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Abstract 

The aim of this survey is to provide a rigorous, but not so technical, introduction to several 
systemic risk indicators frequently used in official publications by institutions involved in 
macroprudential analysis and policy. The selected indicators are classified using three taxonomies. 
The first one adopts the point of view of regulators and policy-makers, whose attention is usually 
focused on the implementability and forward-looking nature of the indicators. The second 
taxonomy highlights the features that are most relevant for researchers, i.e. the reliance on a sound 
theoretical background and the use of advanced analytical techniques. The third taxonomy classifies 
the indicators according to the specific aspects of systemic risks that are captured. For each indicator 
both general and technical descriptions are provided, as well as specific examples. 
 
JEL Classification: G21, G28, G14, C13. 
Keywords: systemic risk, financial stability, systemic risk indicators. 

 
Contents 

 
1. Introduction ......................................................................................................................... 5 
2. How to classify systemic risk indicators ............................................................................. 7 
3. (∆)Conditional Value at Risk (∆CoVaR) .......................................................................... 14 
4. CoRisk ............................................................................................................................... 16 
5. Systemic Expected Shortfall (SES) and SRISK ................................................................ 20 
6. Distress Insurance Premium (DIP).................................................................................... 24 
7. Principal Component Analysis (PCA) and Granger-Causality Networks ........................ 28 
8. Option-iPoD ...................................................................................................................... 33 
9. Joint distress indicators ..................................................................................................... 38 

10. Systemic Contingent Claim Analysis (Systemic CCA) .................................................... 43 
11. Network analysis ............................................................................................................... 49 
12. Default intensity model ..................................................................................................... 53 
13. Markov-Regime Switching Model (SWARCH) ............................................................... 55 
14. Composite Indicator of Systemic Stress (CISS) ............................................................... 58 
15. Risk Assessment Model for Systemic Institutions (RAMSI) ........................................... 62 
16. Conclusion......................................................................................................................... 68 
List of tables ............................................................................................................................ 70 
List of figures .......................................................................................................................... 70 
Glossary ................................................................................................................................... 71 
References ............................................................................................................................... 72 
 
_______________________________________ 
*  Bank of Italy, DG Economics, Statistics and Research. 
**  European University Institute, Economics Department. 





1 Introduction1

The consequences of the global financial and economic crisis have prompted in-
depth studies on how to identify, measure and mitigate systemic risk, i.e. the risk
that the financial system, or part of it, may become so impaired that severe nega-
tive consequences on the overall economic activity would be inevitable. This risk
is by nature multi-faceted and difficult to capture in a unique, compact frame-
work (see e.g. Hansen, 2014). In order to grasp its main features, an extensive
number of indicators has been proposed in a broad and heterogeneous body of
literature.

The aim of this survey is to provide a rigorous, though not overly technical intro-
duction to several systemic risk indicators by organizing and reviewing them in
a unified and consistent way. More specifically, the contribution of this survey is
threefold.

First, the survey reports the indicators that are more frequently used in official
publications by several institutions involved in macroprudential analysis and pol-
icy, such as the International Monetary Fund (IMF), the European Systemic Risk
Board (ESRB), the European Central Bank (ECB), the Bank of England (BoE),
and the Bank of Italy (BoI). To the best of our knowledge, previous surveys do
not provide such an extensive coverage – with the remarkable exception of Bisias
et al. (2012) – and only focus on relatively smaller sets of indicators (see e.g.
Blancher et al., 2013).

Second, the selected indicators are organized according to three different tax-
onomies. The first one adopts the point of view of regulators, whose attention
usually focuses on the implementability and the forward-looking nature of sys-
temic risk indicators. The second taxonomy takes the point of view of researchers,
who are mainly interested in indicators with solid theoretical foundations and ad-
vanced analytical features. The last taxonomy highlights the specific features of
systemic risk that the selected indicators are able to capture.

Finally, this survey contributes to the literature by presenting the selected indica-
tors in a systematic way with the aim of making them accessible to a wide range
of readers, such as researchers, regulators, and practitioners. To this end, the
description of each indicator is structured as follows:

1 Our goal was to make this survey as comprehensive as possible and to give the most extensive
credit to the incredible amount of work that has been done in this ever-growing field. We are
sorry for any relevant piece of analysis and research that we may have missed. The hyperlinks
in the references are accurate as of 1 August 2018. The views expressed in the article are those
of the authors and do not necessarily reflect those of the Bank of Italy.
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1. A general description illustrates the main features, the advantages and dis-
advantages of the indicator;

2. A technical description focuses on the analytical aspects of the indicator;

3. An empirical example taken from published documents provides further clar-
ifications on the actual use and interpretation of the indicator.

Moreover, the description of each indicator includes a table that provides infor-
mation on the author(s), the institution(s) that use(s) it, its strengths and weak-
nesses, and the kind of data that is required to implement it. This systematic
way of presenting each indicator serves the purpose of satisfying multiple needs of
the readers. In fact, while the general description gives a broad overview of each
indicator for those who like to have a bird’s-eye view, the technical description
adds further details for readers who want to go more in depth. The summary
table helps to wrap up the main features of each indicator and provides immediate
access to references.

This survey builds upon some already existing reviews of systemic risk indicators.
IMF (2009a) discusses ‘complementary approaches to assessing direct and indirect
financial sector systemic linkages’, but it focuses on network indicators and over-
looks several indicators that capture other features of systemic risk. IMF (2009b)
provides a non-systematic analysis of some tools, which are aimed at detecting
systemic risk as well as helping policy makers to take the necessary measures to
mitigate it. The Office of Financial Research of the US Department of the Trea-
sury provides an excellent survey of systemic risk analytics (Bisias et al., 2012) and
develops Matlab codes for their implementation. Bisias et al. (2012) are also the
first to present a survey that organizes the indicators according to the ‘supervisory
perspective’ and the ‘research perspective’. In this paper we point out different
features within each of the two taxonomies and add a third, new taxonomy, which
highlights the specific features of systemic risk that are taken into account by each
indicator. A further review of systemic risk indicators can be found in Blancher
et al. (2013), who, however, only focus on the toolkit of indicators used by the
IMF. Arsov et al. (2013) build a metric for systemic financial stress and then com-
pare it with other near-coincident indicators to test the validity and robustness of
their new metric. Benoit et al. (2016) try to connect the literature on systemic
risk with the regulatory debate. In particular, they identify two main approaches
to tackling systemic risk: the first one focuses on specific sources of systemic risk
and draws on confidential data, while the second one derives global measures of
systemic risk from market data. They recognise a gap between the two approaches,
which they hope will be bridged in the future.

In addition to the above-mentioned surveys, it is worth mentioning two online
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laboratories – the NYU Stern Volatility Lab (V-Lab) and the Center for Risk
Management at Lausanne (CRML) – that provide weekly updates of the SRISK
(a systemic risk indicator presented by Brownlees and Engle, 2017; see Section 5)
for systemic financial institutions from all over the world.

Both the surveys and the online laboratories contribute to the lively debate about
systemic risk by presenting cutting-edge research on systemic risk.

The remainder of the paper is organized as follows. Section 2 discusses three
taxonomies that can be used to classify systemic risk indicators. Section 3 to
Section 15 describe the individual indicators. Section 16 concludes.

2 How to Classify Systemic Risk Indicators

In the aftermath of the global financial crisis, an extensive and heterogeneous lit-
erature on systemic risk and systemic risk indicators has developed. As noted in
Section 1, the heterogeneity of this literature is mainly due to the multifaceted
nature of systemic risk, which makes it difficult to encompass its numerous fea-
tures within a compact framework. Given the wide range of existing systemic risk
indicators, it is worth identifying possible criteria to classify them according to
their characteristics. This survey presents three ways to do so.

The first taxonomy is organized according to the features of systemic risk indicators
that are most relevant from a regulatory perspective:2 the capacity to anticipate
systemic events (ex-ante vs. near-coincident vs. ex-post), the simplicity of imple-
mentation (easy vs. difficult), and the possibility of updating them frequently (yes
vs. no).

The second taxonomy adopts the point of view of the researchers, who are inter-
ested in the theoretical foundations of the indicators and in the analytical tech-
niques that are used. According to this taxonomy, the indicators are organized
into the following groups: contingent claim analysis, probability and mathematical
methods, interconnection analysis, and composite measures.

The third taxonomy focuses on the main features of systemic risk that each in-
dicator is able to capture, and organizes the indicators into the following classes:
indicators of expected losses in case of default of financial institutions; indicators

2 The term ‘regulators’ is used in this paper to refer to the public institutions that have oversight,
regulatory or supervisory powers over the financial system or some of its components. We
thus refer not only to national and supranational regulatory and supervisory authorities, but
also to international institutions with oversight capacity over the financial system, such as
the Financial Stability Board, the International Monetary Fund, the Bank of International
Settlements, and the European Systemic Risk Board.
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of the probability of default of financial institutions when the system is in distress;
indicators that look at specific mechanisms of contagion; and indicators of the
overall level of distress in the system.

Clearly, there is an inherent dimension of subjectivity in the criteria just intro-
duced. While we believe that they may help the reader to have a systematic view
of the several available measures, alternative approaches are certainly possible.

2.1 The regulator-oriented perspective

For regulatory purposes, it is important that systemic risk indicators have at least
three characteristics. In order to allow regulators to adopt policy measures to
prevent or reduce the risks associated with financial instability, systemic risk in-
dicators should be able to reliably indicate the build-up of risks well in advance.
Moreover, because regulatory activity is usually subject to transparency and ac-
countability requirements, it would also be useful if the indicators were relatively
easy to calculate. Finally, as regulatory decisions during or close to a crisis have
to be taken rapidly, it is important that the indicators can be updated quickly.

More in detail, from the point of view of regulators, the ‘optimal’ systemic risk
indicator should have the following characteristics:

1. Temporal dimension. Regulators need to rely on ex-ante indicators, which
are able to quantify the build-up of systemic risk. However, while identifying
and measuring upsurges in systemic risk is indeed extremely helpful, it may
not be enough to reveal when a systemic crisis is about to break out. That
is why near-coincident indicators may also provide crucial warnings of an
imminent crisis and compel authorities and systemic institutions to take
action to mitigate the crisis. Finally, the ex-post analysis of the indicators
is important to monitor the development of a crisis and the effect of policy
measures (Schwaab et al., 2011, Bisias et al., 2012).

2. Implementability. This is crucial for an indicator to be relevant from a
regulatory perspective. In particular, data availability and ease of calculation
are two necessary requirements for an indicator to be implementable as well
as available to regulators in due time.

3. Possibility of frequent updates. The possibility of updating the indica-
tors frequently improves their accuracy and performance, thus helping regu-
latory authorities to take more timely policy measures.

Table 1 reports the main characteristics of the indicators analysed in this survey
according to the regulator-oriented taxonomy. All the ex-ante indicators are easy
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Table 1 – Regulator-oriented taxonomy

Main characteristics of the indicators illustrated in this article from the regulator’s point
of view.

Indicator
Temporal
dimension

Implementability
Possibility
of frequent

updates

∆CoVaR near-coincident easy yes
CoRisk near-coincident easy yes
SES and SRISK ex-ante easy yes
DIP ex-ante easy yes
PCA ex-ante easy yes
Granger causality ex-ante easy yes
Option-iPoD near-coincident difficult no
JPoD near-coincident difficult no
BSI near-coincident difficult no
DiDe near-coincident difficult no
PCE near-coincident difficult no
Systemic CCA near-coincident difficult no
Network analysis ex-ante easy yes
Default intensity model ex-ante easy yes
SWARCH ex-ante easy yes
CISS near-coincident difficult yes
RAMSI near-coincident difficult yes

to implement and update. On the contrary, the majority of the near-coincident
indicators are difficult to implement. ∆CoVaR and CoRisk show the best com-
bination in terms of implementability and frequency among the near-coincident
indicators. CISS and RAMSI, while being difficult to implement owing to the
amount of data they require, are easy to update once the data become available.
Option-iPoD, JPoD, BSI, DiDe, PCE, and Systemic CCA, which are also near-
coincident, are difficult both to implement and update. Therefore, on the basis of
this taxonomy, the latter indicators seem to be less advantageous compared with
the other near-coincident indicators. However, the other two taxonomies illus-
trated in Section 2.2 and Section 2.3 show that the more complex near-coincident
indicators are based on different theoretical foundations and capture features of
systemic risk that escape the simpler near-coincident indicators.

Some remarks need to be added. First, in this review an indicator is classified
as ex-ante if it is able to signal the build-up of systemic risk at least one quarter
before the outbreak of a systemic crisis. On the other hand, an indicator is said to
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be near-coincident if it is able to signal the outbreak of a crisis about one month
in advance. An additional remark concerns the criteria on the basis of which
indicators are defined as easy or difficult. These criteria relate to difficulties in
accessing the necessary data as well as in implementing the computer programs
for calculating the indicators. Finally, the update frequency is determined by
the frequency with which the required data are available and the time needed to
calculate the indicators.

2.2 The researcher-oriented perspective

While from a regulatory perspective the most important characteristics of sys-
temic risk indicators are their implementability and their ability to provide policy
prescriptions, from a research perspective other characteristics gain importance,
such as the use of sound theoretical frameworks or advanced analytical techniques.
This section classifies the indicators according to whether they mainly rely on:

1. Contingent claim analysis. Indicators based on Merton’s balance sheet
approach (Merton, 1973), where the value of equity can be seen as a call
option on assets with a strike price equal to the on-balance-sheet liabilities.

