
Mercati, infrastrutture, sistemi di pagamento

(Markets, Infrastructures, Payment Systems)

Ju
ly

 2
02

4

Byzantine Fault Tolerant consensus
with confidential quorum certificate for a Central Bank DLT

by Marco Benedetti, Francesco De Sclavis, Marco Favorito, Giuseppe Galano,
Sara Giammusso, Antonio Muci and Matteo Nardelli

N
um

be
r 50

Number 50 – July 2024

Mercati, infrastrutture, sistemi di pagamento
(Markets, Infrastructures, Payment Systems)

Byzantine Fault Tolerant consensus
with confidential quorum certificate for a Central Bank DLT

by Marco Benedetti, Francesco De Sclavis, Marco Favorito, Giuseppe Galano,
Sara Giammusso, Antonio Muci and Matteo Nardelli

The papers published in the ‘Markets, Infrastructures, Payment Systems’ series provide
information and analysis on aspects regarding the institutional duties of the Bank of
Italy in relation to the monitoring of financial markets and payment systems and the
development and management of the corresponding infrastructures in order to foster
a better understanding of these issues and stimulate discussion among institutions,
economic actors and citizens.

The views expressed in the papers are those of the authors and do not necessarily reflect
those of the Bank of Italy.

The series is available online at www.bancaditalia.it.

Printed copies can be requested from the Paolo Baffi Library:
richieste.pubblicazioni@bancaditalia.it.

Editorial Board: Stefano Siviero, Livio Tornetta, Giuseppe Zingrillo, Guerino Ardizzi,
Paolo Libri, Giuseppe Maresca, Onofrio Panzarino, Tiziana Pietraforte,
Antonio Sparacino.

Secretariat: Alessandra Rollo.

ISSN 2724-6418 (online)
ISSN 2724-640X (print)

Banca d’Italia
Via Nazionale, 91 - 00184 Rome - Italy
+39 06 47921

Designed and printing by the Printing and Publishing Division of the Bank of Italy

Byzantine Fault Tolerant consensus
with confidential quorum certificate for a Central Bank DLT

Marco Benedetti,* Francesco De Sclavis,* Marco Favorito,* Giuseppe Galano,*
Sara Giammusso,* Antonio Muci* and Matteo Nardelli**

Abstract

Some essential characteristics of Distributed Ledger Technologies (DLTs), such as programmability
and the use of advanced cryptographic techniques, can also be effectively utilized in controlled
environments, overseen by a central authority or a group of delegated entities. This is especially
relevant in the formal financial sector, and in other settings where compliance with regulation is
of the essence. Technically, this requires DLTs to be deployed in permissioned or private versions,
where only a set of authorized participants, called validators, are allowed to approve or reject
transactions on the shared ledger. This is in contrast to permissionless or public versions, where no
authorization is required.

All DLTs, whether permissionless or permissioned, function based on a cooperative decision process
designed to reach an agreement among validators about the next state of the ledger. This process,
known as a consensus protocol, is a critical component of DLTs because it enables validators to
maintain uninterrupted operation of the system without human intervention, even if some validators
are compromised or become disconnected from the network. In permissionless environments,
achieving consensus is resource intensive: Since validators’ identities are not known, they must
prove their honesty by either committing significant computational power (Proof-of-Work, PoW)
or substantial financial capital (Proof-of-Stake, PoS). In permissioned contexts, consensus can be
achieved without the need for extensive resource commitments. In particular, Proof-of-Authority
(PoA) consensus protocols rely on a predetermined group of validators, who are entrusted with the
power to accept or reject transactions proposed by participants. Typically, these validators achieve
consensus through qualified majority voting.

In this paper, we present the FBFT (FROSTed Byzantine Fault Tolerance) protocol, a novel approach
to PoA meant to strengthen the security of the ledger, its tolerance to faults or attacks, and the
confidentiality of validators. It combines the Practical Byzantine Fault Tolerance (PBFT) algorithm,
a well-known contribution from distributed systems literature, with the Flexible Round-Optimized
Schnorr Threshold (FROST) signature scheme, a recent finding in cryptographic research.

Leveraging state-of-the-art privacy-enhancing techniques, FBFT builds a collective agreement
certificate (or “joint cryptographic signature”), which represents the endorsement of a given set of
transactions by a quorum of validators. In addition, it provides strong guarantees of tolerance to
Byzantine faults – situations where some validators may stop functioning or behave dishonestly,
possibly due to software bugs or cyber-attacks. Finally, it preserves the confidentiality of validators:
Their number and identities is only known to the central authority and its delegates, and not leaked
to DLT participants. The advantage is a reduction in the risk of attacks targeted at specific validators.

We integrate our FBFT protocol into the code of a Bitcoin-like blockchain, effectively adapting its
consensus component to a permissioned context, and we evaluate its performance across a variety of
geographically distributed, realistic scenarios. To demonstrate its practicality and encourage further

*	 Directorate General for Information Technology, Banca d’Italia.

research, we provide an open-source implementation of our DLT. To the best of our knowledge,
this is the first time that a Central Bank releases in open source a distributed consensus algorithm
developed entirely in-house.

The resulting system, although experimental and lacking features expected of production-
ready solutions, can be seen as an alternative platform for a distributed, resilient transactional
system: Operated by a set of trusted actors, distributed at geographic scale, it holds potential for
mission-critical applications, such as wholesale and retail Central Bank Digital Currencies, and
– in perspective – asset tokenization schemes.

Keywords: Distributed ledger; blockchain; Byzantine consensus; confidential quorum; threshold
signatures.

Sintesi

Alcune funzionalità delle tecnologie a registro distribuito (DLT), come la programmabilità e l’uso
di crittografia avanzata, possono essere riutilizzate anche in ambienti controllati da un’autorità
centrale, o da un insieme di autorità, come ad esempio nel settore finanziario. In tali contesti,
è necessario implementare una DLT in versione permissioned, in cui solo un sottoinsieme
dei partecipanti, anche detti validatori, sono autorizzati ad approvare o rifiutare transazioni.
Al contrario, nei contesti permissionless, tale autorizzazione non è necessaria.

Tutte le DLT, siano esse permissionless o permissioned, funzionano grazie ad un processo
decisionale cooperativo finalizzato a raggiungere un accordo sul prossimo stato del registro. Tale
processo è chiamato protocollo di consenso e rappresenta un componente fondamentale di ogni
DLT, in quanto consente ai validatori di operare senza interruzioni anche nel caso in cui alcuni
di essi vengono compromessi o risultano disconnessi dalla rete. Nei contesti permissionless,
raggiungere il consenso può richiedere un ingente consumo di risorse computazionali
(Proof-of-Work, PoW) oppure finanziarie (Proof-of-Stake, PoS), ma nei contesti permissioned
tale consumo non è necessario. In particolare, gli algoritmi basati su Proof-of-Authority (PoA)
funzionano grazie al fatto che esiste un gruppo di validatori fidati, a cui viene data la capacità di
accettare o rifiutare le transazioni proposte dai partecipanti. In genere, tali validatori raggiungono
il consenso tramite votazione a maggioranza.

In questo lavoro, si presenta il protocollo FBFT (FROSTed Byzantine Fault Tolerance), che
rappresenta un nuovo approccio al consenso PoA, in grado di garantire la confidenzialità dei
validatori. Esso combina l’algoritmo Practical Byzantine Fault Tolerance (PBFT), un noto risultato
in ambito sistemi distribuiti, con lo schema di firma a soglia chiamato Flexible Round-Optimized
Schnorr Threshold (FROST), un recente contributo di crittografia.

Grazie a FROST, il protocollo FBFT certifica il raggiungimento del consenso utilizzando una firma
congiunta, che rappresenta l’approvazione di un insieme di transazioni da parte di un quorum
di validatori. Inoltre, grazie a PBFT, fornisce tolleranza a fallimenti cosiddetti “bizantini”, in cui
alcuni validatori smettono di funzionare o addirittura mostrano comportamenti malevoli, magari
a causa di un guasto software o di un attacco cyber. Infine, FBFT preserva la confidenzialità dei
validatori, in quanto il loro numero e le loro identità sono note solo all’autorità centrale o ai
loro delegati, riducendo il rischio di attacchi mirati.

Il lavoro mostra come il protocollo FBFT possa essere integrato nel codice di una blockchain
pubblica, adattandola ad un contesto permissioned, e valuta le performance del sistema in

scenari realistici e geograficamente distribuiti. Per incoraggiare ulteriori ricerche, tutto il codice
sorgente viene pubblicato in open-source; è la prima volta che una Banca Centrale rende
liberamente disponibile un algoritmo di consenso sviluppato interamente in-house.

Il sistema risultante, sebbene sperimentale e non sviluppato per essere production-ready, può
essere visto come una piattaforma alternativa per una infrastruttura transazionale distribuita e
resiliente: gestito da un insieme di attori fidati e distribuiti su scala geografica, è potenzialmente
utilizzabile in applicazioni mission-critical, come le Central Bank Digital Currencies all’ingrosso
e al dettaglio, oppure, in prospettiva, per la tokenizzazione di asset finanziari.

CONTENTS

1.	 Introduction.. 9

	 1.1 Scope and Contribution... 10

2.	 System Model and Requirements... 11

	 2.1 High-level architecture.. 11

	 2.2 Requirements... 12

3.	 The FROST Signature Scheme.. 13

4.	 Frosted Byzantine Fault Tolerance... 14

	 4.1 Ordering blocks with PBFT.. 14

	 4.2 FROSTing PBFT.. 15

	 4.3 Amending the Bitcoin protocol.. 17

5.	 Evaluation.. 18

6.	 Related Work... 21

7.	 Future directions... 22

8.	 Conclusion.. 24

References... 26

1 Introduction1

The announcement of cryptoasset-inspired “stablecoins” by private companies and the prospec-
tive issuance of Central Bank Digital Currencies for retail use—i.e., CBDCs— (Cai et al., 2021;
Chaum et al., 2021; European Central Bank, 2020, 2023; Federal Reserve, 2022), coupledwith the
unabated diffusion of blockchain-based digital assets, have reignited the interest in consensus
protocols amenable to permissioned blockchains.

