td>
<td>2.12</td>
<td>-0.103</td>
<td>0.171</td>
<td>-0.663</td>
<td>0.165</td>
<td>-0.100</td>
<td>0.130</td>
</tr>
<tr>
<td>306</td>
<td>2.75</td>
<td>-0.109</td>
<td>0.170</td>
<td>-0.577</td>
<td>0.160</td>
<td>-0.072</td>
<td>0.133</td>
</tr>
<tr>
<td>307</td>
<td>4.50</td>
<td>-0.172</td>
<td>0.140</td>
<td>-0.389</td>
<td>0.141</td>
<td>-0.067</td>
<td>0.074</td>
</tr>
<tr>
<td>308</td>
<td>3.81</td>
<td>-0.269</td>
<td>0.136</td>
<td>-0.351</td>
<td>0.144</td>
<td>-0.138</td>
<td>0.091</td>
</tr>
<tr>
<td>309</td>
<td>0.72</td>
<td>-0.015</td>
<td>0.246</td>
<td>-0.790</td>
<td>0.401</td>
<td>0.100</td>
<td>0.219</td>
</tr>
<tr>
<td>310</td>
<td>1.96</td>
<td>-0.281</td>
<td>0.251</td>
<td>-0.445</td>
<td>0.181</td>
<td>-0.348</td>
<td>0.160</td>
</tr>
<tr>
<td>311</td>
<td>1.09</td>
<td>0.246</td>
<td>0.257</td>
<td>-0.657</td>
<td>0.208</td>
<td>-0.517</td>
<td>0.188</td>
</tr>
<tr>
<td>402</td>
<td>7.28</td>
<td>-0.381</td>
<td>0.150</td>
<td>-0.370</td>
<td>0.121</td>
<td>-0.253</td>
<td>0.083</td>
</tr>
<tr>
<td>403</td>
<td>3.69</td>
<td>-0.119</td>
<td>0.204</td>
<td>-0.459</td>
<td>0.148</td>
<td>-0.390</td>
<td>0.209</td>
</tr>
<tr>
<td>405</td>
<td>3.79</td>
<td>-0.155</td>
<td>0.148</td>
<td>-0.219</td>
<td>0.131</td>
<td>-0.238</td>
<td>0.122</td>
</tr>
<tr>
<td>406</td>
<td>2.50</td>
<td>-0.017</td>
<td>0.188</td>
<td>-0.583</td>
<td>0.171</td>
<td>-0.364</td>
<td>0.140</td>
</tr>
<tr>
<td>407</td>
<td>3.74</td>
<td>-0.358</td>
<td>0.159</td>
<td>-0.223</td>
<td>0.116</td>
<td>-0.537</td>
<td>0.110</td>
</tr>
<tr>
<td>408</td>
<td>2.50</td>
<td>-0.407</td>
<td>0.175</td>
<td>-0.384</td>
<td>0.156</td>
<td>-0.247</td>
<td>0.141</td>
</tr>
<tr>
<td>409</td>
<td>0.41</td>
<td>-1.198</td>
<td>0.349</td>
<td>-0.891</td>
<td>0.287</td>
<td>-0.716</td>
<td>0.297</td>
</tr>
<tr>
<td>410</td>
<td>1.66</td>
<td>-0.526</td>
<td>0.206</td>
<td>-0.726</td>
<td>0.178</td>
<td>-0.385</td>
<td>0.188</td>
</tr>
<tr>
<td>411</td>
<td>0.79</td>
<td>-0.140</td>
<td>0.259</td>
<td>-0.822</td>
<td>0.259</td>
<td>-0.624</td>
<td>0.251</td>
</tr>
</tbody>
</table>

Average -0.287 0.175 -0.436 0.157 -0.446 0.183

*Strata x01 and x04 are collapsed into x02 and x05 to preserve a minimum sample size.

Table 7: LS stratum-level coefficients ($\hat{\beta}_s$) and robust standard errors ($\hat{\sigma}_\beta$)
Table 8: LS stratum-level coefficients (\(\hat{\gamma}_s \)) and robust standard errors (\(\hat{\sigma}_\gamma \))
Figure 2: Energy share by Tenth of expenditure: 2008 vs 2018

Figure 3: Energy share by Tenth of expenditure in 2018
Figure 4: Household demand and expenditure by expenditure quintile
Figure 5: Elasticities (95% confidence interval)

Figure 6: Price elasticity of electricity by stratum (95% conf. interval)
Figure 7: Price elasticity of heating by stratum (95% conf. interval)

Figure 8: Price elasticity of transport fuels by stratum (95% conf. interval)
Figure 9: Total household expenditure under different carbon taxes, by expenditure quintile
Figure 10: Household energy expenditure under EUR 50 and 100 carbon taxes, by expenditure quintile
Figure 11: Household energy demand under EUR 50 and 100 carbon taxes, by expenditure quintile