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Smart Derivative ContraCtS in Datalogmtl

by Andrea Colombo,* Luigi Bellomarini,*** 
Stefano Ceri* and Eleonora Laurenza**,***

Abstract

The realization of derivative contracts in the crypto world typically occurs through the use of 
smart contracts. In decentralized finance (DeFi), where intermediation is absent or minimal, these 
contracts are executed through scripts on blockchain infrastructures. However, these scripts are 
frequently criticized on account of their complexity, which makes it difficult to understand and 
communicate their business logic, partly due to the highly procedural and technical nature of 
the language involved. As a result, derivatives in the DeFi space are often difficult to supervise 
and are not trusted by non-IT users. This joint work of the researchers of the Bank of Italy and 
the Polytechnic University of Milan outlines a proposal for making the underlying logic of smart 
contracts more transparent and understandable through the use of a declarative implementation. In 
particular, leveraging the extensive experience of database and artificial intelligence communities 
in knowledge representation and reasoning languages, we propose an encoding of the Ethereum 
Perpetual Future (ETH-PERP) smart contract using the DatalogMTL language. This work shows that 
such language allows for simpler, more understandable, and transparent representations of smart 
contracts for non-technical users. The implementation is validated by executing the ETH-PERP smart 
contract in Vadalog, a recent reasoner that supports DatalogMTL.

Keywords: derivatives, smart contracts, Datalog, DatalogMTL, reasoning.

Sintesi

La realizzazione di contratti derivati nel mondo crypto avviene tipicamente con il ricorso a smart 
contracts. A seguito del diffondersi di forme di finanza decentralizzata (DeFi), in cui l’intermediazione 
è assente o presente solo in minima parte, questi contratti vengono eseguiti mediante script in 
infrastrutture di tipo blockchain. Tali script, tuttavia, sono spesso criticati a causa della loro 
complessità, che rende difficile comprenderne e comunicarne la logica di business, anche per via 
del ricorso a linguaggi altamente procedurali e tecnici. Di conseguenza, i derivati in ambito DeFi 
sono spesso difficili da supervisionare e non godono della fiducia di utenti non IT. Questo lavoro, 
frutto della cooperazione tra ricercatori della Banca d’Italia e del Politecnico di Milano, mira a 
rendere più trasparente e comprensibile la logica sottostante gli smart contract, mediante il ricorso a 
una implementazione dichiarativa. In particolare, sfruttando l’ampia esperienza delle comunità delle 
basi di dati e dell’intelligenza artificiale nello sviluppo di linguaggi per la rappresentazione della 
conoscenza e il ragionamento automatico, proponiamo una codifica dello smart contract Ethereum 
Perpetual Future (ETH-PERP) tramite il linguaggio DatalogMTL. Il lavoro  mostra che tale linguaggio 
consente di conseguire forme di rappresentazione degli smart contract più semplici, comprensibili e 
trasparenti per gli utenti non tecnici. L’implementazione viene validata eseguendo lo smart contract 
ETH-PERP in Vadalog, un ragionatore automatico moderno che supporta DatalogMTL.
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1 Introduction

A derivative can be defined as a financial instrument that derives its value from
one or more underlying variables [1]. This instrument takes the form of a contract
between counterparts who agree on some terms and schedules. The underlying
variable of the contract can be any object, also digital. In most cases, the underlying
variables are the prices of traded assets, such as stocks or indexes [2].

There are many different types of derivatives, which differ in terms and condi-
tions. Futures are a type of derivative contract, where the parties agree to buy (or
sell) a standardized asset with a predetermined date and price. For example, futures
are used in the energy market by distribution companies that wish to secure a price
and the supply of raw materials, such as gas, from producers for a future month,
covering the risk of high increases in prices. However, derivatives are also very fre-
quently used for mere trading purposes, without any real interest in the underlying
asset. With the spread of blockchain technology and Decentralized Finance (DeFi),
new technologies and ways of trading derivatives are emerging.

DeFi refers to financial transactions conducted without any intermediation but
through a computer code on a decentralized public ledger [3], which has become
extremely popular with its applications in the crypto world. Central to the func-
tioning of a DeFi application is the formulation of contracts in a machine-readable
format, a so-called smart contract [4]. The standard way of writing such contracts
is by using a procedural language that encodes each contractual term and defines
what the program should do in each step, addressing the hard challenge of explicitly
handling all the time-related aspects. Many stakeholders are investigating the po-
tential of deploying traditional derivative contracts in the form of smart contracts
and in a DeFi environment, with efforts mainly dedicated to the implementation
of financial smart contracts in existing popular imperative languages such as the
scripting language Solidity for the Ethereum ecosystem [5] or in new ad-hoc ones
such as Daml [6]. However, existing approaches are receiving increasing criticisms
from the community because of overly complex business logic, little explainability
and consequential lack of transparency of the contract, which is also hard to describe
and communicate, being often unsuitable for non-IT users [7, 8, 9]. From their per-
spective, also supervision authorities, including central banks and other national
authorities, would greatly benefit from increased transparency of these objects in
their manifold roles, such as enhancing the stability in financial markets [10]. Nev-
ertheless, little is being done in the literature and in the technical community to
address such concerns, with more focus on developing ways and tools to use existing
paradigms more easily rather than exploring new ones [11].

Contribution. This joint work of the researchers of the Central Bank of Italy and
the Polytechnic University of Milan capitalizes on the growing experience about
logic-based languages for temporal reasoning from the database and AI communi-
ties and proposes the first declarative implementation of a derivative contract, the
ETH Perpetual Future (ETH-PERP) smart contract, developed by the Syntethix
community on the Kwenta platform [12]. In particular, our main contributions are:

• An encoding of the ETH-PERP that uses the recently introduced DatalogMTL
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language for temporal reasoning [13]. DatalogMTL is an extension with Metric
Temporal Logic (MTL) of the famous Datalog language of databases [14]. Through
the ETH-PERP industrial case study, we show how thanks to a non-trivial joint use
of temporal operators and recursion, with DatalogMTL we can seamlessly handle
the complex temporal aspects of a derivative smart contract.