2. Probability and mathematical methods. Indicators based on the prob-
ability distribution of asset returns and default rate models.

3. Interconnection analysis. Indicators based on techniques – such as quan-
tile regressions, network analysis, principal components analysis, and Markov-
regime switching models – that are built to capture interconnections among
financial institutions.

4. Composite measures. Indicators that are the result of the aggregation
of several sub-indices, which are combined together according to different
criteria in order to provide an aggregate measure of systemic risk across
several markets or risk factors.

Table 2 classifies the indicators from a researcher’s perspective. Both the Option-
iPoD and Systemic CCA methodologies are based on Merton’s balance sheet ap-
proach. In addition, Option-iPoD makes use of the concept of minimum cross-
entropy, whereas Systemic CCA uses techniques from extreme value theory. Eight
indicators are computed using probability and mathematical methods. In particu-
lar, ∆CoVaR measures the systemic spillover from a single financial institution to
the whole financial system. SES and SRISK are based on the concept of expected
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Table 2 – Researcher-oriented taxonomy
Main characteristics of the indicators illustrated in this article according to the
researcher-oriented taxonomy.

Indicator Methodology

∆CoVaR Probability and mathematical methods
CoRisk Interconnection analysis
SES and SRISK Probability and mathematical methods
DIP Probability and mathematical methods
PCA Interconnection analysis
Granger causality Interconnection analysis
Option-iPoD Contingent claim analysis
JPoD Probability and mathematical methods
BSI Probability and mathematical methods
DiDe Probability and mathematical methods
PCE Probability and mathematical methods
Systemic CCA Contingent claim analysis
Network analysis Interconnection analysis
Default intensity model Probability and mathematical methods
SWARCH Interconnection analysis
CISS Composite measures
RAMSI Composite measures

shortfall, i.e. the expected loss of a financial institution, conditional on the loss be-
ing greater than a given threshold. JPoD, BSI, DiDe, and PCE are built upon the
notion of ‘banking system multivariate density’, which is the multivariate density
of the banking system seen as a portfolio of banks. JPoD, for example, is a default
probability measure that estimates the probability of default of all banks in the
financial system. DIP is calculated using probabilities of default and asset return
correlations, while the default intensity model is based on modelling the default
rate.

Five indicators measure interconnections among financial institutions. CoRisk
uses quantile regressions to account for non-linear patterns in common risk factors
across financial institutions. PCA, Granger-causality tests, and network analysis
are interconnection-based indicators. SWARCH is a regime-switching model.

Finally, two indicators are composite measures of systemic risk. CISS is a compos-
ite indicator derived by aggregating five sub-indices and RAMSI is a quantitative
model of financial stability, which integrates a balance sheet approach with a net-
work model.
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Table 3 – Risk-oriented taxonomy
Main characteristics of the indicators illustrated in this article according to the specific
features of systemic risk they focus on.

Indicator Features

∆CoVaR Expected losses
CoRisk Contagion
SES and SRISK Expected losses
DIP Expected losses
PCA Contagion
Granger causality Contagion
Option-iPoD Probability of default
JPoD Probability of default
BSI Probability of default
DiDe Probability of default
PCE Probability of default
Systemic CCA Expected losses
Network analysis Contagion
Default intensity model Probability of default
SWARCH Broad measure of financial stress
CISS Broad measure of financial stress
RAMSI Broad measure of financial stress

2.3 The risk-oriented perspective

As observed in Section 1, the multifaceted nature of systemic risk requires the
deployment of a wide range of indicators in order to obtain reliable measures of
its various features. Thus, we suggest an additional classification of the indicators
presented in this survey into four main categories according to the specific feature
of systemic risk that they are able to capture:

1. Probability of default (or distress) of individual financial institutions or
groups of them;

2. Expected losses, individual or joint, in case of financial and economic
distress;

3. Contagion across institutions in the system;

4. Measure of financial stress in a broad sense.

This third taxonomy is displayed in Table 3. The first category of indicators,
estimating the probability of default or distress, include Option-iPod, JPoD, BSI,
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DiDe, and PCE. While Option-iPoD focuses on individual probabilities of default,
JPoD captures the probability of joint distress for all banks in the system. BSI
measures the number of distressed banks, PCE captures the probability that at
least one bank of the system will become distressed, given that another bank
has become distressed, and DiDe gauges the pairwise conditional probabilities of
distress.

The indicators belonging to the second category are ∆CoVaR, SES and SRISK,
DIP, and Systemic CCA. In particular, ∆CoVaR, SES and SRISK measure the
individual expected losses that are due to another institution or the whole finan-
cial system being in distress. Instead, DIP and Systemic CCA capture the joint
expected losses in a distress scenario.

As for the third category, CoRisk, PCA, Granger-causality models, and network
analysis are all indicators that estimate the degree of contagion among financial
institutions. Within these indicators, CoRisk focuses on pairwise linkages, while
Granger-causality tests are specifically built to capture the directionality of link-
ages. PCA helps to identify the interdependence across financial institutions, and
network analysis makes it possible to track the impact of a credit and/or funding
shock throughout the system.

The fourth category consists of broad measures of financial distress and includes
SWARCH, CISS, and RAMSI. SWARCH captures regime changes in market volatil-
ity, thus helping to predict the likelihood of a crisis. CISS is a composite indicator
which aims to capture and summarize in a single metric the state of instability
stemming from several markets within the financial system. Finally, RAMSI is a
quantitative model of financial stability, which encompasses many types of risk,
namely credit risk, income risk, liquidity risk, counterparty risk, and mark-to-
market risk.

The following sections describe these indicators in greater detail.
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3 (∆)Conditional Value at Risk (∆CoVaR)

Table 4 – ∆CoVaR: Main characteristics

Author(s) Adrian and Brunnermeier (2016)

Institution(s) ECB (2010b, 2011, 2014b)
ESRB Risk Dashboard, issues from ESRB (2012) to
ESRB (2015)
IMF (2011b, 2015, 2016)

Pros High-frequency, near-coincident
Able to capture systemic spillovers
Easy to calculate

Cons Bivariate only

Data Market data

3.1 General description

The Conditional Value at Risk (CoVaR) has been proposed by Adrian and Brun-
nermeier (2016) as the Value at Risk (VaR) of the financial system conditional on
an institution being in distress.3 Its aim is to measure the systemic spillover from
an individual institution to the whole financial system. While two institutions
may be similar in terms of VaR, their contribution to systemic risk could differ
substantially. As explained by Adrian and Brunnermeier (2016), ∆CoVaR – the
individual contribution of an institution to systemic risk – is calculated as ‘the
difference between the CoVaR conditional on the distress of an institution and the
CoVaR conditional on the median state of that institution’.

Intuitively, the CoVaR estimates the stock losses that the whole financial system
would face (with a certain confidence level) conditional on the stock returns of an
individual institution. In turn, ∆CoVaR estimates how the potential losses for the
whole financial system would increase when the individual institution shifts from
being in a normal condition to being in trouble.

If the conditioning is reversed, i.e. if the ∆CoVaR of an individual institution
conditional on the financial system being in distress is calculated, it is possible to
quantify the exposure of a single institution to systemic financial distress. This
indicator is called ‘exposure ∆CoVaR’.

3 Let us recall that the VaR of institution i at the level of confidence level 1− q is defined as the
maximum loss that i may suffer with probability q.
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Since its introduction, CoVaR has been widely used by public institutions (ECB,
2010b, 2011, 2014b; ESRB Risk Dashboard issues from ESRB 2012 to ESRB 2015;
IMF, 2011b, 2015, 2016), as well as researchers (Blancher et al., 2013 and Bisias
et al., 2012). According to several stress tests, it is considered one of the most ac-
curate systemic risk indicators (see e.g. IMF, 2011b; Arsov et al., 2013). CoVaR is
not simply a tail indicator like the VaR, but is a tail indicator conditional on a bad
event. It is exactly that conditioning that helps identify as systemically significant
some institutions that would have not been recognized as such otherwise.

3.2 Technical description

The VaR of institution i (VaRi) calculated for the variable Xi (usually stock re-
turns) at the level of confidence 1− q is formally defined as

P(Xi ≤ VaRi) = q. (1)

CoVaRj|i is then defined by Adrian and Brunnermeier (2016) as the VaR of insti-
tution j conditional on the occurrence of an event A(Xi) concerning institution i,
i.e.

P(Xj ≤ CoVaRj|i | A(Xi)) = q. (2)

Often the event A(Xi) is given by the case in which Xi = VaRi, where the variable
Xi represents the stock returns of institution i.

Given CoVaRj|i, ∆CoVaRj|i, which is defined as the contribution of institution i
to the risk of j, may be expressed as

∆CoVaRj|i = CoVaRj|Xi=VaRi − CoVaRj|Xi=median(Xi). (3)

Adrian and Brunnermeier (2016) use quantile regressions (see Section 4.2) to es-
timate ∆CoVaR, but they also show that the indicator can be estimated by using
other techniques, such as GARCH models.

3.3 Example

Since CoVaR is a bivariate indicator, it can be calculated for the financial system
conditional on one institution at a time being in distress. Figure 1 displays the
average ∆CoVaR of the log stock returns of 52 European banks listed in the
STOXX Europe 600 index. The shaded area shows the interval between the 5th
and the 95th percentiles. The indicator shows several troughs during the periods
of major distress (11 September 2001, the 2008 financial crisis, and the 2010–12
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Figure 1 – ∆CoVaR

Source: ESRB (2015).
Data based on the log stock prices of 52 European banks listed in the STOXX Europe
600 index. The red line is the mean, while the shaded area shows the interval between
the 5th and the 95th percentile.

sovereign debt crisis). This highlights how the market was particularly sensitive
to some institutions being in distress during those periods.

4 CoRisk

Table 5 – CoRisk: Main characteristics

Author(s) IMF (2009a)

Institution(s) IMF (2009a)

Pros Near-coincident
Captures non-linear comovements

Cons Bivariate only

Data Market data

4.1 General description

Introduced by IMF (2009a), CoRisk is a measure of risk interdependence across
financial institutions that accounts for common risk factors and potential nonlinear
effects.
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Intuitively, CoRisk is the percentage difference between a default risk measure of an
institution conditional on the default risk of another institution and some common
drivers of default risk and its unconditional counterpart. Using an OLS regression
model to estimate the conditional default risk measure would only capture a linear
relationship between the default risk measures of the two institutions. To avoid this
drawback, CoRisk is estimated by running quantile regressions, that can capture
potential non-linearities in the conditional distribution of default risk (Chan-Lau,
2009). CoRisk is an alternative indicator to other models that capture non-linear
comovements based on extreme-value theory (e.g. Systemic CCA – see Section 10)
or regime switching estimations (e.g. SWARCH – see Section 13).

CoRisk can be estimated using different datasets. IMF (2009a) uses CDS spreads.
In particular, CDS spreads below the 5th quantile of their empirical distribution
are assumed to indicate a very favourable regime, while CDS spreads above the
95th quantile are assumed to indicate a regime of distress.

4.2 Technical description

IMF (2009a) uses the following quantile regression to estimate CoRisk:

CDSi = ατ +
K∑
m=1

βτ,mRm + βτ,jCDSj + εi (4)

where CDSi, the credit default swap spread of institution i, depends on the CDS
spread of institution j (CDSj) and K common risk factors (Rm), such as the
implied volatility index (VIX) calculated by the Chicago Board Option Exchange
(a measure of the general risk appetite), a LIBOR spread (which measures the
default risk in the interbank market), and the slope of the US yield curve (a
business cycle indicator). The parameter τ is the quantile for the estimation.

The parameters are estimated using the quantile regression method introduced by
Koenker and Basset Jr. (1978) as an extension of the standard linear regression.
The linear regression model focuses on modelling the average relationship between
a dependent variable y and a vector of regressors x, i.e. the conditional mean of y
given x (E(y|x)). However, the conditional mean may not be sufficient to describe
the whole relationship between y and x. For example, in a skewed distribution the
median may be a more appropriate measure of central tendency than the mean,
and the relationship between the dependent variable and the regressors can be
better modelled by using a conditional median regression than a conditional mean
regression.

The quantile regression model is a generalization of the median regression model,
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as the latter is simply the former when run at the 50th quantile. In particular, the
quantile regression estimates the effects of regressors on various quantiles in the
conditional distribution. If εi is the model prediction error, ordinary least squares
(OLS) minimize

∑
i ε

2
i . The median regression minimises the sum of the least

absolute deviations,
∑

i |εi|. The quantile regression minimizes a sum that gives
asymmetric penalties based on the quantile τ : it assigns weight τ when εi > 0
and weight (τ − 1) when εi ≤ 0. Therefore, the minimization problem to find the
quantile regressor estimators at quantile τ is:

min
ατ ,βτ,m,βτ,j

∑
i

ρτ

(
CDSi − ατ −

K∑
m=1

βτ,mRm − βτ,jCDSj

)
(5)

where ρτ is the weighting function defined as

ρτ =

{
τ for εi > 0

τ − 1 for εi ≤ 0
(6)

and τ ∈ (0, 1). Once the quantile regression coefficients have been estimated, it is
possible to estimate CoRisk for any given quantile τ as

CoRiskτi,j = 100

(
ατ +

∑K
m=1 βτ,mRm + βτ,jCDSj(τ)

CDSi(τ)
− 1

)
(7)

where CDSi(τ) and CDSj(τ) are the CDS spreads of institutions i and j corre-
sponding to the τ th percentile of their empirical sample, and the coefficients ατ ,
βτ,m, and βτ,j are the parameters of the τ th quantile regression in Equation (4).
As one is usually interested in measuring CoRisk in periods of distress, this metric
is often calculated for high quantiles, such as the 95th. A high CoRisk indicates
an increased sensitivity of the default risk of institution i to the default risk of
institution j.

