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Abstract 

Ensuring and disseminating high-quality data is crucial for central banks to adequately 
support monetary analysis and the related decision-making process. In this paper we develop a 
machine learning process for identifying errors in banks’ supervisory reports on loans to the 
private sector employed in the Bank of Italy’s statistical production of Monetary and Financial 
Institutions’ (MFI) Balance Sheet Items (BSI). In particular, we model a “Revisions Adjusted – 
Quantile Regression Random Forest” (RA–QRRF) algorithm in which the predicted acceptance 
regions of the reported values are calibrated through an individual “imprecision rate” derived 
from the entire history of each bank’s reporting errors and revisions collected by the Bank of 
Italy. The analysis shows that our RA-QRRF approach returns very satisfying results in terms 
of error detection, especially for the loans to the households sector, and outperforms well-
established alternative outlier detection procedures based on probit and logit models.  
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1. Introduction and motivation: detecting errors in banks’

balance sheet data

In the context of European Regulations, National Central Banks regularly collect and 

disseminate monthly data on monetary and financial institutions’ (MFIs) balance sheet items 

(BSI).1 BSI data represent a crucial source for the production of both national and euro-area 

monetary aggregates (M1, M2 and M3) and their counterparts, which have a major role for 

the ECB assessment of the risks to price stability and for deriving the Eurosystem’s minimum 

reserve requirements for credit institutions. As a result, the Bank of Italy monthly collects, 

elaborates and analyses a huge amount of individual balance sheet data reported by the entire 

population of Italian banks (487 reporting banks at the end of 2019) in order to compile 

aggregate statistics to be provided to the ECB and the public. Table 1 shows a simplified 

scheme of a bank’s balance sheet. 

Table 1 

Bank’s balance sheet simplified scheme 

Among the items reported in Table 1, particular attention is devoted to the analysis of the 

developments of the loans granted by banks to the private sector, mainly non-financial 

corporations and households. In the last three years, in Italy these loans have accounted, on 

average, for two thirds of total consolidated loans and 35 per cent of total assets of the banking 

system. The development of credit to the private sector is one of the key factors monitored and 

analyzed in the context of the ECB monetary analysis as it explains part of the variation in the 

 We thank Gianluca Cubadda, Silvia Fabiani, Alessio Farcomeni, Francesca Monacelli, Giorgio Nuzzo, Valeria

Pellegrini, Riccardo Piermattei and Roberto Sabbatini for useful comments on earlier versions of the paper.

1 See the ECB Regulation ECB/2013/33 on the balance sheet of the monetary financial institutions sector, and 

the ECB Guideline of 4 April 2014 on monetary and financial statistics (ECB/2014/15). 

Assets Liabilities

1) Cash 1) Deposits

2) Loans 2) Debt securities issued

3) Debt securities held 3) Capital and reserves

4) Equity 4) Remaining liabilities

5) Investment fund shares

6) Non financial assets

7) Remaining assets
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holdings of liquidity by the private sector, which may have different implications for price 

stability. It also embeds relevant information on economic growth, economic agents’ 

confidence and financial stability. Credit growth analysis based on banks’ balance sheet data 

can be particularly challenging, since it has to take into account and be combined with 

ancillary information on the dynamics of securitisations and other loan transfers, write 

offs/write-downs and statistical breaks due to, among the others, changes in the reporting 

population or in the characteristics of the counterparties. 

Ensuring and disseminating high quality data is therefore crucial for adequately 

supporting the monetary authority’s supervision and decision-making process for monetary 

policy and financial stability. In this respect, over the last few years the necessity of adequate 

and timely data revealed by the global financial crises and the improvements of more 

performing IT infrastructure led to an increasing collection of granular banking data that need 

to be checked and validated. In turn, identifying outliers that can signal potentially wrong data 

in the individual banks’ supervisory reports has become more challenging due to the increasing 

amount and layers of data to elaborate. 

Currently, the Bank of Italy’s error detection approach in the BSI statistical production is 

based on automated procedures whose performance, although satisfactory, suffers from two 

main shortcomings. First, the absolute and percentage variations of the variables are usually 

assessed against predetermined thresholds that are often identical for all banks and variables; 

these procedures are therefore relatively inefficient, since the possible outliers and errors they 

signal have to be re-assessed – case by case – by the analysts in order to select plausible 

mistakes to be reported to banks. Second, as we will discuss later, these procedures do not 

process all the huge amount of available relevant information that instead some advanced 

machine learning techniques could exploit.  

Within Central Banks the use of big data and machine learning (ML) techniques has 

become very popular over the last few years (Chakraborty and Joseph, 2017; Bank for 

International Settlements, 2019). The range of applications of ML methodologies’ covers, 

among others, policy analysis evaluation, forecasting problems and statistical production. Big 

data and text mining techniques are used, for instance, to evaluate the impact of authorities’ 

speech and reports on financial markets and public’s sentiment (Correa et al., 2017) or to build 

up economic and uncertainty indicators by analysing the frequency of specific news or 
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keywords in prominent web sources (Baker et al., 2016; Ardizzi et al., 2019). Neural networks, 

random forest and gradient boosted tree algorithms have been exploited to forecast 

macroeconomic variables (Salzano, 1999; Moody, 2012) or corporate default (Moscatelli et 

al., 2019). Finally, ML techniques have been also used for enhancing the quality of statistical 

production (Cagala, 2017). Examples relate to the imputation of missing information (Carboni 

and Moro, 2018; Giudice et al., 2020) or data quality and errors detection procedures (Zambuto 

et al., 2020). 

The goal of this paper is to develop and test an automated procedure able to identify in 

real time potential errors in the banks’ supervisory reports used in the Bank of Italy’s BSI 

production process. As anticipated, we focus on the outstanding amounts of loans to non-

financial corporations and households reported by banks, given their relevance in monetary 

analysis and their weight in bank assets. Like in Zambuto et al. (2020), we make use of the 

Quantile Regression Random Forest (QRRF) algorithm in order to estimate prediction 

intervals (acceptance regions) associated to banks’ reported data. With respect to the standard 

quantile regression, the QRRF algorithm offers relevant time-saving computation advantages 

deriving from the lack of parameter estimation, an important feature when processing millions 

of data. By employing a QRRF supervised learning algorithm, we are able to exploit several 

advantages related to the BSI production process. First, as the Bank of Italy has collected a 

huge amount of data since the very beginning of the BSI monthly production, we can test and 

train an algorithm on a big dataset. Second, the focus on an important balance sheet variable 

– bank loans granted to the private sector, i.e. a phenomenon widely studied in the economic

literature – makes it relatively easy to specify a valid underlying model and a set of relevant 

independent variables.  

Additionally, we have the possibility to test an algorithm and to make inference on past 

values reported by banks for which we already know whether they were wrong or correct data. 

In other words, for each past record initially reported by banks, we know the true response 

(the value finally confirmed or revised by banks) that we can use to evaluate the predictions 

of the QRRF procedure. Moreover, during the last years of BSI monthly production, for each 

bank in the sample the Bank of Italy has been collecting the entire history of errors and 

revisions, which provides a relevant information set indicating how “on average” the bank has 

been “imprecise” in reporting the data. The novelty of the approach followed in this paper is 

the elaboration of a two-stage - “Revisions Adjusted” - QRRF, where this huge “errors and 
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revisions information set” is used to estimate – for each bank and each month – an 

“imprecision rate” through which we calibrate the specific prediction interval resulting from 

the QRRF methodology.  

A final advantage stems once again from the specific structure of the statistical production 

process. In building up a model specification that pins down the relevant independent variables 

able to explain banks’ credit dynamics and to identify potential errors, we adopt the “supply-

side” theory of credit (Adrian and Shin, 2010; Bonaccorsi di Patti and Sette, 2012; Jimenez et 

al., 2012; Bofondi, Carpinelli and Sette, 2013; De Bonis, Nuzzo and Stacchini, 2014; Cingano, 

Manaresi and Sette, 2016; Affinito, Albareto and Santioni, 2016). According to the latter (as 

opposed to the demand-side theory), loans dynamics depends mainly from bank balance sheet 

characteristic and not from demand variables. These independent “balance sheet” indicators 

are promptly available during the BSI production round, enabling the implementation of a 

“real time” outlier identification process.  

The procedure we develop provides very satisfying results in terms of error detection, 

especially when we consider loans to the household sector: in the “optimized”2 scenario, we 

identify up to 75 per cent of banks’ errors and 92.8 per cent of the correctly reported values – 

that is, the procedure does not signal false positives. Concerning loans to non-financial 

corporations, the model identifies 93.3 per cent of the values correctly reported by banks and 

40 per cent of the wrong values. As we will discuss later, the less satisfying results for these 

loans are partly due to specific features of the data that would make error-identification 

difficult for any procedure. Notwithstanding, our algorithm returns much better results than 

other alternative procedures, like, for instance, the well-established probit and logit models. 

The rest of the paper is organized as follows: Section 2 discusses the process of BSI 

statistics’ monthly production to show how its temporal structure can be exploited to test and 

train an automated error-detection algorithm. Section 3 illustrates the Revisions Adjusted - 

Quantile Regression Random Forest (RA-QRRF) algorithm that we use in the paper and 

discusses the variables employed in the specification. Section 4 shows the empirical results. 

Section 5 runs a robustness analysis by comparing the RA-QRRF results with the prediction 

of probit and logit models. Section 6 concludes. 

2 We will see in Paragraph 4 what “optimized” means. 

8



2. Exploiting the temporal structure of BSI data production

through a machine learning approach

The temporal structure of Bank of Italy’s BSI monthly statistical production – the process 

of acquisition, analysis, validation and transmission of data – is crucial for the delineation of 

the algorithm testing strategy we use. The BSI statistical production consists of two main 

phases, the first transmission (done at time 𝑇0) and the second transmission (at time 𝑇1) of the 

aggregated data to the ECB (Figure 1).  