• A systematic description of our rules, showing in practice that our approach
achieves the goal of building an explainable and executable derivative contract.
As a side-product, we offer a simple reformulation and a walk-through of
the ETH-PERP business logic, which we consider valuable for the broader
community and has been so far unavailable, given the only presence of a Solidity
encoding of the ETH-PERP contract.

• A validation of our implementation by executing the DatalogMTL code within
Vadalog [15], a state-of-the-art system supporting temporal reasoning.

Organization. The rest of the paper is organized as follows. In Section 2 we lay
out the preliminaries about DatalogMTL, its implementation in the Vadalog system
and we introduce some relevant concepts about derivatives and their implementation
as smart contracts. In Section 3 we provide the core contributions, describing our
DatalogMTL implementation of the ETH-PERP contract. Section 4 is dedicated to
the empirical evaluation. Section 5 concludes the paper.

2 Preliminaries

In this section, we recall the syntax and semantics of DatalogMTL and we briefly
introduce the Vadalog reasoner, which will be used in our experiments. We then
give some general concepts about derivatives and their implementation as smart
contracts.

2.1 DatalogMTL

DatalogMTL [16, 17] is a recently introduced extension of Datalog [14] with opera-
tors from Metric Temporal Logic (MTL) interpreted over the rational timeline and
with stratified negation under stable model semantics. In this section, we recap the
syntax and semantics of DatalogMTL.

Syntax. DatalogMTL uses the MTL operators ⊟, ⊞, ♢−, ♢+, S, and U to extend
Datalog to perform temporal reasoning tasks. These operators are indexed with
intervals ϱ with non-negative bounds [13]. An interval is of the form ⟨t1, t2⟩, with
parentheses and square brackets allowed in all possible combinations and t1, t2 ∈
Q ∪ {−∞,∞}, such that t1 ≤ t2; it is punctual if t1 = t2. A relational atom is an
expression of the form P (s), where P is a predicate of arity n and s is a tuple of
variables or constants matching the arity. A metric atom M extends a relational
atom by allowing MTL operators. It is defined by the following grammar:

M ::= ⊤| ⊥ |P (s)|⊟ϱ M |⊞ϱ M |♢−ϱM |♢+ϱM |MSϱM |MUϱM
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where P (s) is an atom and s is a positive interval. A rule is an expression of the
form:

M1 ∧ · · · ∧Mk ∧ ¬Mk+1 ∧ · · · ∧ ¬Mk+m → M ′

for k,m ≥ 0 and where M1, . . . ,Mk+m are literals (jointly referred to as the rule
body) and M ′ (rule head) is specified as:

M ′ ::= ⊤| ⊥ |P (s)|⊟ϱ M
′ | ⊞ϱM

′

where P (s) ranges over relational atoms and ϱ over positive intervals. The liter-
als M1, . . . ,Mk are positive body literals of the rule, and Mk+1, . . . ,Mk+m are the
negated ones. If each variable occurs in some positive body atom, the rule is safe. If
no variable occurs, the rule is called ground. A DatalogMTL program is a finite set
of safe rules. In the rest of the paper, we will refer to DatalogMTLFP [18] programs,
where only the ⊟, ♢− operators are allowed and will not make use of the S, and U
operators. Moreover, we will always refer to the [1, 1] interval and therefore omit
the respective operator subscript.

A stratification of a program Π organizes Π in layers of sub-programs, the strata,
and can be formally defined as a function σ that maps predicates of Π into positive
integers such that, for each rule r ∈ Π and all predicates P: σ (P+) ≤ σ(P ), σ (P−) <
σ(P ), where P+ is a positive body literal, P− is a negated body literal and P is the
head of the rule [19]. A fact is an expression of the form P (s)@ϱ, where P (τ ) is
ground and ϱ a non-empty interval. A database is a finite set of facts.

Semantics. The semantics of a DatalogMTLFP program (and we shall omit the
FP superscript from hereinafter) is given by an interpretation M that specifies for
each time point t ∈ Q and for each ground atom P (a), whether P (a) is satisfied at
t, in which case we write M, t |= P (a). An interpretation M is a model of a fact
P (a)@ϱ, if M, t |= P (a) for all t ∈ ϱ and a model of a set of facts (or a database)
D if it is a model of each fact in D.

This notion extends to ground literals M . Informally speaking, the temporal
operators ♢−ϱ (diamond minus) and ⊟ϱ (box minus) define the satisfaction of M
by M at t, based on the satisfaction of M by M in some past time intervals. In
particular, M satisfies ⊟ϱM) at t, if M continuously satisfies M in the interval
⟨t − ϱ+, t − ϱ−⟩ and M satisfies ♢−ϱM at t, if M satisfies M at least once in the
interval ⟨t− ϱ+, t− ϱ−⟩, where ϱ− and ϱ+ are the lower and upper bounds of ϱ. In
this sense, the “minus operators” are forward propagating, whence the superscript
FP. More formally:

M, t |= ⊤ for each t ∈ Q
M, t |=⊥ for no t ∈ Q
M, t |= ⊟ϱM iff M, s |= M for all s with t− s ∈ ϱ
M, t |= ♢−ϱM iff M, s |= M for some s with t− s ∈ ϱ

Also, M satisfies ¬M (M, t |= ¬M), if M, t ̸|= M . An interpretation M is a
model of a rule if it satisfies every possible grounding of the rule, and a model of a
program, if it satisfies every rule in the program and the program has a stratification.
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Is it easy to observe that in the presence of punctual intervals, the semantics of
♢− and ⊟ coalesces and either operator can be adopted interchangeably. Towards
understandability, our preference is to use both, and let the choice be guided by the
conceptual meaning of the operator from case to case, which may either refer to a
continuous validity (⊟) or to an eventual one (♢−).

A program Π and a database D entail a fact P (a)@ϱ ((Π, D) |= P (a)@ϱ) if
M |= P (a)@ϱ for each model of both Π and D. In operational and informal terms,
we will refer to the execution (or run) of a program Π with a database D as the
process of augmenting D by adding to it all the facts entailed by Π and D. To do
so, reasoning systems typically adopt chase procedures [20].