4.3 Example

Figure 2 shows the CoRisk estimates of a subset of systemically important US
financial institutions in March 2008 (IMF, 2009a). Only the values of CoRisk that
exceed 90 per cent are reported. The CoRisk of A conditional on B is calculated
as the percentage difference between the estimated and the observed CDS spreads
of A at the 95th empirical percentile. The estimated CDS spread of A is computed
using the 95th empirical percentile CDS spread of B as an input in the 95th quantile
regression of A on B. The numbers reported next to the arrows are the CoRisk
measures. For example, the risk of Wells Fargo conditional on the risk of AIG
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Figure 2 – CoRisk

Source: IMF (2009a).
The numbers on the arrows are the CoRisk measures between two institutions.

is almost five times (490 per cent) higher than the risk corresponding to the 95th

percentile of the empirical distribution of Wells Fargo.
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5 Systemic Expected Shortfall (SES) and SRISK

Table 6 – SES and SRISK: Main characteristics

Author(s) SES, Acharya et al. (2017)
SRISK, Brownlees and Engle (2017)

Institution(s) ECB (2010b, 2013, 2014a)
IMF (2014b, 2016)

Pros Ex-ante measure
Model-based, with theoretical justification
Additivity

Cons Measures only the average, linear, bivariate dependence

Data Balance sheet and market data

5.1 General description

The Systemic Expected Shortfall (SES) was introduced by Acharya et al. (2017)
‘to bridge the gap between economic theory and actual regulation’. For this reason,
the SES combines the features of being theoretically micro-founded and practically
relevant for regulators.

The SES measures how much a given financial institution is undercapitalised when
the whole financial system is undercapitalised. More specifically, by being under-
capitalised it is meant by how much a bank’s equity drops below a given fraction
of its assets when the aggregate banking capital drops below a given fraction of
the aggregate banking assets.

The SES has two main components: the leverage (LVG) and the marginal expected
shortfall (MES) of the institution under consideration. The latter is defined as the
losses of a firm ‘in the tail of the aggregate sector’s loss distribution’. While the
LVG can be calculated from balance sheet data, the MES needs to be estimated.
Acharya et al. (2017) propose computing MES as the average stock return of a
financial institution in the 5 per cent worst days of any given year.

Building upon the theoretical framework of Acharya et al. (2017), Brownlees and
Engle (2017) propose another indicator, the SRISK, which is also computed from
the LVG and the MES. The main difference between the SRISK and the SES lies
in the econometric techniques used for the estimation of the MES. While Acharya
et al. (2017) compute the MES using historical market data from the previous
year, Brownlees and Engle (2017) use advanced time series models to calculate the
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SRISK. Estimates of the SRISK for major financial institutions across the world
are published online on the NYU Stern Volatility Lab (V-Lab) website.4

5.2 Technical description

In order to define the SES, some concepts need to be introduced. To begin with,
Expected Shortfall (ES) is the expected loss of a bank, conditional on the loss being
greater than the Value at Risk calculated at a given level of confidence 1− α:

ESα = −E[R | R ≤ −VaRα]. (8)

For several reasons, such as risk management or strategic capital allocation, firms
may decompose their firm-wide losses R into contributions ri from each individual
group or trading desk i, which are weighted by yi (Acharya et al., 2017). ES can
then be written as the following weighted average:

ESα = −
∑
i

yiE[ri | R ≤ −VaRα]. (9)

The marginal expected shortfall for the trading desk i, MESi, is defined as

MESiα =
∂ESα
∂yi

= −E[ri | R ≤ −VaRα]. (10)

This risk management framework for a single institution can be extended to the
whole financial system ‘by letting R be the return of the aggregate banking sector
or the overall economy’ (Acharya et al., 2017). In this case, the conditioning event
is a systemic event, which is thought of as the 5 per cent worst days of any given
year in terms of stock returns.

The Systemic Expected Shortfall (SESi) is defined as

SESi = −E[zai − wi | W < zA]. (11)

In words, ‘SESi is the amount a bank’s equity wi drops below its target level –
which is a fraction z of assets ai – in case of a systemic crisis when aggregate
banking capital W is less than z times aggregate assets A’.

4 The V-Lab (https://vlab.stern.nyu.edu) ‘provides real time measurement, modelling and
forecasting of financial volatility, correlations and risk for a wide spectrum of assets. V-Lab
blends together both classic models as well as some of the latest advances proposed in the
financial econometrics literature. The aim of the website is to provide real time evidence on
market dynamics for researchers, regulators, and practitioners.’

21

https://vlab.stern.nyu.edu


Once MESi and SESi are defined, Acharya et al. (2017) compute the following
statistical relationship between the two indicators:

SESi = β0 + β1LVGi + β2MESi5%, (12)

which shows that MESi and its level of leverage LVGi are predictors of SESi,
i.e. the contribution to systemic risk of institution i.

For empirical purposes, MESi is estimated by Acharya et al. (2017) by averaging
the stock return of the 5 per cent worst days of the year for institution i, while
LVG is computed from balance sheet and market data as follows:

LVGi =
quasi-market value of assets

market value of equity

=
book value of assets− book value of equity + market value of equity

market value of equity
.

(13)

The main difference between the SES and the SRISK lies in the estimation of the
MES. Taking a step back, the SRISK of firm i at time t is defined in Brownlees
and Engle (2017) as

SRISKi,t = Et[zai,t+h − wi,t+h | Rt+1:t+h < C], (14)

where Rt+1:t+h is the stock return between t + 1 and t + h and C is a threshold
for market decline over time horizon h. As before, ai,t is the value of firm i’s
assets, wi,t is the value of firm i’s equity, and z is the prudential capital fraction.
In words, the SRISK measures the expected capital shortfall conditional on the
systemic event Rt+1:t+h < C. Given the balance sheet identity ai,t = di,t + wi,t,
i.e. the value of assets ai,t equals that of debt di,t plus equity wi,t, SRISK can be
written as follows:

SRISKi,t = Et[za,it+h − w,it+h | Rt+1:t+h < C]

= zE[di,t+h | Rt+1:t+h < C]− (1− z)E[wi,t+h | Rt+1:t+h < C].
(15)

Assuming that, when a systemic event materialises, debt cannot be renegotiated,
i.e. E[di,t+h | Rt+1:t+h < C] = di,t, then

SRISKi,t = zdi,t − (1− z)E[wi,t+h | Rt+1:t+h < C]. (16)

Defining leverage as LVGi,t = (di,t + wi,t)/wi,t and long-run MES as LRMES =
−E[Ri,t+1:t+h | Rt+1:t+h < C], where Ri,t+1:t+1 is firm i’s stock return between t+ 1
and t+ h, SRISK then becomes

SRISKi,t = wi,t[zLVGi,t + (1− z)LRMES− 1]. (17)
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Figure 3 – SRISK

(a) Bank of America Corp

(b) Deutsche Bank AG

Source: V-Lab
Data in millions of US dollars.

Given that LVGi,t can be computed as in Acharya et al. (2017), the issue is how to
estimate LRMES. While Acharya et al. (2017) estimate the MES by directly us-
ing market data, Brownlees and Engle (2017) develop more advanced econometric
techniques for estimating LRMES. In particular, they propose a bivariate condi-
tionally heteroskedastic model to determine the dynamics of the log stock returns
of both firm i and the whole market on a given day t. The specification requires an
estimation of time-varying volatility and correlation, as well as non-linear tail de-
pendence. A multi-step Generalized Autoregressive Heteroskedasticity (GARCH)
approach and a Dynamic Conditional Correlation approach (see Engle, 2002) are
proposed for the first two, while a non-parametric kernel estimator is used to
estimate tail dependence.
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5.3 Example

Figure 3 shows the SRISK of Bank of America Corp and Deutsche Bank AG over
the period July 2008 - July 2016. The SRISK is computed over a period of six
months for the threshold C = −40%, i.e. with a market decline of at least 40 per
cent in half a year.5 As shown in Figure 3a, after declining just before the col-
lapse of Lehman Brothers, the SRISK of Bank of America Corp started to rise in
September 2008 and peaked above $154 billion in April 2009, following the acqui-
sition of Merrill Lynch in January 2009. After a temporary decline, the indicator
hovered around $130 billion in the last months of 2011. Since then, the SRISK
of Bank of America Corp. has declined and in summer 2016 it was around $80
billion. Figure 3b shows the SRISK of Deutsche Bank AG. This indicator, while
less volatile than that of Bank of America Corp, still shows significant variations.
The two highest peaks were reached in autumn 2010 and in the last months of
2011, when the SRISK rose to $130 billion. Since then, the SRISK of Deutsche
Bank AG has also declined, hovering around $87 billion in summer 2016.

6 Distress Insurance Premium (DIP)

Table 7 – DIP: Main characteristics

Author(s) Huang et al. (2009)

Institution(s) ECB (2010b)

Pros Ex-ante, forward-looking
Economically intuitive

Cons Incorporates liquidity appetite in addition to systemic risk

Data CDS spreads and equity returns

6.1 General description

The Distress Insurance Premium (DIP) was proposed by Huang et al. (2009) as
an indicator of systemic risk that ‘is equivalent to a theoretical premium to a
risk-based deposit insurance scheme that guarantees against most severe losses
for the banking system’. The indicator represents the expected value of portfolio

5 The graph shown in Figure 3 can be found at https://vlab.stern.nyu.edu/analysis/RISK.
WORLDFIN-MR.GMES#risk-graph.
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credit losses that are equal or exceed a minimum share of the total liabilities in
the banking sector.

Two components are necessary to calculate the DIP: the probability of default
(PD) for individual banks and the correlation of asset returns. PDs are derived
from single-name CDS spreads, while asset return correlations are derived from the
comovements of equity returns. The DIP increases in both components: a higher
DIP may be driven by either an increased probability of default of individual banks
or a greater exposure to common risk factors. In addition, since CDS spreads and
equity prices are available in real time, the DIP is a forward-looking indicator that
can be updated very frequently.

The DIP is further extended by Huang et al. (2012) along three lines. First, asset
return correlation is not assumed to be time invariant, but is estimated using a
Dynamic Conditional Correlation model (Engle, 2002). Second, PDs are derived
from the expected default frequency from Moody’s KMV. Unlike CDS spreads,
which provide risk-neutral PDs, the expected default frequency is a physical mea-
sure of PDs based on balance-sheet information and equity price data. Third,
the analysis focuses not only on the aggregate level of systemic risk, but also on
the marginal contribution of each bank to the systemic risk of the entire banking
system.

6.2 Technical description

The DIP is calculated starting with two components: risk-neutral PDs and asset
return correlations. Huang et al. (2009) suggest calculating the PD for bank i at
time t from single-name CDS spreads as follows:

PDi,t =
atsi,t

atLGDi,t + btsi,t
, (18)

where si,t is the observed CDS spread, LGDi,t is the loss given default,

at =
∫ t+T
t

e−rτdτ , bt =
∫ t+T
t

τe−rτdτ , and r is the risk-free rate. LGD is assumed
to be independent from the PD process and to follow a symmetric triangular dis-
tribution with mean 0.55 and range [0.1,1]. The mean is derived from the Basel II
internal ratings-based approach and is also consistent with the historical data.

As for the estimation of asset return correlations, Huang et al. (2009) point out
that two methodologies are adopted in the literature. The first one estimates
the correlations directly from historical data on defaults. However, since defaults
are rare events, this may lead to estimation errors, thus potentially limiting this
approach. The second methodology, which is the one used by the authors to
calculate the DIP, derives correlations from equity returns: ‘The logic behind this
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approach is that equity is a call option on the underlying firm assets. Hence, the
comovements in equity prices tend to reflect the comovement among underlying
asset values’.

In particular, Hull and White (2004) suggest using equity return correlation as a
proxy for asset return correlation. Equity return correlation is a good proxy for
asset return correlation if firm leverage is constant. However, when firm leverage is
time varying, the relationship between equity and asset return correlation breaks
down and the discrepancy depends on the comovements between asset returns and
leverages (Huang et al., 2009). The assumption of constant leverage is more likely
to hold in the short run and is tested empirically by the authors, who find that it
is not rejected for eleven out of the twelve American banks in their sample over the
period 2001–08.6 Since the DIP aims at being a forward-looking indicator, Huang
et al. (2009) use forecasted correlations instead of historical ones. The forecasted
correlation is calculated as follows, by considering a time unit of one week:

ρt,t+12 = c+ k1ρt−12,t +
l∑

i=1

k2iρt−i,t−i+1 + ηXt + νt, (19)

where ρ indicates the average asset return correlation and its subscripts refer to
the time horizon over which it is calculated, while Xt is a set of financial market
variables, namely the one-quarter return of the S&P500 and its current implied
volatility (VIX), the Fed funds rate and the term spread, which is defined as the
difference between 10-year and 3-month constant maturity Treasury rates.