Figure 1 

Temporal structure of the BSI statistical production 

At time 𝑇0, on the 14th working day after the end of the reference month 𝑡, individual

bank’s data referred to month 𝑡 are received and analyzed in order to identify possible outliers 

and wrongly reported data by banks. Currently, the errors detection is run through automated 

procedures based on absolute and percentage thresholds exogenously determined and equal 

for all the banks and the phenomena. In this relatively time-consuming procedure, a large part 

is left to the analyst’s expertise, since detected outliers and errors are actually re-gone through 

by the analysts and plausible mistakes are selected. Request of clarifications are then sent to 

banks in order to have revisions (i.e. admissions of mistakes) or confirmations of the data 
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initially reported. During the 15th working day after the end of the reference month, manual 

corrections are applied on data confirmed to be wrong by banks and the corrected aggregated 

series are finally sent to the ECB in what is called the first transmission.  

During the following days, banks are requested to correct and send revised correct data; 

revised data are finally elaborated and aggregated at time  𝑇1 (the 8th working day of the second

month after the end of the reference period) and re-transmitted to the ECB for what is called 

the second (final) transmission of BSI data for month 𝑡. It is important to underline that 

between  𝑇0 and 𝑇1, banks can revise autonomously all data and not only the ones previously 

identified as errors for which a request of revisions was forwarded. Moreover, it is worth 

remarking that banks can revise the same data more times. Banks can also send revisions of 

data not only between  𝑇0 and 𝑇1, but even after the final transmission of data to the ECB.  

Such a production structure offers two clear advantages that a supervised learning process 

of outlier detection can exploit. First, in testing an error detection procedure by using past 

months data samples, we have the advantage to make inference on banks’ reported data (i.e., 

the value of the outstanding amount of loans granted reported at time 𝑇0 by bank 𝑖, 𝐿𝑖,0̂) for

which we already know the true response (the final correct revised data 𝐿𝑖,1 sent for the second 

transmission at  𝑇1). This actually implies that we have a series of monthly samples to work 

with in which: a) the “training set” consists of data on loans initially reported by the entire 

sample of Italian banks; b) we can immediately evaluate the predictions about the potential 

outliers 𝐿𝑖,0̂ by observing the final true value 𝐿𝑖,1.

Second, the structure of the production process enables us to collect, for each bank, its 

own history of errors and subsequent revisions. This history – encompassing the frequency 

and the magnitude of revisions – offers a very relevant information indicating how imprecise 

– “on average” – the bank used to be in reporting data. We make use of this information to

build an “imprecision rate” for each bank 𝑖 at each time 𝑡 through which we calibrate their 

acceptance region resulting from the QRRF methodology. We name this procedure a Revisions 

Adjusted Quantile - Regression Random Forest (RA-QRRF).  

Apart from the advantages stemming from the specific structure of the production process 

and the type of information available, the RA-QRRF error detection procedure also takes 

advantage of the huge dimension of the data to elaborate. Since the beginning of the BSI 
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production process, Bank of Italy has been collecting a huge amount of individual banks’ 

balance sheet items, a large part of it related to loan items. Also, since the beginning of the 

collection process, Italian banks have transmitted millions of revisions, a big part of it related 

to loans items.3 

3. The QRRF methodology and the specification of the model

Regression Trees have become very popular as long as they have proven to be powerful 

nonparametric tools for regression (estimation of conditional means) and classification 

analyses. Random Forests, introduced by Breiman (2001), represents the application of 

bootstrap to regression trees through the building of a large collection of uncorrelated trees 

and then averaging them. Bootstrap is a well-established technique for reducing the variance 

of the estimator function. The idea behind the bootstrap is that an average of 𝑍 i.i.d. random 

variables, each with variance 𝜎2, has overall variance 𝜎2/𝑍. If the variables are simply i.d.,

but not necessarily independent, the variance of the average is  

𝜌𝜎2 +  
1−𝜌

𝑍
𝜎2. (1) 

As 𝑍 grows and 𝜌 reduces, the variance of the estimator function becomes smaller. This is 

exactly the goal of the Random Forest technique when building a large number of uncorrelated 

trees from the data (this is obtained by a particular variables selection in growing the tree) and 

then averaging them to obtain an estimation of the conditional mean of the response variable4 

�̂�(𝑦/𝑋 = 𝑥) =
1

𝐾
∑ ∑ [𝑁

𝑛=1
𝐾
𝑘=1 𝑌𝑖/𝑋 = 𝑥]𝑤𝑛(𝑥;  𝜕𝑘) (2) 

where 𝑌𝑖 is the observable response variable in the unit 𝑖 = 1, … , 𝑁; 𝑁 is the total number of 

observations in the sample, 𝐾 is the number of built trees, 𝑋 = 𝑥 is a given realization of the 

independent variables and 

3 We make use of a (big) subset of this huge amount of data because, as we will see, we had to focus on a dataset 

starting from December 2017. 

4 For the details about the specific algorithm to grow trees and random forests, see Hastie et al. (2001) and James 

et al. (2013). 

11



      𝑤𝑛(𝑥; 𝜕𝑘) = {
1/(number of observations in the leaf of tree 𝑘 where  𝑋 = 𝑥);

0  otherwise 
 (3) 

in which 𝜕𝑘 represents the set of parameters that determines how tree 𝑘 has grown. In this 

paper, like in Zambuto et al. (2020), we employ the Quantile Regression Random Forests 

(QRRF) proposed by Meinshausen (2006) in order to derive acceptance regions for outliers 

and errors detection of the response variable. In QRRF, trees are grown exactly as in the 

standard random forest algorithm. However, built trees are then averaged to obtain an 

estimation of the conditional distribution of the response variable for a given determination 

𝑋 = 𝑥 of the independent variables  

�̂�(𝑦/𝑋 = 𝑥)=�̂�(𝑌 ≤ 𝑦/𝑋 = 𝑥)=�̂�(1{𝑌≤𝑦}/𝑋 = 𝑥)= 
1

𝐾
∑ ∑ [𝑁

𝑛=1
𝐾
𝑘=1 1{𝑌≤𝑦}/𝑋 =  𝑥]𝑤𝑛(𝑥;  𝜕𝑘)   (4). 

By applying this methodology to our sample, the estimation of the conditional distribution 

allows to compute the conditional quantiles  

𝑄�̂�(𝑦/𝑋 = 𝑥) = sup{ 𝑦:  �̂�(𝑦/𝑋 = 𝑥 ≤ 𝛼) }  (5) 

that constitute the limits of the prediction interval 𝑃𝐼 for any given variable 𝑦𝑖,𝑡 reported by 

bank 𝑖 for month t 

𝑃𝐼𝑖,𝑡= [𝑄�̂�(𝑦/𝑋 = 𝑥𝑖,𝑡), 𝑄1−�̂�(𝑦/𝑋 = 𝑥𝑖,𝑡)]   (6). 

Bank’s 𝑖 reported values that fall outside the prediction interval in (6) are potential outliers, 

encompassing genuine anomalous observations and wrong reported data.  

In our analysis the dependent variable is ∆𝐿𝑖,𝑠,𝑡
0 , the absolute variation of the outstanding

amount of loans reported in occasion of the first data transmission by bank 𝑖, for month t, with 

counterpart sector s (as said, we focus on the two more relevant segments of the private sectors, 

households and non-financial corporations). In order to perform the QRRF algorithm and 

obtain an estimation of the quantiles 

𝑄�̂�(∆𝐿𝑖,𝑠,𝑡/𝑋 = 𝑥𝑖,𝑠,𝑡) = 𝑄�̂�(∆𝐿𝑖,𝑠,𝑡, 𝑋𝑖,𝑠,𝑡
1 , 𝑋𝑖,𝑠,𝑡

2 , ……….., 𝑋𝑖,𝑠,𝑡
𝑗

)  (7) 

we need to select a set of variables (𝑋1, 𝑋2 … … . . , 𝑋𝑗) able to explain the monthly variation

of bank’s credit. To this aim, we can rely on a vast literature on the determinants of bank’s 
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credit. In this literature, we can distinguish between two main theoretic points of view: while 

some authors stress the main relevance of demand-side variables in driving bank’s credit, 

others argue that banks loans almost entirely depends on bank’s own balance sheet 

characteristics. To our purposes, sharing the supply-side view and relying on balance sheets 

variables make possible to develop an automated procedure that could be run in real-time on 

the day of the statistical production, given that both response variables ∆𝐿𝑖,𝑠,𝑡 and the balance 

sheet control variables (𝑋1, 𝑋2 … … . . , 𝑋𝑗) would be contemporaneously available in the BSI

supervisory reports provided by banks.  

In the “supply-side determinants” view of banks’ credit, loan growth is positively 

dependent on the banks’ level of capital, which measures the ability to expand credit by 

maintaining the desired level of capital ratio (Bonaccorsi di Patti and Sette, 2012). It also 

depends on the level and the structure of banks’ funding (Bonaccorsi di Patti and Sette, 2012; 

De Bonis, Nuzzo and Stacchini, 2014), i.e. the amount of interbank and retail deposits. Retail 

deposits are generally considered as an indicator of the type of specialization of the banks: the 

more a bank relies on retail funding, the more it tends to be specialized in traditional credit 

activities to the private sector rather than other forms of financial investments (Infante et al., 

2020; Farné and Vouldis, 2017; Altunbas et al., 2011). Moreover, a business model where 

funding is mostly based on retail deposits instead of the recourse to the wholesale interbank 

market is most of the time associated with a more stable pattern of loans on the asset side due 

to the higher stability of the former with respect to the latter, especially during periods of crisis. 