2.2 Temporal Vadalog System

Vadalog is a Datalog-based engine for performing complex logic reasoning tasks [21].
The system adopts the Vadalog language, an extension of the Warded Datalog± [22]
tractable fragment of the Datalog± [23] family of languages. In particular, it fea-
tures existential quantification, full recursion, aggregations, and other features of
practical utilities. A recent evolution of the system, the Temporal Vadalog System,
supports DatalogMTL, allowing full recursion and aggregation also in the temporal
context [15, 24].

2.3 Derivative Contracts

Derivatives represent a very relevant instrument in the financial world. The latest
figures by the Bank for International Settlements (BIS) report a total notional value
of all derivatives trades amounting to $600 trillion at the end of 2021 [25]. These
trades refer to either exchange markets, where standardized contracts are traded,
or over-the-counter markets (i.e., outside the market), where counterparts can agree
on their own terms or define new contracts.

Traditional futures are standardized contracts where parties agree to sell or buy
an asset at a specific price and date in the future. These terms are usually predefined
by exchange markets, which offer these instruments to their customers. However,
it is always possible to trade futures over-the-counter under the same or different
conditions. One way to do so can be through the use of smart contracts, computer
programs consisting in a set of rules which are run on a blockchain [26]. Smart
contracts are widely used in the crypto world for a variety of purposes, such as for
writing derivatives whose underlying is a crypto asset (mostly cryptocurrencies, such
as Ether or Bitcoin). These kinds of derivatives are called Smart Derivative Con-
tracts and are attracting the interest of the financial industry, which is exploring the
possibility of applying this technology also in traditional derivatives like futures [27].
In the rest of the paper, we will focus on a “future-like” derivative contract (i.e., a
perpetual future) written in the form of a smart contract in Solidity, the scripting
language of the Ethereum ecosystem [28].

Futures, Perpetuals and Spot Market. Choosing a derivative instead of a spot
market (i.e., directly buying an asset like Ether) and, in particular, a perpetual fu-
ture, allows speculating on the future price of a given asset by buying (“going long”)
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or selling (“going short”) those contracts. Leverage is the most common reason why
traders are attracted to futures: it works as a so-called capital multiplier, which
implies that to take a position, the entire sum of money need not be provided, but
a fraction of it is sufficient. The difference between perpetual and typical futures
is that the latter have an expiration date, while the perpetual ones do not expire
until the trader closes her position. Consequently, there are no daily settlement
events (i.e., daily computation and settling of returns until the expiration date)
that ensure convergence between future price and underlying asset. Perpetual fu-
tures have instead a funding rate mechanism, which incentivizes the market skew to
remain balanced (equal long/short open interest), ensuring convergence on a regular
basis [29].

Related Work. The idea of using DatalogMTL to encode generic smart contracts
has been recently suggested [30]. We position ourselves in that line. We move a
step forward and look into a real-world smart contract in the financial field. To
the best of our knowledge, with this work, we offer for the first time an executable
declarative implementation of a real smart derivative.

The interest in smart derivative contracts does not limit to the stakeholders
wishing to offer a new way of conducting trading. Big financial groups, banks, and
clearing houses are also bound to benefit from smart derivatives as well, as reflected
in the different ongoing research tracks. Some of them focus on the automation
of the risk management activities related to derivatives, such as the timely adjust-
ment of the collateral to fulfill margin requirements [27]. Interesting debates on
which parts of a derivative contract should be automated are ongoing [31]. A clear
advantage of full automation is the reduced time and resources spent for fulfilling
regulatory report obligations [5], with benefits for all actors involved, from interme-
diaries to authorities. This is especially true when automation meets flexible tools
and technology that can be effectively integrated with AI-based solutions [32].

Looking further, related research tracks are those pursuing the legal aspects of
implementing derivatives in a blockchain technology, which could deeply affect the
work in this area [33].

3 Case study: ETH-PERP in DatalogMTL

Kwenta [34] is a decentralized derivatives trading platform, deployed in a blockchain,
which offers access to real-world synthetic assets. In particular, Kwenta allows
traders to get exposure to a decentralized future market of cryptocurrencies, espe-
cially the Ether one. The main product the Kwenta platform offers is the ETH-
PERP smart contract, which is a perpetual future on the Ether cryptocurrency de-
ployed in the Optimism Mainnet [35] (i.e., one of the Ethereum blockchains) under
a Solidity encoding. In particular, the original implementation in Solidity involves
over 3k lines of code [36].

As discussed in specialized forums, a Solidity-based implementation of a smart
contract—and similarly for any other major language used in the crypto world—
does not allow a common understanding for all the parties involved: a contract
should in fact “provide natural language terms that are already used and understood
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in the real world, with the aim of easing human reasoning” [9]. In this work, we
want to leverage the clarity, understandability, modularity, simplicity, and shared-
semantics characteristics of a declarative database language like Datalog to address
this issue. In particular, we look at DatalogMTL to open up a new way forward
for the encoding of derivative smart contracts, using the ETH-PERP as a use case
that we claim to be representative of the complex time-dependent business logic
governing these kind of contracts.

The ETH-PERP market. Kwenta launched the ETH-PERP smart contract in
March ’22 and, as of November ’22, it has attracted the interest of a large community,
with 27k unique traders, who have performed around 100k trades for a total volume
of 3.4$ billions. The market is continuously growing, with many new traders joining
in, especially since September ’22 [37].

3.1 The DatalogMTL Program for ETH-PERP

We first lay out the domain constraints related to our specific case—perpetual fu-
tures on Synthetix, the protocol Kwenta is based on—and then illustrate our imple-
mentation strategy.

Domain Constraints. A position on the Kwenta smart contract may be long or
short. If its sign is positive, the position is considered long and it increases in value
as the price of the underlying asset rises. If it is negative, the position is called short
and its value increases as the underlying asset loses value. The Kwenta protocol
requires that all trades are opened against a so-called pooling counterparty (i.e.,
the smart contract itself) and that a specific account cannot open more than one
position at once (but an existing one can be modified). The price of the ETH-PERP
is obtained from an external oracle, as usual in smart contracts.