Once individual PDs and forecasted asset return correlations have been calculated,
it is possible to build the DIP. For the estimation of the DIP, Huang et al. (2009)
consider a hypothetical debt portfolio that consists of the liabilities (deposits,
debts, and others) of all banks. The DIP is the theoretical insurance premium
against any loss of that portfolio above a certain threshold over the following 12
weeks. It is calculated as the risk-neutral expectation of credit losses that equal
or exceed a minimum share of the total liabilities of the sector. The share is set
at 15 per cent of the total liabilities of the banking system. In order to calculate
the expected credit losses of the portfolio, Montecarlo simulations based on the
model of Tarashev and Zhu (2008) are implemented in two steps. First, the joint
default scenario is simulated by using individual PDs and asset return correlations.
Second, conditional on defaults occurring in the first step, the realization of LGDs
and the overall credit losses of the whole portfolio are simulated.

6 The twelve banks in the sample are: Bank of America, Bank of New York, Bear Stearns,
Citibank, Goldman Sachs, JP Morgan Chase, Lehman Brothers, Merrill Lynch, Morgan Stan-
ley, State Street Corp, Wachovia and Wells Fargo.
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Figure 4 – DIP

Source: Huang et al. (2009).

6.3 Example

Figure 4 shows the DIP, the theoretical insurance premium against a credit loss of
at least 15 per cent of the banking sector’s liabilities in the United States over the
period 2001–08. The price of insurance is shown as the cost per unit of exposure to
the banking sector’s liabilities. That price increases significantly in correspondence
with the telecom bubble burst in the early 2000s and the starting of the subprime
crisis in mid-2007; it dramatically spikes in March 2008, one of the worst months
in the subprime crisis.
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7 Principal Component Analysis (PCA)

and Granger-Causality Networks

Table 8 – PCA and Granger-Causality Networks: Main characteristics

Author(s) Billio et al. (2012a)

Institution(s) ECB (2010b)

Pros Ex-ante, forward-looking
Measures the interconnectedness and the direction of causality
Statistically unconditional

Cons Granger-causality tests are vulnerable to common factors

Data Stock returns

7.1 General description

Billio et al. (2012a) propose two econometric measures of systemic risk based on
principal component analysis (PCA) and Granger-causality tests. The first is
aimed at identifying common components among different sectors of the financial
markets, whereas the second is used to detect the direction of causality between
pairs of financial sectors.

In a nutshell, PCA decomposes the stock return volatility of a sample of finan-
cial institutions into different components. The number of components which are
necessary to explain a given fraction of stock return volatility becomes lower as
the interconnection among financial institutions increases. These components can
thus be used to measure the interconnectedness across institutions. To measure
not only the degree, but also the directionality of interconnections across financial
institutions, Billio et al. (2012a) propose to use the statistical notion of Granger
causality, which is based on the relative forecast power of two time series. More
precisely, a series is said to Granger-cause another one when past values of the for-
mer contain information that helps to predict the latter. The authors use Granger
causality to assess whether lagged returns of a financial institution have forecast
power for present returns of another institution.

Both measures are calculated using stock returns of four types of financial insti-
tutions: hedge funds, banks, brokers/dealers, and insurance companies. The PCA
shows interdependence among the four sectors at the height of the financial cri-
sis; in addition, the Granger-causality tests highlight that this interdependence
is asymmetric and that the returns of banks and insurance companies are found
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to have a higher impact on the returns of hedge funds and brokers/dealers than
viceversa.

The analysis conducted by Billio et al. (2012a) on financial institutions is further
developed in Billio et al. (2012b) along two directions. First, instead of stock re-
turns, they use fair-value CDS spreads derived from expected loss ratios (ELRs),
which are calculated by following a contingent claim analysis (CCA) approach.7

Second, they extend the analysis to sovereigns in order to study the intercon-
nections between sovereigns and financial institutions, as well as among different
sovereigns.

7.2 Technical description

7.2.1 Principal component analysis

PCA is a non-parametric method in data analysis that allows valuable information
to be extracted from a dataset which is noisy and redundant.8 The dataset of Billio
et al. (2012a) consists of the stock returns matrix R of the financial institutions
under consideration. PCA operates a linear transformation of the original dataset
R by re-expressing the data as a linear combination of its basis vectors. This
transformation yields a decomposition of the variance-covariance matrix of R into
an orthogonal matrix of eigenvectors, and a diagonal matrix of eigenvalues.

Let Ri be the stock return for institution i, i = 1, . . . , N , E[Ri] = µ, and Var[Ri] =
σ2
i . Then, the variance of the financial system σ2

S is given by

σ2
S =

N∑
i=1

N∑
j=1

σiσjE[zizj], (20)

where zk = Rk−µk
σk

is the standardized return of institution k. It is now possible
to introduce N zero-mean uncorrelated variables ζk, whose variance-covariance
matrix is

E[ζkζl] =

{
λk if k = l,

0 if k 6= l,
(21)

where λk is the k-th eigenvalue, and for which all the higher-order co-moments
are equal to those of the zk. The standardized returns can then be expressed as a

7 See Section 10 for an explanation of the CCA approach.
8 For more details on PCA, see Jolliffe (2002).
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linear combination of the ζk

zk =
N∑
k=1

Li,kζk, (22)

where Li,k is a factor loading of ζk for institution i.

Therefore, the variance-covariance matrix can be decomposed into the orthonormal
matrix of loadings and the diagonal matrix of eigenvalues

E[zizj] = E

[(
N∑
k=1

Li,kζk

)(
N∑
l=1

Lj,lζl

)]

=
N∑
k=1

N∑
l=1

Li,kLj,lE[ζkζl] =
N∑
k=1

Li,kLj,kλk,

(23)

and the variance of the system becomes

σ2
S =

N∑
i=1

N∑
j=1

N∑
k=1

σiσjLi,kLj,kλk. (24)

Billio et al. (2012a) build an indicator of interconnectedness based on the obser-
vation that only a few principal components are sufficient to explain the largest
part of the variability of the stock returns. In particular, only the first n < N
eigenvalues explain most of the variation of the system, especially in crisis periods
when the majority of returns tend to move together. Periods when the subset n of
principal components explain more than some fraction H of the total volatility are
indicative of increased interconnectedness between financial institutions. Once the
total risk of the system has been defined as Ω =

∑N
k=1 λk and the risk associated

with the first n principal components as ωn =
∑n

k=1 λk, it is possible to compare
the ratio of the two, i.e. the cumulative risk fraction, to the pre-specified critical
threshold H in order to capture periods of increased interconnectedness:

ωn
Ω

= hn ≥ H. (25)

When the financial institutions of the system are highly interconnected, only a few
principal components are able to explain a large proportion of its variability and,
hence, hn is more likely to exceed the threshold H. The rise of new linkages can
then be detected through the time variations of hn.

In addition to the cumulative risk fraction, Billio et al. (2012a) define a univariate
measure of connectedness for each company i, the principal component analysis

30



systemic risk measure, PCAS, as follows:

PCASi,n =
1

2

σ2
i

σ2
S

∂σ2
S

∂σ2
i

∣∣∣∣
hn≥H

. (26)

PCASi,n captures the contribution of institution i to systemic risk, conditional
on the condition hn ≥ H being verified, i.e. conditional on a strong common
component across the returns of financial institutions. Billio et al. (2012a) show
that this measure also corresponds to the exposure of institution i to the total risk
of the system. The latter is measured as the weighted average of the square of
the factor loadings of the single institution i to the first n principal components,
where the weights are the eigenvalues:

PCASi,n =
1

2

σ2
i

σ2
S

∂σ2
S

∂σ2
i

∣∣∣∣
hn≥H

=
n∑
k=1

σ2
i

σ2
S

L2
ikλk

∣∣∣∣
hn≥H

. (27)

Since the focus is on endogenous risk, PCASi,n measures both the contribution
and the exposure of the i-th institution to the overall risk of the system, given a
strong common component across the returns of all institutions.

7.2.2 Granger-causality tests

Granger-causality tests can be used to identify the directionality of interlinkages
between financial institutions. The time series x is said to Granger-cause the time
series y if past values of x help to predict future values of y. In Billio et al. (2012a)
the time series taken into account are the stock returns of two financial institutions,
Ri and Rj,

Ri,t+1 = aiRi,t + bjRj,t + ei,t+1 (28)

Rj,t+1 = ajRj,t + biRi,t + ej,t+1, (29)

where ei,t+1 and ej,t+1 are uncorrelated white noise processes and ai, aj, bi, and
bj are the parameters of the model. The number of lags included in the model is
chosen on the basis of the Bayesian information criterion (BIC). If bj is significantly
different from zero, j is said to Granger-cause i. If bi is significantly different from
zero, i is said to Granger-cause j. If both coefficients are significantly different
from zero when an F -test is performed, there is a feedback relationship between i
and j. Billio et al. (2012a) then define an indicator of causality (j → i), which is
1 if j Granger-causes i and 0 otherwise. Starting from this indicator, the authors
build several network-based measures as follows:

1. Degree of Granger Causality: it is the fraction of statistically significant
Granger causality relationships among all the pairs of financial institutions.
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2. Number of Connections: it measures the number of institutions that are
Granger-caused by a given institution j, the number of institutions that
Granger-cause institution j, and the sum of the previous two measures.

3. Sector Conditional Connections: it is similar to the previous indicator, but
it is conditional on the type of financial institution.

4. Closeness: it ‘measures the shortest path between a financial institution and
all other institutions reachable from it, averaged across all other financial
institutions’. In other words, it measures the average of the shortest distance
between each pair of institutions after having defined a concept of distance
in terms of causality path.

5. Eigenvector Centrality: it ‘measures the importance of a financial institution
in a network by assigning relative scores to financial institutions based on
how connected they are to the rest of the network’. It does so by defining
an adjacency matrix and then by calculating its eigenvectors.

7.3 Example

Figure 5 displays 36-month rolling windows for the cumulative risk fraction ωn/Ω
over the period January 1994 – December 2008. The financial institutions used in
the sample are the hedge funds included the Lipper TASS database, and the banks,
brokers/dealers, and insurers in the University of Chicago’s Center for Research
in Security Prices Database. The graph shows that the variability explained by
the first principal component (PC1) – the yellow area – rises remarkably in corre-
spondence with the LTCM crisis in 1998 and in 2005, when the Fed raises interest
rates. It then peaks in 2008, when PC1 alone is able to explain almost 40 per cent
of the variability of stock returns. From the figure it is also clear that 20 out of 36
PCs are enough to explain roughly 90 per cent of the stock return variability, and
even more than 90 per cent in the last part of the sample.
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Figure 5 – Principal components

Source: Billio et al. (2012a).

8 Option-iPoD

Table 9 – Option-iPoD: Main characteristics

Author(s) Capuano (2008)

Institution(s) IMF (2009b)

Pros Makes use of non-parametric density function
Default barrier determined endogenously

Cons Gives no information when in the default state

Data Equity options

8.1 General description

Introduced by Capuano (2008), the option-implied probability of default (Option-
iPoD) is a market-based indicator that measures the probability of default for an
institution based on the prices of its equity options.
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In this approach, the probability of default is defined as the probability that the
value of a firm’s assets drop below a threshold level (the default barrier). To
estimate this probability, both the default barrier and the density function of
the asset value are needed. Since equity options are used to estimate the two
components, the probability of default measure proposed by Capuano (2008) is
called Option-iPoD. More specifically, the model is based on Merton’s balance
sheet approach (Merton, 1973) according to which the value of equity can be seen
as a call option on the firm’s assets with strike price value equal to the on-balance
sheet liabilities.

The advantages of the Option-iPoD are twofold: first, it does not make any dis-
tributional assumption on the asset value, which is estimated non-parametrically;
and second, the default barrier is estimated endogenously. The Option-iPoD is
calculated by applying the principle of minimum cross-entropy and by solving a
constrained optimization problem. Cross-entropy ‘can be interpreted as a measure
of relative distance between the prior and the posterior density function of the
value of an asset’ (Capuano, 2008).

The main limitation of the Option-iPoD is that it is not able to describe the
probability density function of the value of assets in the default state, i.e. the
state when the asset value VT is lower than the default barrier D. Therefore,
Capuano (2008) proposes an extension of the model that uses zero-coupon bonds
in place of options, given that bonds are senior claims with respect to equity and
their prices also provide information on the default state. Nonetheless, even though
this extension may be theoretically appealing, it has some empirical limitations,
such as the mismatch between the maturity of the zero-coupon bonds and that
of the option contracts, or the existence of several types of bonds of the same
company with a different seniority structure. In practice, these limitations hamper
the actual implementability of the proposed extension.

8.2 Technical description

The Probability of Default (PoD) is defined by Capuano (2008) as

PoD(X) =

∫ X

0

fV (v)dv (30)

where V is the value of an asset, fV is the probability density function of V , and
X is the default barrier, i.e. the value below which a financial institution defaults.
The goal is to estimate X and fV . In order to do this, equity call options are used.
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In general, the payoff of a call option written on an asset is given by

CT = max(AT −K; 0), (31)

where K is the strike price and AT is the price of the asset at the maturity date T .
In particular, when a call option is written on a stock, its payoff is

CT = max(ET −K; 0), (32)

where ET is the price of the stock at the maturity date T . Since Capuano (2008)
adopts the balance sheet approach, a stock can be seen as an option on the firm’s
assets with a strike price equal to the on-balance sheet value of liabilities:

ET = max(VT −D; 0) (33)

where VT is the value of the firm’s assets and D is the value of the debt. Therefore,
an option on a stock can be seen as an option on an option:

CT = max(ET −K; 0)

= max(max(VT −D; 0)−K; 0)

= max(VT −D −K; 0).

