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CREDIT RISK ASSESSMENT WITH STACKED MACHINE 
LEARNING

by Francesco Columba*, Manuel Cugliari*, Stefano Di Virgilio*  

Abstract

Banca d’Italia’s In-house Credit Assessment System (ICAS) for Italian non-financial corporations, used 
in the Eurosystem’s collateral framework for monetary policy implementation, consists of a statistical 
model (S-ICAS) and of the analysts’ evaluation. This paper compares the performance of S-ICAS with 
that of artificial intelligence, specifically of machine learning (ML) and deep learning models. The 
findings suggest that deep learning improves discriminative power; decision tree ensembles yield a 
further improvement, as does a meta-model that stacks random forests, extreme gradient boosting, 
and deep learning models. Applying eXplainable Artificial Intelligence (XAI) techniques to the meta-
model predictions, this paper shows that XAI can support analysts in understanding the key factors 
behind the differences between ML and S-ICAS predictions, thus helping refine their assessment. 
While interpretability issues prevent ML-based models from being a full alternative to traditional 
models, XAI allows for their integration within the overall credit assessment process, thus increasing 
its effectiveness.

JEL Classification: C52, C55, G24, G32. 

Keywords: credit risk, machine learning, deep learning, explainable artificial intelligence.

Sintesi

Il sistema interno della Banca d’Italia per la valutazione del merito creditizio delle imprese non 
finanziarie (ICAS), utilizzato nel quadro delle garanzie dell’Eurosistema per l’attuazione della politica 
monetaria, si compone di un modello statistico (S-ICAS) e della valutazione degli analisti. Il lavoro 
confronta le prestazioni di S-ICAS con quelle dei modelli di intelligenza artificiale (IA), in particolare 
i modelli di machine learning (ML) e di deep learning (reti neurali). I risultati suggeriscono che il deep 
learning migliora la capacità discriminante; gli insiemi di alberi decisionali apportano un ulteriore 
miglioramento, così come un meta-modello che combina random forests, extreme gradient boosting 
e reti neurali. Applicando tecniche di interpretazione dei risultati (XAI) dei modelli alle previsioni 
del meta-modello, si mostra che queste tecniche possono aiutare gli analisti nella comprensione dei 
fattori chiave alla base delle differenze tra le previsioni ML e quelle di S-ICAS, contribuendo così a 
raffinare la loro valutazione. Sebbene i problemi di interpretabilità impediscano ai modelli basati 
su IA di rappresentare un’alternativa completa ai modelli tradizionali, le tecniche di interpretazione 
dei risultati consentono l’integrazione nel processo complessivo di valutazione del merito di credito, 
aumentandone così l’efficacia.

*	 Financial Risk Management Directorate.
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1. Introduction1 

Since 2013, Banca d’Italia has been managing the In-house credit assessment system (ICAS) to assess the 

creditworthiness of Italian non-financial firms within the Eurosystem credit assessment framework 

(ECAF).2 ICAS is, in fact, one of the methodologies used to evaluate the eligibility of assets pledged in 

monetary policy operations (Giovannelli et al., 2023).  

The ICAS rating process follows a two-stage procedure. In the first stage, a statistical model (S-ICAS) 

generates a one-year probability of default3 (PD) for each non-financial firm. The second stage involves 

an expert assessment carried out by at least two financial analysts, who examine additional quantitative 

and qualitative information – typically a broad set of credit risk drivers –, after which the statistical PD 

can be either confirmed or revised. Currently, the S-ICAS is applied to approximately 370,000 Italian 

non-financial firms on a monthly basis, while the second stage is applied to a subset of the approximately 

4,000 firms most relevant for ICAS each year. 

S-ICAS is divided in two components: a financial component, which draws upon indicators derived from 

firms’ financial statements, as provided by Cerved Group, and a credit behaviour component, which uses 

indicators derived from the National Credit Register (NCR). In turn, both components consist of sub-

models, mainly in relation to sectors of activity and firm size (as explained in more detail in Appendix 1). 

Both the financial and the credit behaviour components generate a one-year PD, referred to as the financial 

PD and credit behaviour PD, respectively. These probabilities are subsequently integrated through a third 

step (performed with four sub-models by firm size), which yields the statistical PD. All the components 

of S-ICAS are estimated by means of logistic regressions (Narizzano et al., 2024). 

This study compares the performance of widely used machine learning (ML) methods to the performance 

of S-ICAS and discusses how differences between the outcome obtained with the former and those of S-

ICAS can be treated to improve the quality of the ICAS second stage, and thus the overall assessment. 

We contribute to the literature in two ways. First, while earlier studies compare ML techniques with 

statistical methods mostly based on a model and a single dataset, we carry out this comparison with a 

model, S-ICAS, that exploits multiple datasets, a multistep estimation process and that has been employed 

for monetary policy purposes for over a decade, with a consistently high performance. Second, unlike 

previous studies in which model explainability is discussed mainly as a theoretical exercise, we propose 

an application of eXplainable Artificial Intelligence (XAI) methods that can be used by financial analysts 

in the second stage of the ICAS evaluation process.  

                                                      

1 The authors would like to thank Paolo Del Giovane, Paolo Parlamento, Antonio Scalia and an anonymous referee for 

useful comments and suggestions.  
2 https://www.ecb.europa.eu/mopo/coll/risk/ecaf/html/index.en.html. 
3 See Appendix 1 for the definition of ICAS default. 
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This analysis is motivated by the significant advancements in machine learning observed in recent years 

– thanks to the availability of large datasets and the improvements in computational capabilities – and by 

the fact that ML methods, being intrinsically different from traditional statistical approaches, have the 

potential to provide useful results to enhance the accuracy and robustness of our assessment of firms’ 

creditworthiness. Classical techniques, such as logistic regression, rely on assumptions about the 

underlying stochastic process generating the observed data; the model’s parameters are estimated from 

the data and subsequently used for population inference or statistical testing. In contrast, ML methods 

make minimal or no assumptions about the data-generating process; instead, they identify the optimal 

function that maps input variables into the target variable, prioritizing maximum predictive accuracy 

(Breiman, 2001b). These methods frequently outperform traditional statistical models (Barboza et al., 

2017) as they are capable of capturing complex, non-linear and non-monotonic relationships with the 

dependent variable (Moscatelli et al., 2020). 

One important aspect, however, is that due to the non-parametric or complex functional form, explaining 

ML predictions remains a challenge (Loyola-Gonzalez, 2019). As a result, their application is often 

restricted, particularly in regulatory environments where explainability is crucial (Cascarino et al., 2022). 

In contrast, most traditional statistical models – among which S-ICAS – have simpler structures and their 

output can be easily interpreted by financial analysts. To address this issue, a sub-field of artificial 

intelligence, XAI, has been developed to enhance both the explainability and the interpretability of ML 

models (Štrumbelj and Kononenko, 2014; Ribeiro et al., 2016; Apley and Zhu, 2020).4 In this paper we 

explore whether XAI developments can be leveraged to support the analysis conducted within the ICAS 

framework. 

In the first part of our empirical analysis, we replicate the structure of S-ICAS by training three different 

ML models – random forests, extreme gradient boosting, and deep learning – and assess whether these 

techniques can achieve significant improvements in discriminatory power compared to S-ICAS. To 

further enhance performance and robustness, we also develop a meta-model that, by stacking the three 

models, integrates their predictions. We then use XAI techniques to identify which factors, among those 

considered in the models, are more relevant in explaining the discrepancies between the PDs estimated 

by ML models and those produced by S-ICAS.  

Our first finding is that ML models provide useful results for S-ICAS, which complement but cannot 

substitute it, due to their complexity, that prevents corporate credit analysis from relying only on ML to 

                                                      

4 A model is deemed explainable if it allows a person to understand either its internal mechanisms or the rationale behind 

its outputs. In the first case, the model is also called interpretable (European Banking Authority, 2020). 
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fully characterize firms’ creditworthiness. This result aligns with warnings against overreliance on 

automated decisions when applying artificial intelligence (Narayanan and Kapoor, 2024), as human 

oversight remains essential (Angelini, 2025).  This challenge is a source of concern also in banking 

regulation and supervision (European Banking Authority, 2023), which care for transparency and 

accountability of models. The XAI techniques, in this respect, are valuable and may streamline the 

analysts’ work, enabling them to pay attention to the most problematic issues, specifically where ML 

models and S-ICAS provide diverging signals (although caution is needed, since not all the cases are 

easily explainable). Our second finding is that ML models are particularly valuable in periods in which 

the quality of information deteriorates, as they are more accurate and faster to adapt to changes in 

economic developments, as shown for the pandemic crisis period.  We also have indications that the ML 

models may lead to correction of possible biases in the assessments of S-ICAS and of the analysts, though 

we leave for future work a fully-fledged evaluation of such possibility.  All in all, these results suggest 

that the use of ML models may increase the efficiency and quality of the whole ICAS process, offering 

insights for the calibration of its output and making it more robust, also due to the possibility of integrating 

additional information from unstructured databases. 

