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Abstract 

This work estimates the effect that fluctuations in oil prices have on changes in 
consumer prices in both the United States and the euro area. For many of the basic items in 
the basket of goods used to estimate inflation, the effects of oil price trends are divided into 
two components: the first is linked to the specific characteristics of individual products (such 
as, for example, the importance of energy in the production process), while the second is 
related to macroeconomic factors which are in turn connected with changes in oil prices. The 
results show that changes in oil prices mainly pass through to core inflation (or rather to 
inflation excluding food and energy products) by means of macroeconomic factors; while the 
effect is limited, it is statistically different from zero and persists over time. 
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1 Introduction

Quantifying the magnitude and establishing the timing of the pass-through of oil price

changes to consumer prices is crucial for forecasting inflation, particularly in light of the

fact that oil prices tend to undergo wide fluctuations. Consider the recent plunge of oil

prices from July 2014 to February 2016, from about $100 per barrel to $30. What is the

effect of such a large fall in oil prices on core inflation? And how long will this effect

last? In this paper, by using a novel econometric approach, we answer these questions and

conclude that oil price fluctuations have a small, but non negligible, and long lasting effect

on core inflation. According to our estimates the recent plunge in oil prices shaved-off just

a couple of tenths of a percentage point to core inflation in both the US and the euro area,

but this effect is far from being fully absorbed and will only vanish by 2020.

Oil price fluctuations affect consumer inflation through both its energy component and

the non-energy components. However, while there is clear evidence that the pass-through

from oil prices to energy prices is relatively fast and complete (Burdette and Zyren, 2003;

Meyler, 2009), though it is still to be determined whether it is symmetric or not (Venditti,

2013; Atil et al., 2014; Chesnes, 2016), it is unclear to what degree changes in oil prices

pass-through into non-energy prices (Kilian and Lewis, 2011; Kilian, 2014).

In theory, an increase in oil prices might have an inflationary effect in at least four ways.

First, because energy prices represent a portion (sometimes considerable) of production

costs. Second, because it might lead workers to demand a higher wage to compensate

for the increase in energy prices (Blanchard and Gali, 2007). Third, because it might

mimic an adverse supply shock if real wages do not decrease sufficiently thus triggering an

adjustment in employment (Bruno and Sachs, 1985). Fourth, because, as a consequence of
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the above, it likely affects inflation expectations. By contrast, an increase in oil prices may

have a modest, compared to the effects above, deflationary effect because higher energy

prices tend to reduce net-disposable income, and thus consumption (Edelstein and Kilian,

2009) and investments (Edelstein and Kilian, 2007).

Empirically, extensive evidence suggests that changes in the oil prices contribute to

macroeconomic fluctuations (see Hamilton, 1983, 2003; Hooker, 1996; Barsky and Kilian,

2002; Kilian, 2008, among others). Various authors have shown that the pass-through of

oil price changes to core prices has however declined since the mid-eighties (see Hooker,

2002; Chen, 2009; Clark and Terry, 2010, among others), up to the point that it now is

very small if not nil (for example Cavallo, 2008; Clark and Terry, 2010).

In this paper we use a novel approach to estimate the oil price pass-through into core

consumer prices. We first estimate a dynamic factor model on a panel of disaggregate prices,

which allows us to disentangle common changes in disaggregate prices, from idiosyncratic

ones. We next use VAR techniques to estimate the oil price pass-through via the common

component, as well as via the idiosyncratic component. Both these pass-throughs are likely

to be important: to the extent that oil prices contribute to macroeconomic fluctuations

they may pass-through into core inflation via the common/macroeconomic component;

they may pass-through into core inflation also via the idiosyncratic components, with

different intensities due, e.g., to the share of energy in production.

Our empirical analysis is first carried out on a panel of US personal consumption ex-

penditure (PCE) disaggregate price indexes from 1984 to 2016. We show that common and

idiosyncratic dynamics in disaggregate prices have different statistical properties: common

dynamics are slow moving, idiosyncratic dynamics are fast moving and volatile. Disen-

tangling these two components proves crucial when estimating the oil price pass-through

into core inflation, as the estimated pass-through into the idiosyncratic component is not

statistically different from zero, whereas the pass-through via the common component is
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small, but statistically different from zero, non negligible and long lasting.

The subsample analysis confirms, as found in the literature, that the oil price pass–

through into core inflation has decreased over time. However, in contrast with some con-

tributions (for example Clark and Terry, 2010), we always find a positive and statistically

significant pass-through—the reason presumably being that by disentangling between com-

mon and idiosyncratic components, we do not let the noisy idiosyncratic component affect

our estimation results.

Finally, we estimate the oil price pass-through on a panel of euro area harmonized

indexes of consumer prices (HICP). These estimates yield a euro area pass-through similar

to that of the US.

Other papers have used dynamic factor models to study the effects of oil price fluctua-

tions on the economy, but none have focused on the pass-through into consumer prices. For

example, Aastveit (2014), Aastveit et al. (2015), Juvenal and Petrella (2015), and Stock

and Watson (2016) study the effects of different structural oil price shocks on the economy,

while An et al. (2014) study whether oil price shocks have asymmetric effects on the econ-

omy. Moreover, other papers have used dynamic factor models to analyze disaggregate

prices (Cristadoro et al., 2005; Altissimo et al., 2009; Boivin et al., 2009; Reis and Watson,

2010, among others), but none have used these models to study the oil price pass-through.

Finally, Gao et al. (2014) study the effect of oil price shocks on a number of disaggregate

US consumer prices using VAR techniques; they find a significant effect only on the price

of energy-intensive goods but do not distinguish between macroeconomic and idiosyncratic

effects.

The rest of the paper proceeds as follows. Section 2 presents the methodology. Section

3 presents the empirical analysis on the US, namely: Section 3.1 describes the data used,

and Section 3.2 discusses common and idiosyncratic dynamics in US PCE prices. Then,

Section 3.3 presents estimates of the oil price pass-through, Section 3.4 presents subsample
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analysis, and Section 3.5 presents estimates obtained with a more structural model. Finally,

Section 4 presents the empirical analysis on the euro area, and Section 5 briefly summarizes

the results.

2 The econometric framework

The goal of this paper is to quantify the effect of oil price changes on core, energy, and

food price inflation. More precisely, we aim to disentangle the specific (idiosyncratic) effect

that an oil price change might have on each disaggregate price, from its overall (common)

effect that an oil price change has on all prices. To do so, we first estimate a dynamic

factor model on a panel of price indicators to separate common from idiosyncratic price

changes, and then use VAR techniques to estimate the pass-through.