(34)

In order to calculate the Option-iPoD(D), it is necessary to estimate D, i.e. the
default threshold that corresponds to the value of debt, and the probability that
the value of the assets VT will fall below D. In order to solve for PoD(D), Ca-
puano (2008) uses the principle of the minimum cross-entropy, which is a gen-
eralization of the principle of maximum entropy introduced by Kullback and
Leibler (1951).

The objective function of the optimization problem is given by:

min
D

(
min
f(VT )

∫ ∞
VT=0

f(VT )log

[
f(VT )

f0(VT )

]
dVT

)
, (35)

where f0(VT ) is the prior probability density function of the value of the assets,
representing the prior knowledge of f(VT ), which is the posterior density. The
function to be minimized is the relative-entropy between f0(VT ) and f(VT ), that
is the uncertainty around f(V ). This framework also envisages the particular case
in which there is no prior knowledge and which corresponds to the assumption of
f0(VT ) being uniform. The minimization is subject to three constraints:

1. Balance sheet constraint

E0 = e−rT
∫ ∞
VT=0

max(VT −D; 0)f(VT )dVT

= e−rT
∫ ∞
VT=D

(VT −D)f(VT )dVT ,

(36)
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i.e. the theoretical value of the stock price has to correspond to the value of
the stock price today, E0;

2. Observable options price constraint

Ci
0 = e−rT

∫ ∞
VT=0

max(VT −D −K; 0)f(VT )dVT

= e−rT
∫ ∞
VT=D+K

(VT −D −Ki)f(VT )dVT ,

(37)

i.e. the posterior probability density has to be able to price the observable
option prices. In other words, the present value of the expected call option
payoff at the maturity date must correspond to the price of the call option
observed today, Ci

0;

3. Normalization constraint

1 =

∫ ∞
VT=0

f(VT )dVT , (38)

i.e. the probability density function must integrate to 1.

The problem is first solved by finding f(VT ) as a function of D and then, given
the optimal f(VT ), is solved for D. Once D is found, it can be substituted back
into the optimal equation for f(VT ). The Lagrangian is given by:

L =

∫ ∞
VT=0

f(VT )log

[
f(VT )

f0(VT )

]
dVT + λ0

[
1−

∫ ∞
VT=0

f(VT )dVT

]
+ λ1

[
E0 − e−rT

∫ ∞
VT=D

(VT −D)f(VT )dVT

]
+

n∑
i=1

λ2

[
Ci

0 − e−rT
∫ ∞
VT=D+K

(VT −D −Ki)f(VT )dVT

]
.

(39)

The FOC for f(VT ) is found by equalizing the Fréchet derivative of L to zero.
The solution f ∗(VT , D) is a function of the default barrier D. To solve for D it
is possible to substitute f ∗(VT , D) back into Equation (39). The optimal D is
determined by:

lim
∆→0

L(f ∗(VT , D + ∆))− L(f ∗(VT , D))

D + ∆
= 0 (40)

In order to calculate Option-iPoD empirically, it is necessary to have at least two
option contracts: one is used to solve the first optimization problem in Equation
(35) to shape the probability density function f ∗(VT , D), while the other is used
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Figure 6 – Option-iPoD for Bear Sterns

Source: Capuano (2008).

to pin down D so that it satisfies the constraint in Equation (37) and solves the
second optimisation problem in Equation (35).

It is also possible to solve the problem for options with different maturities so as
to infer a term structure of Option-iPoDs.

8.3 Example

Figure 6 is taken from Capuano (2008) and shows the Option-iPoD and the CDS
spread for Bear Sterns for the period from 12 February 2008 to 19 March 2008.
The collapse of Bear Sterns took place on 14 March 2008. The Option-iPoD
started showing some variations on 21 February. It then displayed a first peak on
29 February, which was followed by a week of calm. On 10 March the Option-
iPoD of Bear Sterns peaked at a value which was four times bigger than the first
spike recorded on 29 February. The maximum level was reached on 14 March, but
decreased over the days following the Fed’s announcement of a rescue plan. It is
worth observing that in the sample analysed, Option-iPoD appears to be a leading
indicator compared with the CDS spread.
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9 Joint Distress Indicators

Table 10 – Joint Distress Indicators: Main characteristics

Author(s) Segoviano and Goodhart (2009)

Institution(s) ECB (2008, 2010b)
IMF (2009b, 2011b)
BoI (2011)

Pros Embeds linear and non-linear time-varying dependence
Uses non-parametric density function
Measures banks’ interdependence structure

Cons CDS may overshoot, as they also incorporate liquidity risk and
risk aversion into the financial system

Data CDS spreads

9.1 General description

Segoviano and Goodhart (2009) present a set of joint distress indicators that are
built upon the concept of the Banking System Multivariate Density (BSMD). In
particular, they treat the banking system as a portfolio of banks and they estimate
its multivariate density. From the latter they calculate four indicators of joint
distress:

1. The Joint Probability of Distress (JPoD), which measures ‘the probability
of all banks in the system (portfolio) becoming distressed, i.e. the tail risk
of the system’;

2. The Banking Stability Index (BSI), which ‘reflects the expected number of
banks becoming distressed given that at least one bank has become dis-
tressed’;

3. The Distress Dependence Matrix (DiDe), which is a matrix that ‘contains
the probability of distress for the bank specified in the row given that the
bank specified in the column becomes distressed’;

4. The Probability of Cascade Effects (PCE), which is the probability that
‘at least one bank becomes distressed, given that a specific bank becomes
distressed’.
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These indicators analyse the stability of the system from different perspectives,
namely the common distress of the banks in the system (JPoD), the distress be-
tween specific banks (DiDe), and the distress of the system generated by a given
bank (BSI and PCE).

A major advantage of these indicators is that they are able to capture both linear
and non-linear distress dependencies among the banks in the system. In addi-
tion, the linear and non-linear dependencies are allowed to change throughout the
economic cycle. Given their ability to capture non-linear time-varying distress
dependencies, these indicators have been used, among others, by the European
Central Bank (ECB, 2008, 2010b) and the Bank of Italy (BoI, 2011).

9.2 Technical description

In order to calculate the four indicators, it is necessary to recover the BSMD.
Section 9.2.1 describes how to calculate the BSMD, while Section 9.2.2 reports
more technical details for each indicator.

9.2.1 How to calculate the Banking System Multivariate Density

Segoviano and Goodhart (2009) propose a minimum cross-entropy approach, which
is the same methodology used to calculate the Option-iPoD described in Section 8.
According to this approach, the cross-entropy between a prior and a posterior joint
probability density function is minimized with respect to the posterior joint density
function. In particular the minimization problem is:

min
p(x1,...,xn)

∫
· · ·
∫
p(x1, . . . , xn)log

p(x1, . . . , xn)

q(x1, . . . , xn)
dx1 . . . dxn, (41)

where (x1, . . . , xn) are the logarithmic asset returns of the n banks that make
up the banking system, p(x1, . . . , xn) is the posterior joint density function of the
portfolio of the banks’ asset returns, and q(x1, . . . , xn) is the parametric prior joint
density function of the same portfolio. The minimization problem is subject to
the following constraints:

1. Probability of default (PoD) constraints:

PoDi
t =

∫
· · ·
∫
p(x1, . . . , xn)1xi≥xdi dx1 . . . dxn, (42)

∀i = 1, . . . , n, where 1xi≥xdi is the indicator function that is equal to 0 when

bank i’s asset return is below its default threshold xdi and 1 otherwise. These
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constraints on the PoD are necessary to guarantee that the posterior joint
density function is consistent with the empirically estimated PoDs.

2. Normalization constraint:∫
· · ·
∫
p(x1, . . . , xn)dx1 . . . dxn = 1, (43)

i.e. the BSMD has to integrate to 1.

The Lagrangian associated with the minimization problem is:

L =

∫
· · ·
∫
p(x1, . . . , xn)log

p(x1, . . . , xn)

q(x1, . . . , xn)
dx1 . . . dxn

+
n∑
i=1

λi

[∫
· · ·
∫
p(x1, . . . , xn)1xi≥xdi dx1 . . . dxn − PoDi

t

]
+ µ

[∫
· · ·
∫
p(x1, . . . , xn)dx1 . . . dxn − 1

]
.

(44)

The posterior joint density function is obtained by solving the problem through
the calculus of variations:

p(x1, . . . , xn) = q(x1, . . . , xn) exp

{
−

(
1 + µ+

n∑
i=1

λi1xi≥xdi

)}
. (45)

It is important to observe that the calculation of p(x1, . . . , xn) requires several
inputs. First of all, a prior multivariate distribution and a default barrier for each
bank must be given. The authors assume a standard normal distribution as prior
and follow Segoviano (2006) for the calculation of the default barrier. In addition,
a PoD for each bank has to be empirically estimated. Several methods can be used
for this estimation. Segoviano and Goodhart (2009) discuss the advantages and
disadvantages of different methodologies, namely the structural approach, CDS
spreads, and out-of-the-money option prices. They conclude that the least flawed
methodology is the estimation using CDS spreads, which does not require the
distribution of asset prices to be modelled or volatilities to be explicitly estimated.
However, the main drawback of CDS spreads is that they may also incorporate
the liquidity risk in the CDS market as well as a generalized risk aversion in the
financial market.

9.2.2 The four banking stability indicators

Once BSMD is obtained, the four distress dependence indicators can be calculated:
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1. The Joint Probability of Distress (JPoD) is the probability that all banks in
the system become distressed at the same time. It represents the tail risk of
the system and captures the linear as well as the non-linear changes in the
distress dependence among banks:

JPoDt =

∫ ∞
xd1

· · ·
∫ ∞
xdn

p(x1, . . . , xn)dx1 . . . dxn. (46)

2. The Banking Stability Index (BSI) is the expected number of banks in dis-
tress given that one bank has become distressed:9

BSI =

∑n
i=1 P(xi ≥ xdi )

1− P(x1 < xd1, . . . , xn < xdn)
. (47)

3. The Distress Dependence Matrix (DiDe) presents the pairwise conditional
probabilities of distress. The conditional probabilities do not imply causation
but they highlight the linkages between pairs of banks. For each entry (i, j)
of the matrix, the conditional probability of bank i being in distress given
that j is in distress is:

P
(
xi ≥ xdi | xj ≥ xdj

)
=

P
(
xi ≥ xdi , xj ≥ xdj

)
P
(
xj ≥ xdj

) . (48)

4. The Probability of Cascade Effects (PCE) gauges the cascade effects on the
system of a specific bank being in distress. In the case of four banks R, X,
Y , and Z, if we suppose that bank R becomes distressed, the PCE is defined
as:

PCE =P(X | R) + P(Y | R) + P(Z | R) + P(X ∩ Y ∩ Z | R)

− [P(X ∩ Y | R) + P(X ∩ Z | R) + P(Y ∩ Z | R)].
(49)

9.3 Example

Figure 7 and Figure 8 show the JPoD and the BSI of a sample of large international
banks over the period 1 January 2010 - 31 October 2011. In particular, Figure 7
shows the JPoD for a set of intermediaries from six European countries: Italy,
France, Germany, Portugal, Spain and the United Kingdom. A first peak in the
JPoD of each bank is registered in correspondence with the sovereign debt crisis

9 A similar indicator is calculated by the Bank of Italy in its Financial Stability Report (BoI,
2010). The main difference is that the Bank of Italy uses stock returns instead of CDS spreads.
In particular, the Bank of Italy calculates the expected number of banks that have stock returns
lower than the 5th percentile of their distribution, given that at least one bank has returns
below that threshold.
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Figure 7 – JPoD of large European banks

Source: BoI (2011).
Daily data, per cent. The banks included in the sample are the following. France:
BNP Paribas and Société Générale; Germany: Deutsche Bank and Commerzbank;
Italy: UniCredit and Intesa Sanpaolo; Portugal: Banco Espirito Santo and Banco
Comercial Português; Spain: Santander and Banco Bilbao Vizcaya Argentaria; and
United Kingdom: Barclays and Royal Bank of Scotland.

Figure 8 – BSI of ten large cross-border banking groups

Source: BoI (2011).
Daily data. The ten banking groups are: UniCredit, Intesa Sanpaolo, Banca Monte dei
Paschi di Siena, Santander, BNP-Paribas, Deutsche Bank, UBS, Barclays, Lloyds TSB
and Citigroup.

in Greece. The Portuguese JPoD is the highest of all countries, reaching a value
of 14 per cent by the end of 2010. It declines slightly at the beginning of 2011,
before climbing up to roughly 19 per cent in July 2011. The JPoDs of the other
countries also increase in the second half of 2011, but they only reach their peaks
in October. Figure 8 reports the BSI for ten large European banking groups. The
indicator spikes to 5 with the sovereign debt crisis in Greece. It is even higher in
August 2011 after the publication of the European stress tests, when it peaks at
5.5, a value that it had reached only after the Lehman Brothers had gone bankrupt.