In this paper, we envision a distributed service provider that operates amodern, blockchain-
based, programmable, and transactional engine, exhibiting high availability and strong fault
tolerance. Each node (or small group of nodes) may be managed by independent actors,
far removed from each other, either geographically or legally. These actors, which do not
necessarily trust eachother, share a common interest thatwouldbeperfectly served, technically,
by a distributed ledger with no centralization point: Everyone enjoys equal rights, duties, and
capabilities, and contributes to the system resilience. Nodes may even reside in different
jurisdictions and conform to different laws, albeit under some shared regulatory framework.

These motivations hold for most permissioned Distributed Ledger Technology (DLT) plat-
forms, and for both payment and non-payment domains. In this work, we specifically focus on
Bitcoin 2 and on digital payments. Indeed, our target use case would be a speculative DLT-based
payment systemwhose high availability and fault/attack tolerance rests upon a distributed plat-
form operated cooperatively by several Central Banks in a given monetary area, as envisioned
and described in Urbinati et al., 2021, (Section 2.4 - The itCoin platform).

Instead of developing a new DLT platform from scratch (as done, for example, by Meta with
the Libra, now Diem, blockchain–see Amsden et al., 2020), we focus on an existing, largely
deployed, open-source DLT platform, i.e., Bitcoin. In our permissioned setting, we can inherit
the huge ecosystem of knowledge and applications that has been developed for the Bitcoin
core infrastructure during the past decade. For example, the Lightning Network protocol (Poon
et al., 2016) is particularly promising in the digital payment domain (for its strong privacy and
scalability properties), while other technologies are potentially interesting for relevant use
cases (see Section 7). Nevertheless, it is widely known that Bitcoin has not been designed for a
permissioned setting: It requires quite a few adaptations in order to properly work with a small
set of validators, the most substantial of which is the replacement of its consensus algorithm.

Bitcoin (Nakamoto, 2008) is a peer-to-peer payment network launched in 2009: It imple-
ments a digital asset that does not rely on trusted third parties to guarantee its scarcity or
to prevent double spending. To update the shared ledger, Bitcoin employs a decentralized
consensus protocol among anonymous participants, based on Proof-of-Work (PoW). In PoW,
validator votes (on what the next state of the system is) can be cast by just anyone, but each
vote implies a substantial consumption of real-world resources (e.g., time, hardware, energy) to
solve a computationally hard problem, whose solution is required to make the vote valid. This
“costly postage stamp” of sort is key to preventing sybil attacks in open, anonymous settings3.
For sure, in a permissioned setting with few validators, PoWwould be not only very inefficient
in terms of resource consumption, but also not safe: The resources sufficient to outcompete a

1 We would like to thank Sara Corbo and Claudia Biancotti for their feedback that helped improve this publication. All
errors are the authors’ sole responsibility.

2 A lexical note: This research paper references Bitcoin (with capital ’B’), i.e., a set of open source blockchain technologies,
which are adapted for use in a permissioned, regulated setting, overseen by central authorities or delegated entities. It
does not refer to bitcoin (with lowercase ’b’), i.e., a highly risky speculative crypto-asset. For a similar distinction in a
related domain, see, e.g., (Banque de France, 2021), where successful experimentations with the Ethereum technology
are presented.

3 To subjugate a PoWsystem, an attackerwould have to outcompete the rest of the network in terms of available resources
and willingness to sacrifice them. This so called 51% attack has been widely studied in the literature Lee et al., 2020;
Saad et al., 2020; Ye et al., 2018.

9

small network are likely within reach for anymotivated and sponsored attacker. As wewill show
in the paper, if it is possible to identify a small set of actors that end-users trust to cooperatively
guarantee scarcity and to prevent double spending, then a Bitcoin-like blockchain can be grown
via, e.g., a consensus based on Proof-of-Authority (PoA).

To design our PoA consensus algorithm, we draw results from the scientific literature on
distributed systems. By borrowing and modifying an existing Byzantine Fault Tolerant (BFT)
consensus algorithms, we achieve high availability and tolerance to the so-called “Byzantine”
faults, i.e., failure scenarios in which some nodes in the federation stop functioning (e.g., due to
a software error) or start behaving incorrectly or maliciously (due to, e.g., a cyber-attack).

To summarize, we ask ourselves: Is the unorthodox notion of “Precisely Bitcoin, minus its
traditional consensus algorithm (PoW), plus identifiable third parties, in a permissioned setting”
a technically consistent one? Our goal is precisely to inherit verbatim all the algorithms, data
structures, cryptography, and software fromBitcoin, getting rid ofmerely the ingredients (chiefly
PoW) that are unnecessary/undesirable in a permissioned setting. In the paper, we show how to
inject new algorithmic ingredients into Bitcoin while maximizing its codebase reuse, in order to
inherit its technical virtues and strengths even after PoW is excised.

1.1 Scope and Contribution

We target settings where there are some (from 4 to ≈ 20) privileged and trusted nodes in charge
of accepting and validating all transactions. All other participants can submit transactions
and receive ledger updates. Before accepting a new ledger update, participants verify that it
contains a sort of quorum certificate, testifying that it has been issued by a quorum of trusted
validators. Digital signatures can be used to create such certificate and, in particular, aggregated
threshold signatures can introduce the additional property of so-called quorum confidentiality:
An aggregated signature appears as a single signature on behalf of a quorum of nodes that
conceals the identify of the individual nodes that actively participated into the signing.

We focus only on the foundational issue of the consensus and signing protocol at the “on-
ledger” layer, i.e., on designing and developing a working PoA-based BFT algorithm, which
also achieves confidentiality of the validators network and quorum certificate, and is meant to
sustain the growth of a permissioned but otherwise Bitcoin-like blockchain.

Our major contribution is to show how three fairly sophisticated protocols, coming from dif-
ferent communities—namely PBFT (Practical Byzantine Fault Tolerance, Castro et al., 2002) from
the distributed system research, FROST (Flexible Round-Optimized Schnorr Threshold Signatures,
Komlo et al., 2021), a result of recent cryptography studies, and the Bitcoin technological stack
from the crypto-assets communities—can be combined to make them interlock neatly with
one another. From such pooling, a permissioned Bitcoin-derived DLT emerges, with strong
fault tolerance and a confidential quorum certificate. To the best of our knowledge, this is
the first time algorithms such as PBFT and FROST are combined and adapted to a PoA setting
that retains the wealth of technical tools accrued by Bitcoin. The major technical challenge to
overcome is that a simple juxtaposition of PBFT and FROST does not work: Issues arise during
distributed signature because the possible reluctance of (faulty or malicious) nodes to sign
blocks is something PBFT is unaware of and FROST is unable to deal with.

To address these issues, we detail a novel Certified Byzantine Consensus protocol, named
FBFT, that combines PBFT and FROST to finalize a blockwith a quorumof signatures aggregated
into a single one (improving confidentiality and block space efficiency). We also evaluate
our solution using a prototype implementation of the full system, which is made available in

10

Figure 1. A permissionedmining network (N = 4) and a permissionless participant network.

open-source4. Further details can be found in Benedetti et al., 2022.
The rest of this paper is organized as follows: Sect. 2 offers a high-level view of our archi-

tecture; Sect. 3 recalls some preliminary concepts; Sect. 4 presents FBFT; Sect. 5 evaluates
the proposed solution; Sect. 6 reviews the related literature; Sect. 7 outlines future research
directions, and Sect. 8 concludes the paper.

2 SystemModel and Requirements

2.1 High-level architecture

Our architecture is composed of a participant network and amining network, eachwith different
properties (see Fig. 1).

Participant and mining network. The participant network is composed of participant nodes,
noted P0, . . . , PM −1, which run amodified Bitcoin protocol (Sect. 4.3). Each participant node
receives, validates, and stores a copy of the blockchain. The participants form a permission-less
network, without a predefined topology or size. The bidirectional communication channels
among them (dotted lines in Fig. 1) are used to propagate blocks andmessages via gossiping, as
in Bitcoin. The rounded rectangles inside the gray area aremining5 nodes, or “miners” (there are
4 of them in Fig. 1). EachminerMi = (Bi ,Ci) is composed of a bridging nodeBi and a consensus
nodeCi , running on the same host and connected by synchronous bridging channels (see next).
Eachminer is operated by onemember of a federation of N trusted actors6, called validators.
While the bridging node of eachminer runs the same protocol as any other participant node
(in particular, it collects transactions to be validated from participants and propagates new
valid blocks to others as soon as it gets aware of them), the consensus node runs the certified
Byzantine consensus protocol described in Sect. 4. Miners are connected to each other in a full
mesh topology; the resulting permissioned network is called themining network (everything
within the gray area in Fig. 1). This is a peer-to-peer network too: Mining nodes are equivalent to
each other, with no one playing any special role. The communication links amongmining nodes
(dashed lines) are bidirectional channels used to exchange authenticatedmessages required

4 https://bancaditalia.github.io/itcoin
5 The term “mining” is etymologically incongruous in our context where trusted nodes do not operate tomining any

reward; however, we stick to them for historic reasons and for their close association with Bitcoin.
6 We target settings in which N is expected to be between 4 and ≈ 20.

11

https://bancaditalia.github.io/itcoin

by the consensus protocol (see Sect. 4).
Bridging channels. In between the bridging node and the consensus node of each miner,

there are 2 host-local, synchronous channels (solid, oriented arcs in Fig. 1), acting as bridging
channels: One uses an RPC protocol, whereby the consensus node takes the initiative to interact
with the corresponding bridging component to, e.g., obtain a candidate template block, sign a
block, ask to broadcast a block (see Sect. 4.1 and the self-loopmessages in Fig. 2). The other
bridging channel adopts a publish/subscribemodel over the ZMQprotocol: The consensus node
subscribes to the bridging node in order to get the mining federation notified of occurrences
of new signed blocks. These interactionmodels and protocols allowmaximum Bitcoin reuse
because they leverage the standard Bitcoin core APIs exposed by Bi .

Roles and coupling. The mining network is a service provider: Its goal is to collect trans-
actions from participants, reach a consensus on which ones to include in new blocks, and
then deliver signed blocks back to participants, who will add them to their local blockchains.
Thanks to the properties of the consensus and signing protocols, this network appears to the
participants as a single mining entity. Dually, the participant network acts as a single virtual
client submitting transactions to the blockchain managed by the mining nodes, and expecting
such transactions to be timely validated. The participant network is reliably connected to
the miner network via a few standard Bitcoin-like (Pj ,Bk) channels freely established by at
least some participant Pj towards one or more of the bridging nodes Bk ; these channels are
indistinguishable from regular channels within the permissionless network.