Factor models are based on the idea that fluctuations in disaggregate prices are due to a

few common (macroeconomic) shocks (ut) that affect all prices, and to several idiosyncratic

shocks (et), resulting from sector-specific dynamics or from sampling error, which influence

one or a few of them. Accordingly, each price component in the dataset can be decomposed

into a common part χit, which is a linear combination of a small number r of common

factors ft that are driven by the common shocks, and an idiosyncratic part ξit that is

driven by idiosyncratic shocks. Let πit = 1200 × log( Pit
Pit−1

) be the annualized month-on-

month log-change in the i-th price component at time t, where i = 1, ...., n and t = 1, ...., T ,

we then have

πit = λ′ift + ξit (1)

where λi is a r × 1 vector containing the factor loadings of the i-th variable, and χit =

λ′ift. Model (1) is the approximate dynamic factor model proposed by Stock and Watson

(2002a,b), which is a particular case of the generalized dynamic factor model studied by

Forni et al. (2000) and Forni and Lippi (2001).
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It is well documented that changes in the oil price contribute to macroeconomic fluc-

tuations (see Hamilton, 1983, 2003; Hooker, 1996; Barsky and Kilian, 2002; Kilian, 2008,

among others), thus they are likely to have a macroeconomic effect on all prices. To in-

corporate this feature in our model, we assume that the common factors and the oil price

evolve over time according to a VAR model. Let yt = ∆ log( oilt
pricet

) be the monthly real oil

price growth rate, then we have

A(L)

ft

yt

 =

ut

vt

 (2)

where vt is “the oil price shock”.1

At the same time, given that sectors are more or less energy intensive so that energy

costs represent a larger or smaller share of total costs, a change in the oil price might

have a very different effect on disaggregate prices depending on how energy intensive is

the production of each single item. This points at the possibility of idiosyncratic effects of

oil price changes on each price component, and therefore we assume that the oil price and

each idiosyncratic component evolve over time according to a bivariate VAR:

Bi(L)

ξit
yt

 =

eit
vt

 (3)

By comparing (2) and (3) we can see that there is a conflict between these two equations

in that the changes in the oil prices are specified in two different ways, namely:2 yt =

1Our model is very similar to a standard FAVAR model (Bernanke et al., 2005), which in its turn is a
restricted version of the structural dynamic factor model first introduced by Giannone et al. (2005), Stock
and Watson (2005), and Forni et al. (2009). In a FAVAR model the oil price is treated as an observed
factor, which means that the oil price is part of the common space only, while not having any effects on
the idiosyncratic component. In formulas, equation (1) is replaced by πit = λ′ift + γiyt + ξit, while (2)
stays the same and the idiosyncratic component is not modelled. As a robustness check, in Appendix B
we show the estimated pass-through when a FAVAR model is used.

2In what follows we use the notation according to which A(L) = I − A1L − A2L
2 − . . .ApL

p =
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a22(L)yt−1 + a21(L)ft−1 + vt from (2), and yt = bi22(L)yt−1 + bi21(L)ξit−1 + vt, for i =

1, . . . , n, from (3). It is therefore clear that, in order for (2) and (3) to simultaneously

hold, restrictions on A(L) and Bi(L) must be imposed. It turns out that the only possible

restriction is to impose that a21(L) = 0 and bi21(L) = 0,3 so that:

A(L) =

I− a11(L) −a12(L)

0 1− a22(L)

 and Bi(L) =

1− bi11(L) −bi12(L)

0 1− bi22(L)


with a22(L) = bi22(L), which yields

yt = a22(L)yt−1 + vt. (4)

Equation (4) clarifies two things: first in our framework the oil price is exogenously de-

termined, that is it is not caused by US or euro area economy. In the literature, oil price

shocks are often identified by assuming that energy prices are predetermined with respect

to the US/EA economy at monthly frequency (for a thorough discussion of this identi-

fication strategy see Kilian and Vega, 2011), which in practice means using a Choleski

decomposition with the oil price ordered first (for example Gao et al., 2014; Stock and

Watson, 2016). The restriction in (4) is in the same spirit, though stronger, as we are

imposing that the oil price is exogenous, rather than predetermined, to US/EA prices.

Second, “the oil price shock” vt is nothing else than a residual from an AR model, and

as such it has no structural interpretation, that is we do not disentangle between oil supply

and oil demand shocks (a non exhaustive list of papers that do so is: Barsky and Kilian,

I−A(L), where A(L) is conveniently partitioned in four polynomials a11(L), a12(L), a21(L), and a22(L)
of dimensions r×r, r×1, 1×r, and 1×1, respectively. The same notation is used for B(L). Furthermore,
let C(L) = A(L)−1 be the MA representation of (2), then we use the notation C(L) = I+C1L−C2L

2 +
. . .=I + C(L), where C(L) is conveniently partitioned in four polynomials c11(L), c12(L), c21(L), and
c22(L). The same notation is used for D(L) = B(L)−1.

3While from a theoretical point of view imposing this restriction is necessary, from an empirical point of
view it is nearly irrelevant. Indeed, the estimated pass-through obtained without imposing this restriction
is essentially the same as that reported in Section 3 and 4.
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2002, 2012; Kilian, 2009; Lippi and Nobili, 2012; Baumeister and Peersman, 2013).

Under the assumption that all the components of πt are stationary, the common fac-

tors, the factor loadings, and the idiosyncratic components can be estimated by principal

components (Stock and Watson, 2002a; Bai, 2003).4 Once the factors and the idiosyncratic

components are estimated, the VAR in (2) and the n VARs in (3) can be estimated by

OLS simply by replacing ft and ξit with their principal components estimates, with the

estimated parameters converging at the standard rate min(
√
N,
√
T ) (Forni et al., 2009).

OnceA(L) andBi(L) are estimated, by definingC(L) = A(L)−1 andDi(L) = Bi(L)−1,

where

C(L) =

I + c11(L) c12(L)

0 1 + c22(L)

 , and Di(L) =

1 + di11(L) di12(L)

0 1 + di22(L)

 ,

and by substituting (2) and (3) in (1) we get

πit = (λic12(L) + di12(L)) vt + λic11(L)ut + (1 + di11(L))eit

= ψχi (L)vt + ψξi (L)vt + φi(L)ut + θi(L)eit (5)

where ψχi (L) and ψξi (L) measure, respectively, the common and the idiosyncratic pass-

through of an unexpected and unpredictable change in the real oil price to the inflation

rate of price i.

Having computed the oil price pass-through into each disaggregate price, we can con-

struct the pass-through into core price inflation as:

ψc(L) =
∑
i∈core

wiψ
χ
i (L) +

∑
i∈core

wiψ
ξ
i (L) = ψχc (L) + ψξc(L)

4Estimation of the factors when the data are I(1) is examined by Bai (2004), Bai and Ng (2004), and
Barigozzi et al. (2016). Estimation of impulse response functions for non stationary dynamic factor models
is considered in Barigozzi et al. (2016).
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and likewise for energy price inflation and food price inflation simply by selecting the

appropriate prices and weights.

3 Oil price pass-through into inflation in the US

3.1 Data

The price data for the US are monthly price indexes for personal consumption expenditures

(PCE) by type of product. The data are taken from the NIPA Table 2.4.4U from the Bureau

of Economic Analysis and downloaded from Haver.

Price data are available at different levels of disaggregation, the finest of which includes

more than 200 price indexes (see Dolmas, 2005, for further details). However, for the

purpose of our analysis 200+ series correspond to an unnecessary high level of detail, and,

therefore, we chose a lower level of aggregation comprising 88 price indexes (the complete

list of series is available in Appendix A). In this dataset 65% of the price indexes have a

weight smaller than 1
100

, and just 16% of them have a weight larger than 2
100

.