The remainder of the paper is structured as follows. Section 2 reviews the literature related to the use of 

ML techniques for credit risk and of the XAI methods. Section 3 outlines the dataset and the methods 

employed to estimate the ML models. Section 4 presents the main results of the models. Section 5 

describes the robustness checks. Section 6 introduces the application of XAI methods developed to 

explain the differences in the PDs produced by the various models. Section 7 concludes. 

 

2. Machine learning for credit risk and XAI methods 

The literature on credit risk indicates that ML techniques frequently outperform traditional statistical 

models in terms of accuracy and discriminatory power (Shi et al., 2022). Several studies have compared 

machine learning models — especially ensemble methods, which use various learning algorithms, such 

as random forests and gradient boosting machines — with traditional techniques like logistic regression. 

These comparisons show that ML models may outperform traditional models in terms of discriminatory 

power and/or accuracy when predicting corporate failures and bankruptcy (Li and Wang, 2017; Moscatelli 

et al., 2020; Schalck and Yankol-Schalck, 2021). 

Since the early 2010s, deep learning models have gained prominence in the ML literature (Alom et al., 

2019; Dell, 2024), due to the increasing size of datasets and the advancements in computational power. 

Indeed, deep learning methods tend to outperform other ML techniques when the dataset is very large 

(Fig. 1). 
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Figure 1 – Deep learning vs other ML techniques 

 

Source: Alom et al. (2019). 

 

For these reasons, some authors have started to train models using also deep learning — which use 

artificial neural networks — to predict corporates’ default and financial distress (Ciampi and Gordini, 

2013; Barboza et al., 2017; Petropoulos et al., 2019; Gregova et al., 2020; Zhang et al., 2022). The 

performance of ML models, including deep learning, is generally superior to that of traditional models 

according to a number of key metrics, particularly in terms of accuracy and Area Under the Receiver 

Operating Characteristic (AuROC).5  However, when comparing deep learning to other ML techniques, 

the results are mixed, without a clear best performer. In the aforementioned studies, the comparison 

between ML and traditional statistical methods has often relied on relatively simple models constructed 

specifically for this purpose. 

In recent years, global and local XAI techniques have also been used to improve the interpretability and 

the explainability of machine learning models. Global XAI methods provide insights into the model as a 

whole. Notable examples include the permutation variable importance method (Breiman, 2001a; Altmann 

et al., 2010) and accumulated local effects (ALE) plots (Apley and Zhu, 2020). The permutation variable 

importance method identifies the contribution of each variable to the model’s discriminatory power, while 

                                                      

5 The Area Under the Receiver Operating Characteristic is a performance measurement for classification problems at 

various threshold settings. The AuROC represents how well the model distinguishes between classes. A higher AuROC 

value means better model performance, with a value of 1.0 representing a perfect model and a value of 0.5 representing 

a model with no discriminatory power. 
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ALE plots illustrate the average relationship between the independent variables and the model’s 

predictions, making it possible to detect non-linear or non-monotonic effects. 

Conversely, local XAI methods aim to explain single predictions. Examples are the ‘Shapley values’ 

(Štrumbelj and Kononenko, 2014; Lundberg and Lee, 2017a; Lundberg and Lee, 2017b; Lundberg et al., 

2020) and ‘Local interpretable model-agnostic explanations’ (LIME) (Ribeiro et al., 2016). Shapley 

values, derived from game theory (Shapley, 1953), are grounded in robust theoretical properties (see 

Section 6) and are used to fairly distribute the difference between a model’s prediction and the average 

prediction among the independent variables. LIME approximates a non-linear model with a linear one, in 

the neighbourhood of a specific prediction. However, LIME relies on a heuristic procedure that contains 

different sources of uncertainty (Zhang et al., 2019). 

Explaining the output of an ML model is crucial in credit risk assessment, as highlighted by Cascarino et 

al. (2022). Specifically, in the case of corporate default forecasting, it is essential to link a given prediction 

to the firm’s characteristics, particularly when an automated scoring procedure directly influences the 

firm’s ability to access credit. Furthermore, in the case of ICAS, since the output of the statistical model 

serves as input of the expert assessment, it is imperative to explain statistical PDs to credit analysts.  

In recent years, XAI techniques have increasingly been applied to explain ML models trained to assess 

companies’ credit risk (Bussmann et al., 2021; Cascarino et al., 2022; Bitetto et al., 2023). In these studies, 

since the objective is to show how these techniques can be used to improve the models’ explainability, 

the exercises performed by the authors are relatively simple. 

  

3. Data and methods 

3.1 Dataset 

The dataset is assembled using Banca d’Italia’s data and extends from 2014 to 2023; financial statement 

and credit behaviour indicators are built using the methodology described in Narizzano et al. (2024). We 

consider the data from 2020 and 2021 to be significantly different from the other, as these years were 

heavily influenced by extraordinary government measures aimed at supporting businesses during the 

Covid-19 pandemic.6 These measures had an impact on the default rates recorded in those years. 

Consequently, the data from 2020 and 2021 are not used for training ML models and are considered only 

                                                      

6 The Italian government implemented several economic measures to support Italian companies, following the outbreak 

of Covid-19 pandemic. In particular, the government introduced the possibility of benefiting from payment delays (‘debt 

moratorium’) and public guarantees for bank loans. These measures increased the amount of liquidity available to 

companies during the pandemic (see D.L. ‘Cura Italia’ and D.L. ‘Sostegni’). 
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in the robustness checks. The dataset contains about 2.5 million observations. The trend of the default rate 

is generally decreasing over the sample period (Table 1). 

Table 1 - Default rates and firms 

(percentages; units) 

Year Default rate                                                                                       Firms 

2014 6.2 237,109 

2015 5.3 229,134 

2016 4.3 252,740 

2017 3.2 260,061 

2018 2.9 259,768 

2019 2.7 260,985 

2020 2.1 261,328 

2021 1.7 246,287 

2022 1.9 245,972 

2023 2.0 278,186 

 

As expected, the number of companies in default is much lower than the total, which is typical when 

dealing with corporate insolvencies. Consequently, the dataset is unbalanced. In the ML literature, 

unbalanced datasets are often addressed through rebalancing techniques, such as undersampling (He and 

Garcia, 2009). Undersampling involves randomly removing observations from the majority class (in this 

case, companies not in default) until the dataset achieves an approximate balance. Although research has 

shown that undersampling does not always improve the performance of ML models (Dal Pozzolo et al., 

2015), we decide to use this technique for computational reasons.7 

The dataset is also divided into a training set and a test set8 for the estimation and evaluation of the models, 

as follows. The years 2014 and 2023, first and last year of analysis, are designated as the test set, allowing 

us to test the models in a year with a higher default rate (2014) and in a year with a lower default rate 

(2023). Both years are marked by challenging economic conditions:9 during 2014, the economic cycle 

was still affected by the aftermath of the sovereign debt crisis, while 2023 was affected by the surge of 

inflation in 2021-2022 and the subsequent sharp rise in interest rates. Excluding the Covid-19 pandemic, 

the central years (2015-2019 and 2022) are used as the training sample. This temporal split ensures that 

the model is tested on an out-of-sample set from distinct economic periods. 

                                                      

7 Under-sampling greatly reduces the size of the dataset, speeding up the training-validation cycle of ML models. 
8 Under-sampling was only applied to the training set. 
9 See “Banca d’Italia Annual Report 2014” and “Banca d’Italia Annual Report 2023”. 
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3.2 Random forests 

Random Forests (RFs) are a combination of individual decision trees (Breiman, 2001a) which improves 

the overall predictive performance and robustness. RFs may handle large, high-dimensional datasets and 

model complex, non-linear relationships. In the context of credit risk, where the relationship between 

predictors and default are influenced by numerous factors, RFs mitigate overfitting by averaging multiple 

decision trees, thus providing more stable and accurate predictions. Additionally, RFs can be used as a 

feature importance ranking method, to rank the financial and behavioural indicators for credit risk, making 

RFs a powerful tool not only for prediction, but also for interpretation.10 

The methodology used to estimate the RF model for predicting PDs involves several steps (see Appendix 

2). The pre-processing phase involves constructing sub-datasets by selecting variables of interest for each 

of the eleven financial statement models and three credit performance models.11 Then, for each sub-model, 

a parameter space is defined for the hyper-parameter optimization process (Table 2).  

Table 2 – Random forests hyper-parameters search space 

Parameter Type Range 

n_estimators Integer 100 ÷ 500 

min_samples_leaf Integer 1 ÷ 1000 

max_features Categorical [sqrt, log2, None] 

bootstrap  Categorical [True, False] 

criterion  Categorical [gini, entropy] 

n_iter Integer 200 

cv Integer 10 

 

Note: n_estimators is the number of trees in the forest; min_samples_leaf, the minimum number of samples required to 

be at a leaf node; max_features, the number of features to consider when looking for the best split; criterion measures the 

quality of a split, with ‘gini’ for the Gini impurity and ‘entropy’ for the information gain; n_iter, is the number of iterations 

for the hyper-parameter search; cv is the number of folds. 