Other types of liquid assets, such as the amount of public bonds held, may instead have a 

negative relationship with the magnitude of loan variation, as they represent an alternative 

form of profitable investment easy to substitute with loans if the bank wants to expand credit 

(Affinito, Albareto and Santioni, 2016; Bonaccorsi di Patti and Sette, 2012). Bad loans also 

have, in theory, a negative relationship with the growth of credit, given that they represent an 

inverse measure of the quality of bank’s credit assets and, consequently, an inverse measure 

of the ability to expand it (Bonaccorsi di Patti and Sette, 2012). Bank’s size variables, such as 

the amount of total assets, also play a role in determining the amount of credit granted 

(Cingano, Manaresi and Sette, 2016). Finally, the model should also consider some variables 

representing the specificity of the relation between the bank and clients belonging to different 

economic sectors such as the share of bank’s credit to firms or households to the overall credit 

(Bofondi, Carpinelli and Sette, 2013). Hence, the model can be represented by the following 
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equation, where in brackets we report our a priori beliefs on the signs of the relationships 

between the explanatory variables and the outcome variable based on the cited studies: 

𝑄�̂�(∆𝐿/𝑋) = 𝑄�̂�(∆𝐿/𝐶𝐴𝑃𝐼𝑇𝐴𝐿(+), 𝐼𝑁𝑇𝐸𝑅𝐵𝐴𝑁𝐾 𝐹𝑈𝑁𝐷𝐼𝑁𝐺(+), 𝑅𝐸𝑇𝐴𝐼𝐿 𝐹𝑈𝑁𝐷𝐼𝑁𝐺(+),

𝑃𝑈𝐵𝐿𝐼𝐶 𝐵𝑂𝑁𝐷𝑆(−), 𝐵𝐴𝐷 𝐿𝑂𝐴𝑁𝑆(−), 𝐴𝑆𝑆𝐸𝑇(+), 𝑆𝐼𝑍𝐸 (+), 𝑆𝐻𝐴𝑅𝐸 (+))           (8). 

As mentioned in previous paragraphs, the novelty of our contribution lies in the idea of 

exploiting, for each bank, its own history of supervisory reports’ errors and revisions drawn 

from the tables of the Bank of Italy Statistical Datawarehouse (SDW). In the SDW all data 

reported by banks are logged with a timestamp and in an incremental way with respect to the 

first data transmission on a specific item and its attributes. Such functionality, which is quite 

common in data base infrastructures, is usually employed to ensure the replicability of 

elaborations over time when revisions might come in between two different elaborations. The 

log tables of the SDW can provide relevant information for the estimation of the “likelihood” 

that the bank’s last reported data could be – ceteris paribus – the result of errors or not. To the 

best of our knowledge, there is no other application in the literature exploiting such 

information in the context of outlier detection in statistical microdata. To this aim, for each 

bank 𝑖 at month 𝑡 we computed different measure of an “imprecision rate” (or “score”), 𝜃𝑖,𝑡. 

We use these rates in a two-stage - “Revisions Adjusted” - Quantile Regression Random 

Forest, where the prediction intervals are function of the score  

𝑃𝐼𝑖,𝑠,𝑡= [𝑄�̂�(∆𝐿𝑖,𝑠,𝑡, 𝑋𝑖,𝑠,𝑡, 𝐹(𝜃𝑖,𝑡)), 𝑄1−�̂�(∆𝐿𝑖,𝑠,𝑡, 𝑋𝑖,𝑠,𝑡, 𝐹(𝜃𝑖,𝑡))]   (9). 

While in the first stage prediction intervals are obtained as standard output of the QRRF 

algorithm, in the second one the computed imprecision rates are used through specific “penalty 

functions” 𝐹(𝜃) to calibrate the intervals. Their role is to penalize banks that tended to make 

lot of errors in the past by restricting - ceteris paribus - the intervals and, at the same time, by 

benefiting banks with few errors by expanding the prediction intervals.  

In our work, the imprecision scores are estimated through a linear probability model 

(LPM)5 with high-dimensional fixed effects á la Gaure (2013), where the dichotomic outcome 

5 Despite the weaknesses of the LPM, for instance its heteroskedasticity and the fact that it does not constraint 

the predicted probabilities to lie between 0 and 1 (Johnston and Di Nardo, 1996), we decided to use it rather 

than other dichotomous output models such as the probit or the logit because, in these non-linear models, the 

estimated derivative effects on the probability vary with the level of the dependent variables (Greene, 2002). 
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variable 𝑦𝑖,𝑡 is equal to 1 if the reporting agent 𝑖 has revised the observation in month 𝑡 and is 

equal to 0 otherwise 

𝑃𝑟𝑜𝑏(𝑦𝑖,𝑡 = 1) = 𝛽𝑋𝑖,𝑡 + ∑ 𝛾𝑗𝜂𝑗,𝑖,𝑡𝑗 + 𝜀𝑖,𝑡  (10). 

It is worth clarifying that in the estimation of (10), the variable 𝑦𝑖,𝑡 = 1 encompasses all 

possible reporting errors and revisions made by banks. In other words, not only revisions in 

the total amount of the reported loans (i.e. 𝐿𝑖,𝑠,𝑡
1 ≠ 𝐿𝑖,𝑠,𝑡

0 ) that we consider in our outlier

detection algorithm, but also revisions in all the sub-details of the bank’s reporting. Indeed, 

bank’s reported information covers not only the amount and the counterpart sector, but also a 

set of sub-details such as the maturity of the loan, the purpose (consumer, credit, mortgage, 

etc.), the currency, the specific subsector (i.e. producer vs consumer households) that can be 

initially misreported and later revised. As we will see in the next paragraph, while errors and 

revisions in the total reported amount (more relevant to the goal of the BSI statistical 

production) are not so common, the same is not true for the reporting of the sub-details, which 

represent the vast majority of the errors.  

In (10), the outcome variable is regressed on a set of explanatory variables: 𝑋𝑖,𝑡 represent 

variables related to the value of the balance sheet item, in particular the final (log) amount of 

the balance-sheet item and the ratio of the revision over its final amount. 𝜂𝑗,𝑖,𝑡 is a vector of 

dummy and categorical variables representing specific characteristics of the reporting agent, 

the reference period and of the balance sheet items, such as the institutional subsector of the 

counterparty, the currency of the item and the nature of the instrument (securities, mortgages, 

etc…). The estimation is carried out for each reference period on a mobile window of 12 

months, that is, when the reference period is 𝑇 then the sample is limited to all the observations 

between 𝑡 = 𝑇 − 12 and 𝑡 = 𝑇 − 1. The imprecision rate - i.e. the likelihood associated to a 

revision by a reporting agent - is derived from the results of the LPM by extracting the 

marginal effect of a bank-level fixed effect (dummy) 𝜂𝑘,𝑖,𝑡 included among the independent 

variables, which represent an idiosyncratic bank-specific and time-invariant characteristic6 

Therefore, they are not useful for the estimation of banks’ imprecision rates. Moreover, heteroskedasticity 

issues can be dealt with through the estimation of robust standard errors. 

6 The idea is to disentangle from the probability to make a reporting error all the effects that can be due to 

characteristics other than an idiosyncratic feature of the bank, for example some characteristics of the reported 
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          𝜃𝑖,𝑡 = 𝛾�̂�𝜂𝑘,𝑖,𝑡  (11). 

We computed two different versions of the imprecision rate: 𝜃𝑖,𝑡, which is computed by 

considering errors and revisions in the entire set of balance sheet items reported by banks, and 

𝜃𝑖,𝑡
𝑙 which considers only errors and revisions in the reporting of loans (the focus of  the present 

paper). The left panel of Figure 2 depicts the distribution of the imprecision scores computed 

through the kernel density estimation. The distribution of the score related to the errors in all 

the balance sheet items has a mean higher than 1. Intuitively, it is higher than the mean of the 

imprecision rate estimated only considering data on loans, which is around 0.5. This is 

consistent with the intuition that the likelihood of making errors when considering all the BSI 

items is obviously higher than considering only a subset of them (e.g. data on loans). In Figure 

5 of the Appendix we report some examples of the dynamics of the individual score 𝜃𝑙
 over 

time and its relationship with banks’ reporting errors.7  

Figure 2 

Estimated imprecision rates (scores) 

(Banks’monthly rates from December 2017 to March 2020) 

(a) Distribution (b) Prediction of reporting errors

Note: the left panel of the figure depicts the distribution of the estimated imprecision rates on the entire set of 

BSI items and on the subset of items concerning loans. The distributions were derived on the basis of a kernel 

density estimation on the two variables. The right panel depicts the relationship between the estimated 

imprecision rates and banks’ share of reporting errors in total reported data, i.e. the number of revised records 

divided by the total number of records at bank level. The lines represent the linear regression lines of the share 

of reporting errors on the imprecision rates. 

instruments that can affect the probability to make a mistake (i.e. loans reported in foreign currency instead of 

euro, etc..).  

7 We do not report examples for the overall score 𝜃 because it is not straightforward to represent graphically its 

relationship with the revisions in the entire set of balance sheet items. 
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Once a reporting error has occurred, the score jumps and the penalty has a 12-month 

persistence while gradually falling to 0 in the absence of further errors. The estimated scores 

are positively correlated with the incidence of reporting errors at the bank level, as shown in 

the right panel of Figure 2. The imprecision rates significantly predict banks’ reporting errors 

on the entire set of BSI items and on the subset of those concerning loans.  

As we will see in the next paragraph, we tested different functional forms of the “penalty” 

(or “correction”) functions. In the next paragraph, we illustrate the “results optimization” 

strategy to find the optimal model parameters and penalty function, and we illustrate the 

empirical findings.  