To estimate the pass-through into the aggregates for core, energy, and food inflation

we compute PCE weights as (see Dolmas, 2005, for details):

wi,t+1 = 0.5
QitPit∑
QitPit

+ 0.5
Qi,t+1Pit∑
Qi,t+1Pit

, (6)

in which data for Qit are taken from the NIPA Table 2.4.6U. In other words, the weights

for the i-th item in, say, June 2016 is equal to an average of the expenditure share of that

item in May 2016 and its expenditure share had it been bought in June 2016 at May 2016

prices. However, although PCE weights change every month, for the purpose of estimation

of the oil price pass-through into core, energy, and food price inflation we need just one

set of weights, and we choose to pick the last one available, which are the weights for June
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2016.

Finally, the oil price is measured by the West Texas Intermediate (WTI) spot crude oil

price, which is deflated by the core PCE price index.5 The data for WTI are from the US

Energy Information Administration and the Chicago Mercantile Exchange and they were

downloaded from Haver (PZTEXP@USECON), while the core PCE price index is from

the NIPA table (ID 368, Name DPCCRX).

3.2 Common and idiosyncratic dynamics in PCE prices

In this Section we look at common and idiosyncratic dynamics in PCE prices with the

ultimate goal of selecting the number of common factors, r, to be included in our model.

The results are obtained on a sample starting in 1984:M1 and ending in 2016:M6 (see

Section 3.3 for a discussion on the choice of the sample).

Table 1 shows the percentage of overall variance explained by the first ten factors. The

first factor explains a good chunk (8%) of the total variability in the dataset, while the

other factors explain just a residual fraction of it. Thus, the numbers in Table 1 provide

strong evidence pointing towards the existence of one common factor, but it is unclear if

additional factors are needed.

Table 1: Common dynamics in PCE prices
r 1 2 3 4 5 6 7 8 9 10
µt 7.9 4.3 3.2 3.0 2.7 2.5 2.4 2.2 2.1 2.0

Notes: µt is the percentages of total variance explained by the first r factors.

Figure 1 shows the percentage of variance of each variable explained by the first four

factors, where we have divided the disaggregate prices into four plots each of which rep-
5Blanchard and Gali (2007) argue that some of the oil price changes are extremely large and thus might

bias the estimation of the oil price equation. We checked this issue by running on the real oil price growth
rate the same procedure to remove outliers that we run on disaggregate prices (see Appendix A for details),
and we found just one outlier in 1974:M1. Removing that outlier does not change any of the results shown
in the paper.
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resents a different category. If we look at food and energy, which we expect to be driven

to a great extent by sectoral factors, such as weather in the case of food and various sup-

ply shocks in the case of energy, we see that the second and the fourth factor have good

explanatory power thus suggesting that they capture mainly idiosyncratic food/energy re-

lated fluctuations. If we look at “Core Goods” prices“, Core Services I” prices, and “Core

Services II” (market-based) prices, the second, the third, and the fourth factor have a very

low explanatory power suggesting that one factor suffices for these categories.

Figure 1: Common dynamics in PCE prices
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Notes: This figure shows the percentage of variance (y-axis) of each variable (x-axis) explained by the first four
factors. Each bar represent a different disaggregate price. Core Services I includes: “Housing and utilities”, “Health
care”, “Transportation services”, “Recreation services”, “Food services and accommodations”. Core Services II includes:
“Financial services and insurance”, “Other services”, and “Final consumption expenditures of NPISHs”.

The results in Table 1 and Figure 1 point out that, independently of the number of

factors included in the model, idiosyncratic dynamics are the main driver of changes in

disaggregate PCE prices (see also Boivin et al., 2009; Reis and Watson, 2010). However,
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although idiosyncratic dynamics dominate disaggregated prices’ fluctuation, they do not

dominate the evolution of the aggregate core index. Indeed, in a model with one common

factor, the common component accounts for 57% of core PCE fluctuation. Furthermore,

the stochastic properties of the common and idiosyncratic components are different: the

former are very persistent, while the latter tend to have very short memory (see Table

2). Note that these last two results are in line with the theoretical results in Zaffaroni

(2004). Zaffaroni (2004) shows that, as the number of variables gets large, the aggregation

of univariate heterogeneous ARMA processes driven by a common and an idiosyncratic

shock yields a time series that (1) is more persistent than the disaggregate series, and (2)

is mainly driven by the common shock; by contrast the disaggregated series are mainly

driven by the idiosyncratic shocks (see also Granger, 1980). For empirical results similar

to ours, see Clark (2006) and Maćkowiak et al. (2009) for the U.S., and Altissimo et al.

(2009) and Beck et al. (2016) for the euro area.

In summary, there is strong evidence indicating that PCE prices admit a factor rep-

resentation, but there is high uncertainty on the number of factors to be included in the

model. Furthermore, this uncertainty is not resolved even by resorting to more formal

criteria, such as, for example, the Bai and Ng (2002) information criteria that support the

choice of up to three common factors.

Table 2: Persistence of common and idiosyncratic dynamics
ρ1 ρ6 ρ12

ρξj(50) 0.12 0.07 0.06
ρξj(75) 0.22 0.12 0.12
ρξj(90) 0.38 0.21 0.21
ρfj 0.79 0.75 0.70

Notes: This table shows the persistence of the idiosyncratic components and the common
factor. In detail, ρξj (α) is the α percentile of the distribution of the estimated autocorrelation

coefficient at lag j of the idiosyncratic component, while ρfj is the estimated autocorrelation
coefficient at lag j for the common factor.
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3.3 Oil price pass-through

This Section presents estimates of the oil price pass-through into core PCE price inflation,

food PCE price inflation, and energy PCE price inflation. Results for each of the 88 PCE

price indexes in our dataset are available in an online appendix.

Our benchmark specification includes one factor (r = 1), and six lags for the VARs

(2) and (3). As discussed in Section 3.2 there is considerable uncertainty surrounding the

appropriate number of factors. We took a conservative approach under the rationale that

the existence of one factor is almost sure, while the presence of additional factors is not

so sure (results with r = 3 are available in Appendix B). The choice of six lags, despite

being larger than what selected by standard information criteria, is in line with the existing

literature (see for example Edelstein and Kilian, 2009; Gao et al., 2014).

The model is estimated on a sample starting in 1984:M1 and ending in 2016:M6, which

contrasts with a large part of the literature on oil price shocks that uses samples starting in

1973/1974 (for example Kilian, 2009; Aastveit, 2014; Gao et al., 2014). There are at least

two good reasons to consider a sample starting in 1984 rather than 1974. First, it is well

known that during the 1970s and the early 1980s inflation was much more volatile than

afterwards. Second, inflation in the 70s was heavily influenced by a number of food price

shocks, and by the 1971-1974 wage and price controls (see Blinder and Rudd, 2013). These

“structural breaks” are capable of distorting our estimates, and actually several authors (for

example Hooker, 2002; Clark and Terry, 2010) found a structural break in the oil–inflation

relation. For these reasons our sample starts in 1984, the year considered by the literature

as the start of the “great moderation”.