 

                                                      

10 RFs operate by constructing multiple decision trees during the training phase and then predicting the outcome by 

aggregating the results from all trees. In classification tasks, where the goal is to assign observations to discrete classes, 

the model aggregates the predictions across the trees to determine the final class. In regression tasks, where the objective 

is to predict a continuous value, the model combines predictions by averaging the output from all trees to generate a final, 

more stable prediction. Each tree is trained on a different bootstrap sample of the original data, and at each split in the 

tree, a random subset of features is considered for splitting. This feature generally results in better performance and 

reduced susceptibility to overfitting compared to individual decision trees (Louppe et al., 2013). 
11 These eleven financial statement models reflect the structure and variables of S-ICAS, encompassing five 

macroeconomic sectors (industrial, trade, construction, services, and real estate) across two distinct types of financial 

statements (ordinary and simplified), plus an additional model for holding companies. Distinct sub-datasets are created 

by extracting relevant features for each sector and financial statement type. Similarly, three credit models are constructed 

to capture firms’ credit behaviour performance. 
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The training dataset is then split into multiple subsets, known as folds, and cross-validation12 is used for 

hyper-parameter optimization (Kohavi, 1995) to evaluate the model generalizability and mitigate 

overfitting. By evaluating the model performance across multiple folds, we enhance the model predictive 

accuracy and robustness. The cross-validation process not only assesses the model ability to generalize to 

unseen data, but it also plays a critical role in hyper-parameter tuning, that is critical to enhance the model 

performance.13 Once the optimal hyper-parameters are identified, the final RF model is trained using the 

entire training dataset and subsequently evaluated on the test set to assess its performance.  

3.3 Extreme gradient boosting 

Extreme Gradient Boosting (XGB or XGBoost) is a widely recognized ML technique (Chen and Guestrin, 

2016) that has been successfully applied to various predictive modelling problems, including the 

prediction of corporate default (Petropoulos et al., 2019; Schalck and Yankol-Schalck, 2021). XGB 

represents an advanced implementation of Gradient Boosting (GB), a ML technique that builds predictive 

models by sequentially training decision trees, where each new tree corrects the errors made by the 

previous ones, to optimize both computational speed and model performance. XGB aggregates the outputs 

of multiple weak learners, typically shallow decision trees, to form a single, more accurate predictive 

model. The technique incorporates advanced regularization methods to reduce overfitting and employs 

innovative algorithms that allow for faster training and better scalability, making it a more robust and 

efficient version of GB. We use XGB to predict the PD by leveraging financial and credit behavioural 

indicators. 

The optimization process is carried out using a ten-fold cross-validation strategy for each of the sub-

models to ensure robust hyper-parameter selection (Table 3). This method helps in assessing the model 

performance across different subsets of the data, thus providing a better generalization.  

 

                                                      

12 Cross-validation implies systematically training the model on a combination of the folds, while validating it on the 

remaining one. 
13 We employ Bayesian optimization to explore systematically the hyper-parameter space and identify the optimal 

combination of parameters that maximize the model’s AuROC on the validation data. 
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Table 3 – Extreme Gradient Boosting hyper-parameters search space 

Parameter                Type                Range 

n_estimators Integer 50 ÷ 500 

learning_rate Real 0.005 ÷ 0.3 

max_depth Integer 1 ÷ 10 

reg_alpha Real 0 ÷ 500 

reg_lambda Real 0 ÷ 500 

n_iter Integer 200 

cv Integer               10 

Note: n_estimators is the number of trees in the forest; learning_rate controls the contribution of each tree to the final 

model, balancing model complexity and learning speed; max_depth determines the maximum depth of each tree and helps 

to control overfitting by limiting the tree’s complexity; reg_alpha is the L1, or Lasso,  regularization  term on weights, 

which adds a penalty to the absolute values of the weights to encourage sparsity and prevents overfitting; reg_lambda is 

the L2, or Ridge, regularization  term on weights, which adds a penalty to the squared values of the weights to prevent 

overfitting by discouraging large coefficients; n_iter, is the number of iterations for the hyper-parameter search; cv is the 

number of folds. 

 

The hyper-parameters selected are those that maximize the AuROC on the validation sets. Once the 

optimal hyper-parameters are identified, the final XGB model is trained on the entire training set and 

evaluated on the test set. The model ability to rank the predicted probabilities effectively is visualized 

using the ROC curve, which represents the true positive rate against the false positive rate at various 

threshold settings. 

An important feature of XGB is the robustness to overfitting, which is achieved through the combination 

of boosting and regularization techniques. In XGB, this robustness is further enhanced by the 

regularization parameters that add penalties for large coefficients, avoiding the risk that the model 

becomes overly complex and thus reducing the risk of overfitting. By controlling the size of the 

coefficients, regularization ensures that the model remains generalizable to new, unseen data, striking a 

balance between fitting the training data and maintaining predictive power on the test set.  

3.4 Deep learning 

Deep learning uses artificial neural networks to perform complex computations on large amounts of data. 

This type of ML, which resembles the structure of the human brain, have emerged as a powerful tool in 

credit risk forecast. Neural networks consist of layers of interconnected nodes, or neurons, that process 

input data. Each neuron receives inputs, performs a computation, and passes the result to the next layer. 

These networks typically include an input layer, multiple hidden layers, and an output layer. In the hidden 

layers, neurons apply weights to the inputs and pass them through an activation function to introduce non-

linearity, allowing the network to learn complex patterns. The output layer generates the final predictions. 

Deep learning arises when multiple hidden layers are employed within a neural network. As the number 

of layers increases, the network gains the ability to detect more intricate patterns and complex 

relationships within the data. 
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In classification tasks, such as credit risk assessment, neural networks categorize input data into 

predefined classes. The input features - such as financial ratios, payment records - are fed to the network. 

The network processes these features through its layers, adjusting the weights during training to minimize 

the error between its predictions and the actual outcomes. The final output is a probability score that 

indicates the likelihood of a firm defaulting.  By leveraging multiple hidden layers, deep learning models 

can reveal hidden relationships in financial datasets, allowing for the estimation of complex, non-linear 

relationships (LeCun et al., 2015). This capability arises from the evolution of the weights that connect 

the neurons in the hidden layers. As the model is trained, these weights are adjusted through back-

propagation, enabling the network to learn and model the non-linear relationships present in financial 

data. This approach is particularly advantageous in assessing credit risk, as it allows the model to uncover 

patterns that traditional linear models may overlook. 

In applying deep learning to firm default prediction, the architecture of the model is crucial. The designed 

network consists in multiple layers, each serving a specific role in transforming the input data into a 

meaningful output that reflects the probability of default. The sub-model are implemented using Keras,14 

a high-level neural networks library that simplifies the construction and training of deep learning models. 

The architecture includes dense and fully connected layers with varying numbers of neurons, activation 

functions to introduce non-linearity, and dropout layers for regularization.  

Figure 2 – Industry ordinary balance sheet neural network 

 

As an example, Figure 2 illustrates the neural network architecture used to estimate the sub-model of 

ordinary balance sheets within the industrial macro-sector. This architecture comprises several layers 

                                                      

14 Keras is an open-source software library that provides a Python interface for artificial neural networks. 
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(input, hidden, output), depicted at the bottom with their vector dimensions, each serving a specific 

function in the network overall performance. The input layer is composed of multiple nodes, each 

corresponding to an input variable relevant to credit analysis.15 The network ability to generalize from the 

training to unseen data – i.e. data not included in the training set - is crucial for achieving reliable 

predictions. This capability heavily depends on configuring the hidden layers effectively, as their structure 

and parameters enable the network to capture underlying data patterns. This generalization allows the 

model to accurately assess the default risk of firms that it has not encountered during training, ensuring 

its robustness across scenarios. For representation purposes, the number of neurons in each hidden layer 

is displayed, highlighting the architecture complexity and capacity for learning intricate patterns. The final 

layer in the network is the output layer, which consists of a single neuron that produces the prediction of 

default. This output is a probability score indicating the likelihood that a firm will default based on the 

input variables processed through the network.  

Regularization techniques are essential in neural network training to mitigate overfitting, a common issue 

where the model performs well on the training data, but poorly on the test data (see Appendix 2). As for 

RFs and XGB, a thorough hyper-parameter search is conducted for this model (Table 4).  