Failures. We assume a Byzantine failure model whereby FB nodes can fail arbitrarily, with
FB = b(N − 1)/3c. The consensus we employ relies on synchrony to provide liveness, but not
to provide safety. To avoid the FLP impossibility result7 (Fischer et al., 1985), we assume that
(dashed) communication channels are weakly synchronous: Message delays among correct
miners do not grow too fast and indefinitely, because a Global Stabilization Time (GST) event
(Dwork et al., 1988) eventually happens, after which themining network behaves synchronously.
Moreover, as in Garay et al., 2015, we assume that all participants are able to synchronize in the
course of a “round”, and that each round includes a GST event. As long as the network is in a
failed state, it may fail to deliver messages, delay/duplicate them, or deliver them out of order.
We assume an adversary that can coordinate faulty nodes but cannot subvert cryptographic
primitives.

2.2 Requirements

We call for our PoA consensus to exhibit the following properties.
R1 Correctness (or, validity, consistency). Each block needs to have content that is valid

according to the rules of the blockchain, and must transition the blockchain from one valid
state to another.

R2 Safety (or, agreement, deterministic finality). In a permissioned blockchain, safety forbids
chain forks, i.e., different but valid versions of themost recent blocks of the sameblockchain.
This requires the Common Prefix Property (Garay et al., 2015) to be deterministic instead
of probabilistic. Specifically, at the end of a round, if a honest participant “prunes” k ≥ 0

blocks from the tip of its chain, the probability that the resulting pruned chain is not a prefix
of another honest participant chain is exactly 0 (instead of exponentially decreasing with k ,
as in PoW blockchains).

R3 Liveness. Within each round, new blocks must be produced every block time and prop-

7 The Fischer, Lynch, and Paterson (FLP) impossibility theorem states that, in an asynchronous system, it is impossible to
design a deterministic consensus algorithm that satisfies agreement, termination, and fault tolerance.

12

agated to the participants network every round time. We use the Chain Growth property
(Garay et al., 2015), with parametersτ = round time

block time ∈ Ò and s ∈ Î: For any honest participant,
it holds that after any s consecutive rounds it adopts a chain that is at least bτ · sc blocks
longer.

R4 Calmness. The pace of block production is upper-bounded, which helps participants to
form expectations on their resource requirements. If a Byzantine miner creates blocks at
a rate significantly higher than 1

block time , it can cause participants to run out of resources,
effectively carrying out a denial-of-service attack. We require that after any s consecutive
rounds it adopts a chain that is at most bτ · sc blocks longer.

R5 Confidentiality. At each round carried onwith no faulty miners, 8 the mining network does
not reveal information other than new valid blocks to the participants. Other information,
e.g., the mining network configuration and the consensus quorum for block validation,
should be kept hidden from the participants. This property can be used in addition to other
anonymizationmechanisms (e.g., at network level) to make targeted attacks against the
miners harder.

R1-R3 have been already defined and studied in the context of blockchains (Garay et al., 2020),
whereas R4-R5 are peculiar to ours.

3 The FROST Signature Scheme

A (k , n)-threshold signature scheme, with k ≤ n , requires that at least k participants over n
cooperate to create a valid signature, i.e., it is not possible to create a valid signature with less
than k participants. FROST is a threshold signature scheme that leverages the additive property
of Schnorr signatures to quickly combine signatures into an aggregated one (Komlo et al., 2021).
The FROST signature scheme defines threemain protocols: (i) a key generation protocol that
creates secret shares for participants as well as public keys for signature verification; (ii) a
commitment protocol that creates nonce/commitment share pairs for all participants; these
commitments allow to prevent known forgery and replay attacks; (iii) a signature protocol
coordinates the generation of the aggregated signature by signers. We briefly introduce these
protocols, whose complete definition can be found in the original work (Komlo et al., 2021).

Each participantMi has a unique identifiermi ∈ {1, . . . , n}. LetÇ be a group of prime order
q in which the Decisional Diffie-Hellman problem is hard, g be a generator ofÇ, and let H1 and
H2 be cryptographic hash functions mapping toÚ∗q , i.e., the set of non-zero integer numbers
module q . We denote by x ← A that x is selected uniformly randomly from set A.

Key Generation. Before signing any block, participants define secret and public keys. They
share the same cipher suite that specifies the underlying prime-order group details and crypto-
graphic hash function. TheKeyGenprotocol consists of two rounds. Afterwards, eachparticipant
Mi , with i ∈ {1, . . . , n}, owns a secret share s i , a public verification shareYi = g s i , and the
group’s public keyY . The public verification shareYi allows others to verify the participant sig-
nature shares; the group’s public keyY enables the aggregate threshold signature verification,
which depends on the set of participants n and the configured threshold k .

Commitment. In the commitment protocol, participants generate (secret) nonces for signa-
tures and exchange their public commitments, which allow verifying the correct use of nonces.
Each participantMi , i ∈ {1, . . . , n}, generates a pair of nonces (di , e i) ← Ú∗q × Ú∗q and derives
the public commitment shares (Di , Ei) = (g di , g e i).

Aggregated Signature. The aggregate signature protocol works in two rounds. First, each

8 This property is impossible to guarantee in rounds where Byzantine failures happen since the network configuration is
known to each participant, and a Byzantine node can choose to reveal extra information to the outside world.

13

participant generates his signature share. Then, all participants’ shares are combined to obtain
the final signature. Let S be the set of participants in the signing process; the cardinality of
S is α , with k ≤ α ≤ n . Let L = 〈(l ,D l , E l)〉αl=1 be the list of α participants’ commitments.
WhenMi receives the message to signm, he can use his secret share s i and L to compute his
signature share zi , which can then be sent to all other participants. Formally,Mi computes
the set of binding values ρl = H1 (l ,m, L), l ∈ {1, . . . , α }, and derives the group commitment
R =

∏α
l=1 D l · (E l)ρl and the challenge c = H2 (R ,Y ,m). Then, Mi computes his signature

share onm as zi = di + (e i · ρi) + λi · s i · c, using (di , e i) corresponding to (i ,Di , Ei) ∈ L, and
S to determine the i -th Lagrange coefficient λi . Since nonces cannot be usedmultiple times,
Mi deletes the ((di ,Di), (e i , Ei)) pair from his local storage. Then,Mi sends zi to every other
participant in S .

The second round starts whenMi receives all other signature shares z l . For verification,Mi

checks if the equality g z l = R l ·Y c ·λl
l

holds for each received z l . If the verification is successful,
Mi aggregates the signature shares locally by computing z =

∑
i ∈S zi . The resulting aggregated

signature ofm is σ = (R , z), that can be verified as single-party signature.

4 Frosted Byzantine Fault Tolerance

In our permissioned setting, blocks need to be authenticated in front of the participants net-
work. Therefore, we employ a Certified Byzantine Consensus Algorithm, which allows reaching
consensus on a sequence of blocks even in face of Byzantine faults and produces a proof of
validity for each block, which enables the participants to verify the whole blockchain validity.
To reach a consensus on blocks, we leverage a modified version of PBFT, while to produce the
proof, we leverage a Schnorr threshold signature scheme called FROST, which also provides
private quorum accountability (Boneh et al., 2022). It is worth noting that, in general, the set of
block signers can differ from the set of nodes reaching the consensus.

4.1 Ordering blocks with PBFT

In a nutshell, PBFT is a state machine replication algorithm. It relies on a set of replicas to
maintain a service state and to implement a set of operations onto it. The replicasmove through
a succession of configurations called views, which are numbered consecutively. In a view, one
replica is the primary and the others are backups. View changes are carried out when it appears
that the primary has failed. Service operations are invoked by clients, which send requests to
the primary. Then a three-phase protocol begins: (i) in the pre-prepare phase, the primary
assigns a sequence number to the request andmulticasts it to the backups; (ii) in the prepare
phase, the backups gather a Byzantine quorum of 2FB + 1 prepare messages in order agree on
the sequence number proposed by the primary; (iii) in the commit phase, the replicas confirm
that an agreement on the request and its sequence number has been reached by a Byzantine
quorum of replicas. Then, each replica executes the operation and replies to the client. The
client waits for a reply quorum of FB + 1 replies from different replicas with the same result.

The client. In our setting, the PBFT client is a single virtual entity, i.e., the participants
network, and the statemachinehasa singleoperation, i.e., appendanewblock. Theparticipants
expect a new valid block to bemined every target block time, which in our examples is set to one
minute, starting from the genesis block timestamp. In light of these considerations, all replicas
know in advance all valid request timestamps, that are obtained as genesis block timestamp plus
multiples of the target block time. Requests having such valid timestamps are self-generated
locally by each replica. Moreover, given that valid blocks are broadcast to the participants

14

request pre-prepare prepare commit signing

get proposed

blockrequest

pre

prepare

test block

validity

pre-sign block

prepare commit

M0

M1

M2

M3

(primary)

start block signing

Figure 2. Normal operation (no faulty primary) with 4 nodes,M0 is primary,M3 is faulty.

network once a reply quorum of signatures by replicas is achieved, we omit the reply messages.
Normal operations (no faulty primary). The PBFT normal case protocol starts with a request

to append a new block. The operation is non-deterministic, as its result depends on the actual
content of the block to append (e.g., the set of transactions). We let the primary select and
backups verify such content independently (Castro et al., 1999). In the pre-prepare phase,
when a block is expected at height n , the primary M0 gathers a set of transactions from its
mempool and forms a proposed block to be appended at height n , which corresponds to the
sequence number of the operation. Then, the primary includes the block in the pre-prepare
message and broadcasts it to backups. A backup (i.e.,M1,M2, orM3 in the figure) accepts a
pre-prepare message if and only if it is valid according to the PBFT rules, its request has been
already generated locally by the replica, its timestamp is not in the future according to the local
clock of the replica, and the proposed block (checked by the participant node co-located with
the replica) is also valid. If a backup accepts the pre-preparemessage, then it enters the prepare
phase and broadcasts the prepare message to all other replicas. A replica (primary or backup)
accepts a prepare message if and only if all the PBFT conditions are met; no additional checks
are present at this stage. When replicas reach an agreement on a block and its height, they
proceed to the commit phase. In the commit phase, a replica begins the signing process of
the prepared block, by including a so-called FROST commitments in the commit message, and
broadcasting the commit to other replicas. A replica accepts a commit message if and only if
the PBFT conditions are met. A Byzantine quorum of commit messages contains a valid reply
quorum of FROST commitments, which allow the primary to start the FROST signing sessions
(described in Sect. 4.2).