Figure 2 shows the impulse response function to an oil price shock of the percentage

change of the real oil price, together with a bootstrapped 90% confidence interval. After

an unexpected 10% increase, the real oil price increases further in the next two months by

approximately 3% and 1
2
%, respectively.
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Figure 2: Impulse response function to an oil price shock
Percentage change of the real oil price
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Notes: This figure shows the impulse response function to an oil price shock
of the percentage change of the real (WTI) oil price (straight line with
markers) with 90% confidence bands (shaded area). The x-axis represents
months, while the y-axis represents percentage points.

The upper plots in Figure 3 show the estimated oil price pass-through into the common

component of energy, core, and food PCE price inflation, while the lower plots show the

pass-through into the idiosyncratic component.

As expected, the oil price passes through energy PCE price inflation almost entirely via

the idiosyncratic component (left column). We estimate that an unexpected 10% increase

in the real oil price increases energy prices of approximately 11% in the current month,

19% after one month, 5% after two months, and 4% after three months. The pass-through

is completed in three months.

The middle column in Figure 3 shows the estimated oil-price pass-through into core PCE

price inflation. The pass-through of an unexpected 10% increase in the real oil price into

the idiosyncratic component of core prices is not significantly different from zero (lower

plot), while the pass-through into the common component, despite being small, is very

persistent: an unexpected 10% increase in the real oil price is estimated to increase core

PCE price inflation for more than 4 years (not shown here). Although the pass-through

into the idiosyncratic component is not statistically significant, for some of the components
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of core PCE—the more energy intensive ones—we estimate a positive and significant pass-

through. However, these components account for a very small share of core PCE and

therefore the aggregate effect turns out to be not statistically significant. This is the case,

for example, of “Air transportation” that has a weight of 0.5
100

in core PCE, and for which

we estimate an increase of roughly four percent in the current month.

Figure 3: Oil price pass-through into US PCE price inflation:

Energy price inflation Core price inflation Food price inflation
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Notes: The upper plots show the pass-through of an unexpected 10% increase in the real oil price into the common
component, while the lower plots show the pass-through into the idiosyncratic component. On each plot the black line
is the point estimate, while the shaded area is the 90% confidence band. The x-axis represents months, while the y-axis
represents percentage points.

The right column of Figure 3 shows the estimated oil price pass-through into food PCE

price inflation. In line with at least one previous study, the estimated pass-through into

the idiosyncratic component is not statistically different from zero (c.f. Baumeister and

Kilian, 2014), while the pass-through via the common component is very similar to that

for core PCE price inflation.

Finally, having estimated the pass-through from oil prices to PCE price inflation, we

can calculate what the oil price contribution to core PCE price inflation was. Figure 4

shows the average contribution per year of changes in the oil price to core inflation up to

2020. We estimate that the plunge in the WTI spot prices from roughly $100 per barrel

18



to roughly $30 per barrel that occurred between July 2014 to February 2016 shaved-off

a quarter of a percentage point from core PCE price inflation in 2015, and a third of a

percentage point in 2016. We estimate that the drag from oil prices will persist in 2017

and 2018 (about two tenth each year), and that it will then disappear by 2020.

Figure 4: Oil price contribution to US core PCE price inflation
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Notes: This plot shows the average contribution per year of real oil price
changes to US core PCE price inflation measured in percentage points (y-
axis). The black line with markers is the point estimate while the shaded
area is the 90% confidence band.

3.4 Has the oil price pass-through into core inflation changed over

time?

There is extensive evidence that the oil price pass-through to core inflation has decreased

over time (see Hooker, 2002; Chen, 2009, among others), with some authors finding that the

pass-through has become negligible (Clark and Terry, 2010). Figure 5 shows the estimated

pass-through into core PCE prices via the common component when the model is estimated

on a longer sample starting in 1974 (left plot), and when the model is estimated on a shorter

sample starting in 1996 (right plot). The choice of 1996 is for comparison with the euro

area analysis performed in Section 4, while 1974 is the starting date of a large number of

empirical analysis (for example Aastveit, 2014; Gao et al., 2014).
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The results in Figure 5 confirm that the oil price pass–through into core inflation has

decreased over time. In contrast with part of the literature (for example Clark and Terry,

2010) we still find a statistically significant pass-through even on the sample starting in

1996—the reason being that we disentangle between common and idiosyncratic movement

in price fluctuations, thus not letting the noisy idiosyncratic component affect our estima-

tion (see also the discussion in Section 3.5).

The literature has also asked why the pass-through has declined over time pointing

to several (non mutually exclusive) explanations. For example, a possible explanation is

that part of the decline in the pass-through can be attributed to the adoption of energy-

saving technologies (Hooker, 2002; Bachmeier and Cha, 2011), while another explanation

(Nordhaus, 2007; Bachmeier and Cha, 2011) points towards a change in the monetary

policy response to oil price shocks (see Blinder and Rudd, 2013, for a review). While

investigating properly the economic reasons of the decline in the pass-through into core

inflation would require a structural model, here we provide some reduced form evidence.

Figure 5: Has the oil price pass-through changed over time?
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Notes: In each plot the gray line is the estimated pass-through in the benchmark model (the shaded area is the 90% confidence
band), while the thick black line is the pass-through estimated on the sample starting in 1974 (left plot) or 1996 (right plot).
The thin black lines are the 90 percent confidence bands for these alternative time periods. The x-axis represents months,
while the y-axis represents percentage points.

Why does the oil price pass-through change when our model is estimated on different

samples? To answer it is necessary first to notice that an alternative (and equivalent) way
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to estimate the oil price pass-through onto the common component of core inflation is to

fit a bivariate VAR on the changes in the real oil price (yt) and the common component

of core inflation (χct).6 Second, it is important to keep in mind that when we estimate the

model in two different samples, we re-estimate the common factor and the factor loadings,

and therefore χct . Indeed, had we not re-estimated χct , then the difference in the estimated

pass-through would have been attributable to the mechanical fact that the coefficients of

the VAR vary because they are estimated on two different samples. However, given that

we re-estimate χct , the estimated coefficients of the VAR vary also because the estimated

common component changes depending on the estimation sample. To disentangle between

the contribution of common component estimation and contribution of the different VAR

estimation, in Figure 6 we show the pass-through obtained when the VAR is estimated on

the 1996-2016 sample while the common component is estimated on different periods.

Figure 6: Why has the oil price pass-through changed over time?
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Notes: In each plot the black line is the estimated oil price pass-through into the common component of core inflation
estimated on the 1974-2016 sample (left plot), and in the 1984-2016 benchmark sample (right plot). The dotted black
line in the left (right) plot is the pass-through estimated when χct is estimated over the 1974-2016 (1984-2016) sample,
but the VAR is estimated on the 1996-2016 sample. Finally, in both plots the gray line is the pass-through estimated
on the 1996-2016 sample. The x-axis represents months, while the y-axis represents percentage points.