Implementation Strategy. We implement ETH-PERP as a DatalogMTL pro-
gram Π. We adopt a memory-resident execution model, in which the program runs
in a Vadalog process that continuously takes as input the actions that the users
(=traders) send to the smart contract, namely methods, and updates multiple state
amounts as a consequence, such as users’ positions, margins as well as the overall
market along with its metrics. This simulates the usual functioning of a smart con-
tract, which basically operates as a stateful system. More in detail, the state of Π is
represented by a database D of temporal facts, where the user inserts the input facts
to call the methods. Method calls are encoded by relational facts of the predicates
representing the method. As a result of its execution (see Section 2), Π augments
D by adding the entailed facts, which represent state updates.

Notice that, importantly, the adoption of DatalogMTL allows an entirely mono-
tone reasoning process, in which neither deletions nor updates of facts in D are
needed: as they are temporally annotated, insertions are sufficient to model the
state evolution.

Example 3.1. For example, let us assume that D currently contains the fact
margin(123abc,97$)@2022-11-09, which specifies the margin in dollars for the ac-
count 123abc as of yesterday, 2022-11-09. Today, the user owning that account calls
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the method tranM by adding the following fact to D: tranM(123abc, 3$)@2022-
11-10. It represents an order of deposit of 3 dollars on the account 123abc. The
program applies its internal business logic and updates the current status by adding
the fact margin(123abc,100$)@2022-11-10 to D, to mean that the margin of the
account 123abc has risen to 100$ as of today.

Overview of the DatalogMTL Program. We organized the DatalogMTL pro-
grams into the following different modules:

• MARGIN. Opening a position in the ETH-PERP smart contract requires a margin
account. In other words, before entering the market, each user should have some
funds transferred into a sort of investing account, which we call margin. Only after
this action, a position, either long or short, can be opened. This module captures
the logic to handle margin (Section 3.3).

• POSITION. Whenever a trader sends an order, she is changing her position size.
We want to track in each time point the state of the system and execute orders.
All of this is possible through the use of an order-book (Section 3.4).

• RETURNS. When closing a position, the returns derived from the trading activity
are computed (Section 3.5).

• F-RATE. The funding rate is a balancing incentive for the two sides of the market
and replaces the daily settlement mechanism of traditional futures. According to
this mechanism, positions on the heavier side of the market are charged a funding
rate, while positions on the lighter side receive funding. The side depends on the
skew of the market: if the skew is positive (i.e., the sum of the long positions
is greater than the sum of the short ones), the heavier side will be the long one
and they will be charged funding, while accounts in a short position will receive
funding. We operationally define the individual funding as the one computed with
an instantaneous funding rate charged over time against the notional value of each
position, and paid into or out of its margin. This means that funding accrues
continuously until the trader closes its position (Section 3.6).

• FEES. Each interaction with the smart contract is subject to a fee. This is gener-
ally in line with all financial transactions, although in DeFI the purpose of fees is
different, as they are charged for the prevention of spam actions and for the main-
tenance of the blockchain infrastructure [38], instead of being a remuneration for
the intermediation role. This is also true within the ETH-PERP smart contract,
in which two kinds of fees are charged: a taker fee rate, ϕt, and a maker fee rate,
ϕm (Section 3.7).

Before delving into the modules, we start in Section 3.2 by showing the predicates
capturing methods and state amounts.

3.2 Input Methods and State Amounts

A trader who wants to interact with the ETH-PERP smart contract and open a
position will use the following methods:
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Figure 1: Simplified dependency graph of our DatalogMTL program. Arrows denote
rule application.

• Transfer Margin. A call to this method, encoded as a fact of the form tranM(A,
M)@t, is an order of transferring some funds (M) into the smart contract issued
by user A at time t. For example, tranM(123abc,20$)@2022-11-03 is an order to
deposit 20$ at time 2022-11-03 into the account with ID 123abc.

• Withdraw Margin. A withdrawal order at time t, withdraw(A)@t, indicates that
the account is being closed and all available funds are withdrawn. For example,
the fact withdraw(123abc)@2022-11-13 implies the shutdown of account 123abc.

• Modify Position. A fact modPos(A, S)@t entails that an account A is opening a
new position (either long or short depending on the sign) or modifying an existing
one by S units. For example, with the atom modPos(123abc, 0.5)@2022-11-06 we
mean an order of opening a long position of size 0.5 for 123abc.

• Close Position. A fact closePos(A)@t is an order by user A to close its po-
sition implies the computation of returns, funding, and fees. For example,
closePos(123abc)@2022-11-16 is an order by the trader to close its previously
opened position at 2022-11-16.

Moreover, we use facts price(P)@t to track the ETH-PERP price.

The program encodes the following state amounts.

• Margin. Facts margin(A,M)@t track an open margin account over time, up-
dating M in case of later events, such as deposits. For example, the fact
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margin(123abc,75$)@2022-11-08 means that the margin account 123abc is open
and it amounts to 75$.

• Position. The position(A,S,N)@t facts follow the evolution of each user’s position.
For example, the fact position(123abc, -0.14, -68$)@2022-10-16 implies that the
account 123abc has a short position and that its notional value is −68$.

• Skew of the market. We use facts skew(K)@t to track the updates of the market.
For example, if D contains skew(354.8)@2022-10-03, it means that on that day the
skewness is positive.

We now have all the ingredients to describe the rules of the modules, in the next
sections. Figure 1 summarizes the main dependencies between the predicates of our
DatalogMTL program. We finally provide some further discussion in Section 3.8.