Table 4 – Neural network hyper-parameters search space 

Parameter Type Range 

dense_1_units Integer 2048 ÷ 6144 

dense_2_units Integer 2048 ÷ 6144 

dense_1_dropout Real 0.01 ÷ 0.99 

dense_2_dropout Real 0.01 ÷ 0.99 

learning_rate Real 1 × 10⁻⁴ ÷ 5 × 10⁻¹ 

reg_strength Real 1 × 10⁻⁶ ÷ 1 × 10⁻³ 

activations Categorical relu, selu, elu, tanh, swish16 

batch_size Integer 32 ÷ 64 

Note: the number of neurons in each layer are dense_x_units; the dropout rates are dense_x_dropout, for the hidden layers, 

the strength of regularization is reg_strength. Batch_size significantly affects the model performance and training stability 

                                                      

15 See Narizzano et al. (2024) for a detailed definition of the financial and credit indicators used across the various models. 
16 Activation functions (Dubey et al., 2022) are crucial, allowing the network to learn complex patterns. The ReLU 

(Rectified Linear Unit) function helps to mitigate the vanishing gradient problem, i.e. when in neural network training 

gradients become extremely small, preventing weights from updating effectively. The SELU (Scaled Exponential Linear 

Unit) function automatically normalizes activations across layers, leading to faster and more stable training. ELU 

(Exponential Linear Unit) introduces smoothness by producing negative values when the input is below zero, helping the 

model to capture more nuanced patterns. The Tanh function maps input values into a range between -1 and 1, often leading 

to better convergence. Swish, provides smoother transitions and potentially leading to higher accuracy by allowing the 

network to retain more information during training. 
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helping to prevent overfitting, without compromising the efficiency of computation and the speed of convergence. The 

optimal combination of hyper-parameters is searched with Bayesian optimization, facilitated by the KerasTuner library.  

 

Hyper-parameter optimization through cross-validation is essential in deep learning (see Appendix 2), as 

in all ML models. To further improve model training, early stopping and reduce learning rate on plateau 

techniques are used.17 We also note that the computational demands of training multiple deep learning 

models necessitate the use of Graphics Processing Units (GPUs).18  

Finally, although the AuROC of the deep learning model on the test set may be slightly lower than 

traditional models like RF and XGB, its inclusion in a stacked ensemble model boosts the overall 

performance (see Section 4). The ensemble leverages the strengths of each model, resulting in better 

generalization, meaning that the model performs well not only on training data, but also on new, unseen 

data, reducing the risk of overfitting. 

3.5 Stacked model 

Model stacking (Wolpert, 1992) is a powerful ensemble learning technique that combines multiple 

machine learning models to produce a single, more accurate predictive model. By integrating various 

models, stacking leverages the strengths of each model, thereby mitigating their weaknesses and 

enhancing the overall performance. In stacking, the base models are trained on the training data, then a 

meta-model is trained to make the final predictions based on the outputs of these base models.19 This 

approach captures a diverse range of patterns and relationships within the data, which might be missed by 

a single model, thus improving generalization and robustness. 

The benefits of stacking are manifold (Dietterich, 2000; Alexandropoulos et al., 2019). First, it improves 

predictive accuracy by incorporating the unique strengths of different models. In this study, the final 

model for predicting firms’ defaults is derived through the stacking of RFs, XGB, and deep learning 

models. While tree-based models, such as RFs and XGB, are best suited for structured data and the 

                                                      

17 The first one monitors the validation loss and halts training when the loss stops to decrease, preventing overfitting. The 

second technique reduces the learning rate when the validation loss levels off or plateaus. This adjustment allows the 

model to fine-tune its weights with greater precision, adapting to smaller gradients as it approaches an optimal solution. 
18 A GPU (Graphics Processing Unit) is a specialized processor designed to accelerate the rendering of images and video, 

but it has become essential in deep learning due to its ability to perform parallel processing on large datasets. Unlike 

CPUs, which are optimized for sequential tasks, GPUs can execute thousands of operations simultaneously, making them 

highly efficient for training neural networks, especially when dealing with complex models and large-scale data. GPUs, 

such as the NVIDIA® GeForce RTX™ 4080, are designed to handle the parallel processing required for training deep 

learning models efficiently. The NVIDIA® GeForce RTX™ 4080 is a powerful graphics processing unit (GPU) designed 

for high-performance tasks like gaming, deep learning, and complex computations. Based on NVIDIA’s Ampere 

architecture, it provides advanced features like ray tracing and AI-enhanced graphics. With its improved tensor cores and 

support for technologies such as DLSS (Deep Learning Super Sampling), the RTX 4080 is particularly well-suited for 

speeding up deep learning model training and other intensive workloads. In this project, leveraging GPU capabilities 

facilitated the training of sub-models across various balance sheet and credit rating models, with the entire process taking 

approximately 12 days. 
19 In order to train the meta-model, the output of base models is obtained through a cross-validation procedure in order to 

avoid overfitting (Breiman, 1996). 
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identification of non-linear relationships, deep learning models excel at capturing complex patterns and 

interactions within the data (Shwartz-Ziv and Armon, 2022). By combining these models, stacking 

ensures that the final prediction is well-rounded and robust. Second, stacking can help to reduce the risk 

of overfitting by allowing a meta-model to learn how to optimally combine the predictions from multiple 

base models. This is achieved by training the meta-model on a validation set, where it assesses the 

strengths and weaknesses of each base model predictions. By assigning appropriate weights to the base 

models according to their performance, the meta-model effectively balances their individual biases and 

variances. This process results in a more generalized and robust final prediction, minimizing the 

overfitting risk that any single model might introduce. 

 

Figure 3 – ICAS stacked machine learning model for predicting firms’ PDs 

 

The stacked model process begins with the training of the base models - RFs, XGB, and the deep learning 

- on the dataset. Each model generates its predictions, which serve as input features for the meta-model. 

The meta-model, trained with logistic regression on these predictions, is responsible for making the final 

decision. By learning the optimal way to combine the base model predictions, the meta-model effectively 

enhances the overall performance. The inclusion of deep learning in the stacking ensemble is noteworthy. 

While the AuROC of the deep learning model on the test set may slightly lag behind the RF and XGB 

models individually, its contribution to the stacked model is significant. The deep learning model unveils 

complex dependencies and interactions that the other models might overlook, thus enriching the feature 

set for the meta-model and leading to more accurate predictions. 

 

4. Models’ results 

The S-ICAS currently used by Banca d’Italia has been trained on a different dataset than the one used in 

this work. To properly compare the performance of the models, we decided to train not only the ML 

models, but also to re-train S-ICAS, using the same dataset described in the previous section. The 
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performance of the models is assessed with AuROC. In the following sub-sections, we report the results 

for each of the three main components of S-ICAS. 

4.1 Financial component 

We show the aggregated20 AuROC of ML models and that of S-ICAS financial component (Table 5). 

Table 5 – AuROC for the financial component 

Year S-ICAS Random forests XGBoost Deep learning Stacked 

2014 0.737 0.760 0.761 0.757 0.764 

2023 0.755 0.786 0.788 0.782 0.791 

 

We first note that, in general, the models perform better in 2023. This may depend on the difference in 

the percentage of ordinary balance sheets available in those two years. While for 2014 the number of 

available ordinary balance sheets was less than half the number of simplified financial statements, for 

2023 the situation was reversed. This is important because models estimated on ordinary balance sheets 

are superior, in terms of AuROC, to corresponding models estimated on simplified financial statements 

(see Appendix 3). This was expected since ordinary financial statements contain more information than 

simplified financial statements. 

In comparing the discriminatory power of the methods, we observe that the performances of RF and 

XGBoost are very similar, and superior to that of the S-ICAS financial component, with an approximate 

2.3 to 3.3 percentage point increase in AuROC, depending on the year. Deep learning also performs better 

than S-ICAS, but the AuROC increments are slightly less pronounced.  

To further enhance the discriminatory power, we integrate the predictions obtained from all three ML 

methods using the stacking method. The discriminatory power of the meta-model is slightly superior to 

that of RF and XGBoost (almost 0.5 percentage points), showing the potential of combining different ML 

approaches to achieve improved performance, and illustrating the value of ensemble and stacking 

techniques in ML. 21  

                                                      

20 The performance of ML models on each one of the eleven sub-component of S-ICAS financial module are reported in 

Appendix 3. 
21 We conducted a bootstrap analysis to verify the statistical significance of these results with 95 per cent confidence 

intervals for the difference between the AuROC of ML models and of S-ICAS (Appendix 4, Table A.7). 
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4.2 Credit behaviour component 

We show the aggregated22 AuROC of ML models and that of S-ICAS credit behaviour component (Table 

6). 

Table 6 – AuROC for the credit behaviour component 

Year S-ICAS 
Random 

forests 
XGBoost Deep learning Stacked 

2014 0.864 0.868 0.870 0.869 0.870 

2023 0.823 0.835 0.838 0.829 0.839 

 

  

First, we observe that AuROC values are far greater than the ones observed in Table 5. This was expected 

since the credit behaviour component is estimated using high quality NCR data, that are also available 

with a shorter delay than it is the case for financial statement data. Second, we note that ML models still 

outperform S-ICAS, but the increments in AuROC, between 0.5 and 1.5 percentage points, are less 

pronounced than the ones obtained for the financial component, in line with the findings of Moscatelli et 

al. (2020). Third, the disruptions caused by the Covid-19 pandemic blurred the information conveyed by 

firms’ credit and financial indicators, also due to the measures which supported firms’ liquidity, denting 

models’ accuracy after the pandemic. Lastly, we observe that the model built using the stacking method 

has the same performance or slightly outperforms each one of the base models23, but the increments in 

AuROC are less noticeable than the ones obtained in the financial component. 