4. Empirical results

In our analysis the QRRF algorithm is run on the following model specification 

𝑄�̂�(∆𝐿𝑖,𝑠,𝑡
0 /𝑋 = 𝑥𝑖,𝑠,𝑡) = 𝑄�̂�(𝐶𝐴𝑃𝑖,𝑡, 𝐼𝑁𝑇𝐵𝑖,𝑡, 𝑅𝐸𝑇𝐴𝐼𝐿𝑖,𝑡,  𝑃𝐵𝑂𝑁𝐷𝑆𝑖,𝑡, 𝐵𝐴𝐷𝐿𝑖,𝑠,𝑡,

 𝑇𝐴𝑆𝑆𝑖,𝑡, 𝑆𝐻𝐴𝑅𝐸𝑖,𝑠,𝑡−1, 𝑆𝐼𝑍𝐸𝑖, (∆𝐿/𝐿)𝑖,𝑠,𝑡−1
1  )  (12) 

where ∆𝐿𝑖,𝑠,𝑡
0  is the variation in the stock of loans reported at the first data transmission (hence 

the apex "0") by bank 𝑖 to sector 𝑠 at month 𝑡. Given their relevance, we focus on two sectors, 

households and non-financial corporations. It is important to stress that changes in the stock 

of loans reported by banks in their balance sheets could be due to financial transactions, i.e. 

new loans being granted minus reimbursements, but also to write-downs/write-offs, 

securitizations and other loan transfers that are also reported by banks on a monthly basis. In 

order to avoid the algorithm signaling these reductions as possible outliers, loans variations 

are corrected by re-adding write-offs and net loans disposals. 𝐶𝐴𝑃𝑖,𝑡 is the capital and reserves 

to assets ratio of bank 𝑖 at the end of month 𝑡; 𝐼𝑁𝑇𝐵𝑖,𝑡 are the interbank deposits over total 

asset net of capital. 𝑅𝐸𝑇𝐴𝐼𝐿𝑖,𝑡 are the retail deposits (of households and non-financial 

corporations) over total liabilities net of capital and reserves. 𝑃𝐵𝑂𝑁𝐷𝑆𝑖,𝑡 represents the 

holdings of public bonds over total assets. 𝑇𝐴𝑆𝑆𝑖,𝑡 is the total amount of assets. 𝐵𝐴𝐷𝐿𝑖,𝑠,𝑡 is 

the amount of bad loans of sector 𝑠 in the balance sheet of bank 𝑖 at the end of the month 𝑡 

over total loans to that sector (at time 𝑡 − 1). 𝑆𝐻𝐴𝑅𝐸𝑖,𝑠,𝑡−1 is the share of bank 𝑖 loans over 

total loans granted to sector 𝑠 in the previous month. 𝑆𝐼𝑍𝐸𝑖 is a categorical variable used in 
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Bank of Italy’s publications to classify banks in five assets categories.8 (∆𝐿/𝐿)𝑖,𝑠,𝑡−1
1  is the 

percentage growth rate of bank 𝑖 ‘s loans to sector 𝑠 in the previous month. 

Our dataset includes balance-sheet data on 28 months spanning from December 2017 to 

March 2020, a sample that consists of 257811 observations with an average of 485 reporting 

banks in each month.9 Table 9 and Table 10 in the Appendix report the summary statistics and 

the correlation matrix of the variables.  

The RA-QRRF algorithm aims at identifying potential outliers in banks’ data reporting, i.e. 

anomalous data that need to be investigated and eventually corrected. In this respect, “wrong” 

data can be classified into two categories. On the one hand, they can be values misreported by 

banks, that is, errors in the reported stocks that have been later corrected autonomously by 

banks or because detected by Bank of Italy’s analysts. The other type of data that the analyst 

must identify to apply a correction (and that therefore the algorithm must detect) are variations 

in the stock of loans that have to be handled with “statistical reclassifications”. Statistical 

reclassifications come in every time there are variations of stocks not explained by financial 

transactions, price revaluations, or exchange rate fluctuations in case of foreign currency-

denominated instruments. Examples are an increase in the stock of financial instruments due 

to a bank’s acquisition by another bank (alternatively a reduction due to the selling of a bank), 

variations in the reported stocks due to a reclassification of a financial instrument (i.e. a repos 

reported as a bond issued up time 𝑡 and then reported as loan debt from time 𝑡 + 1), etc. 

Statistical reclassifications of financial instruments are series transmitted by Bank of Italy to 

ECB in the BSI statistical production. However, reclassifications are not directly reported by 

banks but are identified by Bank of Italy’s analysts when looking for anomalous stock 

variations that are not explained by other factors such as price revaluations. Statistical breaks 

not reflecting economic transactions that give rise to reclassifications are therefore outliers 

that the QRRF algorithm is requested and expected to detect as well. 

8 The classification in dimensional classes is based on the composition of the banking group. The categories are: 

“First five banking groups”, “Big banks”, “Foreign banks’ branches”, “Small banks” and “Minor banks” (Bank 

of Italy, Annual Report 2018). 

9 We actually collected balance sheet data starting from December 2014. However, given that data on 

securitizations and loans are available only from December 2017, a corrected response variable is available only 

starting from that month. 
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As mentioned earlier, an advantage of our analysis is the ex-ante knowledge of actual 

outliers in our dataset. In particular, from December 2017 to March 2020 banks reported 22 

“wrong” values related to loans to households (14 errors in the reported values subsequently 

corrected and 8 reclassified values) and 43 wrong values related to loans to non-financial 

corporations (37 errors and 6 reclassifications) out of 13569 banks’ reporting of loans to 

household (and 13569 to non-financial corporations).10 

An optimal outlier detection procedure has to aim at the minimization of two types of 

error the output of the algorithm could provide. First, obviously it should minimize the number 

of non-identified real errors; we can label these errors as “non-identified true negatives” (or I-

type errors). Second, it should also minimize the number of “identified false positives” (or II-

type errors), that is observations being flagged as outliers by the procedure when they are 

actually not anomalous.  

If we consider the simplified scheme reported in Table 2, in which we assume the total 

number of banks’ reported data to analyze is 𝑁, with 𝐸 misreported values among them (𝐸 ⊆

𝑁), the goal of an optimal outlier detection procedure should be to minimize the sum of the 

elements on the secondary diagonal, i.e. the two types of errors 𝜔 + Ω (or equivalently the 

maximization of the numbers in the principal diagonal). It is straightforward that, to our scope, 

the minimization of I-type errors Ω, that is the identification of all real errors of banks, has 

much more importance than the other type of error. 

10 In our analysis we considered as “reporting errors” revisions made between the first transmission at 𝑇0 and the

second transmission at 𝑇1 higher than euro 20 millions.

Table 2 

Simplified scheme of I-type and II-type errors of the outlier detection procedure 

Correct reporting Errors in reporting 

Not signaled as outlier by the 

algorithm 
𝑁 − 𝐸 −  𝜔 Ω

Signaled as outlier by the 

algorithm 
𝜔 𝐸 −  Ω
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One could argue that the only goal of the algorithm should be to reduce Ω to zero. This is 

actually possible, but given the specification of the model, and ceteris paribus the parameters 

of the model, it is clear the existence of a trade-off between 𝜔 and Ω; the reduction of Ω to 

zero could be accomplished with the cost of a procedure that signals “too many” II-type errors. 

This is not desirable, given that too many II-type errors imply too many (false) requests of 

clarification to be reported to banks, determining inefficiencies in a BSI production process 

that has to be completed only within two working days. 

We can sum up by saying that an optimal outlier detection procedure should minimize 

some loss function of the type  

 min 𝐿𝑂𝑆𝑆(𝜔 , 𝜆 ⋅ Ω)                 (13) 

where 𝜆 is a parameter expressing the relative importance of the I-type errors with respect to 

the II-type ones. Once the specification of the variables relationship is fixed as in (12), the 

output of the RA-QRR algorithm – 𝜔, Ω and hence the value of the loss function in (13) – 

depends on a set of model parameters. First, the confidence level ⍺ in (12), since the higher 

the confidence level is, the smaller will be – ceteris paribus – the prediction intervals for each 

observation and therefore more total outliers signaled. Second, the specific imprecision rate 

we decide to use (either 𝜃, computed considering banks’ errors in all the balance sheets 

reported items, or 𝜃𝑙, computed only on errors in loans reporting). Third, the functional form 

𝐹(𝜃) of the correction (penalty) function that involves 𝜃. Fourth a possibly varying parameter 

𝑛 of this function.11 This implies that we need to possibly find a solution to the minimization 

problem  

      min  { 
⍺,𝜃,𝐹,𝑛

𝐿𝑂𝑆𝑆(𝜔(⍺; 𝜃; 𝐹; 𝑛) , 𝜆 ⋅ Ω(⍺; 𝜃; 𝐹; 𝑛)) }           (14). 

Our strategy in solving (14) could not be derived formally, but rather through computation. 

We figured out different alternatives for the functional form of the correction 𝐹(𝜃) and run a 

cycle of computations of the RA-QRRF algorithm over (12) by varying the type of imprecision 

11 To be precise, among the parameters we should also include those of the QRRF algorithm, that is the number 

of trees grown, the number of seeds, the number of variables pick up for splitting at each tree node (usually called 

the mtry parameter). These parameters are not included in (14) because not relevant for the rest of the discussion. 
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rate, the parameters 𝑛 of 𝐹(𝜃) and the confidence level ⍺. 

We took in consideration different forms for the correction function 𝐹(𝜃). In the rest of the 

paper we focus only on the two that have proven to obtain better results in terms of (14). The 

first one is 

𝑃𝐼𝑖,𝑡 = [
𝑄�̂�(∆𝐿𝑖,𝑠,𝑡

0 /𝑋=𝑥𝑖,𝑡)

(𝜃𝑖,𝑡)𝑛 ,
𝑄1−�̂�(∆𝐿𝑖,𝑠,𝑡

0 /𝑋=𝑥𝑖,𝑡)

(𝜃𝑖,𝑡)𝑛 ]  (15). 