3.3 Margin Management (MARGIN)

The following rules of theMARGIN module model the first time an account is opened
as well as the later deposits.

tranM (A,M) → isOpen(A) (1)

⊟isOpen(A),¬withdraw(A) → isOpen(A) (2)

tranM (A,M),¬⊟ isOpen(A) → margin(A,M) (3)

withdraw(A) → changeM (A) (4)

tranM (A,M) → changeM (A) (5)

closePos(A) → changeM (A) (6)

♢−margin(A,M),¬changeM (A) → margin(A,M) (7)

⊟isOpen(A),♢−margin(A,X), tranM (A, Y ),

M = X + Y → margin(A,M) (8)

♢−margin(A,X),PNL(A,PL), finalFee(A,C),

funding(A, IF ),M = X + PL− C + IF → margin(A,M) (9)

Rules 1 and 2 define the predicate isOpen that holds when the margin for user A
is first opened. It is then recursively propagated over time until there is a withdraw
method call, which may close the account. Rule 2 shows a pattern of non-trivial
but elegant and light joint use of recursion and temporal operators, which will be
extensively adopted in our implementation: the idea is shifting the validity interval
of facts binding to the body atom with the temporal operator (in this case facts for
isOpen, holding at t− 1 as specified by the ⊟ operator) by generating a new fact of
the same atom that holds as of t. The recursion makes this propagation progress,
until the body applies, which in this case is controlled by the ¬withdraw condition.

The atom isOpen is instrumental in understanding if a tranM call is a first-time
deposit or a later one. In fact, rule 3 activates only when the margin account is
being opened, initializing it with the to M . Rules 4, 5 and 6 specify alternative
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conditions indicating a margin update. Rule 4 stops the temporal propagation of
the margin when a withdrawal happens. Rule 5 accounts for additional deposits
or partial withdrawals. Rule 6 together with rule 9 adds or subtracts returns,
funding, and fees to the margin derived from the participation in the market. These
rules interact with many predicates that will be defined in later modules. Rule 7
recursively propagates the margin over time when no changing event is occurring.
Rule 8 deals with later deposits and updates the margin accordingly, activating in
combination with rule 5. We have already seen some of these rules in action in
Example 3.1.

3.4 Order-book and Positions (POSITION)

The ORDER module comprises the rules governing the order-book and the tracking
of each position over time:

tranM (A,M),¬⊟ isOpen(A), S = 0, N = 0 → position(A, S,N) (10)

modPos(A, S) → order(A, S) (11)

closePos(A), S = 0 → order(A, S) (12)

♢−position(A, S,N),¬order(A, ), isOpen(A) → position(A, S,N) (13)

♢−position(A, Y, Z), price(P ),modPos(A,X),

S = X + Y,N = Z +X ∗ P → position(A, S,N) (14)

closePos(A), S = 0, N = 0 → position(A, S,N) (15)

Rule 10 initializes the position of account A as soon as the margin account has been
opened. S is the size of the position; the notional value N is the corresponding value
in USD, allowing the computation of returns from the trading activity. Rules 11 and
12 collect into a single predicate all the orders from the counterparts (i.e., the order-
book): in case of a modPos call, the position will be modified by S units while, when
a closePos order is sent, the order-book will register a reset of the position. Rule 13
activates in all time points when there are no orders and so shifts existing positions
over time until the margin account is closed. Rule 14 deals with the modification of
the position size and updates both S and N . Rule 15 closes a position, resetting S
and N .

Example 3.2. Let us suppose a user sends a tranM(123abc, 60$@2022-11-10
order, a modPos(123abc, 0.4)@2022-11-12 order, and that D does not contain
a isOpen(123abc)@2022-11-10 fact, which means, from the previous block, that
the margin has not been opened yet. The first order generates the atoms posi-
tion(123abc, 0, 0$)@2022-11-10 and position(123abc, 0, 0$)@2022-11-11, while the
latter adds position(123abc, 0.4,28$)@2022-11-12 to D, with 28$ being the notional
value (computed using the price) of a position of size 0.4.

3.5 Profits and Losses (RETURNS)

Let q be the position size measured in units of the base asset (i.e., ETH), and let
pt be the price of the asset (i.e., the ETH-PERP contract) at time t. The notional
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value vt can be computed as vt = qpt. In other words, vt is the (signed) dollar value
of the base currency units on a position. Long positions will have positive notional,
shorts will have negative notional. Using the subscript e to define the entry time
point, the profit or loss of a position at time t can be defined as rt = vt − ve.

Hence, the computation of returns (PNL) from the trading activity can be defined
by a single rule:

closePos(A),⊟position(A, S,N), price(P ), PL = S ∗ P −N → PNL(A,PL) (16)

Rule 16 activates when the settlement takes place (i.e., a closePos call) and
computes the returns as a difference between the current notional value and the
starting one.

Example 3.3. Let us suppose that D contains the facts position(123abc,
0.7, 39$)@2022-10-06, price(47$)@[2022-10-07] and closePos(123abc)@2022-10-07.
Rule 16 adds the atom PNL(123abc,-6.1$)@2022-10-07 to D, computing the loss
generated by the trade.

3.6 The Funding Rate Mechanism (F-RATE)

Before formally explaining the mechanism, we introduce in Figure 2 some market
metrics that will ease understanding.

Metric Formula

Market Size Q =
∑

c∈C |qc|
Market Skew K =

∑
c∈C qc

Max Funding Rate imax = 0.1

Max Proportional Skew Wmax = 300000000
pt

Istantaneous Funding Rate it = clamp(−Kt−1

Wmax
,−1, 1) imax

86400

Figure 2: Market metrics.

The function clamp restricts the first term to be in the range (−1, 1) and 86400
are the epochs in seconds that make up 1 day. The funding rate i can be either
positive or negative, depending on the skew of the market, and it changes whenever
someone interacts with the smart contract. When i is positive, it means that “longs
pay shorts”, while when it is negative “shorts pay longs”. The funding flow per base
unit at time t is then f(t) = itpt.