Checkpoints. The checkpoint mechanism is used in PBFT to discard old messages and to
advance in the processing of requests. In our protocol, we rely on the Bitcoin block propagation
mechanismof the underlying participants network for propagating checkpoints among replicas:
Each block appended to the blockchain represents a PBFT checkpoint and causes the replica to
move on to mining the next block.

4.2 FROSTing PBFT

Defining upfront the set of participants S that will collaborate to compute the aggregated
signature z is cumbersome in presence of Byzantine nodes, which may arbitrarily refuse to sign
blocks. We need rules for exchanging commitments (Di , Ei) and identifying the set S of signers,
two critical information for reconstructing the secret used to sign messages.

Therefore, we design 5-Phase Frosted-BFT (FBFT, for short), which introduces two main
changes to the PBFT protocol. First, it blends the commitment protocol and the signature

15

M0

M1

M2

M3

pre-prepare

D1,E1

D2,E2

D0,E0

commit

z0, D'0, E'0

z1, D'1, E'1

z = z0 + z1

L1

commitment share sign

On timeout,

view-change on primary

timer

s0, Y0, Y1,
Y2, Y3, Y

block z(primary)

Repeated at most N-k+1 times

L2

z2, D'2, E'2

s1, Y0, Y1,
Y2, Y3, Y

s2, Y0, Y1,
Y2, Y3, Y

s3, Y0, Y1,
Y2, Y3, Y

block

prepare

Figure 3. Normal operation of FBFT. Replicas exchange their first commitments in the commit phase. In
the commitment share phase, the primary defines two sets of signers, S1 = {0, 1} and S2 = {0, 2}, and
related L1 and L2 parameters. In the sign phase, involved signers send the signature share to the primary
who can determine the aggregated signature.

protocol into thenormal casePBFT. Second, it extendsPBFTwith additional rounds to guarantee
liveness in case Byzantine nodes play the role of signers. We assume that each replica is a
participant in the signing process, which collaborate to apply the threshold signature on the
block agreed upon consensus. As per Fig. 3, the new rounds introduced in FBFT are called
commitment-share and sign. When amessage is prepared by replica i , it runs the commitment
protocol to randomly determine the nonce/commitment share pairs ((di , e i), (Di , Ei)). Public
commitments (Di , Ei) are piggybacked to the commit message and exchanged with other
replicas leveraging the PBFT protocol. The primary holds a list of responsive signers, among
which the set of candidate signers will be defined. Replicas that send the public commitments
in their commit message are considered as part of the initial set of responsive signers and will
be candidates for the signing session in the commitment-share phase.

After replicas exchange the commit messages, a set of commitment-share phases of FBFT
takes place. The primary defines a set of signers S among active replicas; the selection policies
for defining the set S follow the rules of ROAST, awrapper of the FROST protocol that guarantees
liveness (Ruffing et al., 2022). We choose S with cardinality k = FB + 1 (i.e., a reply quorum of
signatures), including the primary itself: In such a configuration, at least one honest signer is in,
thus preventing forgery of aggregate signatures over blocks that are invalid or not agreed upon.
Even though the primary might exclude nodes suspected to be unresponsive, malicious nodes
may be unknown and could be included in S . For this reason, the primary can initiate multiple
and concurrent commitment-share sessions, maintaining a set of responsive signers. As soon
as there are at least k responsive signers in the set, the primary will initiate a new commitment-
share session. When the primary determines S , he creates and sends the list of signers’ public
commitment L = 〈(l ,D l , E l)〉l ∈S to other replicas. Knowing L (and, consequently, S), other
replicas j ∈ S can compute the signature share z j on the block.

The sign phase of FBFT allows replicas to run the aggregate signature protocol presented in
Sect. 3. They create and exchange with the primary the signature shares zi , with i ∈ {1, . . . , k },
together with a new public commitment to be possibly used in another commitment-share
session. If any signature share zi is not valid, the primarymarks the replica asmalicious, so that
it will not be included in subsequent commitment-share phases. When the primary receives all
other signature shares zi , with i ∈ {1, . . . , k }, it can derive the aggregate signature σ = (R , z),
with z =

∑
i zi and R the group commitment. If σ is a valid Schnorr signature, the primary

appends the signature to the previously proposed block, broadcasts it, and completes FBFT. As
demonstrated in ROAST (Ruffing et al., 2022), a non-faulty primary will receive all the signatures

16

in at most N − k + 1 commitment-share sessions, under the hypothesis that the number of
possible backup failures FB is at most N − k . The PBFT view-change protocol described in
(Castro et al., 1999) allows to provide liveness also in presence of a faulty primary, which delays
(but does not compromise) the ROAST protocol. When a view change is triggered by the block
timeout, the (possibly new) primary replica will act as a new semi-trusted coordinator, that will
run again the aggregate signature protocol. Note that the view-change cannot change values
the quorum has agreed upon, so the block content cannot be updated.

We now informally argue that the FBFT algorithm satisfies the safety and liveness properties.
The safety property relies on the usual cryptographic assumptions and a threshold adversary
model with threshold N > 3f , while the liveness additionally relies on the partial synchrony of
the network (as in PBFT).

Theorem 1 (Safety). If a set of replicas produced a valid signature for block b1 with sequence
number n in view v , then no valid signature will be produced for block b2 with n and v by another
set of replicas.

Proof. By contradiction, assume that for view v and sequence number n , there are two blocks
b1 and b2, with b1 , b2, for which f + 1 signature shares have been collected. Consider non-
faulty replicas r1 and r2 that signed for b1 and b2, respectively. If r1 = r2, we already get a
contradiction: a correct replica signed two different blocks for n and v . If r1 , r2, by the safety
property of PBFT, there cannot be two correct replicas that commit to two different blocks for
the same sequence number. Similarly, the claim also holds for v ′ > v , since PBFT guarantees
that if at least a correct replica locally committed the block b in v , which is the precondition to
sign b , then no other request will be considered for the same sequence number n in later views
v ′ > v .

Theorem2 (Liveness). All valid block proposal are eventually committed and signed by all correct
replicas.

Proof. The claim follows from the proof of termination of ROAST (Theorem 4.3 of Ruffing et al.,
2022), and by the liveness property of PBFT, by taking care of triggering view-changes if a replica
detects a Byzantine aggregator of signature shares.

The requirements of Correctness and Calmness are satisfied by construction, as a pre-
preparemessage is acceptedonly if its block is valid according to theprotocol rules (Correctness),
its request has been generated locally by the replica, and its timestamp is not in the future
(Calmness). Finally, the Confidentiality requirement is guaranteed by the confidentiality of the
signature created using FROST.

4.3 Amending the Bitcoin protocol

This section describes the main changes we introduce to the Bitcoin codebase.
Block validity. Our blocks are valid iff they include the solution to a specific block challenge,

as in the Bitcoin Signet (Alm et al., 2019), that can be expressed either as a script or, since
the introduction of Taproot (Wuille et al., 2020), as a public key used to validate a Schnorr
signature. For each block, the block solution to the challenge is stored in a special OP_RETURN
output of the coinbase transaction, so it is automatically propagated to the participant network
using the standard mechanisms for blocks and transactions. In our case, the solution is an
aggregated Schnorr signature, representing a valid but opaque quorum of trusted miners who
agreed to append a given block at a specific height. Since different quorums of signers may
produce different valid signatures, in order to accommodate for our safety requirement (R2) in

17

the context of a certified Byzantine consensus, it is necessary to exclude the block solution from
the computation of the coinbase transaction hash9. In addition, it is necessary to include the
PoW fields nBits and nNonce in the block signature, in order to prevent a (malicious) miner to
cause a fork by tweaking them: If the PoW fields were not signed, then aminer could change
nNonce to imply more work, and its block would replace the legitimate one by the Bitcoin rules.

Block mining. The steps for creating blocks become as follows: (1) Upon request by the
consensus node of a miner, the corresponding bridging node assembles a block template, i.e.,
it selects a set of transactions from the mempool, and adds a coinbase transaction with an
empty block solution; the block Merkle root is now finalized. The miner grinds the block, i.e., it
finds a nonce that fulfills a trivial PoW-like challenge, which is purposely included for backward
compatibility with the original Bitcoin protocol; the block hash is now finalized. (2) A quorum of
miners signs the block and appends a valid block solution; the transactions are now finalized:
the Merkle root and block hashes are unaffected.

Block interval. The interval between blocks is fixed to one minute, instead of the 10-minute
interval of the public Bitcoin network. We could further increase the rate or the block size to
improve the throughput, but this would limit the valuable ability of all network participants to
stay in sync, especially those with low bandwidth. At any rate, transaction scalability is meant
to be achieved off-chain.

Block subsidy. It plays an incentive role in the public Bitcoin, which is non-existent in our
setting. We remove the block subsidy checks from the code base of participant nodes.

Coinbase maturity. In Bitcoin, coinbase transaction outputs can only be spent after a certain
number of new blocks. In our settings, no forks occur as per our safety requirement, therefore
the coinbase maturity is safely set to 0.

5 Evaluation
We evaluate the performance of FBFT in a geographically distributed environment, involving up
to 22mining nodes, placed in 8 different European regions of AmazonWeb Services (AWS).10

According to data collected by CloudPing in 202211, the median latency between these regions
ranges between 20ms and 50ms, while the intra-region median latency stays below 4ms.

The main measure of performance we consider is consensus latency (or just latency, for
short), which represents the time needed by themining network to reach an agreement and
sign a new block. Measured at the primary node, it is the difference between the time at which
a new signed block is submitted to the participant network (end of the consensus) and the time
at which a new block is proposed to themining network with a pre-preparemessage (beginning
of the consensus algorithm).

In Fig. 4, we compare FBFT with two baseline variants, named PBFT and 3FBFT. The for-
mer produces a naïve block solution as the concatenation of signatures by a threshold of the
mining nodes. This block solution can be then verified by the participant network using the
OP_CHECKMULTISIG opcode. The latter is a trivial solution for creating a quorum certificate
using FROST: miners run multiple FROST sessions during the consensus, by exchanging, in

9 Different sets of signers for the same block could lead to valid but different block solutions. If the different solutions
were included in the computation of the coinbase transaction hash, they would also be included in the Merkle trees,
and would result in different block hashes, which would lead to a chain reorganization.