By looking at Figure 6 we can see that the magnitude of the estimated pass-through

varies between samples mainly because of the common component estimation, whereas
6Let πc

t be the monthly core prices inflation rate, then by using (1) and the aggregation weights we can
write πc

t = χc
t + ξct , where χc

t =
∑

i∈core wiλift, and ξct =
∑

i∈core ξit.

21



the persistence of the estimated pass-through varies between samples mainly because of

the period used to estimate the VAR. The question then is why the common component

estimated on different samples is different.

The answer is straightforward: the estimation of the common component depends on

the comovement in the data, and the comovement in US disaggregate prices has changed

over time. Indeed, the average percentage of disaggregate prices fluctuation explained by

the common component has decreased from 18% in the 1974-2016 sample, to 8% in the

1984-2016 sample, to 6% in the 1996-2016 sample—at the aggregate level, the common

component accounts for 90%, 57%, and 11% of core PCE fluctuations in the three samples,

respectively.

In conclusion, our reduced form analysis points out that one of the reasons why the oil

price pass-through onto core inflation has decreased over time is the fact that disaggregate

prices have increasingly been driven by idiosyncratic dynamics.

3.5 Is our model miss-specified?

Our model assumes that the common component is driven by two shocks: a common shock,

which has no structural interpretation, and an oil price shock. This is clearly a simplify-

ing assumption as the common component might reflect the interplay of several different

sources such as, for example, the Federal Reserve leaning against the inflationary pressure

triggered by an oil price shock (Bernanke et al., 1997; Kilian and Lewis, 2011). Does this

simplifying assumption bias our results? Are we making a mistake in not disentangling

these different sources? This Section answers these questions.

In order to account for the interplay of different macroeconomic forces, we estimate

a larger VAR model. In detail, we first estimate equation (1), and then, rather than

estimating the VAR (2), we estimate a four–variable VAR including the percentage change

in the real oil price (yt), the unemployment rate, the Fed funds rate, and the common

22



factor (ft).7

The left plot in Figure 7 compares the oil price pass-through into core inflation estimated

with the larger VAR (black line) to that estimated with the benchmark model (gray line).8

Results are essentially unchanged: the estimated pass-through with the enlarged VAR is

just a touch smaller than the one estimated with the benchmark model, which is reflected

in a smaller estimated oil price contribution to core inflation (right plot). In other words,

the main conclusion of the paper is confirmed—the oil price pass-through to core inflation

is small but statistically significant and long lasting.

The results in Figure 7 contrast with those in Clark and Terry (2010). Clark and

Terry (2010), who estimate a time varying parameter VAR including core price inflation

(πct ), energy price inflation, the unemployment rate, and the Fed funds rate, conclude that

starting from 1985 the pass-through from energy price inflation to core price inflation is

essentially zero. It can be shown that our model is very similar to that of Clark and Terry

(2010) as it can be rewritten as a four–variable VAR including the percentage change in

the real oil price, the unemployment rate, the Fed funds rate, and the common component

of core price inflation (χct). Therefore, our conclusions are different from Clark and Terry

(2010) because we include χct in lieu of πct in the VAR model, that is we back-out the more

noisy idiosyncratic component thus not letting it affect our estimation. This result further

confirms the importance of disentangling between common and idiosyncratic movement in

price fluctuations.
7The unemployment rate is the “Civilian Unemployment Rate: 16 yr +” from the Bureau of Labor

Statistics, while the Fed Funds Rate is from the Federal Reserve Board. Both series where downloaded
from Haver (LR@USECON, and FFED@USECON).

8When we estimate the larger VAR we do not impose the restriction in (4). Furthermore, the oil price
shock is identified using a standard Choleski decomposition with the oil price ordered first.
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Figure 7: Is our model miss-specified?
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Notes: The left plot shows the pass-through of an unexpected 10% increase of the real oil price into the common
component of core PCE prices. The gray line is the estimated pass-through in the benchmark model (the shaded area is
the 90% confidence band), while the thick black line is the pass-through estimated using the enlarged VAR model (the
thin black lines are the 90% confidence bands). The x-axis represents months, while the y-axis represents percentage
points. The right plot shows the average contribution per year of real oil price to US core PCE price inflation measured
in percentage points (y-axis). The gray line is the estimated contribution in the benchmark model (the shaded is the
90% confidence band), while the black line is the point estimate estimated using the enlarged VAR model (the thin
black lines are the 90% confidence bands).

4 Oil price pass-through into inflation in the euro area

4.1 Data

The price data for the euro area are monthly Harmonized Indexes of Consumer Prices

(HICP) (see Appendix A for details), while the weights are the official HICP item weights

referred to 2016.9 Both the disaggregate prices and the weights are available from Eurostat

starting in 1996, and therefore the results for the euro area are obtained on a sample starting

in 1996:M1, and ending in 2016:M6. Furthermore, given that Eurostat publishes seasonal

adjusted series only for the aggregate indexes, we seasonally adjusted the disaggregated

price series ourselves using X12 ARIMA.

HICP price indexes are available at 5-digit level Classification of Individual Consump-

tion by Purpose (COICOP) for a total of 303 disaggregate prices, but for our analysis we

consider disaggregated series at 3-digit level, which gives us a dataset of 95 series. From
9Weights of the Classification of Individual Consumption by Purpose (COICOP) categories are revised

yearly and released in February together with the data for the month of January. In other words, while
PCE weights change every month, HICP weights are constant within a given year.
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this 95 price dataset we remove the following components that are available only starting

from January 2000: “Dental services”, “Hospital services”, “Social protection”, “Other in-

surance”, “Insurance connected with health”, and “Medical and paramedical services”. The

final dataset is composed of 87 price series covering 96.1% of the HICP index with 69% of

the price indexes that have a weight smaller than 1
100

, and 14% of them that have a weight

larger than 2
100

.

Finally, the oil price is measured by the Brent spot crude oil price, which is deflated

by the HICP core price index. The data for the Brent price are taken from the US Energy

Information Administration and the Wall Street Journal, and were downloaded from Haver

(PEBRT@USECON), while the data for core HICP are taken from Eurostat (teicp200).

4.2 Common and idiosyncratic dynamics in HICP prices

Table 3 shows the percentage of variance explained by the first r factors. Similar to US

PCE prices, EA HICP prices clearly admit a factor structure, but again it is unclear if

more than one factor is needed. Moreover, the first factor accounts on average for roughly

the same share of variance of disaggregate prices as in the US (see second and the third

row of Table 3).10

Table 3: Common dynamics in EA HICP prices
r 1 2 3 4 5 6 7 8 9 10
µEAt 9.8 4.2 3.9 3.6 3.0 2.9 2.6 2.5 2.3 2.3
µUSt 5.7 4.9 4.0 3.1 3.0 2.8 2.6 2.4 2.3 2.2

Notes: µEA
r is the percentages of total variance explained by the first r factors in the EA,

while µUS
r is the percentages of total variance explained by the first r factors in the US. Both

µEA
r and µUS

r were computed on a sample starting in 1996:M1 and ending in 2016:M6.