As funding accrues continuously, the individual (cumulative) funding to be paid
to a position opened at ti and closed at tj is:

IF q = q

∫ tj

ti

f(t)dt = q[F (tj)− F (ti)] (a)
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with j > i. The funding flow between ti, tj can be easily computed with a summation
of smaller intervals, such that in each of them the skew and the price are constant.
We can rewrite: ∫ tj

ti

f(t)dt =
∑
k∈K

itkptk(tk − tk−m) (b)

where K is the set of time points k ∈ [i, j] corresponding to interactions with the
smart contract; m is the difference between two consecutive k values. To simplify
the computation of the individual funding, ETH-PERP lets the cumulative funding
flow be updated only when the skew changes. The base asset price can in fact change
between two events, but any inaccuracy induced as a result of this assumption can
be neglected [39]. Therefore, the accumulated funding per base unit can be simply
seen and computed as a finite time series, namely, the funding rate sequence (FRS),

which is the set of F (tk) =
∑k

n itnptn(tn − tn−m) since the market started, and
is updated any time someone interacts with the contract. Individual funding will
be then computed by accessing the correct epochs of the time series and settled
whenever a position is closed. Let us see how individual funding can be computed
with the next examples.

Example 3.4. Let us assume that the market opened at t0 and that the account A
opens a position qa at t1 and closes it at t4. Now, B interacts with the contract at t2:
the funding rate sequence will be consequently updated at t1, t2, and t4, generating
F (t1), F (t2) and F (t4), respectively. The first value F (t1) will be computed as
F (t1) = it1pt1(t1 − t0). The second value of the funding rate sequence is F (t2) =
F (t1) + it2pt2(t2 − t1) and the third one is F (t4) = F (t2) + it4pt4(t4 − t2). Therefore,
computing the individual funding accrued by account A can be easily done as IFA =
qa[F (t4)− F (t1)].

Example 3.5. Let us consider again Example 3.4 and suppose that position qa has
been modified at t3 by s units and closed at t4. In this case the total individual
funding accrued is computed as IFA = qa[F (t3)− F (t1)] + (qa + s)[F (t4)− F (t3)].

We are now ready to focus on encoding the computation of the set of F (tk)
(i.e., the funding rate sequence). This is the main object needed for computing
any individual funding. The rules in the first subset (rules 17 to 20) aggregate in
one unique predicate all the interactions that took place with the smart contract,
regardless of the user.

tranM (A,M), S = 0 → event(sum(S)) (17)

withdraw(A), S = 0 → event(sum(S)) (18)

modPos(A, S) → event(sum(S)) (19)

closePos(A),⊟position(A, S,N) → event(sum(−S)) (20)

These events define all the time points when the funding rate sequence is going to
be updated. In addition, they enable the update of the market skew. Rules 17
and 18 refer to interactions with the smart contract related to margin updates and,
therefore, they are not influencing the market skew (i.e., the skew is modified by
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S = 0). Rule 19 collects all the modified position events, which exactly updates
the skew by S units. Conversely, a close position order does not include the size
S: the system has to derive this value from the position atom it has computed at
the previous epoch, changing its sign (rule 20). In case multiple events occur at the
same time point, a temporal sum, aggregating all values of S of all accounts A and
grouping by t, is applied. Aggregations appear in multiple logical contexts and the
need for a careful definition of their semantics (procedural and model-based) arose
in all of them. In this work, we adopt a simple stratified semantics [40], which is
enough for our purposes. Such semantics easily extends to the temporal context, and
temporal aggregations have been recently introduced in DatalogMTL [24] and are
supported by the Vadalog system. The second subset of rules, 21 and 22, updates
the market skew and is defined as follows:

♢−skew(K),¬event( ), isOpen( ) → skew(K) (21)

♢−skew(X), event(S), K = X + S → skew(K) (22)

The predicate skew(K)@t is initialized at the start of the market with K = 0
(or with the value K at the start of the interval under analysis). Rules 21 and
22 check whether an event took place at each time point and update the skew K
accordingly. With K and the price available, the only missing element needed for
the update of the funding rate sequence is the time difference in seconds between
two consecutive events, (tj − ti). A simple way to obtain it is by subtracting Unix
timestamps. The Unix timestamp is the number of seconds that have elapsed since
January 1, 1970, and it is an alternative way to represent time through integers. In
the Vadalog implementation of DatalogMTL, we will adopt a unix(t) cast operator
for conversions.

start@t → Tdiff (unix (t), unix (t)) (23)

♢−Tdiff (T1, T2),¬event( ), isOpen( ) → Tdiff (T1, T2) (24)

♢−Tdiff (T1, T2), event(S)@t → Tdiff (T2, unix (t)) (25)

Tdiff (T1, T2), event(S) → Diff (T2− T1) (26)

Rule 23 initializes the predicate Tdiff (T1, T2) from a fact binding to start@t
that denotes the market starting point (or, as for the skew, the starting point of the
interval under analysis). The two arguments of Tdiff denote the lower and upper
bounds of an interval, respectively. Observe that in this rule we are “promoting” a
temporal annotation to a ground value in the head, which is beyond the possibilities
offered by DatalogMTL theoretical fragment, but supported by Vadalog for practical
purposes. Rule 24 shifts the facts for Tdiff over time in case no interaction with
the contract takes place and the market is open. When an interaction takes place,
rule 25 activates and updates the interval bounds: the lower bound will now be the
time point of the previous event, while the upper bound will be the time point of the
current event. Finally, rule 26 computes the interval length since the last interaction
and filters only the facts related to events.

The final subset of rules defines the unrecorded funds and appends the new F
value to the sequence. The accrued funding sequence is initialized with the predicate
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FRS(F )@t where F = 0 when the market started. Each time an interaction occurs,
the accrued funding (i.e., the last element of the summation) is computed and added
to F . This requires the computation of the istantaneous funding rate, it. The
following rules formally describe these steps:

event(S),⊟skew(K), price(P ), I =
−K

Wmax

P → rate(I) (27)

rate(I), I > 1 → clampR(1) (28)

rate(I), I < −1 → clampR(−1) (29)

rate(I),−1 < I < 1 → clampR(I) (30)

clampR(I), price(P ),Diff (T ), UF = I ∗ P ∗ T imax

86400
→ unrFund(UF ) (31)

♢−FRS (F ),¬unrFund( ), isOpen( ) → FRS (F ) (32)

♢−FRS (X), unrFund(UF ), F = X + UF → FRS (F ) (33)

Rule 27 computes the rate that has to be passed to the clamp function, as described
in Section 3.6 and implemented in rules 28 to 30. Rule 31 computes the unrecorded
funding UF generated since the last interaction, which we add to the last value of
the funding sequence, as done by rules 32 and 33.