10 Namely: eu-west-1 (Ireland), eu-central-1 (Frankfurt), eu-south-1 (Milan), eu-north-1 (Stockholm), eu-west-2 (London),
eu-central-2 (Zurich), eu-south-2 (Spain), eu-west-3 (Paris). We assign a sequential identifier to eachnode anddetermine
the AWS region where to deploy it using the modulo function.

11 https://www.cloudping.co/grid/p_50/timeframe/1Y

18

https://www.cloudping.co/grid/p_50/timeframe/1Y

1 4 7 10 13 16 19 22
Number of nodes

100

200

300

400

500

600

Bl
oc

k
so

lu
ti

on
 s

iz
e

(B
) Size

PBFT (Multisig)
FBFT, 3FBFT

102

103

104

La
te

nc
y

(m
s)

Time
3FBFT
FBFT
PBFT (Multisig)

Figure 4. Solution size and average consensus latency achievable with naïve PBFT, FBFT, and 3FBFT.

the commit message, a pair of commitments (Di , Ei) for all the
(N
k

)
possible combinations of

k = 2FB + 1 signers. As a result, a replica that receives a Byzantine quorum of commit messages,
can immediately execute the aggregation of the signature shares. 3FBFT optimizes communica-
tion because it minimizes the number of rounds required to finalize a block. However, since
the number of signature shares grows exponentially, this protocol is practical only with small
mining networks. For the three variants, Fig. 4 shows the size of the block solution (i.e., the
block signature), which represents a witness of themining network agreement and is broadcast
to the participant network together with the block itself. PBFT produces a block solution whose
size increases with the mining network size (from 222 bytes with 4 replicas to 657 bytes with 13
replicas). Notably, the OP_CHECKMULTISIG opcode, used by participants to verify the block so-
lution, allows checking atmost 15 public keys. Both 3FBFT and FBFT represent an improvement
over the PBFT baseline because they use FROST for creating a quorum certificate and produce
a single Schnorr signature, which can be verified with an ad-hoc Taproot output. Therefore, the
block solution size is 67 bytes, no matter the number of miners. Fig. 4 also compares the three
algorithms in terms of latency for different sizes of the mining network, here in absence of load.
The experiments confirm that FBFT shows higher latency than PBFT, which is motivated by the
presence of additional rounds needed for the FROST signature aggregation. Moreover, 3FBFT
shows lower latency than FBFT in small mining networks, but its performances degrade very
quickly when the number of nodes is greater than 10. This is motivated by the calculation of
all possible combinations of a Byzantine quorum of signatures out of all the possible signers,
leading to a prohibitively high latency of 19.2 s with 16 nodes. With 22mining nodes, FBFT
registers an average latency of 1.7 s in a setting spread across 8 AWS regions. This value of
consensus latency is largely below our requirement of a new block every 60 s.

Fig. 5a reports the maximum throughput achievable with FBFT across the AWS European
regions. The throughput is the number of blocks that could be produced by themining network
per unit of time. It is slightly lower than the inverse of the consensus latency, because it also
takes into account the time for block propagation in the mining network. We configure the
experiments so that the network produces blocks as fast as possible (i.e., we “disable” the
calmness, forcing miners to recover a blockchain with a genesis block time in the past). As
expected, the throughput decreases as the mining network size increases. This is mainly due to
the quadratic communication complexity of FBFT, which builds on PBFT.

In Fig. 5b we investigate the impact of incoming transactions on consensus latency. We
configure the mining network to generate a new block every minute in the steady state, during
which we evaluate the performances. However, since we set the genesis block timestamp 30
minutes in the past, there is a warm-up period in which the miners will try to mine the first 30
blocks at the highest rate achievable with the given network conditions. In order to generate

19

1 4 7 10 13 16 19 22
Number of nodes

1

2

3

4

5

Th
ro

ug
hp

ut
 (

bl
oc

ks
/s

) Protocol
FBFT

(a) Average throughput without load

0 KB/s
(0%)

8KB/s
(25%)

15 KB/s
(50%)

22 KB/s
(75%)

30 KB/s
(100%)

Transactional load

2

4

6

8

10

12

La
te

nc
y

(s
)

Nodes
4
10
16
22

(b) Average FBFT latency under different load conditions

0 KB/s
(0%)

8KB/s
(25%)

15 KB/s
(50%)

22 KB/s
(75%)

30 KB/s
(100%)

Transactional load

0.0

2.5

5.0

7.5

10.0

12.5

Cu
m

ul
at

ed
 p

ro
to

co
l t

im
e

(s
)

Protocol
Bitcoin
FROST
PBFT

(c) Avg time spent by FBFT in its protocols, 16 nodes

4 7 10 13 16 19 22
Number of nodes

0

20

40

60

80

100

120

140

La
te

nc
y

(s
)

Faults
3
2
1

(d) Avg latency of the block following primary failures

Figure 5. Evaluation of FBFT: throughput, time spent in its protocols, and consensus latency.

load for the mining network, we set up additional 8 participant nodes that submit transactions
to the mining network. The warm-up period described above allows the clients to fill their
wallets with a number of coins sufficient to generate a transaction load at the desired rate. The
client rate is set to target a given block size that we describe as 0%, 25%, 50%, 75%, 100% of
maximum block size (1.8MB). As Fig. 5b shows, when the load increases, the consensus latency
increases as well. Indeed, the increase of the block size slows down the exchange of the pre-
preparemessage by the primary, and the block validity check by backups. We experience that
the impact of transaction load is linear for all the mining network configurations. Nevertheless,
even with blocks at full load and 22mining nodes, the maximum latency we experienced is
around 13 s, below our requirement to mine a block every 60 s.

To agree and sign the next block, FBFT uses different protocols: PBFT for consensus, FROST
for signature aggregation, and Bitcoin for block validation. Fig. 5c details the time spent in
these different stages, under different load conditions, with 16mining nodes. When the load
is 0 KB/s, FBFT closes empty blocks in 2170ms: it spends 64% of time to complete the PBFT
phases; 35.1% of time to exchange and aggregate the signature shares, whereas the Bitcoin
block validity and submission checks take less than 1%of the time. If the load is at itsmaximum,
then PBFT takes 65%of time, the signature aggregation takes 29%, and the block validity check
takes 6%of time.

Finally, we evaluate the block latency in presence of failures. When the primary appears
as faulty, FBFT uses the view change protocol to elect a new primary and recovers from fail-
ure. Fig. 5d shows the impact of failures in the worst-case scenario, where the primaries of
subsequent views fail consecutively, andmultiple view changes are triggered before finding
the agreement on the next block. After 60 s, we forcefully terminate the primary of the mining
network in the initial view, and possibly up to two other primaries expected for the next views.
We set the initial view change timeout to 30 s for an expected block time of 60 s. Almost for every
mining network size, the consensus latency is strongly delayed by the view-change protocol,
which doubles subsequent timeouts with the number of subsequent views. It increases from
less than 2 s to ≈ 30 s, with 1 failure, to ≈ 60 s, with 2 concurrent failures, to ≈ 120 s, with 3

concurrent failures (123.7 s with 22 nodes). When the view change is completed, the consensus

20

protocol recovers the delayed blocks at the maximum throughput, and continues to mine with
calmness at a consensus latency that is less than 2 s.

Overall, it appears that FBFT can provide Byzantine fault tolerance, network confidentiality,
and efficient usage of block solution space, for just a reasonable increment in consensus latency.

6 Related work

There exist previous examples of Bitcoin-derived ledgers meant for private networks. In par-
ticular, Elements12, whose production deployment (the “Liquid” sidechain—Nick et al., 2020)
uses a consensus algorithmwithin a permissionedmining network consisting of cryptocurrency
businesses. Elements is the closest work to ours in terms of technologies and Bitcoin reuse
goals. The implementation of its functionaries (the actors responsible of signing blocks in
Liquid) has been open sourced13 in August 2023. The production-ready software interfaces with
Hardware Security Modules (HSM) for block signing and verification. However, Elements uses
ECDSA in place of Schnorr, and it does not rely on a threshold signature scheme that creates a
confidential quorum certificate.

The second largest DLT born public and then adapted to permissioned settings is Ethereum
(Wood et al., 2014). An example of an Ethereum-like ledger designed for private networks is
Hyperledger Besu14, which supports a PoA consensus based on Istanbul BFT (Moniz, 2020).
Another example is Concord15. This is possibly the closest work to ours, in spirit, but (i) it
implements SBFT (Golan Gueta et al., 2019) instead of PBFT as consensus algorithm; (ii) it
works with BLS signatures instead of Schnorr signatures; and (iii) it has Ethereum instead of
Bitcoin as a foundation. Point (iii) is a profound differentiator: Ethereum exhibits a Turing-
complete language as a key feature, and focuses on the development of complex decentralized
applications via smart contracts, while for our objective we elected a blockchain technology
mainly focused on digital payments that could easily scale off-ledger with a payment channel
network. While in principle BLS signatures could also serve our purpose of aggregatingmultiple
signature into one, their use is ruled out by the choice of the blockchain technology: namely
Bitcoin only supports the secp256k1 elliptic curve, which is not suited for BLS signatures (being
not pairing-friendly).