4.3 Complete model 

In this section, we present the results of the integrated models (the financial component merged with the 

credit behaviour component) in terms of discriminatory power. Since the best ML model is the one 

obtained using stacking, both for the financial and the credit behaviour component, we show the 

comparison between the aggregated AuROC of the meta-model and that of S-ICAS (Table 7). 

Table 7 – Comparison between AuROC of complete models 

Year S-ICAS Stacked 

2014 0.874 0.880 

2023 0.854 0.873 

 

As expected, the two complete models outperform both the corresponding financial and credit behaviour 

component in terms of AuROC. We also note that the meta-model outperforms S-ICAS in 2014 (by 0.6 

                                                      

22 The performance of ML models on each one of three sub-components of S-ICAS credit behaviour module are reported 

in Appendix 3. 
23 We conducted a bootstrap analysis to verify the statistical significance of these results with 95 per cent confidence 

intervals for the difference between the AuROC of ML models and of S-ICAS (Appendix 4, Table A.8). 
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percentage points), and especially in 2023 (by 1.9 percentage points). We believe that this finding depends 

on a greater robustness of the meta-model. The aftermath of the Covid pandemic, as noted in the previous 

sub-section, suggests that the meta-model may be more resilient to the challenges posed to models by the 

decrease in the precision of credit quality information caused by the disruption to the economic activity 

and the associated mitigating measures. 

 

5. Robustness  

To understand if the last finding derives from the greater stability of the meta-model, we report the 

performance of the two models during the Covid period, 2020-2021 (Table 8). 

Table 8 – Comparison between AuROC of complete models with Covid period 

Year S-ICAS Stacked 

2014 0.874 0.880 

2020 0.872 0.885 

2021 0.838 0.852 

2023 0.854 0.873 

 

The performance gap (in terms of AuROC) between the meta-model and S-ICAS widens over the years: 

in 2014, the difference is 0.6 percentage points; in 2020, at the onset of the Covid crisis, the gap increases 

to 1.3 percentage points; and in 2021, it reaches 1.4 percentage points. Moreover, in 2023, in the aftermath 

of the pandemic, even if there are still effects of the Covid-19 crisis on the variables used by the models24, 

the performance of both models improves. However, the difference between the two AuROC grows 

further, and it is equal to 1.9 percentage points.25  

Thus, we conclude that: i) the meta-model is less affected by the disruptions that occurred in 2020 and 

2021 than S-ICAS; ii) the meta-model performance appears to have recovered, after the pandemic, more 

than S-ICAS. We believe that the greater robustness of the meta-model depends on: i) the ability of ML 

models to capture non-linear and non-monotonic effects, as noted in Moscatelli et al. (2020); ii) the use 

of stacking, which improves robustness as it aggregates different base models. 

 

                                                      

24 To predict 2023 PDs, 2021 financial statements data are used. 
25 We conducted a bootstrap analysis to verify the statistical significance of these results with 95 per cent confidence 

intervals for the difference between the AuROC of the stacked model and of S-ICAS (Appendix 4, Table A.9). 
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6. Forecasts explanations 

The default probabilities generated by ML models can significantly differ from those produced by S-

ICAS. For instance, Figure 4 shows the normalized histogram of the statistical distribution of the 

difference between the PDs produced by the meta-model and by S-ICAS for 2023. 

Figure 4 – Statistical distribution of the difference between meta-model and S-ICAS PDs 

 

PDs for year 2023. 

These differences can be substantial, given that the average default probabilities produced by both models 

are around 1.5 percentage points. A comparison between the performance of both models in the tails of 

the distribution of the difference between meta-model and S-ICAS PDs by year26 shows (Table 9) that the 

performance gap is greater than the one reported in the previous section. 

Table 9 – Delta AuROC of complete models on the tails of the distribution of the difference 

between meta-model and S-ICAS PDs by year 

Year 
Delta 

AuROC 

2014 0.021 

2020 0.032 

2021 0.045 

2023 0.053 

 

Also in this case the performance gap widens over the years: in 2014, the difference is 2.1 percentage 

points; in 2023 it reaches 5.3 percentage points. Moreover, in the tails the distribution of firms by size is 

slightly different (Table 10). 

                                                      

26 We define the tails of the distribution as the observations lying above the 90th percentile and below the 10th percentile. 



24 

 

Table 10 – Distribution of firms by size 

Size 
Dataset 

(%) 

Tails 

(%) 

Micro 56.5 61.7 

Small 33.2 30.2 

Medium 8.4 6.7 

Large 1.9 1.4 

 

In the tails of the distribution of PDs difference, the percentage of micro-firms is greater while the 

percentage of medium-large firms is lower. This is an indication of the fact that the meta-model performs 

particularly well for micro-firms. This is consistent with the fact that the difference in the performance of 

credit behaviour ML models and credit behaviour logistic regression is greater for micro firms than for 

medium-large firms (see Appendix 3, Table A.6). This may be attributed to the circumstance that less 

information is available for smaller firms and that ML techniques help bridge the information gap, 

similarly to what highlighted by their contribution in periods, as the COVID-19 pandemic, where less 

information was available. 

We have shown that the meta-model consistently outperforms and is more robust than S-ICAS. 

Consequently, if the probability of default produced by the meta-model significantly differs from that 

generated by S-ICAS for the same firm, it could indicate that S-ICAS faces a challenge in the assessment 

of the riskiness of the company. This discrepancy could serve as the basis for an alert system that flags 

such cases to the financial analysts in charge of the expert assessment stage. Hence, we are interested in 

a methodology capable of offering insight into the contribution of each input variable to the difference 

between the two PDs. Such information would allow financial analysts to concentrate on the most 

problematic areas, to understand if S-ICAS PD has indeed appropriately captured the company’s credit 

risk. It is possible to associate each variable with its contribution to the prediction of any model using a 

specific XAI technique, the Shapley values, as discussed below. 

6.1 Shapley values 

Shapley values, originating from game theory (Shapley, 1953), provide a method to fairly distribute the 

total expected payout in a cooperative game among its participants, ensuring that certain desirable 

properties are satisfied (see Appendix 5).27 In recent years, this technique has been applied to machine 

learning (Štrumbelj and Kononenko, 2014).  

                                                      

27 In this context, a player’s Shapley value corresponds to the payout he deserves, i.e. it quantifies the player’s contribution 

to the team’s win. Moreover, the sum of all the Shapley values is equal to the difference between the total expected payout 

and the fixed payout of the game (if the latter is different from 0). 
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The application is straightforward; let’s assume we have a model that maps variables 𝒙 =

(𝑥1, 𝑥2, … , 𝑥𝐾) ∈  ℝ𝐾 to a prediction 𝑓(𝒙) ∈ ℝ. To determine the contribution of each variable to a 

specific prediction 𝑓(𝒙∗) we can find its Shapley values 𝜙𝑘 (for 𝑘 = 1, 2, … 𝐾), where: i)  the values of 

the model’s variables 𝒙∗ take on the role of players; ii) the value of the prediction 𝑓(𝒙∗) takes on the role 

of the total expected payout; iii) the average prediction 𝐸[𝑓(𝑥)] takes on the role of the fixed payout of 

the game. In this case, the sum of all Shapley values is equal to the difference between 𝑓(𝒙∗) and 

𝐸[𝑓(𝑥)].28 Formally: 

∑ 𝜙𝑘 = 𝑓(𝒙∗) − 𝐸[𝑓(𝑥)].

𝐾

𝑘=1

(1) 

In order to calculate Shapley values, it is necessary to know (or to approximate) the joint distributions of 

the 𝐾 variables 𝒙. Besides, due to the computational burden of the exact Shapley value calculation, several 

approximation algorithms have been developed, such as the ‘Shapley sampling value’ (Štrumbelj and 

Kononenko, 2014)29 and the ‘Kernel SHAP’ (Lundberg and Lee 2017b). While the latter is more 

computationally efficient, both methods assume that the variables are independent (see Appendix 5). This 

type of approximation is not accurate in many cases, such as in S-ICAS, where there is a non-negligible 

correlation among variables. To address this problem, Aas et al. (2021) develop some approximation 

algorithms that compute more accurate Shapley values, taking into consideration the variables’ 

correlation. In this work, we use their methods to compute the Shapley values.30 

6.2 Shapley values for ICAS expert assessment 

We build an application to obtain, for a given firm, the Shapley values related to the difference between 

the PD forecast with the meta-model and the one produced with S-ICAS. This application is built to 

explain the difference in the financial PDs or the difference in the credit behaviour PDs, since financial 

analysts look at the two components separately during their analysis. 