Individual Funding. With the funding sequence available, the individual funding
is defined as follows:

⊟position(A, S,N),FRS (F ),modPos(A,C),

S = 0, AF = 0 → indF (A,F,AF ) (34)

♢−indF (A,F,AF ),¬order(A, ) → indF (A,F,AF ) (35)

♢−indF (A,F, PAF ),FRS (F ),modPos(A,C),

⊟position(A, S,N),AF = PAF + S(F − PAF ) → indF (A,F,AF ) (36)

♢−indF (A,PF,AF ), closePos(A),FRS (F ),

⊟position(A, S,N), IF = AF + S(F − PF ) → funding(A, IF ) (37)

Rule 34 initializes indF (A,F,AF )@t, which stores the individual funding AF for
account A and the corresponding F (t). Rule 35 shifts over time such facts in case
no order is sent. Rule 36 activates when there is a modPos(A, S)@t method call
and computes the intermediate individual funding AF . Rule 37 computes the final
individual funding IF after the closing of a trade, which we add to the margin
(Rule 9).

3.7 Exchange Fees (FEES)

The distinction between maker fee and taker fee is used as another mechanism to
reduce the skew of the market: a maker is someone that reduces the skew and will
be applied the lower fee rate. Conversely, a taker is someone that increases the
skew and will be charged a higher rate. So, when opening, modifying, or closing
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a position in t, different scenarios may apply, according to the order of submission
and the market conditions (i.e., the skew):

feet =


|∆qptϕt| if Kt > 0,∆q > 0

|∆qptϕm| if Kt < 0,∆q > 0

|∆qptϕm| if Kt > 0,∆q < 0

|∆qptϕt| if Kt < 0,∆q < 0

where ∆q is the increase (decrease) in the size of the position and Kt is the market
skew. In an opening position event, ∆q = q, while, in case of a close position event,
∆q = −q .

In order to encode in DatalogMTL rules, we first initialize a dedicated predicate
that stores the total fees for each account:

tranM (A,M),¬⊟ isOpen(A), C = 0 → fee(A,C) (38)

♢−fee(A,C),¬order(A, ), isOpen(A) → fee(A,C) (39)

In detail, rule 38 creates the fee predicate once an account is first created and
initializes it with C = 0, where C is the cumulative fees charged to account A.
Rule 39 recursively shifts over time the predicate fee, in case no event is triggered
by the owner of the account. In case an order is received, the following two chunks
of rules will compute the fees. First, we analyze the rules for a modPos event, then
we will focus on a closePos one.

modPos(A, S), price(P ),♢−fee(A,OldC), skew(K),

K > 0, S > 0, C = OldC + |SPϕm| → fee(A,C) (40)

modPos(A, S), price(P ),♢−fee(A,OldC), skew(K),

K < 0, S > 0, C = OldC + |SPϕt| → fee(A,C) (41)

modPos(A, S), price(P ),♢−fee(A,OldC), skew(K),

K > 0, S < 0, C = OldC + |SPϕt| → fee(A,C) (42)

modPos(A, S), price(P ),♢−fee(A,OldC), skew(K),

K < 0, S < 0, C = OldC + |SPϕm| → fee(A,C) (43)

We identify four possible cases depending on the order being long or short and on
the market skewness. Rules 40 and 41 compute the new exchange fees C when
the order is to increase (respectively, decrease) a position and the skew is positive
(negative). Rule 42 and 43 refer to the cases when the skew is negative, while the
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order is respectively long and short.

closePos(A),⊟position(A, S,N), skew(K), price(P ),

♢−fee(A,OldC), K > 0, S < 0, C = OldC + |SPϕm| → finalFee(A,C) (44)

closePos(A),⊟position(A, S,N), skew(K), price(P ),

♢−fee(A,OldC), K < 0, S < 0, C = OldC + |SPϕt| → finalFee(A,C) (45)

closePos(A),⊟position(A, S,N), skew(K), price(P ),

♢−fee(A,OldC), K > 0, S > 0, C = OldC + |SPϕt| → finalFee(A,C) (46)

closePos(A),⊟position(A, S,N), skew(K), price(P ),

♢−fee(A,OldC), K < 0, S > 0, C = OldC + |SPϕm| → finalFee(A,C) (47)

closePos(A), C = 0 → fee(A,C) (48)

Rules 44 to 47 are similar to the previous chunk but they deal with a closePos
event. However, as a first difference, here the size of the order, which is unknown,
is retrieved through the position predicate (i.e., the size S). The second difference
is that these rules store the final result, i.e., the final fees from a completed trade,
into a new predicate, finalFee. In fact, rule 48 generates “reset” fee facts, so as to
store the fees if A starts a new trade.

Example 3.6. Let us assume that D contains skew(1342.2)@2022-11-19 and
price(1200$)@2022-11-19, without any open position (which means D contains po-
sition(123abc, 0, 0$)@2022-11-18 and fee(123abc,0)@2022-11-18 ). Let us consider
an order to open a position, modPos(123abc, 0.02)@2022-11-19. As the skew is
positive and the order is long, the fees are computed through rule 40, generating
the fact fee(123abc,0.084)@2022-11-19 (with ϕm = 0.0035).

3.8 Discussion

To conclude the illustration of our solution, we provide some final remarks about
termination and negation.

Termination. We argue that our DatalogMTL program for ETH-PERP eventually
terminates. Datalog programs always terminate also in the presence of recursion, by
the finiteness of symbols in D [41]. However, since we adopt algebraic operations,
more care is needed as their joint use is a well-known cause of non-termination,
e.g., for infinite increments. Yet, this joint use is not present in our program, where
algebraic operators are confined within recursive temporal rules that produce facts
with shifted validity intervals (e.g., rules 8, 9, etc.), in fact, breaking recursion.