There is a plethora of other relevant permissioned DLTs, whosemain difference with respect
to our approach is the absence by design of any attempt to profit from existing code bases from
major public blockchains. E.g.: Hyperledger Fabric16 is a general-purpose DLT that enables the
development of enterprise applications, not necessarily financial. Among its components, there
is a BFT consensus module, but its development appears to have ceased17. Corda18 is a DLT
designed for the financial industry; it has a token-based data model, like Bitcoin, and a Turing-
completeprogramming language, like Ethereum. Itsnotaries can runeither a crash fault-tolerant
(CFT) consensus or a BFT consensus. Neither the BFT specification nor its implementation is
available in the open-source repository and, apparently, no aggregated signature scheme is
included. Hyperledger Sawtooth19 allows deploying private DLT networks with a variety of
consensus algorithms, including PBFT. Sawtooth has an open source implementation20, with

12 https://blockstream.com/elements
13 https://github.com/Blockstream/liquid-functionary
14 https://www.hyperledger.org/use/besu
15 https://blogs.vmware.com/opensource/2018/08/28/meet-project-concord
16 https://www.hyperledger.org/use/fabric
17 https://github.com/bft-smart/fabric-orderingservice
18 https://www.corda.net and https://github.com/corda
19 https://www.hyperledger.org/use/sawtooth
20 https://github.com/hyperledger/sawtooth-pbft

21

https://blockstream.com/elements
https://github.com/Blockstream/liquid-functionary
https://www.hyperledger.org/use/besu
https://blogs.vmware.com/opensource/2018/08/28/meet-project-concord
https://www.hyperledger.org/use/fabric
https://github.com/bft-smart/fabric-orderingservice
https://www.corda.net
https://github.com/corda
https://www.hyperledger.org/use/sawtooth
https://github.com/hyperledger/sawtooth-pbft

an incomplete PBFT implementation and no Schnorr signature aggregation. Diem21 (formerly
Libra) implements a Turing-complete programming language designed for safe and verifiable
transaction-oriented computation. It employs a custom BFT algorithm called DiemBFT (Baudet
et al., 2019), based onHotStuff (Yin et al., 2019). Hamilton (Lovejoy et al., 2022) is a DLT designed
to support payments in a permissioned network (a use case similar to ours). It inherits certain
elements fromBitcoin (e.g., UTXO and cryptographic primitives). Relevant differences: its ledger
is not a blockchain and is meant to stay private; its consensus protocol is not BFT but CFT; its
main focus is on obtaining transactional scalability on-ledger. Table 1 summarizes the main
differences between the major permissioned ledgers.

We analyzed several BFT consensus algorithms (e.g., Baudet et al., 2019; Buchnik et al.,
2020; Distler, 2021; Golan Gueta et al., 2019; Yin et al., 2019), and we decided to design our
block creation process around PBFT (Castro et al., 1999). PBFT sacrifices linear communication
(the number of exchanged messages is quadratic in the cluster size) in return for a simpler
implementation; however, our requirements call for the mining network to produce nomore
than a block per minute, and our cluster is (by design) small enough tomake the superlinear
communication complexity a minor drawback, whereas simplicity in the implementation helps
a lot the cohabitation with the Bitcoin platform. We implemented the BFT consensus algorithm
from scratch instead of relying on already existing blockchain implementations, such as Ten-
dermint (Buchman, 2016), in order to maximize the reuse of and compatibility with the Bitcoin
protocol, including its consensus engine. The interested reader can found an extensive analysis
of blockchain consensus protocols in Xu et al., 2023.

Finally, note how most BFT protocols use threshold BLS signatures (e.g., Golan Gueta et
al., 2019; Yin et al., 2019), which rely on pairing-based cryptography. However, this may be
challenging to implement in practice in our platform, since BLS signatures are not supported
in Bitcoin. Conversely, Schnorr signatures received increased interest recently, and they have
already been included in the Bitcoin protocol. In 2021, Komlo and Goldberg (Komlo et al.,
2021) proposed FROST (see Sect. 3), and it is currently considered themost efficient scheme
for generating threshold Schnorr signatures. Recently, Ruffing et al., 2022 proposed ROAST, a
wrapper protocol around FROST that provides liveness guarantees in presence of malicious
nodes and asynchronous networks. Differently from ROAST, our FBFT protocol guarantees
liveness in a peer to peer network that aggregates signature shares even in the case of Byzantine
coordinator.

7 Future directions

As future work, we plan to evolve our architecture towards different research directions, which
we summarize as follows.

Improving the fairness of FBFT. The term fairness in the context of blockchain refers to the
property that transactions submitted by participants are selected byminers for inclusion in a
block, according to a well-defined criterion, that is transparent to the participants’ network.
This allows participants to form realistic expectations about the time that will be needed for
the confirmation of a transaction. The most common criterion in public blockchains provides
for selecting the transactions according to the paid transaction fees. In the current version of
FBFT, fairness is not achieved, because a single Byzantine miner could hijack the block creation
process and, among other things, delaying/censoring some transactions in favour of others,
which would represent unfair behaviour. Fairness can be achieved iff the primary can generate

21 https://developers.diem.com/docs/welcome-to-diem

22

https://developers.diem.com/docs/welcome-to-diem

Table 1. Comparison of major permissioned distributed ledgers

Byzantine Confidential Distributed Schnorr Open
Fault Tolerance Quorum Certificate Ledger Technology Quorum Certificate Source

Elements Strong Federations No Bitcoin No Yes
(Dilley et al., 2016)

Hyperledger Besu IstanbulBFT No Ethereum No Yes
(Moniz, 2020)

Concord SBFT Yes, BLS Ethereum No Yes
(Golan Gueta et al., 2019) (Boneh et al., 2004)

Hyperledger Fabric No, Raft No Fabric No Yes
(Ongaro et al., 2014)

Corda Unclear Unclear Corda Unclear Partially
Hyperledger Sawtooth PBFT No Sawtooth No Yes

(Castro et al., 1999)
Diem DiemBFT No Diem No Yes

(Baudet et al., 2019)
Project Hamilton No, Raft No Hamilton No Yes

(Ongaro et al., 2014)
Our solution FBFT Yes Bitcoin Yes, FROST Yes

(Komlo et al., 2021)

at most a single block, and the primary rotates at each block, e.g., using an election technique
based on cryptographic sortition—such as the Verifiable Random Functions used in Algorand
(Gilad et al., 2017). An always-changing primary would prevent a Byzantine primary from
censoring transactions. We plan to explore how to introduce fairness in the FBFT protocol while
keeping the same deterministic finality guarantees that are currently provided.

Support foradynamic federationofvalidators. ThepermissionedDLTplatformdescribed in
this work has a static block challenge, that is the public key representing the group of validators
(while the corresponding solution is a Schnorr threshold signature produced by a subset of the
validators). Nevertheless, the capability of changing the secret key shares controlled by the
validators is amust-have for any real-world deployment of the platform. Indeed, a variety of use
cases require such a feature: validators may need to periodically rotate their secret key shares
as a security best practice; the mining network may be reconfigured to include a new validator
or to exclude a validator controlling a compromised key; finally, some federations may want to
enforce policies in which one or more members of the federation rotate periodically. In theory,
there are two ways to support dynamic key shares: updating the block challenge or finding
new key shares which can be used to produce a threshold signature for the same group public
key. Changing the block challenge is not trivial in practice. It requires participants to upgrade
their node software to a new version that includes the new challenge; and participants that will
not carry out such update will not be able to stay in sync with the chain. For this reason, this
kind of updates must be planned well in advance, or require that the update procedures are
very streamlined. The second option relies on the possibility to change the number of signers
and/or the threshold without updating the group public key. More in general, this requires to
explore dynamic secret sharing in FROST, and their implications on safety. This is unexplored
territory for aggregated signature schemes, which we are currently investigating.

Analysis of a layer-2payment channel network. Asdescribed in the visionpaper (Urbinati et
al., 2021) and highlighted in Sect. 4.3, the throughput of the blockchain layer is limited by design
to a few dozen transactions per second, and transaction scalability is meant to be achieved off-
chain, using layer-2 protocols available for Bitcoin, such as a payment channel network (Poon
et al., 2016). Payment channel networks (PCNs) promise to overcome the scalability issues of

23

blockchains by enabling instant, safe, and privacy-preserving transactions. These transactions
are not settled one by one on the blockchain, but are routed by a network of intermediary
nodes, which are connected by payment channels. Although the literature analyzes different
aspects of PCNs, thus far it is not clear whether they can successfully handle real-world payment
volumes, and if they can even go beyond that, e.g., in supporting additional use cases such
as micro-payments. We will work towards a systematic investigation of some specific PCN
topologies, which fit our permissioned scenarios. We aim to analyze and optimize the trade-offs
between the liquidity locked in channels (representing a cost) and rates of successfully routed
payments. Payment privacy guarantees offered by specific PCN topologies also deserve further
investigation. A realistic payment load can be simulated using a statistical model calibrated on
real-world payment data, available in aggregated form from official studies of major financial
institutions (e.g., ECB Surveys, 2022), or derived from public datasets (e.g., Venmo, 2019).

Exploring asset tokenization for DvP and cross-border payments. The on-chain layer of
our platform can be used by the participants to exchange large value transactions, which can
bemade dependent on programmable conditions, expressed using the scripting language of
Bitcoin. For this reason, our permissioned blockchain is very similar to an advanced wholesale
payment system. Moreover, the off-chain PCN extension or other layer-2 protocol, which can
be built by participants on top of the ledger infrastructure, can be used to exchange a large
volume of low-value payments, with privacy-preserving guarantees. For this reason, it may
properly serve the needs of a retail payment system. There is a third and very relevant feature
of traditional market infrastructures, that is the capability to use the ledger to represent assets
other than the native currency, in order to facilitate cross-border payments and Delivery-versus-
Payment (DvP), settlement methods that guarantee the atomicity of a transaction involving
either multiple payments or both a payment and an asset transfer (e.g., see La Rocca et al.,
2022). In the last year, the industry and the open source communities have been developing
open protocols, such as RGB22 and Taproot Assets (formerly Taro)23, that can be used for the
tokenization of assets on top of Bitcoin-like blockchains. All these recent developments can be
swiftly inherited by our permissioned network. Moreover, these protocols also have support for
layer-2 smart contracts involving both the native ledger currency and the asset.

8 Conclusion

We presented and evaluated a Bitcoin-like, permissioned, distributed ledger in which valid
blocks are signed by a federation of independent actors and transactions enjoy deterministic
finality. Block signatures are aggregated via a threshold scheme based on FROST, that preserves
the confidentiality of the mining network configuration and its quorum. We showed how such a
federation could operate correctly also under Byzantine failures of a subset of the nodes.

Our design embodies one way of inheriting all the algorithms, data structures, and software
of Bitcoin—but its PoW-based consensus protocol—in order to make its full technological stack
openly available to permissioned settings managed by trusted actors.