Figure 8 shows the percentage of variance of each variable explained by the first four

factors, where we have divided the disaggregate prices into three plots each of which rep-
10Note also that in a model with one common factor, the common component accounts for 21% of core

EA HICP inflation fluctuations. This is comparable to the shares estimated for US PCE prices on the
1996-2016 sample, which is 10%.
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resents a different category. Although Figure 8 does not help in understanding how many

factors to include in the model, it clearly shows that EA core services prices are more

idiosyncratic than core goods. The uncertainty on the number of factors is not resolved by

the Bai and Ng (2002) criteria that supports up to eight factors.

Figure 8: Common dynamics in EA HICP prices
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Notes: This figure shows the percentage of variance (y-axis) of each variable (x-axis) explained by the first four factors.
Each bar represent a different disaggregate price.

4.3 Oil price pass-through

In this Section we present estimates of the oil price pass-through into core EA HICP infla-

tion, food EA HICP inflation, and energy EA HICP inflation. The benchmark specification

is identical to the one used for US PCE prices, that is one factor (r = 1) and six lags in

the VARs (2) and (3).

Figure 9 reports the estimated oil price pass-through into energy HICP inflation (left

column), core HICP inflation (middle column), and food HICP inflation (right column),

together with 90% bootstrap confidence bands.

An unexpected 10% increase in the real oil price increases energy prices of roughly 9%

in the current month, of 8% after one month, of 11⁄2 percent after two months, and of 21⁄2

percent after three months. The pass-through is completed after three months. These

numbers are considerably lower than those estimated for the US, most likely due to higher

fuel taxes in the euro area. More precisely, in the euro area taxes on average account for

roughly 60% of total gasoline prices, with crude oil prices accounting for roughly 20% (see
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European Central Bank, 2011, page 87), while in the US the same shares are, respectively,

21% and 49% (source: EIA website http://www.eia.gov/petroleum/gasdiesel/).

The estimated pass-through into core HICP inflation in the EA is similar to that es-

timated for the US (middle column of Figure 9). The pass-through via the idiosyncratic

component is not statistically different from zero, while the pass-through via the common

component is null in the current month, but then small and persistent.

Figure 9: Oil price pass-through into EA HICP inflation
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Notes: The upper plots show the pass-through of an unexpected 10% increase in the real oil price into the common component,
while the lower plots show the pass-through into the idiosyncratic component. On each plot the thick black line is the point
estimate for the EA, while the thin black lines are the 90% confidence bands. Likewise, the solid gray line and the shaded
area are the point estimate and the confidence bands for the US, respectively. The x-axis represents months after the oil
price increase, while the y-axis represents percentage points.

Figure 10 shows the oil price contribution to core EA HICP inflation up to 2020. We

estimate that the plunge in the oil price shaved-off approximately 17 basis points to core

inflation in the euro area in 2015, and 19 basis points in 2016. The drag from oil prices

will persist in 2017 and 2018 (8 and 5 basis points), but it will fade away by 2019.11 These

numbers are very similar to those estimated for the US, with the effect being just slightly

delayed.
11In a recent paper Conti et al. (2017) estimate that oil prices shaved off an average of (roughly) 13

basis points to EA core inflation. Such an estimate is lower but not statistically different than ours.
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Figure 10: Oil price contribution to EA core HICP inflation
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Notes: This plot shows the average contribution per year of real oil price to EA core HICP inflation measured in
percentage points (y-axis). The thick black line is the point estimate for the EA while the thin black lines area
are the 90% confidence bands). Likewise, the solid gray line and the shaded area are the point estimate and the
confidence bands for the US, respectively.

5 Conclusions

In this paper we estimate the pass-through of oil price changes into consumer prices,

both in the US and in the Euro area. To do so, we use a novel approach based on

dynamic factor models and VARs, which allows us to distinguish between the specific

(idiosyncratic) effect that oil price changes might have on individual disaggregate prices,

from the macroeconomic (common) effect that oil price changes may have on all prices

since they contribute to macroeconomic fluctuations.

Our results show that common and idiosyncratic dynamics in disaggregate prices have

different statistical properties: common dynamics are slow moving, idiosyncratic dynamics

fast moving and volatile. Disentangling these two components proves crucial when estimat-

ing the oil price pass-through into core inflation, as we estimate that the pass-through via

the idiosyncratic component is essentially nil, while the pass-through via the common com-

ponent is small, but non negligible, statistically different from zero and long lasting. This

result is robust to estimation on different samples and with different model specifications.
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Appendix A Data

Appendix A.1 The US dataset

The price data for the US are monthly price indexes for personal consumption expenditures
(PCE) by type of product. The data are taken from the NIPA Table 2.4.4U from the Bureau
of Economic Analysis and downloaded from Haver. The data were seasonally adjusted by
the Bureau of Economic Analysis, and large outliers—πit is considered an outlier if its
absolute value is larger than 10 times the interquantile range—were replaced by centered
9-month medians. In the table belows the column “ID” reports the position in the NIPA
Table 2.4.4U, the column “share” reports the share of variance explained by the common
component, while the column “weight” reports the weight of each component in the Total
PCE index. The weight are those as of June 2016.
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ID Name Label share weight
5 New motor vehicles DNMVRX 22.0 2.09
10 Net purchases of used motor vehicles DNPVRX 8.1 1.00
18 Motor vehicle parts and accessories DMVPRX 15.7 0.53
22 Furniture and furnishings DFFFRX 27.0 1.50
27 Household appliances DAPPRX 20.0 0.39
30 Glassware, tableware, and household utensils DUTERX 15.1 0.45
33 Tools and equipment for house and garden DTOORX 10.0 0.18
37 Video, audio, photographic, and information processing equipment