42



10 Systemic Contingent Claim Analysis

(Systemic CCA)

Table 11 – Systemic CCAs: Main characteristics

Author(s) Gray and Jobst (2013)

Institution(s) IMF (2009b)

Pros Integrates market-implied expected losses in a multivariate spec-
ification of joint default risk
Default barrier determined endogenously

Cons Not easy to calculate
Its validity depends on the underpinning valuation models

Data Balance sheet data on outstanding liabilities, and market data
on equity and equity options

10.1 General description

Systemic CCA was proposed by Gray and Jobst (2013) as a new measure of sys-
temic risk founded on two main theories: CCA and extreme value theory (EVT).
It has been defined as ‘a forward-looking, market data-based analytical framework
for measuring systemic solvency risk by means of a multivariate extension to CCA
paired with the concept of extreme value theory’. CCA is a generalization of the
option pricing theory pioneered by Black and Scholes (1973) and Merton (1973),
which is necessary in order to estimate each firm’s expected losses. EVT is used
to combine the individual firms’ expected losses through a dependence measure in
order to derive the joint expected losses as a measurement of systemic riskiness.

More in detail, CCA is a risk-adjusted balance-sheet framework based on three
main principles: i) the values of liabilities can be derived from the value of assets;
ii) assets follow a stochastic process; and iii) liabilities have different seniorities.
These principles allow one to compute the value of equity as the value of an im-
plicit call option on assets, and the value of risky debt as the difference between
default-free debt and a guarantee against default. This guarantee can be calcu-
lated as the value of a put option on assets. The value of the put option measures
the expected losses of a financial institution. Once the expected losses of individ-
ual institutions are estimated, Gray and Jobst (2013) propose to aggregate them
using a time-varying dependence structure through EVT. In this framework, the
financial sector is viewed as a portfolio of individual expected losses in which the
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marginal distributions of individual expected losses are combined with a time-
varying dependence structure to generate the multivariate distribution of joint
expected losses of all sample firms.

CCA can be used to perform stress tests and assess capital adequacy. According
to Gray and Jobst (2013), the main strengths of Systemic CCA are that it can
be used to derive market-implied expected losses and that it endogenizes the loss
given default. On the other hand, the major drawbacks are that it is not easy
to calculate and that it relies on the specification of the option pricing model.
Therefore, a flaw in the specification of the latter would invalidate the estimation
of the systemic indicator.

10.2 Technical description

Several steps are needed to estimate Systemic CCA:

1. Calculating the financial institutions’ expected losses through CCA;

2. Estimating the marginal distribution of expected losses through EVT;

3. Estimating the dependence structure of individual expected losses;

4. Estimating the joint distribution of expected losses;

5. Estimating a tail risk measure for joint expected losses.

Once the joint potential losses have been estimated, it is possible to calculate their
individual contributions.

Starting from the first step, we go through the estimation procedure for the Sys-
temic CCA.

1. Calculating the financial institutions’ expected losses through CCA

The market values of assets and debts usually differ from their accounting
values and can rarely be observed. However, the market value of equity is
easily observable. CCA derives the market value of assets and debts from the
market value of equity through the option pricing theory. In particular, given
that shareholders have a residual claim on assets once all the outstanding
debt has been paid, equity can be thought of as a call option on assets with
a strike price equal to the accounting value of outstanding debt. Similarly,
risky debt, i.e. debt that is not default-free, can be modelled as an implicit
put option on assets, with a strike value equal to the balance sheet value of
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debts. The cost of the put option is reflected by the credit spread above the
risk-free rate, which compensates bondholders for holding risky debt.

The risk-adjusted balance sheet is given by:

At = Dt + Et, (50)

where At is the implied market value of assets, Dt is the implied market value
of debts and Et is the observable market value of equity. In order to estimate
the expected loss, it is important to observe that the value of the put option
rises with the increase in the probability of the implied asset value falling
below the present value of debt, i.e. the default barrier, over a pre-defined
horizon (Gray and Jobst, 2013). Hence, the expected losses are estimated
according to the Black-Scholes-Merton pricing equation for a put option over
the time horizon T − t:

PE(t) = Be−r(T−t)Φ(−d− σA
√
T − t)− A(t)Φ(−d), (51)

where r is the risk-free discount rate, B is the present value of debt and the
strike price of the option on the asset value A(t), Φ is the normal cumulative
distribution, and d is the leverage:

d =

(
logA(t)

B

)
+
(
r + 1

2
σ2
A

)
(T − t)

σA
√
T − t

. (52)

The asset volatility σA can be found as follows. The asset value A(t) at time t
is assumed to evolve under the risk-neutral probability measure Q according
to the following stochastic differential equation:

dA(t) = A(t)rdt+ A(t)σAdWQ(t), (53)

where the diffusion is defined by a standard geometric Brownian motion
∆WQ(t) ∼ φ(0,∆t). Since equity E(t) is a function of assets, it is possible to
derive an expression for the diffusion process of E(t) by using the Itô-Döblin
theorem:

dE(t) =
∂E

∂A
dA(t) +

1

2

∂2E

∂A2
dA2(t)σ2

Adt

=
∂E

∂A
(A(t)rdt+ A(t)σAdWQ(t)) +

1

2

∂2E

∂A2
dA2(t)σ2

Adt

=

(
∂E

∂A
(A(t)r +

1

2

∂2E

∂A2
A2(t)σ2

A

)
dt+

∂E

∂A
A(t)σAdWQ(t).

(54)

Equity E(t) is also assumed to follow a log-normal process:

dE(t) = E(t)rdt+ E(t)σEdWQ(t), (55)
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where σE is the observable equity volatility. By matching both addends in
the right-hand side of Equation (54) and Equation (55), we get

E(t)r =
∂E

∂A
A(t)r +

1

2

∂2E

∂A2
A2(t)σ2

A (56)

and

E(t)σE =
∂E

∂A
A(t)σA. (57)

It is possible to solve Equation (57) for the asset volatility σA:

σA =
E(t)σE
A(t)Φ(d)

=

[
1− Be−r(T−t)Φ(d− σA

√
T − t)

A(t)Φ(d)

]
σE, (58)

where the latter equality is given by the equation for the equity value E(t)
as the value of an implicit call option on the assets A(t).

2. Estimating the marginal distribution of expected losses through EVT

The marginal distribution of expected losses is derived by means of EVT.
Let

Xn =
(
P n
E,1(t), . . . , P n

E,m(t)
)

(59)

be the vector of independent and identically distributed observations of ex-
pected losses (i.e. a total of n daily put option values P n

E,m(t) up to time t)
estimated according to Equation (51) for m financial institutions. By fol-
lowing a parametric approach and assuming i.i.d. observations of expected
losses, the asymptotic tail behaviour of each financial institution is mod-
elled according to the Fisher-Tippett-Gnedenko theorem (Fisher and Tip-
pett, 1928; Gnedenko, 1943). This theorem states that the maximum of a
sample of i.i.d. normalized random variables converges in distribution to one
of the following three types of distributions: Gumbel, Fréchet or Weibull.
Therefore, the distribution of the normalized component-wise maximum of
Xn converges to one of the abovementioned distributions. These three dis-
tributions can be combined into a unitary framework, which is called the
Generalized Extreme Value (GEV) distribution (Jenkinson, 1955):

Hξ,µ,σ(x) =

{
exp [−(1 + ξ x−µ

σ
)−1/ξ], if ξ 6= 0 and 1 + ξ(x−µ)

σ
> 0,

exp[−exp(−x−µ
σ

)], if ξ = 0.

(60)

From the GEV it is possible to derive the three limiting distributions:

• for ξ = 0 the Gumbel family is obtained;
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• for ξ ≥ 0 the Fréchet family is obtained;

• for ξ ≤ 0 the Weibull family is obtained.

The ith univariate marginal density function of each series of expected losses
is:

yi(x) =

(
1 + ξ̂i

x− µ̂i
σ̂i

)−1/ξ̂i

, (61)

for i = 1, . . . ,m, where the argument in parenthesis is non negative, σ̂i ≥ 0
is the scale parameter, µ̂i is the location parameter, and ξ̂i is the shape pa-
rameter. The three unknown parameters (µ̂, σ̂, ξ̂) can be estimated through
maximum likelihood.

3. Estimating the dependence structure of individual expected losses

The dependence function between the marginal distributions of the expected
losses is given by a multivariate extension of Pickands’ bivariate logistic
method (Pickands, 1981) with margins adjusted according to Hall and Taj-
vidi (2000):

Υt(ω) = min

1,max

n
(

n∑
i=1

Λm
j=1

yi,j/ŷ·,j
ωj

)−1

, ω, 1− ω


 , (62)

where ŷ·,j =
∑n

i=1 yi,j/n is the average marginal density of all put options
i ∈ n and Υ(ωj) is such that 0 ≤ max{ω1, . . . , ωm−1} ≤ Υ(ωj) ≤ 1, for all
0 ≤ ωj ≤ 1. Υ(·) is a convex function on [0, 1] with Υ(0) = Υ(1) = 1.

4. Estimating the joint distribution of expected losses

The joint distribution of the expected losses is obtained by combining the
marginal distributions with their dependence structure in accordance with
Sklar’s theorem (Sklar, 1959) on constructing joint distributions with arbi-
trary marginal distribution functions via copula functions. The resulting
cumulative distribution function Gt,m(x) and probability density function
gt,m(x) are:

Gt,m(x) = e−(
∑m
j=1 yt,j)Υt(ω), (63)

gt,m(x) = σ̂−1
t,m

[(
m∑
j=1

yt,j

)
Υt(ω)

]ξ̂t,m+1

e−(
∑m
j=1 yt,j)Υt(ω), (64)

where ξ̂t,m is the shape parameter and σ̂t,m is the scale parameter.
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Figure 9 – Systemic CCA estimates for the United States

Source: Gray and Jobst (2013).

5. Estimating a tail risk measure for joint expected losses

Finally, as a measure of conditional tail expectation, Gray and Jobst (2013)
compute the joint expected shortfall as follows:

ESt,m,a = E
[
ζ|ζ ≥ G−1

t,m(a) = VaRt,a

]
(65)

where ζ ∈ R, G−1
t,m(a) is the point estimate of the joint potential losses of m

financial institutions at quantile 1− a and time t, and is given by:

G−1
t,m(a) = µ̂t,m +

σ̂t,m

ξ̂t,m

[(
− log(a)

Υt(ω)

)−ξ̂t,m
− 1

]
, (66)

and VaRt,a is:

VaRt,a = sup
{
G−1
t,m(a)|P

[
ζ > G−1

t,m(a)
]
≥ a
}
. (67)

10.3 Example

Figure 9 exhibits the total contingent liabilities of thirty-six US financial institu-
tions. The blue line shows the total level of contingent liabilities, which reflects
‘the concurrent realization of individual distress at an average degree of severity
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without consideration of their conditional probability of default’. However, when
estimating the systemic risk arising from the joint probability of default, it becomes
essential to consider the intertemporal changes in the dependence structure of risk-
adjusted default risk. This is taken into account by the red line, which shows the
expected shortfall for the sample of the same thirty-six US financial institutions
at the 95th percentile threshold within a confidence band of one and two standard
deviations – the dark and light grey areas respectively. The multivariate density
is generated by univariate marginals that conform to the GEV distribution. The
red line shows that during the exceptionally distressed period of Lehman Brothers
failure, market prices of sample institutions implied joint contingent liabilities of
more than 20 per cent of GDP. The magnitude of this tail risk dropped to 2 per
cent at the end of 2008.

11 Network Analysis

Table 12 – Network Analysis: Main characteristics

Author(s) Espinosa-Vega and Solé (2011)

Institution(s) IMF (2009a, 2011a)
ECB (2010b)

Pros Easy to calculate
Allows most systemic and vulnerable institutions to be identified

Cons Static
Requires non-public supervisory data

Data Inter-institution exposures

11.1 General description

Network analysis is a useful approach for identifying financial interlinkages among
institutions, as well as for tracking the reverberation of a credit and/or funding
event throughout the system. It is a valuable tool for identifying both the most
systemic institutions – the ones that trigger the stronger domino effects in case
of default – and the most vulnerable institutions – those that are most seriously
affected by the default of other institutions. In addition, it is helpful in quantifying
the potential capital losses of a contagious event. The main drawback of this
approach is that it carries out a static analysis, without taking the dynamic changes
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in the interlinkages into account. Furthermore, it requires access to data on inter-
institution exposures, which are usually only available to supervisors.

As an illustration of the network approach, Espinosa-Vega and Solé (2011) present
a network analysis for cross-border financial sector surveillance by simulating credit
and funding shocks in the banking systems of a selection of countries. In particular,
they simulate the default of a financial institution and study the impact of this
default on the balance-sheet of the other institutions in the network, which are
connected by borrowing and lending relationships.

11.2 Technical description

Espinosa-Vega and Solé (2011) analyse the transmission of two types of shocks:

1. a credit shock, where the initial default of an institution triggers a domino
effect in the banking system;

2. a credit-plus-funding shock, where the default of an institution also causes a
liquidity squeeze that triggers a spiral of fire sale losses.

The analysis is based on the following stylized bank balance sheet:∑
j

xji + ai = ki + bi + di +
∑
j

xij, (68)

where xji are bank i’s loans to bank j, ai are the other assets of bank i, ki is bank
i’s capital, bi is bank i’s borrowing, di is bank i’s deposits, and xij is bank i’s
borrowing from bank j.