What for? Bitcoin has inspired innumerable other blockchains and is perhaps the closest
thing we have to an open standard for payments in the “crypto domain”. It is possible that
its technological stack—constantly scrutinized, improved, evolved—will one day percolate
into the blockchain-friendly portion of the financial ecosystem for old and new use cases. This
perspectivehas famedhistorical precedents. It is notunlike reusing theexact same technological

22 RGB, Private & scalable smart contracts for Bitcoin and Lightning Network: https://rgb-org.github.io/
23 A Taproot Asset Representation Overlay: https://docs.lightning.engineering/the-lightning-network/taproot-assets/

24

https://rgb-org.github.io/
https://docs.lightning.engineering/the-lightning-network/taproot-assets/

stack from a decentralized, public network (the Internet) into private, “permissioned” networks
(intranets): TCP/IP. At the dawn of the networking era, the idea of a convergent public/private
stack was unheard of, and a host of custom, proprietary networking suites were deployed for
“permissioned” use cases. But eventually, the good-enough and widely adopted TCP/IP won
overmost specialized (andmutually incompatible) protocols. It became a de facto standard, the
one we now take for granted and use every day, at work and at home (permissioned settings).

We are a very long way from a similar turn of events in the realm of digital payment systems.
And, it may well be argued that a shared technological ground is unlikely to ever materialize.
Still, we proved the idea makes technical sense, and we would better be ready. Solutions such
as the one we present here pave the way to be prepared for such a possibility.

25

References
Alm, K.-J., & Towns, A. (2019). Signet. BIP, 325.
Amsden, Z., Arora, R., Bano, S., Baudet, M., Blackshear, S., Bothra, A., Cabrera, G., Catalini, C., Chalkias, K.,

Cheng, E., Ching, A., Chursin, A., Danezis, G., Giacomo, G. D., Dill, D. L., Ding, H., Doudchenko,
N., Gao, V., Gao, Z., … Zhou, R. (2020). The libra blockchain (tech. rep.). Novi. https://diem-
developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf

Banque de France. (2021).Wholesale central bank digital currency experiments with the banque de france
(2021) (tech. rep.). https : / /diem-developers -components .netlify .app/papers / the -diem-
blockchain/2020-05-26.pdf

Baudet, M., Ching, A., Chursin, A., Danezis, G., Garillot, F., Li, Z., Malkhi, D., Naor, O., Perelman, D., & Sonnino,
A. (2019). State machine replication in the Libra blockchain (tech. rep.). The Libra Association.

Benedetti, M., De Sclavis, F., Favorito, M., Galano, G., Giammusso, S., Muci, A., & Nardelli, M. (2022). A
PoW-less Bitcoin with Certified Byzantine Consensus. arXiv:2207.0687.

Boneh, D., & Komlo, C. (2022). Threshold signatures with private accountability. Cryptology ePrint Archive.
Boneh, D., Lynn, B., & Shacham, H. (2004). Short Signatures from the Weil Pairing. J. Cryptol., 17(4), 297–

319.
Buchman, E. (2016). Tendermint: Byzantine Fault Tolerance in the Age of Blockchains (Doctoral dissertation).

University of Guelph.
Buchnik, Y., & Friedman, R. (2020). Fireledger: A high throughput blockchain consensus protocol. Proc.

VLDB Endow., 13(9), 1525–1539.
Cai, L., Sun, Y., Zheng, Z., Xiao, J., & Qiu, W. (2021). Blockchain in china. Communications of the ACM, 64(11),

88–93.
Castro, M., & Liskov, B. (1999). Practical Byzantine Fault Tolerance. Proc. of OSDI’99, 173–186.
Castro, M., & Liskov, B. (2002). Practical Byzantine Fault Tolerance and Proactive Recovery. ACM Trans.

Comput. Syst., 20(4), 398–461.
Chaum, D., Grothoff, C., & Moser, T. (2021). How to issue a central bank digital currency. arXiv:2103.00254.
Dilley, J., Poelstra, A., Wilkins, J., Piekarska, M., Gorlick, B., & Friedenbach, M. (2016). Strong federations:

An interoperable blockchain solution to centralized third-party risks. arXiv:1612.05491.
Distler, T. (2021). Byzantine fault-tolerant state-machine replication from a systems perspective. ACM

Comput. Surv., 54(1).
Dwork, C., Lynch, N., & Stockmeyer, L. (1988). Consensus in the Presence of Partial Synchrony. Journal of

the ACM, 35(2), 288–323. https://doi.org/10.1145/42282.42283
ECB Surveys. (2022). Study on the payment attitudes of consumers in the euro area (SPACE). https://www.

ecb.europa.eu/stats/ecb_surveys/space/html/ecb.spacereport202212~783ffdf46e.en.html
European Central Bank. (2020). Report on a digital euro. ECB publications.
European Central Bank. (2023). Official digital euro project page [Online; accessed Sept 15th, 2023]. https:

//www.ecb.europa.eu/paym/digital_euro/html/index.en.html
Federal Reserve. (2022). Money and payments: The US Dollar in the age of digital transformation. Fed-

eral Reserve publications.
Fischer, M. J., Lynch, N. A., & Paterson, M. S. (1985). Impossibility of distributed consensus with one faulty

process. Journal of the ACM (JACM), 32(2), 374–382.
Garay, J. A., Kiayias, A., & Leonardos, N. (2015). The Bitcoin backbone protocol: Analysis and applications.

EUROCRYPT 2015, 281–310.
Garay, J. A., Kiayias, A., & Leonardos, N. (2020). Full analysis of Nakamoto consensus in bounded-delay

networks. IACR Cryptol. ePrint Arch., (277).
Gilad, Y., Hemo, R., Micali, S., Vlachos, G., & Zeldovich, N. (2017). Algorand: Scaling Byzantine agreements

for cryptocurrencies. Proc. of SOSP ’17, 51–68.
Golan Gueta, G., Abraham, I., Grossman, S., Malkhi, D., Pinkas, B., Reiter, M., Seredinschi, D.-A., Tamir, O., &

Tomescu, A. (2019). SBFT: A Scalable and Decentralized Trust Infrastructure. Proc. of IEEE/IFIP
DSN’19, 568–580.

26

https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf
https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf
https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf
https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf
https://doi.org/10.1145/42282.42283
https://www.ecb.europa.eu/stats/ecb_surveys/space/html/ecb.spacereport202212~783ffdf46e.en.html
https://www.ecb.europa.eu/stats/ecb_surveys/space/html/ecb.spacereport202212~783ffdf46e.en.html
https://www.ecb.europa.eu/paym/digital_euro/html/index.en.html
https://www.ecb.europa.eu/paym/digital_euro/html/index.en.html

Komlo, C., & Goldberg, I. (2021). FROST: Flexible Round-optimized Schnorr Threshold Signatures. SAC
2020, 12804, 34–65.

LaRocca, R.,Mancini, R., Benedetti, M., Caruso,M., Cossu, S., Galano, G.,Mancini, S., Marcelli, G.,Martella, P.,
Nardelli, M., & Oliviero, C. (2022). Integrating DLTswithmarket infrastructures: analysis and proof-
of-concept for secure DvP between TIPS and DLT platforms.Markets, Infrastructures, Payment
Systems. Bank of Italy, (26).

Lee, S., &Kim, S. (2020). Short selling attack: A self-destructive but profitable 51%attackonposblockchains
[https://ia.cr/2020/019].

Lovejoy, J., Fields, C., Virza, M., Frederick, T., Urness, D., Karwaski, K., Brownworth, A., & Narula, N. (2022).
A high performance payment processing system designed for central bank digital currencies.
Cryptology ePrint Archive, (163).

Moniz, H. (2020). The Istanbul BFT Consensus Algorithm. arXiv:2002.03613.
Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review.
Nick, J., Poelstra, A., & Sanders, G. (2020). Liquid: A Bitcoin sidechain (tech. rep.). Liquid.
Ongaro, D., & Ousterhout, J. (2014). In search of an understandable consensus algorithm. Proc. of USENIX

ATC’14, 305–320.
Poon, J., & Dryja, T. (2016). The Bitcoin lightning network: Scalable off-chain instant payments.
Ruffing, T., Ronge, V., Jin, E., Schneider-Bensch, J., & Schröder, D. (2022). ROAST: Robust asynchronous

Schnorr threshold signatures. Cryptology ePrint Archive, (550).
Saad, M., Spaulding, J., Njilla, L., Kamhoua, C., Shetty, S., Nyang, D., & Mohaisen, D. (2020). Exploring

the attack surface of blockchain: A comprehensive survey. IEEE Commun. Surv. Tutor., 22(3),
1977–2008.

Urbinati, E., Belsito, A., Cani, D., Caporrini, A., Capotosto, M., Folino, S., Galano, G., Goretti, G., Marcelli, G.,
Tiberi, P., & Vita, A. (2021). A digital euro: A contribution to the discussion on technical design
choices.Markets, Infrastructures, Payment Systems. Bank of Italy, (10).

Venmo. (2019). Venmo Transaction Dataset [[Online; accessed July 2023]].
Wood, G., et al. (2014). Ethereum: A secure decentralised generalised transaction ledger. Ethereum project

yellow paper, 151, 1–32.
Wuille, P., Nick, J., & Towns, A. (2020). Taproot: SegWit version 1 spending rules. BIP, 341.
Xu, J., Wang, C., & Jia, X. (2023). A survey of blockchain consensus protocols. ACM Comput. Surv., 55(13s).

https://doi.org/10.1145/3579845
Ye, C., Li, G., Cai, H., Gu, Y., & Fukuda, A. (2018). Analysis of security in blockchain: Case study in 51%-attack

detecting. 2018 5th International Conference on Dependable Systems and Their Applications (DSA),
15–24. https://doi.org/10.1109/DSA.2018.00015

Yin, M., Malkhi, D., Reiter, M. K., Gueta, G. G., & Abraham, I. (2019). HotStuff: BFT Consensus with Linearity
and Responsiveness. Proc. ACM PODC ’19, 347–356.