and media
DVAPRX 41.3 1.82

50 Sporting equipment, supplies, guns, and ammunition DSPGRX 10.9 0.56
51 Sports and recreational vehicles DWHLRX 7.0 0.41
58 Recreational books DRBKRX 7.8 0.26
59 Musical instruments DMSCRX 12.1 0.05
61 Jewelry and watches DJRYRX 5.6 0.64
64 Therapeutic appliances and equipment DTAERX 26.8 0.56
67 Educational books DEBKRX 2.6 0.09
68 Luggage and similar personal items DLUGRX 6.3 0.29
69 Telephone and facsimile equipment DTCERX 21.7 0.14
74 Cereals and bakery products DCBPRX 13.0 1.06
77 Meats and poultry DMAPRX 0.2 1.18
82 Fish and seafood DFISRX 4.8 0.10
83 Milk, dairy products, and eggs DMDERX 2.2 0.65
87 Fats and oils DFATRX 7.4 0.14
88 Fresh fruits and vegetables DFAVRX 0.3 0.67
91 Processed fruits and vegetables DPFVRX 10.4 0.22
92 Sugar and sweets DSWERX 15.5 0.36
93 Food products, not elsewhere classified DOFDRX 30.4 1.07
94 Nonalcoholic beverages purchased for off-premises consumption DNBVRX 16.6 0.70
97 Alcoholic beverages purchased for off-premises consumption DAOPRX 22.3 1.08
101 Food produced and consumed on farms DFFDRX 0.1 0.005
103 Garments DGARRX 8.7 2.39
107 Other clothing materials and footwear DOCCRX 9.4 0.65
112 Motor vehicle fuels, lubricants, and fluids DMFLRX 2.0 1.98
115 Fuel oil and other fuels DFULRX 3.0 0.15
119 Pharmaceutical and other medical products DPHMRX 24.7 3.82
124 Recreational items DREIRX 27.4 1.28
129 Household supplies DHOURX 36.0 1.01
135 Personal care products DOPCRX 24.5 1.04
139 Tobacco DTOBRX 1.5 0.85
140 Magazines, newspapers, and stationery DNEWRX 24.2 0.78
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ID Name Label share weight
152 Rental of tenant-occupied nonfarm housing DTENRX 41.7 4.02
156 Imputed rental of owner-occupied nonfarm housing DOWNRX 40.5 11.54
159 Rental value of farm dwellings DFARRX 0.0 0.16
160 Group housing DGRHRX 33.3 0.01
163 Water supply and sewage maintenance DWSMRX 11.8 0.58
164 Garbage and trash collection DREFRX 20.7 0.14
166 Electricity DELCRX 18.6 1.42
167 Natural gas DGHERX 5.2 0.39
170 Physician services DPHYRX 49.2 4.06
171 Dental services DDENRX 32.3 0.98
172 Paramedical services DPMSRX 38.8 2.74
179 Hospitals DHSPRX 45.8 8.00
183 Nursing homes DNRSRX 20.8 1.46
187 Motor vehicle services DMVSRX 52.4 2.14
196 Ground transportation DGRDRX 9.0 0.35
203 Air transportation DAITRX 2.4 0.43
204 Water transportation DWATRX 6.9 0.03
206 Membership clubs, sports centers, parks, theaters, and museums DRLSRX 13.8 1.46
214 Audio-video, photographic, and information processing equip-

ment services
DAVPRX 7.0 0.80

220 Gambling DGAMRX 50.1 1.02
224 Other recreational services DOTRRX 19.1 0.46
231 Meals and nonalcoholic beverages DMABRX 65.7 4.83
239 Alcohol in purchased meals DAPMRX 21.8 0.72
240 Food furnished to employees (including military) DFOORX 23.4 0.16
243 Accommodations DACCRX 7.7 0.96
248 Financial services furnished without payment DIMPRX 2.6 2.59
252 Financial service charges, fees, and commissions DOFIRX 4.0 2.05
265 Life insurance DLIFRX 21.9 0.71
266 Net household insurance DFINRX 0.0 0.10
269 Net health insurance DHINRX 0.9 1.47
273 Net motor vehicle and other transportation insurance DTINRX 0.2 0.54
276 Telecommunication services DTCSRX 6.2 1.29
280 Postal and delivery services DPSSRX 3.5 0.08
285 Higher education DHEDRX 8.6 1.49
288 Nursery, elementary, and secondary schools DNEHRX 16.5 0.35
291 Commercial and vocational schools DVEDRX 8.7 0.43
293 Legal services DGALRX 17.9 0.84
294 Accounting and other business services DPRORX 12.4 0.27
298 Labor organization dues DUNSRX 27.4 0.11
299 Professional association dues DAXSRX 18.0 0.07
300 Funeral and burial services DFUNRX 24.5 0.22
302 Personal care services DPCSRX 42.8 1.12
305 Clothing and footwear services DCFSRX 49.8 0.14
310 Child care DCHCRX 8.0 0.29
311 Social assistance DSCWRX 16.3 0.91
318 Social advocacy and civic and social organizations DSADRX 18.9 0.13
319 Religious organizations’ services to households DRELRX 5.8 0.05
320 Foundations and grantmaking and giving services to households DGIVRX 14.1 0.01
321 Household maintenance DHHMRX 23.1 0.63
339 Final consumption expenditures of NPISH DNPIRX 2.9 2.72
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Appendix A.2 The euro area dataset

The price data for the euro area are monthly price indexes for Harmonized Indexes of
Consumer Prices (HICP) by type of product taken from the Eurostat website http://
appsso.eurostat.ec.europa.eu/nui/show.do?dataset=prc_hicp_midx&lang=en. The
data were seasonally adjusted by using the X-12-ARIMA seasonal adjustment method, and
large outliers—πit is considered an outlier if its absolute value is larger than 10 times the
interquantile range—were replaced by centered 9-month medians. In the table belows the
column “share” reports the share of variance explained by the common component, while
the column “weight” reports the weight of each component in the Total HICP index. The
weight are those as of 2016.
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Name Label share weight
Bread and cereals CP0111 48.1 2.6
Meat CP0112 28.2 3.5
Fish and seafood CP0113 2.6 1.0
Milk, cheese and eggs CP0114 27.4 2.1
Oils and fats CP0115 0.7 0.4
Fruit CP0116 2.7 1.2
Vegetables CP0117 1.4 1.7
Sugar, jam, honey, chocolate and confectionery CP0118 31.5 1.0
Food products n.e.c. CP0119 36.9 0.5
Coffee, tea and cocoa CP0121 3.1 0.4
Mineral waters, soft drinks, fruit and vegetable juices CP0122 29.5 0.9
Spirits CP0211 5.6 0.4
Wine CP0212 9.9 0.8
Beer CP0213 4.5 0.6
Tobacco CP022 2.4 2.4
Clothing materials CP0311 0.2 0.0
Garments CP0312 2.4 4.4
Other articles of clothing and clothing accessories CP0313 0.6 0.3
Cleaning, repair and hire of clothing CP0314 17.6 0.2
Shoes and other footwear CP0321-322 1.9 1.2
Actual rentals paid by tenants CP0411-412 5.0 6.5
Materials for the maintenance and repair of the dwelling CP0431 21.2 0.4
Services for the maintenance and repair of the dwelling CP0432 31.1 0.9
Water supply CP0441 0.0 0.6
Refuse collection CP0442 0.9 0.6
Sewerage collection CP0443 1.1 0.6
Other services relating to the dwelling n.e.c. CP0444 1.4 0.9
Electricity CP0451 7.7 2.7
Gas CP0452 11.9 1.9
Liquid fuels CP0453 0.2 0.6
Solid fuels CP0454 10.2 0.2
Heat energy CP0455 15.0 0.2
Furniture and furnishings CP0511 30.4 1.9
Carpets and other floor coverings CP0512 2.8 0.2
Repair of furniture, furnishings and floor coverings CP0513 12.1 0.1
Household textiles CP0520 5.5 0.4
Major household appliances whether electric or not CP0531-532 5.8 0.9
Repair of household appliances CP0533 10.6 0.1
Glassware, tableware and household utensils CP0540 10.2 0.5
Major tools and equip. and small tools and misc. accessories CP0551-552 20.8 0.5
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Name Label share weight
Non-durable household goods CP0561 35.9 1.0
Domestic services and household services CP0562 8.6 0.9
Pharmaceutical products CP0611 0.0 1.3
Other medical products, therapeutic appliances and equipment CP0612-613 6.0 0.8
Motor cars CP0711 0.3 3.5
Motor cycles, bicycles and animal drawn vehicles CP0712-714 0.1 0.3
Spare parts and accessories for personal transport equipment CP0721 17.9 0.6
Fuels and lubricants for personal transport equipment CP0722 0.3 4.2
Maintenance and repair of personal transport equipment CP0723 42.2 2.5
Other services in respect of personal transport equipment CP0724 12.2 1.2
Passenger transport by railway CP0731 2.2 0.6
Passenger transport by road CP0732 4.0 0.6
Passenger transport by air CP0733 0.6 0.7
Passenger transport by sea and inland waterway CP0734 0.5 0.1
Combined passenger transport CP0735 1.8 0.6
Other purchased transport services CP0736 6.2 0.1
Postal services CP081 4.3 0.2
Telephone and telefax equipment CP0820-830 0.2 3.0
Equipment for the reception, recording and reproduction of sound
and picture