It is possible to show (see Appendix 5) that, by calculating the Shapley values related to the difference in 

the predictions between the two models, for a specific observation 𝒙∗ we approximately get: 

∑ 𝜙𝑘 ≈ 𝑓𝑚(𝒙∗) − 𝑓𝑠(𝒙∗),

𝐾

𝑘=1

(2) 

                                                      

28 If we do not know the value of any variable, the best possible prediction is the expected value of the model output. 
29 This method has been applied for explaining ML predictions in Cascarino et al. (2022).   
30 The algorithms developed in Aas et al. (2021) are available in an R package, shapr, and in a Python package, shaprpy, 

which is a wrapper of the R package. 
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where 𝜙𝑘, for 𝑘 = 1, 2, … 𝐾, are the Shapley values,  𝑓𝑚(𝒙∗) is the PD produced by the meta-model and 

𝑓𝑠(𝒙∗) is the one produced by S-ICAS.31 This approximation holds for the most problematic cases, the 

ones where the two PDs are very different from each other. For example, it holds when the two PDs 

belong to two not adjacent Credit Quality Steps (CQS).32 In those cases, the sum of Shapley values is 

approximately equal to the difference between the two PDs. 

We now present an example from the application of Shapley values.33 Consider an industrial firm where 

the S-ICAS financial component predicts a default probability of 0.51 per cent, while the meta-model 

predicts a PD of 1.57 per cent. The meta-model deems the firm as much riskier. The Shapley values 

explaining the difference of the two PDs provide insights into the variables which mostly influence the 

higher risk signalled by the meta-model. 

Figure 5 - Shapley values for the industrial company 

 

Note: for simplicity, only variables with the greatest Shapley values are reported. 

                                                      

31 The expected value in Equation 1 has vanished. Since each S-ICAS sub-model uses specific indicators, Equation 2 

needs to be applied separately for each sub-model.  
32 The Credit Quality Steps are the core of the Eurosystem’s harmonized rating scale. For further details, see European 

Central Bank (2015). 
33 We present a second example in Appendix 6. 
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In this example, the variables ‘interest expenses divided by EBITDA’, ‘days payables turnover’34 and 

‘cash flow divided by net sales’ have the largest Shapley value. Consequently, these indicators are the 

ones that contribute more to the positive difference in PDs.35  

In the example we show how Shapley values can clarify aspects that may have represented a challenge 

for S-ICAS. We believe that the issue often lies in the presence of interaction effects among variables. In 

fact, S-ICAS is a multivariate logistic model that is additive in its nature. In some cases, a combination of 

some variables could have a strong positive or negative effect on a firm’s conditions, and this effect might 

not be reflected accurately in S-ICAS PD. While it is true that Shapley values are not always 

straightforward to interpret,36 in cases where there is a dominance of highly positive (or negative) Shapley 

values, the use of such values may be an effective support for ICAS financial analysts.  

 

7. Conclusions 

In this study, we use three machine-learning models - random forests, extreme gradient boosting and deep 

learning –, as well as a meta-model that integrates predictions from the three models, to replicate the 

Banca d’Italia’s ICAS statistical model, which is estimated with logistic regressions. The dataset includes 

financial and credit behaviour variables for hundreds of thousands of Italian non-financial companies, 

from 2014 to 2023. 

Within the financial component of S-ICAS, we observe that RF and XGBoost yield an improvement of 

the discriminatory power, as measured by the AuROC, of 2.3 to 3.3 percentage points over logistic 

regressions, while deep learning yields slightly less pronounced increments. ML models provide an 

increase in discriminatory power, though smaller, also in the credit behaviour component (between 0.5 

and 1.5 percentage points). We also find that the meta-model that integrates the predictions from the three 

ML models outperforms the individual models. When looking at the complete model, the meta-model 

consistently outperforms the discriminatory power of S-ICAS by 0.6 to 1.9 percentage points depending 

                                                      

34 The average number of days it takes a company to pay back its accounts payable. 
35 To better understand this point, we consulted a financial analyst to assess the firm’s financial condition. The analyst, 

paying attention to the three variables reported above, said that the firm had low margins and a good part of the company 

liquidity was absorbed by suppliers. This analysis reveals that the company has limited available liquidity and a low 

capacity for cash generation, which could become problematic, especially during periods of financial distress. For these 

reasons, a PD of 0.51 per cent seems to be too low when compared to the true riskiness of the firm, while a PD of 1.57 

per cent is more appropriate. There are also variables with a negative Shapley value. These variables contribute negatively 

to the difference between the two PDs, i.e. they indicate that, for the meta-model, there are some aspects of the firm’s 

financial situation that S-ICAS has judged too negatively. However, in this case these variables have a small weight, so 

they provide a small contribution.  
36 It is possible to have at the same time both high positive and negative Shapley values. These situations can be hard to 

interpret. 
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on the year. Furthermore, the meta-model performance is less affected by the disruptions that occurred in 

2020 and 2021 and shows a stronger performance recovery than S-ICAS in the post-pandemic period. 

Meta-model PDs could be used by financial analysts in the expert assessment stage to improve ICAS 

ratings, by focusing on aspects where ML models and S-ICAS provide different signals. To make this 

information explainable, we use Shapley values that can provide financial analysts with the contribution 

of each variable of the model to the PD difference. Even though we have not carried out a fully-fledged 

evaluation37 of the effectiveness of Shapley values in capturing S-ICAS biases, from the examples we 

have analysed we verified that these values can highlight aspects that may have not been fully grasped by 

S-ICAS. This would enable analysts to focus on the most problematic areas of the analysis. Nevertheless, 

caution is needed, since the interpretation of Shapley values may be challenging, especially when both 

highly positive and highly negative values are present. These conditions also show that the credit 

assessment process cannot rely only on ML models, reflecting also regulatory concerns, due to their 

complexity which makes them difficult to be interpreted and understood by all the relevant stakeholders. 

Overall, our results indicate that ML models have the potential to enhance both the efficiency and quality 

of the ICAS process, refining and reinforcing it through a comprehensive and effective analysis of firm-

related information. We plan to further investigate the benefits of integrating ML models in ICAS, including 

by evaluating ex-post their contribution to S-ICAS and analysts’ evaluations.  

 

 

 

  

                                                      

37 A fully-fledged evaluation, which we plan for future work, would require providing Shapley values to analysts for a 

significant number of  prospective assessments and then verifying ex-post if the Shapley values improved the performance 

of ICAS full evaluations and that of S-ICAS. 
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Appendix 1 – ICAS 

Components 

The statistical model has two components. A logistic regression is estimated for each component, 

providing a credit score. The components are as follows: 

 the credit behaviour component uses individual firm data from the NCR. Different sub-models 

exist for each firm class according to size;38 companies are grouped into micro, small, and 

medium/large-sized classes. Each of the three sub-models uses specific regressors; 

 the financial component employs financial data on individual firms provided by Cerved Group.39 

This component involves 11 sub-models based on the macro-sector and the type of financial 

statement (ordinary or simplified). The sectors include industry, trade, construction, services, real 

estate, and holdings. Two models have been estimated for each of the first five sectors: one for 

companies with an ordinary financial statement and one for companies with a simplified financial 

statement. For the holding sector, a single model has been estimated. Each of the 11 sub-models 

uses specific regressors. 

The results of these two components are then merged through an integration module that provides the S-

ICAS final score. The integration module is specialised into four sub-models according to firm size 

(micro, small, medium, and large). The score produced by S-ICAS is mapped into the statistical PD via 

the inverse logit function.40 A higher score implies a higher probability of default. For more details, see 

Narizzano et al. (2024). 

 

Default definition 

The dependent variable used in the estimation of each S-ICAS sub-models is binary and represents the 

status of the company at the end of the year following the initial moment of observation. It is valued at 1 

if the firm has defaulted in at least one of the twelve months and it is valued at 0 otherwise. More in detail, 

a company is considered in default in a given month if both the following conditions occur (Giovannelli 

et al., 2023): 

                                                      

38 As defined by the European Commission 2003/361/EC, according to article 2 of the Annex, the category of micro, 

small and medium-sized enterprises (SMEs) is made up of enterprises that employ fewer than 250 persons and achieve 

an annual turnover not exceeding EUR 50 million, and/or total assets not exceeding EUR 43 million. Within the SME 

category, a small enterprise is defined as one that employs fewer than 50 persons and whose annual turnover and/or total 

assets do not exceed EUR 10 million. Within the SME category, a micro enterprise is defined as an enterprise that employs 

fewer than 10 persons and whose annual turnover and/or total assets do not exceed EUR 2 million. 
39 Cerved Group maintains an extensive dataset covering the Italian corporate sector, which includes nearly all small and 

micro limited-liability firms. This dataset is sourced from the National Official Business Register. 
40 The score is defined as the natural logarithm of odds. Mathematically, 𝑠𝑐𝑜𝑟𝑒 = ln (

𝑃𝐷

1−𝑃𝐷
). 
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1. The exposure reported as bad debt, unlikely to pay or past-due (over 90 days) exceeds 5 

per cent of the total exposure of the company to the financial system and is greater than 500 euros; 

2. The previous condition has occurred for at least three consecutive months. 

However, if a bank reports a loss, the previous conditions are not applied and the company is automatically 

considered in default. Data on exposures and defaults are taken from the NCR. 
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Appendix 2 – Methods and variable selection  

Cross-validation and optimization 

As for cross-validation, in stratified K-fold cross-validation, the data is divided into K folds, ensuring a 

proportional representation of each class in every fold. The model is iteratively trained on K-1 folds and 

validated on the remaining fold, with this process repeated K times so that each fold is used as a validation 

set exactly once. This approach provides a comprehensive evaluation of the model performance across 

different data splits, reducing the variance associated with a single train-test split. We set the number of 

folds to 10, as specified by the cv parameter, ensuring a thorough and reliable evaluation.  