The correction in (15) has a different impact depending on whether the imprecision score 

𝜃 is less or greater than 1. Banks that have made many errors up to time 𝑡 and have values of 

the score greater than 1 are penalized by the correction, in the sense that the prediction interval 

is restricted and it increases the probability that its reported values is flagged as an outlier. On 

the contrary, banks with few errors and a score less than 1 “benefit” from the correction by the 

enlargement of the prediction interval. In order to avoid infinite values of the limit of the 

prediction intervals, in the case of banks with 𝜃 equal to zero in some months we set 𝜃 = 1 

implying no correction.12 The disparity of treatment between banks with 𝜃 lower or higher 

than 1 is amplified as the exponential parameter increase. The case 𝑛 = 0 is equivalent to the 

case of no correction, that is the standard output of the QRRF.  

The second penalty function we consider is 

𝑃𝐼𝑖,𝑡 = [ 𝑄�̂�(∆𝐿𝑖,𝑠,𝑡
0 /𝑋 = 𝑥𝑖,𝑡) ∗ (1 − 

(𝜃𝑖,𝑡)𝑛

100
), 𝑄1−�̂�(∆𝐿𝑖,𝑠,𝑡

0 /𝑋 = 𝑥𝑖,𝑡) ∗ (1 −  
(𝜃𝑖,𝑡)𝑛

100
)]   (16) 

that also represents a penalty correction increasing in 𝜃 and 𝑛. Also for (16), the case 𝑛 = 0 

can be considered as an approximation of the standard QRRF output with no correction.13 

Figure 3 illustrates the results of the iterated computations run on the banks reported loans 

to the household sector for the time span December 2017 – March 2020. The left side of the 

figure shows the results of the computations run by employing the imprecision rate 𝜃𝑙 (i.e. 

computed only on the reported loans); the right side illustrates the results of the algorithm that 

12 Usually banks have an imprecision score equal to zero at the very first months of their reporting history. The 

idea is that the probability to have errors after few months is low and that a premium is more deserved by banks 

with a lot of reporting but few errors (that is 𝜃 less than 1). 

13 Indeed, when 𝑛 = 0 we have [𝑄�̂� ⋅
99

100
, 𝑄1−�̂� ⋅

99

100
] ≈ [𝑄�̂�  , 𝑄1−�̂� ].
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employed the 𝜃 computed on the entire set of reported balance sheet items. The results 

obtained by employing the penalty function in (15) are shown in the upper part of the figure, 

while those employing  the correction (16) are presented in the lower part. It is important to 

highlight that given the same set of parameters, two computations of the QRRF algorithm can 

produce different results that are nonetheless very robust.14 For this reason, the numbers 

presented in the figure are obtained as average of four computations of the algorithm with the 

same fixed parameters (⍺, 𝐹, 𝜃 and 𝑛). It is evident the trade-off between the non-identified 

true negatives and the identified false positives; this negative relationship is much more 

evident as the confidence level ⍺ (measuring the width of the prediction intervals) increase.  

Figure 3 

Banks’ loans to household: non-identified true negatives (I-type errors) and identified false positives (II-type errors) 

from the RA-QRRF  
(average absolute values of 4 computations for each set of parameters; monthly observations from December 2017 to March 2020) 

(a) [
𝑸𝜶

𝜽𝒍
𝒏 ,

𝑸𝟏−𝜶

𝜽𝒍
𝒏  ] (b) [

𝑸𝜶

𝜽𝒏
,

𝑸𝟏−𝜶

𝜽𝒏
 ] 

(c) [𝑸𝜶 ∙ (𝟏 −
𝜽𝒍

𝒏

𝟏𝟎𝟎
) , 𝑸𝟏−𝜶 ∙ (𝟏 −

𝜽𝒍
𝒏

𝟏𝟎𝟎
) ] (d) [𝑸𝜶 ∙ (𝟏 −

𝜽𝒏

𝟏𝟎𝟎
) , 𝑸𝟏−𝜶 ∙ (𝟏 −

𝜽𝒏

𝟏𝟎𝟎
) ] 

14 This depends on the random choice of the subset of variables that the algorithm pick up for splitting at each 

tree node. 
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Moreover, it is clear that the parameter 𝜃𝑙 computed only on the reported loans (left-side of 

the figure) performs much better in terms of minimization of I and II-type errors with respect 

to the overall 𝜃. Second, the preferable correction function seems to be the one in (15) despite 

the one in (16) proved to be better in identifying the real errors (less I-type errors). Third, it is 

very important to notice that in general, and especially when 𝜃𝑙  is employed, there is a clear 

gain when 𝑛 increases from 0 to 1. This is a very important result, since it justifies the use of 

the imprecision rate 𝜃 and the elaboration of a Revisions Adjusted – Quantile Regression 

Random Forest.  

The best results in terms of outlier identification of banks’ reported loans to household are 

those depicted in the upper-left box of Figure 3. Reducing ⍺ does not bring a significant gain 

in terms of unidentified real errors but an improvement in terms of false positives reduction. 

At the same time, increasing the exponent 𝑛 minimizes I-type errors. We can conclude that for 

banks’ loans to the household (HH) sector the best model in terms of outlier identification is  

𝑃𝐼𝑖,𝑡 = [
𝑄0.01̂(∆𝐿𝑖,𝐻𝐻,𝑡

0 /𝑋=𝑥𝑖,𝑡)

(𝜃𝑖,𝑡
𝑙 )4

,
𝑄0.99̂(∆𝐿𝑖,𝐻𝐻,𝑡

0 /𝑋=𝑥𝑖,𝑡)

(𝜃𝑖,𝑡
𝑙 )4

]  (17). 

Table 3 

Banks’s loans to household: ratio of correct reporting and errors correctly identifyed by the algorithm  
(average percentage values of 4 computations for each set of parameters; monthly observations from December 2017 to March 2020) 

𝜶 𝒏 

[
𝑸𝜶

𝜽𝒍
𝒏 ,

𝑸𝟏−𝜶

𝜽𝒍
𝒏  ] [

𝑸𝜶

𝜽𝒏
,
𝑸𝟏−𝜶

𝜽𝒏
 ] [𝑸𝜶 ∙ (𝟏 −

𝜽𝒍
𝒏

𝟏𝟎𝟎
) , 𝑸𝟏−𝜶 ∙ (𝟏 −

𝜽𝒍
𝒏

𝟏𝟎𝟎
) ] [𝑸𝜶 ∙ (𝟏 −

𝜽𝒏

𝟏𝟎𝟎
) , 𝑸𝟏−𝜶 ∙ (𝟏 −

𝜽𝒏

𝟏𝟎𝟎
) ] 

Id. correct 

reportings 

Identified 

errors 

Id. correct 

reportings 

Identified 

errors 

Id. correct 

reportings 

Identified 

errors 

Id. correct 

reportings 

Identified 

errors 

0.01 0 96.75 52.27 96.75 52.27 38.52 77.27 38.52 77.27 

0.01 1 97.14 54.55 92.54 59.09 78.06 79.55 14.08 93.18 

0.01 2 95.28 64.77 84.97 71.59 80.25 79.55 11.26 95.45 

0.01 3 93.80 72.73 76.94 85.23 80.73 78.41 10.44 95.45 

0.01 4 92.77 75.00 69.35 85.23 81.04 80.68 10.15 95.45 

0.05 0 89.74 67.05 89.76 62.50 34.84 86.36 34.83 86.36 

0.05 1 92.93 63.64 80.83 65.91 67.69 80.68 15.96 87.50 

0.05 2 91.99 72.73 70.00 81.82 72.51 77.27 12.05 94.32 

0.05 3 90.76 77.27 60.73 87.50 73.93 82.95 10.77 95.45 

0.05 4 90.14 78.41 53.50 87.50 74.57 78.41 10.05 95.45 

0.10 0 80.10 79.55 79.99 76.14 30.17 89.77 30.27 89.77 

0.10 1 87.20 72.73 68.49 80.68 57.06 87.50 15.71 90.91 

0.10 2 87.63 84.09 57.79 90.91 62.81 88.64 11.88 96.59 

0.10 3 87.06 80.68 49.80 94.32 64.99 88.64 10.29 97.73 

0.10 4 86.57 81.82 43.52 95.45 66.00 87.50 9.60 97.73 
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Overall, the RA-QRRF returns satisfying results in terms of identifying errors. Table 3 

shows the percentage of correct and incorrect reported loans to the household sector correctly 

identified by the RA-QRRF procedure. In the optimized scenario, represented by (17), we 

correctly detect the 75 per cent of banks’ errors and 92.8 per cent of the correctly reported 

values. Considering the parameters selection corresponding to (17), the model leads – on 

average - to 35 requests of clarifications to be transmitted to reporting agents every month. 

Figure 4 shows the results of the same computations run on the banks reported loans to 

non-financial corporations. The trade-off between the two types of errors is again evident, as 

well as the gain of employing a Revisions Adjusted - Quantile Regression Random Forest 

(moving from 𝑛 = 0 to 𝑛 = 1). It is also evident that the automated procedure does not 

perform as well as in the case of the loans to the household sector.  

Figure 4 

Banks’ loans to non-financial corporations: non-identified true negatives (I-type errors) and identified false positives 

(II-type errors) from the RA-QRRF  
(average absolute values of 4 computations for each set of parameters; monthly observations from December 2017 to March 2020) 
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It can be argued that this is due to three main reasons, two of which are related to specific 

features of the data sample and one is presumably related to the model specification. First, in 

analyzing our data, we observed that among the 43 errors in loans to non-financial corporations 

collected since December 2017, a group of them consists of stocks repeated almost identically 

in the first transmission of the subsequent month (that is, banks initially reported 𝐿𝑖,𝑠,𝑡
0 ≅

𝐿𝑖,𝑠,𝑡−1
1 , implying zero growth) and then strongly revised in occasion of the second 

transmission. Identifying repeated values with no (or small) variations between two 

subsequent months as “outlier” is a tough goal for every outlier detection technique. Second, 

loans to non-financial corporations show a much higher variance with respect to loans to 

households. Bigger banks may grant larger amount loans to firms and we often observe huge 

amounts both in absolute values and in terms of variations. In this case, if a wrongly reported 

value happen to be classified in a leaf with some of these very big observations, and therefore 

in its same estimated distribution, it is difficult for the wrong observation to “fall” outside the 

⍺-th quantiles (i.e. the limit of the prediction intervals) of this distribution.  