27

https://ia.cr/2020/019
https://doi.org/10.1145/3579845
https://doi.org/10.1109/DSA.2018.00015

n. 1	 TIPS - TARGET Instant Payment Settlement – The Pan-European Infrastructure for the
Settlement of Instant Paymentsi, by Massimiliano Renzetti, Serena Bernardini, Giuseppe
Marino, Luca Mibelli, Laura Ricciardi and Giovanni M. Sabelli (Institutional Issues)

n. 2	 Real-Time Gross Settlement systems: breaking the wall of scalability and high availability,
by Mauro Arcese, Domenico Di Giulio and Vitangelo Lasorella (Research Papers)

n. 3	 Green Bonds: the Sovereign Issuers’ Perspective, by Raffaele Doronzo, Vittorio Siracusa and
Stefano Antonelli (Research Papers)

n. 4	 T2S - TARGET2-Securities – The pan-European platform for the settlement of securities in
central bank money, by Cristina Mastropasqua, Alessandro Intonti, Michael Jennings, Clara
Mandolini, Massimo Maniero, Stefano Vespucci and Diego Toma (Institutional Issues)

n. 5	 The carbon footprint of the Target Instant Payment Settlement (TIPS) system: a comparative
analysis with Bitcoin and other infrastructures, by Pietro Tiberi (Research Papers)

n. 6	 Proposal for a common categorisation of IT incidents, by Autorité de Contrôle Prudentiel et
de Résolution, Banca d’Italia, Commissione Nazionale per le Società e la Borsa, Deutsche
Bundesbank, European Central Bank, Federal Reserve Board, Financial Conduct Authority,
Ministero dell’Economia e delle Finanze, Prudential Regulation Authority, U.S. Treasury
(Institutional Issues)

n. 7	 Inside the black box: tools for understanding cash circulation, by Luca Baldo, Elisa Bonifacio,
Marco Brandi, Michelina Lo Russo, Gianluca Maddaloni, Andrea Nobili, Giorgia Rocco,
Gabriele Sene and Massimo Valentini (Research Papers)

n. 8	 The impact of the pandemic on the use of payment instruments in Italy, by Guerino Ardizzi,
Alessandro Gambini, Andrea Nobili, Emanuele Pimpini and Giorgia Rocco (Research Papers)
(in Italian)

n. 9	 TARGET2 – The European system for large-value payments settlement, by Paolo Bramini,
Matteo Coletti, Francesco Di Stasio, Pierfrancesco Molina, Vittorio Schina and Massimo
Valentini (Institutional Issues) (in Italian)

n. 10	 A digital euro: a contribution to the discussion on technical design choices, by Emanuele
Urbinati, Alessia Belsito, Daniele Cani, Angela Caporrini, Marco Capotosto, Simone Folino,
Giuseppe Galano, Giancarlo Goretti, Gabriele Marcelli, Pietro Tiberi and Alessia Vita
(Institutional Issues)

n. 11	 From SMP to PEPP: a further look at the risk endogeneity of the Central Bank, by Marco
Fruzzetti, Giulio Gariano, Gerardo Palazzo and Antonio Scalia (Research Papers)

n. 12	 TLTROs and collateral availability in Italy, by Annino Agnes, Paola Antilici and Gianluca
Mosconi (Research Papers) (in Italian)

n. 13	 Overview of central banks' in-house credit assessment systems in the euro area, by Laura
Auria, Markus Bingmer, Carlos Mateo Caicedo Graciano, Clémence Charavel, Sergio Gavilá,
Alessandra Iannamorelli, Aviram Levy, Alfredo Maldonado, Florian Resch, Anna Maria Rossi
and Stephan Sauer (Institutional Issues)

n. 14	 The strategic allocation and sustainability of central banks' investment, by Davide Di Zio,
Marco Fanari, Simone Letta, Tommaso Perez and Giovanni Secondin (Research Papers) (in
Italian)

Papers published in the ‘Markets, Infrastructures, Payment Systems’ series

n. 15	 Climate and environmental risks: measuring the exposure of investments, by Ivan Faiella,
Enrico Bernardini, Johnny Di Giampaolo, Marco Fruzzetti, Simone Letta, Raffaele Loffredo
and Davide Nasti (Research Papers)

n. 16	 Cross-Currency Settlement of Instant Payments in a Multi-Currency Clearing and Settlement
Mechanism, by Massimiliano Renzetti, Fabrizio Dinacci and Ann Börestam (Research Papers)

n. 17	 What’s ahead for euro money market benchmarks?, by Daniela Della Gatta (Institutional
Issues) (in Italian)

n. 18	 Cyber resilience per la continuità di servizio del sistema finanziario, by Boris Giannetto
and Antonino Fazio (Institutional Issues) (in Italian)

n. 19	 Cross-Currency Settlement of Instant Payments in a Cross-Platform Context: a Proof of
Concept, by Massimiliano Renzetti, Andrea Dimartina, Riccardo Mancini, Giovanni Sabelli,
Francesco Di Stasio, Carlo Palmers, Faisal Alhijawi, Erol Kaya, Christophe Piccarelle, Stuart
Butler, Jwallant Vasani, Giancarlo Esposito, Alberto Tiberino and Manfredi Caracausi
(Research Papers)

n. 20	 Flash crashes on sovereign bond markets – EU evidence, by Antoine Bouveret, Martin
Haferkorn, Gaetano Marseglia and Onofrio Panzarino (Research Papers)

n. 21	 Report on the payment attitudes of consumers in Italy: results from ECB surveys,
by Gabriele Coletti, Alberto Di Iorio, Emanuele Pimpini and Giorgia Rocco (Institutional
Issues)

n. 22	 When financial innovation and sustainable finance meet: Sustainability-Linked Bonds,
by Paola Antilici, Gianluca Mosconi and Luigi Russo (Institutional Issues) (in Italian)

n. 23	 Business models and pricing strategies in the market for ATM withdrawals, by Guerino
Ardizzi and Massimiliano Cologgi (Research Papers)

n. 24	 Press news and social media in credit risk assessment: the experience of Banca d’Italia’s
In‑house Credit Assessment System, by Giulio Gariano and Gianluca Viggiano (Research
Papers)

n. 25	 The bonfire of banknotes, by Michele Manna (Research Papers)

n. 26	 Integrating DLTs with market infrastructures: analysis and proof-of-concept for secure DvP
between TIPS and DLT platforms, by Rosario La Rocca, Riccardo Mancini, Marco Benedetti,
Matteo Caruso, Stefano Cossu, Giuseppe Galano, Simone Mancini, Gabriele Marcelli, Piero
Martella, Matteo Nardelli and Ciro Oliviero (Research Papers)

n. 27	 Statistical and forecasting use of electronic payment transactions: collaboration between
Bank of Italy and Istat, by Guerino Ardizzi and Alessandra Righi (Institutional Issues) (in
Italian)

n. 28	 TIPS: a zero-downtime platform powered by automation, by Gianluca Caricato, Marco
Capotosto, Silvio Orsini and Pietro Tiberi (Research Papers)

n. 29	 TARGET2 analytical tools for regulatory compliance, by Marc Glowka, Alexander Müller,
Livia Polo Friz, Sara Testi, Massimo Valentini and Stefano Vespucci (Institutional Issues)

n. 30	 The security of retail payment instruments: evidence from supervisory data, by Massimiliano
Cologgi (Research Papers)

n. 31	 Open Banking in the payment system: infrastructural evolution, innovation and security,
supervisory and oversight practices, by Roberto Pellitteri, Ravenio Parrini, Carlo Cafarotti
and Benedetto Andrea De Vendictis (Institutional Issues) (in Italian)

n. 32	 Banks’ liquidity transformation rate: determinants and impact on lending, by Raffaele Lenzi,
Stefano Nobili, Filippo Perazzoli and Rosario Romeo (Research Papers)

n. 33	 Investor behavior under market stress: evidence from the Italian sovereign bond market, by
Onofrio Panzarino (Research Papers)

n. 34	 Siamese neural networks for detecting banknote printing defects, by Katia Boria, Andrea
Luciani, Sabina Marchetti and Marco Viticoli (Research Papers) (in Italian)

n. 35	 Quantum safe payment systems, by Elena Bucciol and Pietro Tiberi

n. 36	 Investigating the determinants of corporate bond credit spreads in the euro area, by Simone
Letta and Pasquale Mirante

n. 37	 Smart Derivative Contracts in DatalogMTL, by Andrea Colombo, Luigi Bellomarini, Stefano
Ceri and Eleonora Laurenza

n. 38	 Making it through the (crypto) winter: facts, figures and policy issues, by Guerino Ardizzi,
Marco Bevilacqua, Emanuela Cerrato and Alberto Di Iorio

n. 39	 The Emissions Trading System of the European Union (EU ETS), by Mauro Bufano, Fabio
Capasso, Johnny Di Giampaolo and Nicola Pellegrini (in Italian)

n. 40	 Banknote migration and the estimation of circulation in euro area countries: the italian
case, by Claudio Doria, Gianluca Maddaloni, Giuseppina Marocchi, Ferdinando Sasso,
Luca Serrai and Simonetta Zappa (in Italian)

n. 41	 Assessing credit risk sensitivity to climate and energy shocks, by Stefano Di Virgilio, Ivan
Faiella, Alessandro Mistretta and Simone Narizzano

n. 42	 Report on the payment attitudes of consumers in italy: results from the ecb space 2022
survey, by Gabriele Coletti, Alberto Di Iorio, Emanuele Pimpini and Giorgia Rocco

n. 43	 A service architecture for an enhanced Cyber Threat Intelligence capability and its value
for the cyber resilience of Financial Market Infrastructures, by Giuseppe Amato, Simone
Ciccarone, Pasquale Digregorio and Giuseppe Natalucci

n. 44	 Fine-tuning large language models for financial markets via ontological reasoning,
by Teodoro Baldazzi, Luigi Bellomarini, Stefano Ceri, Andrea Colombo, Andrea Gentili
and Emanuel Sallinger

n. 45	 Sustainability at shareholder meetings in France, Germany and Italy, by Tiziana De Stefano,
Giuseppe Buscemi and Marco Fanari (in Italian)

n. 46	 Money market rate stabilization systems over the last 20 years: the role of the minimum
reserve requirement, by Patrizia Ceccacci, Barbara Mazzetta, Stefano Nobili, Filippo
Perazzoli and Mattia Persico

n. 47	 Technology providers in the payment sector: market and regulatory developments,
by Emanuela Cerrato, Enrica Detto, Daniele Natalizi, Federico Semorile, Fabio Zuffranieri

n. 48	 The fundamental role of the repo market and central clearing, by Cristina Di Luigi, Antonio
Perrella and Alessio Ruggieri

n. 49	 From Public to Internal Capital Markets: The Effects of Affiliated IPOs on Group Firms,
by Luana Zaccaria, Simone Narizzano, Francesco Savino and Antonio Scalia

	N. 50 - MISP-Frontespizio-Introduzione-Sommario.pdf
	CONTENTS
	1. Introduction

	N. 50 - MISP-Frontespizio-Introduzione-Sommario.pdf
	CONTENTS
	1. Introduction