Cross-validation is used to maximize the validation AuROC, guiding the search process toward 

configurations that enhance the model ability to discriminate between default and non-default cases. The 

search inside the hyper-parameter space is conducted using Bayesian optimization, which is a 

probabilistic, model-based approach that constructs a surrogate model to approximate the objective 

function. It uses this surrogate to select the most promising hyper-parameters to evaluate, balancing 

exploration and exploitation.  This method is particularly effective for complex search spaces, as it 

converges to optimal solutions more efficiently than grid or random search methods.41 

In the context of hyper-parameter optimization, there are several specialized software libraries designed 

to efficiently search for the best combination of parameters. Among these, scikit-optimize stands out as a 

particularly effective tool. This library provides advanced algorithms for Bayesian optimization. The 

decision to use scikit-optimize is based on its flexibility in handling various types of hyper-parameters 

(including both continuous and categorical variables). Compared to other libraries, scikit-optimize offers 

a balance between ease of use and powerful optimization techniques, making it one of the best choices 

for hyper-parameter tuning in machine learning models. 

Regularization and training in deep learning 

Regularization in deep learning involves adding penalties to the loss function for larger weights, 

preventing the model from becoming overly complex and overfitting the training data. By discouraging 

the network from assigning excessive importance to any single feature, regularization ensures that the 

model generalizes better to new, unseen data, ultimately leading to more robust predictions. Dropout, a 

different form of regularization, operates by randomly deactivating a fraction of neurons during each 

training iteration. This operation avoids that the network becomes too dependent on any single neuron or 

small group of neurons, which might otherwise capture patterns specific only to the training data. As a 

result, the network is forced to distribute the learning process across multiple neurons, leading to the 

development of a more robust and diverse feature representation.  

                                                      

41 For a survey on optimization algorithms see, for example, Yu and Zhu (2020). 
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Stochastic Gradient Descent (SGD) is a fundamental optimization method employed in training deep 

learning, especially in the backpropagation process. In the context of backpropagation, SGD iteratively 

adjusts the model weights by computing the gradient of the loss function with respect to each weight. 

Instead of calculating the gradient over the entire dataset, SGD uses a randomly selected subset of the 

data (a mini-batch) to update the weights, making the process faster and more scalable for large datasets. 

This iterative adjustment helps the model minimize the loss function and gradually converge toward the 

optimal set of weights, improving accuracy. For all the sub-models estimated, the optimizer chosen is 

Adam42, renowned for its adaptive learning rate capabilities, which combines the benefits of two other 

extensions of stochastic gradient descent, namely AdaGrad43 and RMSProp44. The loss function selected 

is the binary cross entropy, which is well-suited for binary classification tasks as it measures the 

performance of the model by comparing the predicted probabilities to the actual binary labels, thereby 

guiding the model to improve its predictions through gradient descent. 

  

                                                      

42 Adam is an adaptive optimizer widely used in deep learning, known for efficiently handling sparse gradients and noisy 

data. It adjusts the learning rate dynamically for each parameter during training, which helps to improve convergence and 

model performance in a variety of tasks. 
43 AdaGrad (Adaptive Gradient Algorithm) is an optimization method that adapts the learning rate for each parameter, 

improving convergence on sparse data. 
44 RMSProp (Root Mean Square Propagation) is an optimization algorithm that adjusts the learning rate for each parameter 

based on the moving average of recent gradient magnitudes. 
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Variable selection 

Table A.1 and Table A.2 present the input variables for the ordinary and simplified financial sub-models, 

while Table A.3 lists the variables used in the credit behaviour sub-models. Information on the sign of 

each regression coefficient is also reported (+/-). Regarding the financial component of S-ICAS, raw data 

are initially provided by Cerved Group, from which we compute the indicators used across the eleven 

financial sub-models, with each sub-model utilizing its own set of specific indicators. For the credit 

behaviour component, the variables used in the three sub-models are derived from NCR data. 

Table A.1 – Input variables for the ordinary financial sub-models 

 

Risk area Variable 

Industrial sector 
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Profitability 

Cash flow / Net sales  - -   -   

Cash flow / Total assets     -     

Value added / Total assets         - 

Leverage & financial 

structure 

Equity / Net financial debt - - - - - 

Fixed assets / Total assets          - 

Debt sustainability 

Interest expenses / EBITDA + + + +   

Interest expenses / Cash flow          + 

Interest expenses / Net sales + +   +   

Net sales / Total net debt - -   -   

ROD (return on debt) = Interest expenses / 

Average financial debt  
+ + + + + 

Liquidity 

Current ratio = current assets / current 

liabilities 
-   -     

Financial mismatch = (current liabilities – 

current assets) / total assets 
  +   +   

Cash / Total short term debt - - - - - 

Activity 

Days receivables turnover + Days 

inventory turnover (discretize) 
+         

Days receivables turnover (discretize)     + + + 

Days payables turnover (discretize) + + +     

Business development Net sales negative variation (discretize) + +   +   

Size & Age Log(age) - - - -   
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Table A.2 – Input variables for the simplified financial sub-models 

 

Risk area Variable 

Industrial sector 
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Profitability 

Cash flow / Net sales - -  -   

Cash flow / Total assets   -    

Value added / Total assets     -  

Ebit / Total assets      - 

Delta returns      - 

Leverage & financial 

structure 

Equity / Total net debt - - - - -  

Equity / Total assets      - 

Fixed assets / Total assets     -  

Financial assets / Total assets      - 

Debt sustainability 

Interest expenses / EBITDA + + + +   

Interest expenses / Cash flow     +  

Interest expenses / Net sales  +  + +  

Net sales / Total net debt - -  -   

Liquidity 

Financial mismatch = (current liabilities – current 

assets) / total assets 
+ + + +   

Cash / Total short term debt - - - - -  

Cash / Total debt      - 

Activity 
Days receivables turnover + Days inventory 

turnover (discretize) 
+ +  +   

Business development Net sales negative variation (discretize) + +  +   

Age Log(age) - - - -   

 

 

Table A.3 – Input variables for the three credit behaviour models 

 

Risk area Variable 

Credit Size 

M
ic

ro
 

S
m

al
l 

M
ed

iu
m

-

L
ar

g
e 

Average utilization rate 

Drawn amount/granted amount - current account revolving credit lines  

- average last three-months 
+ + + 

Dummy no-current account revolving credit lines  - last three-months + + + 

Drawn amount/granted amount – short term credit lines - average last 

six-months 
    + 

Dummy no-short term credit lines - last six-months     + 

Drawn amount/granted amount – account receivables revolving credit 

lines - average last six-months 
+ +   

Dummy no-account receivables revolving credit lines - last six-months + +   

Debt composition Dummy no medium/long term credit – last six-months + +   
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Financial distress 

N. of months (last six-months) with overdraft on current account 

revolving credit lines 
+ + + 

N. of months (last six-months) with overdraft on term loans + + + 

Overdraft % on term loans, 6 month average (discretize) + + + 

Dummy default status – last six-months + + + 

Quality of credit receivables 

Unpaid/Expired amount on account receivables credit lines - average 

last six-months (discretize) 
+ +   

Unpaid amount on account receivables credit lines - average last six-

months / net sales (discretize) 
    + 

Trend 
Dummy reduction in the number of reporting banks – last six-months + + + 

Number of first information requests - last six-months + +   

Size Net sales bucket (discretize)     - 
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Appendix 3 – S-ICAS and ML sub-models performance 

In Table A.4 and A.5 we report the discriminatory power, calculated in terms of AuROC on the entire test 

set, of S-ICAS and ML models, for each financial sub-component. 

Table A.4 – AuROC for the financial component - ordinary financial statement 

Sector S-ICAS Random forests XGBoost Deep learning 

Industry 0.832 0.854 0.852 0.849 

Trade 0.781 0.809 0.806 0.804 

Construction 0.783 0.807 0.812 0.803 

Services 0.782 0.801 0.801 0.796 

Real estate 0.820 0.837 0.830 0.834 

 

Table A.5 – AuROC for the financial component – simplified financial statement 

Sector S-ICAS Random forests XGBoost Deep learning 

Industry 0.774 0.789 0.795 0.792 

Trade 0.738 0.771 0.770 0.769 

Construction 0.713 0.739 0.741 0.738 

Services 0.741 0.759 0.761 0.757 

Real estate 0.759 0.774 0.776 0.774 

Holding 0.750 0.773 0.785 0.757 

 

In Table A.6 we report the discriminatory power, calculated on the entire test set, of S-ICAS and ML 

models, for each credit behaviour sub-component. 