Finally, the last reason stems from the way we decided to specify the model in (8). Loans 

to non-financial corporations are probably driven by demand factors (GDP growth, firms’ 

confidence, etc..) more than the loans to households. Fully adopting the supply theory, if on 

the one hand it is necessary to develop a procedure that can be run in real-time during the day 

of production, on the other hand it obviously penalizes the prediction ability of the algorithm. 

This is due to the fact that very few economic indicators referred to a given reference date are 

published earlier than the time of BSI production which, on average, takes place on the 20th 

day of the following month. 

As for loans to households, the best results for loans to non-financial corporations (NFC) 

are those presented in the upper-left part of Figure 4. As reported in Table 4, by selecting the 

model  

𝑃𝐼𝑖,𝑡 = [
𝑄0.01̂(∆𝐿𝑖,𝑁𝐹𝐶,𝑡

0 /𝑋=𝑥𝑖,𝑡)

(𝜃𝑖,𝑡
𝑙 )4

,
𝑄0.99̂(∆𝐿𝑖,𝑁𝐹𝐶,𝑡

0 /𝑋=𝑥𝑖,𝑡)

(𝜃𝑖,𝑡
𝑙 )4

]   (18) 

we are able to identify the 93.3 per cent of the correctly reported values and the 40 per cent of 

the wrong reported data, implying an average of 35 requests of clarifications to be transmitted 

to banks in each month.  
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Table 4 

Banks’s loans to non-financial corporations: ratio of correct reporting and errors correctly identifyed by the 

algorithm  
(average percentage values of 4 computations for each set of parameters; monthly observations from December 2017 to March 2020) 

𝜶 𝒏 

[
𝑸𝜶

𝜽𝒍
𝒏 ,

𝑸𝟏−𝜶

𝜽𝒍
𝒏  ] [

𝑸𝜶

𝜽𝒏
,
𝑸𝟏−𝜶

𝜽𝒏
 ] [𝑸𝜶 ∙ (𝟏 −

𝜽𝒍
𝒏

𝟏𝟎𝟎
) , 𝑸𝟏−𝜶 ∙ (𝟏 −

𝜽𝒍
𝒏

𝟏𝟎𝟎
) ] [𝑸𝜶 ∙ (𝟏 −

𝜽𝒏

𝟏𝟎𝟎
) , 𝑸𝟏−𝜶 ∙ (𝟏 −

𝜽𝒏

𝟏𝟎𝟎
) ] 

Id. correct 

reportings 

Identified 

errors 

Id. correct 

reportings 

Identified 

errors 

Id. correct 

reportings 

Identified 

errors 

Id. correct 

reportings 

Identified 

errors 

0.01 0 96.66 24.42 96.60 23.26 44.75 66.86 44.70 66.28 

0.01 1 96.84 26.74 92.19 41.86 78.70 70.93 19.38 94.19 

0.01 2 95.21 28.49 84.91 52.91 80.32 62.21 14.74 94.19 

0.01 3 93.73 39.53 76.75 72.09 80.80 61.63 12.66 97.09 

0.01 4 92.64 40.70 69.28 77.91 80.95 57.56 11.58 97.67 

0.05 0 89.28 30.23 89.27 37.21 41.06 70.93 40.97 69.19 

0.05 1 92.42 37.79 80.61 51.74 69.79 72.09 22.67 88.37 

0.05 2 91.46 38.37 70.33 61.63 73.13 68.02 17.55 94.19 

0.05 3 90.23 43.02 61.19 79.65 74.22 63.95 14.86 96.51 

0.05 4 89.30 42.44 53.31 82.56 74.64 67.44 13.24 97.67 

0.10 0 79.58 47.67 79.60 49.42 36.12 72.09 36.09 71.51 

0.10 1 86.25 51.74 69.12 58.14 60.15 76.16 22.75 88.95 

0.10 2 86.14 54.65 58.68 72.09 64.35 75.58 18.27 94.77 

0.10 3 85.18 52.91 50.42 83.72 66.04 74.42 15.89 94.77 

0.10 4 84.49 47.67 43.70 83.72 66.61 73.26 14.47 94.77 

In the next paragraph we carry out a robustness analysis by estimating a probit and a logit 

model in order to compare the efficacy and the predictive power of our procedure with respect 

to more standard (and more computational time-consuming) techniques.  

5. Robustness analysis: probit and logit models

In this paragraph, we estimate alternative models that aim at predicting the probability 

that - conditional on the available information – the value reported by a bank could be wrong 

or not, i.e. probit and logit models. The specific goals of this robustness analysis are, on the 

one hand, to evaluate the predictive ability of our RA-QRRF with respect to alternative 

models and, on the other hand, to confirm the goodness of our selected predictors. Hence, 

we estimate  

𝑃𝑟𝑜𝑏(𝑦𝑖,𝑠,𝑡 = 1/𝑥𝑖,𝑠,𝑡) = Φ(𝛽1𝐶𝐴𝑃𝑖,𝑡 + 𝛽2𝐼𝑁𝑇𝐵𝑖,𝑡 + 𝛽3𝑅𝐸𝑇𝐴𝐼𝐿𝑖,𝑡+ 𝛽4𝑃𝐵𝑂𝑁𝐷𝑆𝑖,𝑡 + 

𝛽5𝐵𝐴𝐷𝐿𝑖,𝑠,𝑡 + 𝛽6𝑇𝐴𝑆𝑆𝑖,𝑡 +  𝛽7𝑆𝐻𝐴𝑅𝐸𝑖,𝑠,𝑡−1 + 𝛽8𝑆𝐼𝑍𝐸𝑖 + 𝛽9(∆𝐿/𝐿)𝑖,𝑠,𝑡−1
1 + 𝛽10𝜃𝑖,𝑡)     (19)
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where 𝑦𝑖,𝑠,𝑡 = 1 indicates that the value of loans to sector 𝑠 reported by bank 𝑖 at the end of 

month 𝑡 is wrong at the first data transmission and Φ is the cumulative probability distribution 

of a standard normal in the case of the probit model and of a logistic distribution in the case 

of the logit one. It is worth noting that we also include the imprecision score 𝜃 among the 

independent variables of the model for which we want to evaluate its predictive significance 

and make a comparison between its different versions (i.e., the score computed on the errors 

on the overall balance sheet items or on the errors when focusing on loans items).  

We estimate both a pooled probit/logit model where all the sample periods and 

observations are put together as if a cross-section specification applies and a panel probit/logit 

model. In addition, we do not perform any out-of-sample prediction, but include all available 

observation when fitting the model in order to estimate predicted probabilities of a mistake. 

As said, the goal of this analysis is indeed to have confirmation on the goodness of our 

predictors and on the predictive ability of our RA-QRRF with respect to alternative models: 

in doing this, we are not interested in “penalizing” the alternative models but let them exploit 

all the available information they can use.  

Table 5 shows the estimation results of the probit model in which we consider the “failures” 

in banks’ reporting of loans to the household sector. The correspondent estimations of the logit 

models, whose results are very similar to those of the probit, are reported in Table 11 in the 

Appendix. Results shown in Table 5 are robust in the various specifications. In column (1) 

and (2) we report the estimation of, respectively, the pooled and the panel probit where we 

included the imprecision rate θl estimated only on loan-related observations as a regressor. In 

column (3) and (4) we show the same models but considering the overall score θ, estimated 

on the full sample of balance sheet items, as independent variables.  

Estimation results confirm the goodness of the selected balance sheet variables that are all 

significant except the lagged growth of loans. The signs of the coefficients seem to indicate a 

negative relationship between bank’s probability to misreport data (or, in general, to be in 

presence of an outlier) and its size and its degree of activity (different from that of granting 

loans). The bigger the bank, as measured by capital, total asset and the categorical variable of 

size, the lower the probability to report errors.  
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Table 5 

Probit estimation on banks reporting of loans to the household sector 

(monthly observations from December 2017 to March 2020) 

(1) 

Pooled 

(2) 

Panel 

(3) 

Pooled 

(4) 

Panel 

Probit (θl) Probit (θl) Probit (θ) Probit (θ) 

Capital -0.0114*** -0.0234*** -0.00955*** -0.0229***

(0.000) (0.006) (0.000) (0.008)

Interbank funding -0.0261*** -0.0400*** -0.0244*** -0.0394***

(0.000) (0.000) (0.000) (0.000)

Retail funding -0.0276*** -0.0575*** -0.0270*** -0.0573***

(0.000) (0.000) (0.000) (0.000)

Public bonds -0.0237** -0.0453** -0.0257*** -0.0449*

(0.011) (0.048) (0.006) (0.051)

HH bad loans 0.123** 0.153 0.118** 0.156

(0.010) (0.131) (0.012) (0.124)

Total assets -0.0000135*** -0.0000222** -0.0000133*** -0.0000222**

(0.000) (0.038) (0.000) (0.038)

HH share of loans 0.483*** 0.886** 0.472*** 0.887** 

(0.000) (0.014) (0.000) (0.013) 

Bank's size -0.391*** -0.241*** -0.365*** -0.232***

(0.000) (0.002) (0.000) (0.003)

HH growth of loans(t-1) -0.0000171 -0.00245 -0.0000154 -0.00242

(0.964) (0.873) (0.962) (0.872)

θl 0.0570*** -0.00128

(0.004) (0.968)

θ -0.00393 -0.0394

(0.921) (0.531)

Observations 13569 13569 13569 13569 
p-values in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01

Similarly, the higher the degree of activity in the interbank funding, retail funding and 

public bonds market, the lower the probability of wrong data. A higher probability is 

associated to higher levels of the variables related to the granting loans activity, that is, the 

level of bad loans in the balance sheet (not significant in the panel specification) and the 

market share of the total loans to that sector. Consistently, in the pooled specification, higher 

levels of the imprecision score θl are associated to a higher probability of errors. It is the only 

relevant result, since in columns (2), (3) and (4) the imprecision rates turned out to be not 

significant.15 

15 Given that the computed θl and θ are estimated random variables, the significance levels could suffer from 

incorrect estimated standard errors. For this reason, we also estimated the model in (1) by employing bootstrap 

resampling on the standard errors. Results are basically identical to those reported in Table 5.  
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In Table 6 we present the summary statistics and some selected predicted probabilities of 

the estimated probit model for the reported values of banks’ loans to the household sector (see 

Table 12 in the Appendix for the statistics on the predicted probabilities of the logit 

specification). All the four estimations return, on average, very small values of the predicted 

probabilities to make errors in reporting, with the means of the predicted probabilities varying 

between 0.004 and 0.009 among the four models. We then choose to report in Table 6 the 

probabilities predicted by the models higher than 0.3. With respect to the entire set of predicted 

values, these values signal some significant probability that the data can be an error. As it is 

evident, despite the estimation is run entirely in-the-sample, the estimated models are able to 

correctly identify only 1 actual errors out of the 22 outliers and reclassifications we observed 

in the sample period (4.5 per cent of the errors). In this respect, our RA– Quantile Regression 

Random Forest algorithm has proven to perform much better than these alternative models. 