11.2.1 Transmission of credit shocks

The transmission of credit shocks is simulated by assuming the individual default
of each bank i of the sample. A bank is said to default if its capital is not enough
to cover the loss due to the credit shock. In particular, considering the loss-given
default λ, institution i is said to default as a consequence of the default of bank h
if ki − λxhi < 0. Bank i’s balance sheet after the credit event, i.e. the default of
bank h, becomes:∑

j 6=h

xji + ai + (1− λ)xhi = ki − λxhi + bi + di +
∑
j

xij. (69)

For each of the simulations, a network algorithm is implemented that checks
whether a credit event in one institution triggers the default of the other insti-
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tutions in the system. The algorithm is repeated several times in order to analyse
how the event propagates throughout the system until there are no further failures.

11.2.2 Transmission of credit-plus-funding shocks

This simulation adds a tight liquidity market to the credit event, where it is difficult
to obtain liquidity. In this framework, a credit event may have even more severe
consequences than the previous scenario without liquidity constraints. When a
bank is not able to obtain liquidity on the money market, it has to sell some assets
in order to re-establish its balance sheet identity. However, if several banks try to
sell their assets at the same time, they cause a decline in prices and they can only
trade their assets at a discount. Espinosa-Vega and Solé (2011) study a situation
in which bank i is only able to replace a fraction 1 − ρ of the lost funding from
bank h. Its assets trade at a discount, therefore it is forced to sell assets worth
(1 + δ)ρxih in book-value terms. The loss, δρxih, is absorbed by bank i’s capital.
The new balance sheet identity is:∑

j

xji + ai − (1 + δ)ρxih = (ki − δρxih) + bi + di +
∑
j

xij − ρxih. (70)

11.3 Example

Figure 10 represents how network analysis can be used to track the reverberation
of a possible credit event throughout the banking system. It shows the contagion
path triggered by the hypothetical default of Italy’s cross-border interbank loans.
At the first contagion round, the shock spills over to France, which then defaults.
The default of France, in turn, triggers the default of Germany, Belgium and
Switzerland. In the final round, Austria, Sweden and the Netherlands are also
affected.
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Figure 10 – Contagion path triggered by the default of Italy as a consequence
of a credit shock

Source: Espinosa-Vega and Solé (2011).
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12 Default Intensity Model

Table 13 – Default Intensity Model: Main characteristics

Author(s) Giesecke and Kim (2011)

Institution(s) IMF (2009a)
ECB (2010b)

Pros Captures effects of direct and indirect interlinkages among insti-
tutions
Is regime-dependent

Cons Does not distinguish between direct and indirect linkages

Data Default data

12.1 General description

Giesecke and Kim (2011) present a reduced-form statistical model of the timing
of banking default events, which is designed to capture the regime-dependent be-
haviour of the default rate of financial institutions. The model is formulated in
terms of a default rate or ‘intensity’, which is why it is called ‘default intensity
model’.

In brief, the default rate is modelled as a continuous time process which jumps at
default events, thus reflecting the increased likelihood of further default events due
to spillover effects. The jump size specification guarantees that the impact of an
event increases with the default rate prevailing at the time of the event (Giesecke
and Kim, 2011). This is consistent with the clustering behaviour of defaults and
the fact that the impact of default events tend to be ‘regime-dependent’. The
impact of an event fades over time.

While the advantage of this model is that it captures both direct and indirect
linkages among financial institutions, it is not able to disentangle between the
two.

12.2 Technical description

Let Tn be the sequence of the arrival times of default in the universe of Moody’s-
rated institutions. Let Nt be the number of defaults that have occurred by time
t. The conditional default intensity λt is measured in defaults per year and is
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assumed to evolve through the following continuous time equation:

dλt = Kt(ct − λt)dt+ dJt, (71)

where Kt = kλTNt is the decay rate at which the intensity reverts to the level
ct = cλTNt at t, and λ0 > 0 is the value of the intensity at the beginning of the
period. Jt is the jump response process:

Jt =
∑
n≥1

max(γ, δλT
N−
t

)1(Tn ≤ t), (72)

where 1(Tn ≤ t) is the indicator function, which has a value of 1 if Tn ≤ t and
0 otherwise. The quantities K > 0, 0 < c < 1, δ > 0, and γ > 0 are constant
proportional factors. Giesecke and Kim (2011) show that in order for the counting
process Nt to be nonexplosive, the condition c(1+δ) < 1 has to be satisfied. Equa-
tion (71) states that default intensity jumps whenever there is a default, reflecting
the increase in the likelihood of further events. The magnitude of the jump de-
pends on the default intensity right before the event and therefore guarantees the
regime-dependence of the impact of default events. After being bolstered by an
event, the default intensity decays exponentially to the level cλTNt at rate KλTNt .
The vector of parameters to be estimated is θ = (k, c, δ, γ, λ0). The estimation
is performed through maximum likelihood. The maximum likelihood problem for
λt = λt(θ) is:

max
θ∈Θ

[∫ τ

0

logλs−(θ)dNs −
∫ τ

0

λs(θ)ds

]
, (73)

where Θ is the set of admissible vectors of parameters.

12.3 Example

Figure 11 shows a time series of quarterly forecasts for the one-year distributions
of the number of defaults in the US banking sector estimated from the model for
the banking-wide default rate (IMF, 2009a). It depicts a fatter tail, i.e. a higher
probability of a joint default of several US banks, during the 2008 financial crisis.
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Figure 11 – Default intensity model: Default rate probability and number of
defaults

Source: IMF (2009a).

13 Markov-Regime Switching Model

(SWARCH)

Table 14 – Markov-Regime Switching Model: Main characteristics

Author(s) González-Hermosillo and Hesse (2011)

Institution(s) IMF (2009b)

Pros Easy to update
State-dependent parameters

Cons Univariate only

Data High frequency market-based data

13.1 General description

González-Hermosillo and Hesse (2011) present a Markov regime switching au-
toregressive conditional heteroskedastic model (SWARCH) for assessing financial
volatility and the likelihood of a crisis. In particular, they model the dynamics
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of proxies for global market conditions – such as the VIX index, the TED spread
and the EUR-USD forex swap10 – as ARCH models with state-dependent param-
eters. This allows them to differentiate between states of low, medium, and high
volatility. The probability of switching from one state to another is modelled as a
Markov chain, which can be estimated, together with the other parameters of the
model, through maximum likelihood.

The main strength of the SWARCH model is that it allows for state-dependent
parameters. However, the model is univariate only and its estimation requires
high-frequency data.

13.2 Technical description

The Markov regime switching model chosen by González-Hermosillo and Hesse (2011)
is the ARCH Markov-switching model by Hamilton and Susmel (1994). It is an
ARCH model in which the parameters are state-dependent so as to differentiate
between multiple volatility states. In particular,

P(st = j | st−1 = i, st−2 = k, . . . , yt−1, yt−2) = P(st = j | st−1 = i) = pij (74)

is the equation that describes the Markov chain where yt is a vector of observed
variables, st is an unobserved random variable, and pij is the probability of tran-
sition from state i to state j. In the SWARCH model the mean equation is an
AR(1) and the variance is time-varying with the ARCH parameters being state-
dependent:

yt = α + φyt−1 + εt, (75)

εt =
√
gSt ε̃t, (76)

ε̃t = htvt, (77)

h2
t = a0 +

q∑
i=1

aiε̃
2
t−i + δdt−1ε̃

2
t−1, (78)

where h2
t is the time-varying variance, vt ∼ N(0, 1), St ∈ {1, 2, 3} is the set of

states, and dt−1 is a dummy variable which is equal to 1 if ε̃t ≤ 0 and 0 otherwise.
The ARCH parameters are state-dependent due to multiplication with the scaling

10The VIX index is the Chicago Board Options Exchange volatility index, which measures the
implied volatility of the S&P 500 index options over the next 30 days; the TED spread is the
difference between the three-month LIBOR and the three-month Treasury bill rate. The VIX
index is usually interpreted as a proxy for market uncertainty, the TED spread as a measure
for stress in the interbank market, and the EUR-USD forex swap as an indicator of US dollar
funding pressures in international financial markets.
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Figure 12 – Markov-switching ARCH model of the VIX index

Source: González-Hermosillo and Hesse (2011).

factor gSt , which is normalized to 1 for low volatility regimes. Variables are first-
differenced in order to eliminate non-stationarity.

13.3 Example

Figure 12 shows the results of a daily SWARCH model for the VIX index over the
period 1998–2008. A probability of being in the high state equal to 1 is reached for
the Russian and LTCM defaults in 1998, for the WorldCom scandal and Brazil’s
election in 2003, and for Lehman’s collapse in 2008. After Lehman’s collapse the
probability of being in the high state remained high for a significant period.
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14 Composite Indicator of Systemic Stress

(CISS)

Table 15 – CISS: Main characteristics

Author(s) Holló et al. (2012)

Institution(s) ECB (2010a, 2011) and all following issues of the ECB Financial
Stability Review
ESRB (2012) and all following issues of the ESRB Risk Dash-
board

Pros Calculated in real time
Available for a broad set of countries and for long data samples
Robust to the arrival of new information

Cons Not based on a structural model that includes systemic risk
Has problems of comparability with other indicators
Not an early warning indicator

Data Market-based, with two exceptions∗

∗Monetary financial institutions’ emergency lending to Eurosystem central banks and
book-to-price ratio for the financial sector equity market index.

14.1 General description

The Composite Indicator of Systemic Stress (CISS, pronounced ‘kiss’) is introduced
in ECB (2010a, 2011) and then thoroughly explained by Holló et al. (2012). The
euro-area CISS is included in the ECB’s analytical toolkit, i.e. the set of analytical
instruments used by the ECB to support its macroprudential functions.

As suggested by its name, the CISS is a composite indicator built to ‘measure the
current state of instability, i.e. the current level of frictions, stresses and strains
(or the absence thereof) in the financial system and to summarize it in a single
statistic’ (Holló et al., 2012). As highlighted by ECB (2011), it is designed not
only to identify systemic risk within the financial system (the ‘horizontal view’,
according to which systemic risk pervades the whole financial system), but also to
consider systemic risk stemming from the interaction between the financial system
and the real economy (the ‘vertical view’, according to which systemic risk spills
over into the real sector).

The CISS is a coincident indicator that is built up through a process of aggregation.
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Five categories within the financial system are considered: the equity market, the
bond market, the money market, the foreign exchange market, and the financial
intermediaries’ sector. The construction of the CISS builds upon a vast literature
on composite indicators (see e.g. Illing and Liu, 2006; Caldarelli et al., 2011; Nelson
and Perli, 2007). The major novelty of the CISS is the procedure through which the
five categories are aggregated. This procedure borrows from the standard portfolio
theory that uses time-varying cross-correlations to weigh the assets constituting a
portfolio. It is through this aggregation process that systemic risk is incorporated
into the indicator. In fact, while a simple average of the categories would assume
a perfect correlation between them, an average weighted with time-varying cross-
correlations allows emphasis to be put on situations in which stress prevails in
several market segments at the same time (Holló et al., 2012).

One of the main strengths of the CISS is that, since it consists mainly of market-
based indicators, it can be calculated in real time and is available for a broad set of
countries. Moreover, it is robust to the arrival of new information, i.e. the addition
of new information does not significantly change the estimates produced by the
CISS (Holló et al., 2012).

With the other composite indicators, it shares the drawback of being barely com-
parable and ‘often not informative about the origins and transmission channels
for widespread instability’ (ECB, 2010a). In addition, it is not founded on a solid
theoretical model encompassing systemic risk.

14.2 Technical description

CISS results from the aggregation of five sub-indices, each representing one market,
i.e. the equity market, the bond market, the money market, the foreign exchange
market, and the financial intermediaries’ sector. Each sub-index, in turn, comes
from the aggregation of three raw indicators of different market segments (for the
complete list of the 15 raw indicators, see Holló et al., 2012). In order to obtain a
sub-index which is unit-free and measured on an ordinal scale, an empirical cumu-
lative distribution function is calculated by using order statistics. Given the vector
of n observations of the raw indicator xt = (x1,t, . . . , xn,t), the respective ordered
sample is (x[1],t, . . . , x[n],t), where x[n],t is the sample maximum. The empirical
cumulative distribution is then calculated as

Fn(xt) =

{
r/n, for x[r] ≤ xt < x[r+1], r = 1, 2, . . . , n− 1,

1, for xt ≥ x[n].
(79)

In case of two or more equal observations, the average of the rankings of the equal
observations is taken. The empirical cumulative distribution provides a unit-free
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indicator, which is measured in the interval (0,1]. Furthermore, it can be easily
calculated for a bigger sample of n+T observations by simply substituting n with
n+ T in the above formula.

The three raw indicators obtained are then aggregated by taking their arithmetic
mean. Hence from 15 raw indicators, five sub-indices are obtained.