CP0911 5.8 0.4

Photographic and cinematographic equipment and optical instru-
ments

CP0912 14.8 0.1

Information processing equipment CP0913 19.4 0.5
Recording media CP0914 0.0 0.2
Repair of audio-visual, photographic and information processing
equipment

CP0915 5.3 0.1

Major durables for outdoor recreation and indoor recreation CP0921-922 1.0 0.3
Maintenance and repair of other major durables for recreation and
culture

CP0923 1.4 0.0

Games, toys and hobbies CP0931 1.6 0.6
Equipment for sport, camping and open-air recreation CP0932 2.8 0.3
Gardens, plants and flowers CP0933 0.6 0.6
Pets and related products; veterinary and other services for pets CP0934-935 37.7 0.7
Recreational and sporting services CP0941 6.6 0.9
Cultural services CP0942 6.7 1.4
Books CP0951 0.0 0.5
Newspapers and periodicals CP0952 0.2 0.7
Miscellaneous printed matter;stationery and drawing materials CP0953-954 11.0 0.3
Package holidays CP096 0.1 1.7
Pre-primary, primary, second., etc, and educ. not def. by level CP10X0 7.5 1.1
Restaurants, cafés and the like CP1111 48.2 7.1
Canteens CP1112 6.6 0.7
Accommodation services CP112 0.0 1.8
Hairdressing salons and personal grooming establishments CP1211 25.7 1.2
Electrical appliances for personal care; other appliances, articles and
products for personal care

CP1212-1213 46.5 1.7

Jewellery, clocks and watches CP1231 11.9 0.5
Other personal effects CP1232 5.7 0.5
Insurance connected with the dwelling CP1252 0.5 0.3
Insurance connected with transport CP1254 1.1 0.8
Other financial services n.e.c. CP12622 0.5 0.6
Other services n.e.c. CP127 14.8 1.1
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Appendix B Robustness

In this section we provide robustness checks for the US.

As explained in Section 3.2 there is considerable uncertainty on the number of factors

to be included in the model, and in the first robustness check we show results with a larger

number of factors included. Figure B1 reports results when r = 3 as in Reis and Watson

(2010). In a nutshell: results do change in that, although the sum of the point estimates

of common and idiosyncratic pass-through does not change, the composition between the

two components slightly does. For example, in the model with one factor an unexpected

10% increase in the real oil price pass-through via the idiosyncratic component increases

PCE energy by 11.1% in the current month, while the (point-estimate) pass-through via

the common component is 0.2%. In the model with three factors an unexpected 10% real

oil price increase pass-through via the idiosyncratic component increases PCE energy by

5%, while the pass-through via the common component is 7%.

Figure B1: Robustness analysis with respect to number of factors
Oil price pass-through into US PCE price inflation

Energy price inflation Core price inflation Food price inflation
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Notes: The upper plots show the pass-through of an unexpected 10% increase in the real oil price into the common component,
while the lower plots show the pass-through into idiosyncratic component. On each plot the gray line is the estimated pass-
through in the benchmark model (the shaded area is the 90% confidence band), while the black line is is the pass-through
estimated when r = 3 (the dashed black lines are the 90% confidence bands). The x-axis represents months, while the y-axis
represents percentage points.
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The second check is done with respect to the structure of the model. As explained in

Section 2 our model is very similar to a standard FAVAR model (Bernanke et al., 2005).

In our model, the oil price is expected to have not only a common effect on all prices, but

also to possibly have an idiosyncratic effect on energy intensive items. In a FAVAR model,

instead, the oil price is treated as an observed factor, which means that the oil price is

part of the common space only, and it has no effects on the idiosyncratic component. In

formulas, equation (1) is replaced by

πit = λ′ift + γiyt + ξit (B1)

while (2) remains equal and the idiosyncratic component is not modeled. By substituting

(2) into (B1) we can derive the oil price pass-through into the inflation rate of price i

implied by the FAVAR as:

ψ̃i(L) = λ′ici12(L) + γici22(L). (B2)

Now, in principle ψ̃i(L) should be equal to ψ̃χi (L), and ψ̃ξi (L) should be zero, as in a FAVAR

model the oil price is treated as an observed factor. However, with a clear and acknowledged

abuse of notation, we are going to write ψ̃χi (L) = λici12(L) and ψ̃ξi (L) = γici22(L), and

then by comparing (B2) with (5) we can see that ψ̃χi (L) = ψχi (L), and ψ̃ξi (L) 6= ψξi (L).

Figure B2 compares our benchmark estimated oil price pass-through with the one esti-

mated using a FAVAR.12 More precisely, the top row of Figure B2 shows the pass-through

into the common component, while the bottom row shows the pass-through into the idiosyn-

cratic component. As expected, the estimated pass-through into the common component
12The FAVAR is estimated using PCA and OLS. More specifically, we follow Boivin et al. (2009) and

Aastveit (2014) and we first estimate ft by PCA, call it f̂0t , and then we iterate between (1) estimate λi

and γi by regressing xit into f̂ j−1t and yt, and (2) estimate f̂ jt by PCA on x̃t = xt − γ̂jyt. Alternatively a
FAVAR could be estimated in one shot either by estimating a restricted DFM with Maximum Likelihood as
in Juvenal and Petrella (2015) and Luciani (2015), or with Bayesian method as in Bernanke et al. (2005).
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is identical, while the estimated idiosyncratic pass-through is similar. All in all, the results

in Figure B2 show that had we estimated a standard FAVAR rather than the model in

Section 2 we would have reached the same conclusions.

Figure B2: Robustness analysis with respect to model structure
Oil price pass-through into US PCE price inflation

Energy price inflation Core price inflation Food price inflation
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Notes: The upper plots show the pass-through of an unexpected 10% increase in the real oil price into the common
component (λ′ici12(L)), while the lower plots show the pass-through into idiosyncratic component (di12(L) for the
benchmark model, and γici22(L) for the FAVAR). On each plot the gray line is the estimated pass-through in the
benchmark model (the shaded area is the 90% confidence band), while the black line is the pass-through estimated
with the FAVAR (the dashed black lines are the 90% confidence bands). The x-axis represents months, while the y-axis
represents percentage points.
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