Table 6 

Banks’ loans to household: predicted probabilities of the probit model 

(predicted probabilities lower than 0.3 are omitted) 

(1) 

Pooled 

(2) 

Panel 

(3) 

Pooled 

(4) 

Panel 

Probit (θl) Probit (θl) Probit (θ) Probit (θ) 

Mean 0.004 0.009 0.004 0.009 

St. Dev. 0.021 0.039 0.021 0.039 

Min 0.000 0.000 0.000 0.000 

Max 0.678 0.817 0.663 0.810 

Errors Predicted probabilities 

0 0.447 0.356 0.367 0.344 

0 0.436 0.342 0.356 0.331 

1 0.678 0.817 0.663 0.810 

0 0.468 0.457 0.468 0.447 

0 0.467 0.456 0.467 0.447 

0 - 0.401 - 0.386 

0 - 0.535 - 0.511 

0 - 0.536 - 0.512 

0 0.402 - - - 

0 0.398 0.394 0.402 0.384 

0 0.403 0.399 0.407 0.389 

0 0.519 0.517 0.512 0.509 

0 0.503 0.497 0.496 0.488 

0 0.503 0.497 0.496 0.489 

0 0.440 0.403 0.427 0.393 

0 0.447 0.356 0.367 0.344 

0 0.436 0.342 0.356 0.331 
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Table 7 shows the results of the estimation for the reported loans to non-financial 

corporations.16 Results are consistent with those of the estimation for the reported loans to 

households. Size variables (capital, total asset and bank’s size) have a negative relationship 

with the probability of reporting an error, as well as the variables measuring the degree of 

activity like the outstanding amount of interbank funding, retail funding and public bonds. 

Differently from the loans to household sector, in Table 7 the lagged growth of loans to the 

non-financial corporations sector shows a negative relationship with the predicted 

probabilities. The share of the market has a positive correlation in the pooled specification, 

while bad loans have a non-significant effect.  

Table 7 

Probit estimation on banks reporting of loans to the non-financial corporations sector 

(monthly observations from December 2017 to March 2020) 

(1) 

Pooled 

(2) 

Panel 

(3) 

Pooled 

(4) 

Panel 

Probit (θl) Probit (θl) Probit (θ) Probit (θ) 

Capital -0.00885*** -0.0179** -0.00744*** -0.0168**

(0.000) (0.013) (0.001) (0.021)

Interbank funding -0.0225*** -0.0434*** -0.0202*** -0.0414***

(0.000) (0.000) (0.000) (0.000)

Retail funding -0.0256*** -0.0578*** -0.0238*** -0.0572***

(0.000) (0.000) (0.000) (0.000)

Public bonds -0.0170*** -0.0389** -0.0176*** -0.0375**

(0.002) (0.020) (0.002) (0.024)

NFC bad loans 0.00990 0.0256 0.00556 0.0280

(0.774) (0.747) (0.877) (0.724)

Total assets -0.00000459*** 0.000000197 -0.00000469*** 0.000000103 

(0.005) (0.963) (0.004) (0.981) 

NFC share of loans 0.208*** 0.168 0.215*** 0.172 

(0.000) (0.182) (0.000) (0.169) 

Bank's size -0.266*** -0.0482 -0.228*** -0.0389

(0.000) (0.488) (0.000) (0.575)

NFC growth of loans(t-1) -0.560** -1.062** -0.653** -1.135**

(0.033) (0.042) (0.015) (0.028)

θl 0.0177 0.00725

(0.370) (0.833)

θ -0.114** -0.0696

(0.018) (0.250)

Observations 13569 13569 13569 13569 
p-values in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01

16 The corresponding logit estimations and predicted probabilities are illustrated in Table 13 and Table 14 in the 

Appendix. 

30



Finally, different from the households estimation, the imprecision score θl
 computed on the 

errors in reported loans, turns out to be non-significant, whereas – inconsistently – higher 

levels of the overall imprecision rate θ show a negative relation with the probability of 

reporting an outlier.  

Concerning the predicted probabilities of the estimated probit for the non-financial 

corporations sector illustrated in Table 8, they also return, on average, small values. The mean 

of the predicted probabilities to report an outlier varies between 0.007 and 0.0116 among the 

four models. Also in this case, the predicted probabilities of the four estimates models higher 

than 0.3 detect only 1 true outlier out of 43, that is the 2.2 per cent of the actual errors. 

Table 8 

Banks’ loans to non-financial corporations: predicted probabilities of the probit model 

(predicted probabilities lower than 0.4 are omitted) 

(1) 

Pooled 

(2) 

Panel 

(3) 

Pooled 

(4) 

Panel 

Probit (θl) Probit (θl) Probit (θ) Probit (θ) 

Mean 0.007 0.016 0.007 0.015 

St. Dev. 0.028 0.056 0.027 0.055 

Min 0.000 0.000 0.000 0.000 

Max 0.625 0.698 0.569 0.680 

Errors Predicted probabilities 

0 - 0.528 - 0.527 

0 - 0.513 - 0.512 

0 - 0.568 - 0.573 

1 0.625 0.698 0.569 0.680 

0 0.475 0.467 0.422 0.450 

0 0.471 0.463 0.420 0.447 

0 - 0.531 - 0.537 

0 - 0.551 - 0.556 

0 - 0.579 0.316 0.584 

0 - 0.530 - 0.525 

0 - 0.569 - 0.557 

0 - 0.565 - 0.552 

0 - 0.523 - 0.512 

0 - 0.553 - 0.544 

0 0.514 0.515 0.474 0.503 

0 0.488 0.486 0.441 0.471 

0 0.499 0.497 0.454 0.482 

The robustness analysis run in this paragraph brings us three main results. First, the 

estimated probit and logit models confirm the goodness of the selected independent variables 
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which show, in general, significant coefficients associated to the probability that a given 

bank’s reported values on loans be an error. Second, the analysis confirms the better predictive 

performance of the imprecision rate θl
 estimated on the errors in loan-related items reporting 

with respect to the imprecision rate θ derived on the entire set of reported items. Finally, most 

importantly, the robustness analysis highlights the better performance of the Revisions 

Adjusted - Quantile Regression Random Forest we developed in detecting outliers in BSI 

statistics with respect to alternative models. 

6. Conclusion

Ensuring and disseminating high quality data is crucial in order to adequately support the 

monetary authority’s supervision and decision-making process for monetary policy and 

financial stability. Over the recent years, the increasing collection of granular banking data 

made possible by more performing IT infrastructures has determined an increasingly 

challenging activity of error- and outlier-detection in bank’s supervisory reports.  

In this paper we develop and test an automated machine learning procedure able to identify 

potential errors in bank’s supervisory reports on loans to the private sector employed in the 

Bank of Italy’s Balance Sheet Information (BSI) production process. In particular, we develop 

a Revisions Adjusted – Quantile Regression Random Forest algorithm in which the predicted 

acceptance regions of each monthly reported value are calibrated through an individual 

imprecision score. This monthly score provides a measure of each bank’s likelihood of making 

errors and is estimated by employing the entire history of its errors and revisions on BSI items 

collected by the Bank of Italy.  

The algorithm we develop has two main advantages. First, it processes and uses the whole 

huge amount of relevant information at our disposal, that consists of millions of data (also 

including millions of revisions made by banks in the past). Second, by exploiting exclusively 

banks’ balance sheet variables as explanatory variables, our procedure is able to identify 

outliers in real time, that is, during the day of statistical production. This real-time automated 

algorithm also improves the outlier detection process currently employed by the Bank of Italy, 

which is based on quite simple techniques that leave a large role to the analyst’s expertise, 

hence implying a relatively time-consuming process that has to be carried out in a half working 

day of production. 
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Focusing on the monthly BSI statistics from December 2017 to March 2020, our results are 

very satisfying as far as loans to households are concerned: by computationally optimizing the 

selection of the algorithm parameters, we are able to identify up to 75 per cent of banks’ errors 

and 93 per cent of correctly reported values (i.e. the procedure does not signal them as false 

positives). Concerning loans to non-financial corporations, our results are not as good, since 

we are able to identify up to 93.3 per cent of banks’ correctly reported values in the period, 

but only 40 per cent of the errors. As we argue, this is partly due to the specific characteristics 

of the data that would probably make it difficult to identify such errors for any outlier-detection 

procedure.  