The most innovative part of the CISS, which is where systemic risk comes into
play, lies in the aggregation of the five sub-indices in order to obtain the final
index. For this last step, a standard portfolio approach is applied by weighing the
five components with the time-varying cross-correlations. Reporting the formula
of Holló et al. (2012):

CISSt = (w ◦ st)Ct(w ◦ st), (80)

where st is the vector of sub-indices, Ct is the time-varying cross-correlation matrix,
and ◦ is the Hadamard product (i.e. an element-by-element multiplication). The
vector wt is a vector of weights for sub-indices, which is calculated ‘on the basis of
their average relative impact on the industrial production growth measured by the
cumulated impulse responses from a variety of standard linear VAR models’ (Holló
et al., 2012). The time-varying cross correlations are calculated recursively by
estimating the respective variances and covariances with an exponentially weighted
moving average (EWMA), which is initialized at the average values of variances
and covariances and uses 0.93 as a smoothing parameter (Holló et al., 2012). In
the case of perfect correlation between the five sub-indices, matrix Ct is an identity
matrix and the CISS coincides with the square of the simple arithmetic average of
the five sub-indices, which is an upper bound for the CISS.

14.3 Example

Figure 13 exhibits the CISS (the black line) for the euro-area members. It clearly
shows how systemic stress increased from mid-2007 and escalated after the Lehman
Brothers’ bankruptcy. The chart also displays the stacked contributions from each
of the five sub-indices, which make up the CISS. The upper border of the upper
area is equivalent to the weighted average of the five sub-indices assuming perfect
correlation across all of them. The difference between the CISS and this weighted
average is plotted in the area below the zero line and reflects the impact of cross
correlation across the sub-indices. It is worth observing that when markets are
either extremely calm or extremely distressed, the difference between the CISS
and the weighted average with perfect correlation is small, meaning that the five
sub-indices are highly correlated. In intermediate situations, the CISS is able to
evaluate an increase in cross-correlation among the sub-indices, which is a signal of
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Figure 13 – CISS

Source: ESRB (2017).

increased systemic risk. The figure also shows the Sovereign CISS (the yellow line),
which applies the same methodology of the CISS to the sovereign bond markets.
It comprises the following six sub-indices: the yield spread against the euro swap
interest rate of comparable maturity, the one-week realized volatility of daily yield
changes, and the bid-ask bond price spread as a percentage of the mid-price, all
computed for sovereign bonds with a 2-year and 10-year maturity respectively.
SovCISS reaches its peak at the height of the sovereign debt crisis in the second
half of 2011.
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15 Risk Assessment Model for Systemic Institu-

tions (RAMSI)

Table 16 – RAMSI: Main characteristics

Author(s) Aikman et al. (2011)

Institution(s) IMF (2009a)
ECB (2010b)

Pros Very comprehensive

Cons Univariate only

Data Balance sheet and market-based data

15.1 General description

RAMSI is a quantitative model of financial stability that aims to assess institution-
specific and system-wide vulnerabilities. The most recent version of RAMSI is
presented in Aikman et al. (2011) as an extension with liabilities-side feedback on
the prototype version built by Alessandri et al. (2009) at the Bank of England,
which, in turn, is based on a framework developed by the Oesterreichische National
Bank (2006) for the Austrian banking system.

RAMSI relies on a modular approach where ‘a macroeconomic model is combined
with models that describe how the risk profiles of key financial institutions respond
to changes in macroeconomic conditions’ (Alessandri et al., 2009). In particular,
RAMSI adopts a balance sheet approach and integrates it with a network model in
order to account for interaction and contagion among banks. The model allows for
macro-credit risk, interest and non-interest income risk, network interaction and
feedback effects emerging on both the asset and the liability side of the balance
sheet (Aikman et al., 2011). Systemic risk arises because of the feedback loop that
may be triggered by the failure of a bank heavily connected with the rest of the
system. As a result of counterparty risk, fire sales and confidence contagion, the
failure of one bank spills over to other banks, thus generating a cascade effect.

15.2 Technical description

RAMSI adopts a modular framework where a balance sheet approach is integrated
with a network approach. The balance sheets of the largest banks – only UK banks
are considered in Aikman et al. (2011) – are highly disaggregated both on the asset
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and the liability side. The model is run on a three-year horizon, which is usually
a sufficient time for adverse shocks to be reflected in credit losses and is also the
horizon usually used by central banks in their stress tests (Aikman et al., 2011).

The evolution of macroeconomic and financial variables is captured by a large-
scale Bayesian vector autoregression (BVAR), which is the only source of shocks
in RAMSI. The BVAR has two lags and is estimated using quarterly data for 12
macroeconomic and financial variables for the domestic country and 12 analogous
variables for the foreign country – the UK and the US respectively in Aikman
et al. (2011). The BVAR is used to determine the yield curve, the PDs and the
LGDs on banks’ exposures.

Several risk factors and their impact on banks are then modelled, such as credit
losses, net interest income, and other operating expenses. The impact of these risk
factors on each bank is referred to as the first-round impact. The deterioration of
bank fundamentals may trigger a downgrade of its credit rating and an increase in
its funding costs. The consequences could be so severe that the bank may be shut
out of the short-term funding markets. If the bank defaults, there is a good chance
that it will trigger a feedback loop for other banks, thus generating second-round
consequences for the whole financial system. Counterparty credit losses, mark-
to-market losses, and confidence contagion trigger a cascade effect on the whole
financial system.

The following subsections analyse the first- and second-round effects on banks in
more detail.

15.2.1 First-round impact on banks

The first impact on banks is modelled through: credit risk, net interest income,
non-interest income, operating expenses, profits, taxes and dividends.

1. Credit losses are derived as the product of PD, LGD, and each bank’s total
exposure to households and firms. PD and LGD are determined through the
BVAR.

2. Interest income is modelled endogenously by following the risk-neutral asset-
pricing model of Drehmann et al. (2010). Banks usually price their loans on
the basis of the prevailing yield curve and the perceived riskiness of their
debtors. However, banks’ repricing ability is constrained by the maturity
structure of their balance sheet, i.e. they can only reprice at maturity. Since
it is unlikely that asset and liability maturities are perfectly matched, income
risk may arise due to this mismatch. Let A be a risky asset with a repricing
maturity equal to T , i.e. asset A pays a fixed coupon C for the next T
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periods. The value of asset A today is the discounted value of its future
coupon payments plus the principal:

V (A0) =
T∑
t=1

DtCA0 +DTA0. (81)

The discount factors are:

Dt =
t∏
i=1

(1 +Ri−1,i)
−1, (82)

Ri−1,i =
ri−1,i + PDi−1,i · LGDi−1,i

1− PDi−1,i · LGDi−1,i

, (83)

where ri−1,i, PDi−1,i, and LGDi−1,i are respectively the forward risk free
interest rate, the expected PD and the expected LGD between time i − 1
and i. By using Equation (81) it is possible to calculate a coupon such that
V (A0) = A0:

C =
1−DT∑T
t=1Dt

. (84)

At any repricing maturity nT with n ∈ N, the bank can adjust the coupon C
to any change in the discount factors. Instead, at any time nT with n /∈ N,
i.e. at any time that does not correspond to a repricing maturity, the bank
cannot adjust the fixed coupon C to changes in interest rate, PD or LGD.
Therefore, a mismatch between assets and liabilities arises.

3. Non-interest income is considered to be procyclical, as suggested by Stiroh (2004).
Its growth rate is modelled as being dependent on four of its lags and four
lags for the GDP growth rate. Instead, operating expenses are found to be
less procyclical and are estimated according to the following equation, with
only one lag:(

operating expense

operating income

)
t

= β0 + β1

(
operating expense

operating income

)
t−1

+ β2∆ln(GDPt).

(85)

4. As for profits, they are assumed to be proportional to the size of each bank’s
portfolio. Profits are then computed as the sum of all sources of income, net
of expenses and credit losses. Post-tax post-dividend profits are assumed to
increase Tier 1 capital directly.

64



15.2.2 Funding liquidity risk and bank failure

Given how important funding liquidity risk can be in triggering a bank fail-
ure (Brunnermeier and Pedersen, 2009), funding liquidity effects were included
in RAMSI by Aikman et al. (2011). In particular, they observe that while the re-
lationship between a deterioration in bank fundamentals and an increase in funding
costs is roughly linear during normal times, it becomes non-linear in times of cri-
sis. This non-linearity is included in RAMSI through bank ratings and through a
‘danger-zones’ approach.

1. Aikman et al. (2011) use a probit model to examine the sensitivity of Moody’s
senior unsecured ratings to a number of key bank performance indicators and
macroeconomic variables and to estimate ratings for each bank every quarter.
The assigned ratings are then mapped to credit spreads by using Merrill
Lynch’s indices for bond spreads associated with different credit ratings.

2. In order to model the closure of funding markets, Aikman et al. (2011) also
adopt a ‘danger-zones’ approach, ‘under which banks accumulate points as
liquidity conditions deteriorate, and face the prospect that certain funding
markets may be closed to them as their score crosses particular thresholds’.
In particular, the closure of certain funding markets to an institution may
have a double effect on the institution itself: on the one hand, it may compel
it to rely on short-term funding, thus worsening the liquidity position; on the
other hand, it may affect the institution simply through a confidence channel.
Figure 14 shows the eight indicators that are used to assign the scores, along
with the thresholds at which funding markets are assumed to close to a
given institution. In brackets there are the three underlying factors that
the indicators are trying to proxy: solvency, liquidity and confidence effects.
Roughly equal weight is placed on each of the three underlying factors. A
funding crisis can be caused either by extreme scores for one of the three
triggering factors or by a combination of moderate scores across different
factors. In particular, an institution is assumed to default if it scores 35
danger zone points and at the same time is shut out of short-term unsecured
funding markets. The costs incurred by a defaulting institution are assumed
to be 10 per cent of its remaining assets.

15.2.3 Second-round effects and contagion

A bank in distress usually sells its assets to restore its capital-to-assets ratio and to
obtain the necessary liquidity. Massive sales may result in a price fall with severe
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Figure 14 – RAMSI danger zones

Source: Aikman et al. (2011).

consequences for other banks that incur mark-to-market losses. The relationship
between prices and the magnitude of fire sales is taken to be concave and is given
by:

P̂j = max

{
0, Pj

[
2− exp

(
θ

Sj
Mj + εj

)]}
, (86)

where P̂j is the price of asset j after the fire sale and Pj is the price of the asset
before the fire sale. Pj is multiplied by the discount factor in round brackets,
which is a function of the value of assets sold in the fire sale (Sj), the depth of
the market in normal times (Mj) and a parameter (θ) that reflects frictions such
as search problems. Market depth Mj can also be shocked by εj, which captures
changes in market depth as a consequence of changes in macroeconomic conditions.

When a bank defaults, it triggers credit losses in its counterparts. Counterparty
credit losses are determined through a network model and a matrix of interbank
exposures is built. Once counterparty credit losses and mark-to-market losses are
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Figure 15 – RAMSI framework

Source: Aikman et al. (2011).

accounted for, the danger zone scores are updated for banks that initially survived.
If a bank’s score reaches 35, the bank is assumed to default and the feedback
mechanism is iterated. If no bank defaults, the balance sheets are updated to
absorb the losses deriving from counterparty risk. In addition, asset prices recover
to their pre-feedback level so that mark-to-market losses are not carried over.

15.3 Example

Figure 15 shows the modular structure of RAMSI. A macroeconomic or financial
shock is transmitted to the system via several feedback channels, which act through
balance sheet interdependencies and network effects. In particular, three sources
of risk are identified by Aikman et al. (2011): counterparty credit risk, mark-to-
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Figure 16 – RAMSI model dynamics

Source: Aikman et al. (2011).

market risk, and confidence contagion. The dynamics of the model are shown in
Figure 16.

The macroeconomic model determines the yield curve, PD, and LGD on banks’
credit exposures. For each combination of risk factors, a first-round impact on
each bank is modelled through distinct modules that account for: credit losses,
net interest income, non-interest income and other operating expenses. In case of
shocks to a bank’s fundamentals, its credit rating may deteriorate, thus worsening
its funding conditions. In case of default, the bank triggers a feedback loop through
counterparty credit losses, mark-to-market losses and confidence contagion. These
further losses may generate a cascade effect on other connected banks. In contrast,
in the absence of bank failures, the balance sheets of surviving banks are updated
through some reinvestment rules.

16 Conclusion

This survey illustrates the systemic risk indicators that are most frequently used
by the IMF, the ESRB, the ECB, the BoE and the BoI. Given the remarkable
heterogeneity of systemic risk indicators, this survey seeks to identify different
criteria according to which they can be organized. In particular, the selected
indicators are classified according to three different taxonomies. The first one
adopts the point of view of regulators and policy makers, whose attention is focused
on the implementability and the time-horizon of indicators. The second taxonomy
is organized according to the features which are important for researchers, i.e. the
theoretical grounding and the techniques used to compute the indicators. Last
but not least, the third taxonomy classifies the indicators according to the specific
features of systemic risks which are captured by each measure. In this regard, while
a group of indicators aims at gauging the individual or joint probability of default
for one or more financial institutions, another estimates the expected losses in case
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of default, a third one measures the network structure of the financial system, and
a fourth class evaluates the overall level of distress in the system.

Given the limitations that recurring to a single systemic risk measure would imply
in terms of the accuracy and reliability of the estimates, it is highly recommended
that a wide range of indicators is deployed when trying to detect systemic risk.
This is what ECB (2015) and Nucera et al. (2016) try to do when they propose a
systemic risk ranking for financial institutions derived from a pool of alternative
systemic risk indicators. Only those regulatory authorities equipped with a variety
of indicators may identify a rise in systemic risk well in advance and take the
necessary counteractive measures in due time.

This survey may contribute to helping regulators, researchers and practitioners
have a clearer picture of major systemic risk indicators and reconcile their different
aspects in a unified framework.
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