Table A.6 – AuROC for the credit behaviour component 

Size S-ICAS Random forests XGBoost Deep learning 

Micro 0.856 0.862 0.864 0.861 

Small 0.884 0.891 0.892 0.888 

Medium-large 0.871 0.873 0.873 0.871 
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Appendix 4 – AuROC confidence intervals 

The superior discriminatory power of ML models showed in Section 4 and 5 is statistically significant. 

Using bootstrap, we construct 95 per cent confidence intervals for the difference in the AuROC of ML 

models and the AuROC of S-ICAS. As we can see from Table A.7, A.8, and A.9, the lower limit of all 

the confidence intervals is always greater than zero. 

Table A.7 – 95 per cent confidence intervals for AuROC difference - ML vs S-ICAS 

financial component 

Year Random forests XGBoost Deep learning Stacked 

2014 (0.020, 0.025) (0.022, 0.027) (0.018, 0.022) (0.025, 0.029) 

2023 (0.027, 0.035) (0.030, 0.038) (0.023, 0.031) (0.033, 0.040) 

 

Table A.8 – 95 per cent confidence intervals for AuROC difference - ML vs S-ICAS credit 

component 

Year Random forests XGBoost Deep learning Stacked 

2014 (0.002, 0.004) (0.004, 0.006) (0.004, 0.005) (0.005, 0.007) 

2023 (0.010, 0.015) (0.013, 0.018) (0.005, 0.008) (0.014, 0.018) 

 

Table A.9 – 95 per cent confidence intervals for AuROC difference - ML vs S-ICAS 

complete models 

Year Stacked 

2014 (0.005, 0.007) 

2020 (0.012, 0.015) 

2021 (0.011,0.015) 

2023 (0.017, 0.021) 
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Appendix 5 – Mathematical theory behind Shapley values  

In a cooperative game with 𝐾 players the goal is to maximise a payout 𝑣, with the function 𝑣: 𝑆 → 𝑣(𝑆) 

associating each subset 𝑆 ⊆ 𝑀 = {1, 2, … , 𝐾} of players with the expected payout they can win together. 

Shapley values distribute the total expected payout 𝑣(𝑀) among the 𝐾 players, ensuring that some 

desirable properties are met. 

For a player 𝑘, with 𝑘 = 1, 2, … 𝐾, the payout portion (his contribution to the team’s win) is called Shapley 

value, denoted as 𝜙𝑘. These values uniquely satisfy the following desirable properties (Shapley, 1953):    

1) (Additivity) The total payout is distributed additively among players:  

 

∑ 𝜙𝑘 = 𝑣(𝑀),

𝐾

𝑘=0

(𝐴. 1) 

 

where 𝜙0, if it differs from 0, represents a fixed payout not dependent on the players’ 

 contributions.  

2) If two players 𝑖, 𝑗 contribute equally to the payout regardless of the other players participating, 

i.e.:  

 

𝑣(𝑆⋃{𝑖}) = 𝑣(𝑆⋃{𝑗}), (𝐴. 2) 
 

for every 𝑆 ⊆ 𝑀\{𝑖, 𝑗}, then their Shapley values 𝜙𝑖 and 𝜙𝑗  are equal. 

 

3) If a player’s inclusion does not increase the expected payout for any group, i.e.: 

 

𝑣(𝑆⋃{𝑖}) = 𝑣(𝑆), (𝐴. 3) 

 

for every 𝑆 ⊆ 𝑀\{𝑖}, then its Shapley values 𝜙𝑖 is equal a 0. 

 

4) (Linearity) For two games with payout functions 𝑣 and 𝑤, a player’s Shapley value for the 

combined game equals the sum of his Shapley values for each game: 

 

𝜙𝑘(𝑣 + 𝑤) = 𝜙𝑘(𝑣) + 𝜙𝑘(𝑤), (𝐴. 4) 
 

 

for each 𝑘 = 1, 2, … , 𝐾. Additionally, for any real constant α: 𝜙𝑘(𝛼𝑣) = 𝛼𝜙𝑘(𝑣). 
 

Now, let’s assume that we have a model that maps variables 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝐾) ∈  ℝ𝐾 to a prediction 

𝑓(𝒙) ∈ ℝ. If we want to explain a specific prediction 𝑓(𝒙∗) we can find its Shapley values, where: 

1) The values of the 𝐾 variables 𝒙∗ = (𝑥1
∗, 𝑥2

∗, … , 𝑥𝐾
∗)  take on the role of players. 
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2) The prediction 𝑓(𝒙∗) takes on the role of the payout 𝑣(𝑀) and the expected value of the prediction 

of the model 𝐸[𝑓(𝒙)] represents the fixed payout that does not depend on the contribution of the 

variables/players (𝜙0). The property of additivity (Equation A.1) can then be rewritten:  

∑ 𝜙𝑘 = 𝑓(𝒙∗) − 𝐸[𝑓(𝒙)].

𝐾

𝑘=1

(𝐴. 5) 

 

To compute Shapley values, the reward function 𝑣: 𝑆 → 𝑣(𝑆) must be known for every subset 𝑆 of the 

model’s variables. Consistently with the definition provided earlier, the reward function for each subset 

𝑆 can be defined (Štrumbelj and Kononenko, 2014) as the expected value of the model’s prediction 

knowing only the values of the variables 𝒙∗ present in S (denoted as 𝒙∗
𝑆): 

𝑣(𝑆) = 𝐸[𝑓(𝒙)|𝒙𝑆 = 𝒙∗
𝑆]. (𝐴. 6) 

 

In other words, 𝑣(𝑆) represents the contribution that the knowledge of the value of the variables in 𝑆 gives 

to the prediction. 

Therefore, in order to calculate Shapley values, it is necessary to know (or to approximate) the joint 

distributions of the variables 𝒙. Besides, due to the computational burden of the exact Shapley value 

calculation, several approximation algorithms have been developed. The algorithms that are most used in 

the literature have been defined in Štrumbelj and Kononenko (2014) and in Lundberg and Lee (2017b). 

However, those methods assume that the variables are independent, i.e. the conditional distribution of 

each subset of variables 𝑆̅ = 𝑀\𝑆 does not depend on the variables in 𝑆: 

𝑝(𝒙𝑆̅|𝒙𝑆 = 𝒙∗
𝑆) = 𝑝(𝒙𝑆̅). (𝐴. 7) 

Instead, algorithms developed more recently in Aas et al. (2021) approximate 𝑝(𝒙𝑆̅|𝒙𝑆 = 𝒙∗
𝑆) without 

using the independence assumption. 

When applying Shapley values to the difference in the predictions between two models, using the 

additivity property (Equations A.1 and A.5), for a specific observation 𝒙∗ we get:  

∑ 𝜙𝑘 = 𝑓𝑚(𝒙∗) − 𝑓𝑠(𝒙∗) − (𝐸[𝑓𝑚(𝒙)] − 𝐸[𝑓𝑠(𝒙)]),

𝐾

𝑘=1

(𝐴. 8) 

where 𝑓𝑚(𝒙∗) is the PD produced by the first model and 𝑓𝑠(𝒙∗) is the PD produced by the second model. 

The two expected values in Equation A.8, 𝐸[𝑓𝑚(𝒙)] and 𝐸[𝑓𝑠(𝒙)], can both be approximated with the 

average prediction of the corresponding model on the training set. If the two models had been trained on 

the same dataset, this difference is generally small but in some cases it can be not negligible. However, if 

we concentrate on explaining the most problematic cases, where the PDs produced by the two models are 

very different from each other, we can simplify Equation A.8 and write: 
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∑ 𝜙𝑘 ≈ 𝑓𝑚(𝒙∗) − 𝑓𝑠(𝒙∗),

𝐾

𝑘=1

(𝐴. 9) 

since in those cases 𝑓𝑚(𝒙∗) − 𝑓𝑠(𝒙∗) ≫ 𝐸[𝑓𝑚(𝒙)] − 𝐸[𝑓𝑠(𝒙)]. This means that the sum of Shapley values 

is approximately equal to the difference between the two PDs. 
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Appendix 6 – Example on the explainability of the credit behaviour component 

We consider a medium-large firm where S-ICAS credit behaviour component predicts a default 

probability of 0.99 per cent, while the meta-model predicts a credit behaviour PD of 2.42 per cent. The 

meta-model judges the company much riskier. Below we plot the Shapley values relative to the difference 

of the two PDs. 

Figure A.1 - Shapley values for the medium-large company45 

 

 

 

As we can see, the variable “number of months with overdraft on current account revolving credit lines”46 

has by far the greatest Shapley value and contributes the most to the difference in PDs. The financial 

analyst, examining the company’s situation, observed that not only the number of months with overdraft 

is high, but the company has also a discrete amount of “unpaid amount on account receivables credit lines 

compared to net sales” and of the variable “drawn divided by granted on short term credit lines” (in the 

last six months). According to the analyst’s opinion, the combination of these aspects is enough to raise 

suspicions on the credit soundness of the company and on the value of S-ICAS PD, which has a very low 

value. 

                                                      

45 For simplicity, only variables with the greatest Shapley values are reported. 
46 The value is calculated looking at the past six months. 
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