Finally, as a robustness analysis, we estimate alternative models, in particular a probit and 

a logit model. The analysis highlights a worse performance of these models with respect to the 

RA-QRRF approach in the outlier detection process, thus corroborating the latter. 
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Appendix 

Table 9 

Summary statistics of the variables used in the analysis 
Mean St. Dev. Min Max 

HH ∆Loans 6.07 376.74 -34642.99 16230.56

NFC ∆Loans 5.75 501.49 -36635.00 34132.13 

Capital/Asset 12.19 11.63 -180.01 106.83 

Interbank funding/(Asset-Capital) 23.05 23.92 0.00 101.34 

Retail funding/(Asset-Capital) 58.00 27.07 1.24 99.22 

Public bonds/Asset 21.79 14.34 2.68 71.69 

HH Bad loans/HH Loans (t-1)

Household Bad Loans/Loans to H(t-1)

Household Bad Loans/Loans to H(t-1)

0.57 0.91 0.00 10.00 

NFC Bad loans/NFC Loans (t-1)

T

1.02 1.18 0.00 10.00 

Total asset 7723.94 40554.81 0.00 618707.00 

Bank’s HH share of loans (t-1) 0.21 1.04 0.00 18.76 

Bank’s NFC share of loans (t-1) 0.21 1.04 0.00 19.73 

Bank’s size  3.44 3.65 0.00 99.00 

HH growth of loans (t-1) 8.09 938.35 -1.00 109303.80 

NFC growth of loans (t-1) 0.59 63.42 -1.00 7384.34 

θ 1.64 1.25 0.00 27.00 

θl 0.84 1.40 0.01 28.93 

Table 10 

Correlation matrix of the variables used in the analysis 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

(1) HH ∆Loans 1 

(2) NFC ∆Loans 0.76 1 

(3) Capital 0.01 0.00 1 

(4) Interbank funding 0.02 0.01 -0.15 1 

(5) Retail funding 0.00 0.00 0.11 -0.79 1 

(6) Public bonds -0.01 -0.01 0.11 -0.36 0.49 1 

(7) HH Bad loans 0.00 0.00 0.22 0.09 -0.10 -0.03 1 

(8) NFC Bad loans 0.01 0.00 0.04 -0.07 0.07 0.04 0.53 1 

(9) Total asset 0.14 0.16 -0.03 0.04 -0.12 -0.14 0.00 -0.02 1 

(10) HH share of loans 0.13 0.14 -0.01 0.03 -0.10 -0.16 -0.01 0.00 0.84 1 

(11) NFC share of loans 0.11 0.12 0.00 0.05 -0.12 -0.16 0.02 0.01 0.86 0.93 1 

(12) Bank’s size -0.01 -0.01 0.06 -0.09 0.08 0.06 0.08 0.11 -0.09 -0.08 -0.09 1 

(13) HH growth of loans 0.00 0.00 -0.01 -0.01 0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 -0.01 1 

(14) NFC growth of loans 0.00 0.00 -0.02 -0.01 0.00 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 1 
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Table 11 

Logit estimation on banks reporting of loans to the household sector 

(monthly observations from December 2017 to March 2020) 
(1) 

Pooled 
(2) 

Panel 
(3) 

Pooled 
(4) 

Panel 

Logit (θl) Logit (θl) Logit (θ) Logit (θ) 

Capital -0.0252*** -0.0459*** -0.0214*** -0.0444*** 

(0.000) (0.003) (0.001) (0.005) 

Interbank funding -0.0565*** -0.0861*** -0.0537*** -0.0849*** 
(0.000) (0.000) (0.000) (0.000) 

Retail funding -0.0596*** -0.114*** -0.0576*** -0.117*** 

(0.000) (0.000) (0.000) (0.000) 
Public bonds -0.0640** -0.0978** -0.0690** -0.0982* 

(0.032) (0.050) (0.022) (0.052) 

HH bad loans 0.265** 0.316 0.298** 0.321 
(0.034) (0.133) (0.019) (0.130) 

Total assets -0.0000328*** -0.0000460** -0.0000323*** -0.0000466** 

(0.000) (0.034) (0.000) (0.034) 
HH share of loans 1.206*** 1.835*** 1.183*** 1.865*** 

(0.000) (0.010) (0.000) (0.010) 

Bank's size -0.824*** -0.475*** -0.771*** -0.449*** 
(0.000) (0.004) (0.000) (0.006) 

HH growth of loans(t-1) -0.0000483 -0.00418 -0.0000458 -0.00430 

(0.970) (0.891) (0.970) (0.884) 
θl 0.117** 0.0444 

(0.012) (0.529) 

θ -0.0331 -0.0415 
(0.789) (0.752) 

Observations 13569 13569 13569 13569 

p-values in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01 

Table 12 

Banks’ loans to household: predicted probabilities of the logit model 

(predicted probabilities lower than 0.3 are omitted) 
(1) 

Pooled 

(2) 

Panel 

(3) 

Pooled 

(4) 

Panel 

Logit (θl) Logit (θl) Logit (θ) Logit (θ) 

Mean 0.003 0.009 0.003 0.009 

St. Dev.  0.018 0.037 0.017 0.038 

Min  0.000 0.000 0.000 0.000 
Max 0.804 0.838 0.789 0.834 

Errors Predicted probabilities 

0 0.415 0.367 0.307 0.342 
0 0.400 0.352 - 0.328 

0 - 0.341 - 0.353 

0 - 0.367 - 0.376 

1 0.804 0.838 0.789 0.834 

0 0.458 0.459 0.450 0.455 

0 0.456 0.458 0.449 0.454 

0 - 0.453 - 0.424 

0 - 0.454 - 0.425 

0 0.363 0.390 0.357 0.387 

0 0.369 0.394 0.365 0.392 

0 - 0.349 - 0.354 

0 - 0.518 - 0.513 
0 0.504 0.498 0.489 0.492 

0 0.504 0.498 0.489 0.493 

0 0.415 0.408 0.390 0.401 
0 0.415 0.367 0.307 0.342 
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Table 13 

Logit estimation on banks reporting of loans to the non-financial corporations sector 

(monthly observations from December 2017 to March 2020) 
(1) 

Pooled 
(2) 

Panel 
(3) 

Pooled 
(4) 

Panel 

Logit (θl) Logit (θl) Logit (θ) Logit (θ) 

Capital -0.0177*** -0.0365*** -0.0144*** -0.0341** 

(0.000) (0.010) (0.007) (0.017) 

Interbank funding -0.0438*** -0.0845*** -0.0390*** -0.0808*** 
(0.000) (0.000) (0.000) (0.000) 

Retail funding -0.0530*** -0.113*** -0.0489*** -0.113*** 

(0.000) (0.000) (0.000) (0.000) 
Public bonds -0.0478*** -0.0765** -0.0487*** -0.0746** 

(0.004) (0.025) (0.005) (0.028) 

NFC bad loans 0.0389 0.0373 0.0390 0.0440 
(0.658) (0.819) (0.669) (0.790) 

Total assets -0.00000930** 0.000000342 -0.00000922** 0.000000243 

(0.015) (0.968) (0.014) (0.977) 
NFC share of loans 0.457*** 0.346 0.461*** 0.352 

(0.000) (0.168) (0.000) (0.160) 

Bank's size -0.634*** -0.134 -0.541*** -0.111 
(0.000) (0.359) (0.000) (0.449) 

NFC growth of loans(t-1) -1.133* -2.050** -1.257** -2.232** 

(0.059) (0.043) (0.041) (0.026) 
θl 0.0566 0.0289 

(0.220) (0.676) 

θ -0.255* -0.118 
(0.078) (0.353) 

Observations 13569 13569 13569 13569 

p-values in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01 

Table 14 

Banks’ loans to non-financial corporations: predicted probabilities of the logit model 

(predicted probabilities lower than 0.4 are omitted) 
(1) 

Pooled 

(2) 

Panel 

(3) 

Pooled 

(4) 

Panel 

Logit (θl) Logit (θl) Logit (θ) Logit (θ) 

Mean 0.007 0.016 0.007 0.015 

St. Dev.  0.028 0.056 0.027 0.055 

Min  0.000 0.000 0.000 0.000 
Max 0.625 0.698 0.569 0.680 

Errors Predicted probabilities 

0 - 0.528 - 0.519 
0 - 0.507 - 0.505 

0 - 0.554 - 0.567 

1 0.685 0.711 0.607 0.695 

0 - 0.515 - 0.526 

0 - 0.534 - 0.547 

0 - 0.562 - 0.575 

0 - 0.513 - 0.512 

0 - 0.551 - 0.545 

0 - 0.548 - 0.542 

0 - 0.508 - 0.502 

0 - 0.536 - 0.534 

0 0.520 0.516 0.462 0.504 
0 - 0.528 - 0.519 

0 - 0.507 - 0.505 

0 - 0.554 - 0.567 
1 0.685 0.711 0.607 0.695 
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Figure 5 

Some examples of the temporal behavior of the imprecision score θl and its relationship with 

bank’s errors in reporting 

(monthly scores, number and absolute value of errors from December 2017 to March 2020) 

Note: the graphs illustrate six examples of the temporal relationship of the monthly score θl with banks’ errors in 

reporting. We decided to illustrate only the score on loans θl because it was easier to represent graphically. The 

blue line represent the temporal behavior of the score (l.h. side) for six chosen banks. The orange bars represent 

the number of errors in the reporting (l.h. side; the value is 2 if the bank misreported both the loans to household 

and to non-financial corporations and 1 if the banks misreported one of the two). The grey area represents the 

absolute value of the errors in unit of euro (r.h side). We insert the horizontal line in correspondence of the unit 

because, as explained in the paper, in the case of the actual selected penalty function banks with a score higher 

than one are penalized and vice versa. Despite the temporal path of the score reflects all revisions made by banks 

in every sub-items, and not only errors in the total amount of loans (as explained in Section 3), it is nonetheless 

graphically evident that the score is quite able to catch the reporting behavior of banks in a satisfying way. 
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