With this premise, the only remaining cause of non-termination in DatalogMTL
is the creation of infinitely many facts with increasing temporal validity, which may
be the case, for instance, of our temporal recursive rules 2, 7, and so on. Our
working assumption here is that, eventually, the market will be closed and all the
margins withdrawn. By construction, this implies that none of the bodies of the
temporal recursive rules will activate any longer, in fact preventing non-termination.
In simpler words, our program runs indefinitely but shuts down gracefully.
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Negation. A final informal remark about the use of negation is required. By con-
struction, the dependency graph of our program (the one where nodes are atoms are
edges denote rule-induced dependencies) does not contain cycles involving negative
edges (those generated by rules having negations in the body). This condition is
enough to witness that the program has a stratification [41] and therefore a consis-
tent use of negation.

4 Experimental Settings in Vadalog

We evaluated our approach by executing the DatalogMTL program in the Vadalog
reasoner. The primary goal of our experimental setting is validating the correctness
of the approach by letting ETH-PERP “live and evolve” in Vadalog throughout
three 2-hours intervals having different initial conditions and comparing the results
of the trades with the real ones on the blockchain. As a secondary goal, we also want
to verify good performance characteristics to confirm the possibility of realistically
executing the smart contract in a reasoning system like Vadalog.1

HW and SW Configuration. We ran all the experiments on a Windows 11
machine with AMD Ryzen 5 5500U and 8 GB 3200 MHz DDR4 memory. Vadalog
has been compiled with JDK 17.0.4.

In Section 4.1 we describe the datasets we use as input and for validation. In
Section 4.2 we present the experimental results.

4.1 Input and Validation Datasets

Input Dataset. In order to let our implementation of ETH-PERP realistically live
and evolve in Vadalog in the given intervals, we stimulated it with the real actions
performed by the users. We retrieved such actions from Optimism Mainnet [35], and
mapped them into method calls, i.e., by generating the corresponding DatalogMTL
facts (tranM, modPos, closePos, and withdraw).

Validation Dataset. To validate the results of our execution, we compared the
funding rate sequence (i.e., the set of F (t)) and the results of the single trades (i.e.,
PNL, fee, and funding) with the corresponding values from the blockchain. More
precisely, we obtained the real values by querying the Mainnet Subgraph [42], which
is a decentralized protocol for querying blockchain data and extract measures that
would be hard to obtain otherwise.

In Figure 3 we describe the input data and the analysed intervals. The number of
events represents the total number of interactions with the contract that occurred
during the time window. The fourth column shows how many trades have been
completed during the corresponding interval. In the Skew column, there is the skew
at the beginning of the interval.

1The full DatalogMTL program and all the used datasets are online: http://bitly.ws/xhGq.
Vadalog can be made available by the authors upon request.
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Date Interval (GMT) # events # trades Skew
2022-09-27 10.30 - 12.30 267 59 -2445.98
2022-10-07 18.00 - 20.00 108 16 1302.88
2022-10-12 14.00 - 16.00 128 29 2502.85

Figure 3: Input data.

4.2 Experimental Results

The analysis of the funding rate sequence computation is shown in Figure 4: the
Vadalog program reproduces the evolution of the real FRS with differences in the
order of 1e−12, so with perfect accuracy. Moreover, since FSR is a cumulative series,
this might result in an error trend, which however keeps insignificant.

Figure 4: Comparison between the Subgraph FRS and the DatalogMTL FRS. In
the third column we show the difference.

Besides validating the overall correspondence of our run with the real market,
we also compared individual trades. To this end, we computed some summary
statistics on the errors between values computed by the Vadalog program and the
ones available in the Subgraph. As Figure 5 shows, for all the analyzed intervals,
the DatalogMTL program returns the same results exhibiting minimal errors. This
means that not only does our system simulate the market, but reacts to any user
interaction exactly like the Kwenta ETH-PERP. It is finally worth remarking that
this behavior is achieved through the use of temporal operators, which manage to
easily handle and track changes in each time point, continuously adding temporal
facts which are always up-to-date and allow the computation of all metrics.

Performance. We point out that the main ambition of this work is not high perfor-
mance, but explainability, understandability and all the other forces of a declarative
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Returns Fee Funding

Mean 3.545513e-15 -9.093255e-17 -4.789471e-15
Std. Dev. 5.574446e-14 3.767407e-16 1.200630e-13

Figure 5: Mean and standard deviation of errors between metrics computed with
Vadalog and the Subgraph data.

approach, as we have discussed. Nevertheless, to plausibly confirm a prospective
execution of a smart contract in a reasoning environment, we verified that the com-
putation for the three intervals under analysis took 1140, 540, and 420 seconds re-
spectively. Hence, in all cases, the runtime is much smaller than the corresponding
interval, confirming the possibility to roll out the solution.

5 Conclusion

In this work we kept walking the thin line between database theory and industrial
practice, putting recent temporal extensions of the famous Datalog language for
databases into action to provide a fully declarative implementation of a real smart
derivative.

Paradigms that sustain understandability, transparency, and ease of communica-
tion are of relevance for a Central Bank and for financial authorities. Furthermore,
we believe that the application in complex financial areas of knowledge represen-
tation and reasoning formalisms conceived in the academic space encourages once
more to look at these languages and the uprising reasoning systems as professional
tools for core industrial settings.

In our case, given the complexity of the financial instrument at hand, we be-
lieve our contribution can be easily replicated or adapted for other derivatives and
represents a step towards a declarative paradigm for smart derivatives (and smart
contracts in general), which are too often obscure or anyway hard to understand,
communicate, analyze, and simulate. Looking further, extensions to our program
could be adopted by private market players for internal risk management activities,
for instance, to be able to swiftly react to the evolution of each margin account over
time, or for automatically reporting up-to-date data to authorities, like the size of
the position at each time point.

As a final consideration, it could be stimulating to debate whether a blockchain
deployment of a DatalogMTL—or anyway logic-based / fully declarative / seman-
tically unambiguous—program is at the forefront of interest for the community and
we do believe this paper could help spur such discussion. In the positive case, fur-
ther hard challenges, which we considered out of scope for this paper (e.g., which
blockchains, which consensus protocols; how to distribute computation at best be-
tween logical nodes), will naturally arise and interest the database community.
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