
Mercati, infrastrutture, sistemi di pagamento

(Markets, Infrastructures, Payment Systems)

Ju
ly

 2
02

2

Integrating DLTs with market infrastructures:
analysis and proof-of-concept for secure DvP
between TIPS and DLT platforms

by Rosario La Rocca, Riccardo Mancini, Marco Benedetti,
Matteo Caruso, Stefano Cossu, Giuseppe Galano, Simone Mancini,
Gabriele Marcelli, Piero Martella, Matteo Nardelli and Ciro Oliviero

N
um

be
r 26

Number 26 – July 2022

Mercati, infrastrutture, sistemi di pagamento
(Markets, Infrastructures, Payment Systems)

Approfondimenti
(Research Papers)

Integrating DLTs with market infrastructures:
analysis and proof-of-concept for secure DvP
between TIPS and DLT platforms

by Rosario La Rocca, Riccardo Mancini, Marco Benedetti,
Matteo Caruso, Stefano Cossu, Giuseppe Galano, Simone Mancini,
Gabriele Marcelli, Piero Martella, Matteo Nardelli and Ciro Oliviero

The papers published in the ‘Markets, Infrastructures, Payment Systems’ series provide
information and analysis on aspects regarding the institutional duties of the Bank of
Italy in relation to the monitoring of financial markets and payment systems and the
development and management of the corresponding infrastructures in order to foster
a better understanding of these issues and stimulate discussion among institutions,
economic actors and citizens.

The views expressed in the papers are those of the authors and do not necessarily reflect
those of the Bank of Italy.

The series is available online at www.bancaditalia.it.

Printed copies can be requested from the Paolo Baffi Library:
richieste.pubblicazioni@bancaditalia.it.

Editorial Board: Stefano Siviero, Livio Tornetta, Giuseppe Zingrillo, Guerino Ardizzi,
Paolo Libri, Cristina Mastropasqua, Onofrio Panzarino, Tiziana Pietraforte, Antonio
Sparacino.

Secretariat: Alessandra Rollo.

ISSN 2724-6418 (online)
ISSN 2724-640X (print)

Banca d’Italia
Via Nazionale, 91 - 00184 Rome - Italy
+39 06 47921

Designed and printing by the Printing and Publishing Division of the Bank of Italy

http://www.bancaditalia.it
mailto:richieste.pubblicazioni@bancaditalia.it

IntegratIng DLts wIth market Infrastructures:
anaLysIs anD proof-of-concept for secure DVP

between TIPS anD DLT pLatforms

by Rosario La Rocca*, Riccardo Mancini**, Marco Benedetti*, Matteo Caruso*, Stefano Cossu*,
Giuseppe Galano*, Simone Mancini*, Gabriele Marcelli*, Piero Martella*, Matteo Nardelli*

and Ciro Oliviero**

Abstract

The rise of a market for digital assets, both natively digital (e.g., non-fungible tokens, utility tokens)
and those representing non-digital resources (e.g., security tokens, stablecoins, e-money tokens), is
closely linked with the growing diffusion of distributed ledger technologies (DLT) platforms among
investors. The increasing volume of transactions involving digital assets makes it worthwhile to
investigate how central bank money can contribute to make the settlement safer and more efficient.
While this is not strictly needed at the current juncture, central banks should arguably prepare to
ensure that they can keep central bank money at the core of the settlement process of financially
relevant assets. This requires the identification of possible solutions to increase interoperability
between currently independent infrastructures: those regulating the exchange of the digital assets
and those providing central bank money settlement services. A way to achieve this goal is to allow
these transactions to flow through the market infrastructures, where central bank money is safely
managed. This implies building a “bridge” between DLT platforms and market infrastructures.

This paper analyses several technical interoperability models and then describes the results of two
experimental activities, which evaluate two different solutions for synchronizing the asset-leg and
the cash-leg of a DvP (delivery versus payment) transaction. Both use the Target Instant Payment
Settlement (TIPS) platform to provide the settlement services of the cash leg. The first, named “TIPS
Hash-Link”, is a lightweight, API based and DLT agnostic protocol which enables a loosely coupled
integration of the market infrastructure with the majority of DLT platforms. Inspired by the Hash-Time
Locked Contracts (HTLC) protocol, TIPS Hash-Link has been specifically tailored to overcome some
failure scenarios commonly experienced with HTLC, leveraging TIPS as a trusted escrow for funds
and a smart contract to coordinate the DvP operations on the DLT in a safe and consistent manner.
The second one, named “TIPS-Algorand Just In Time Locking”, takes advantage of the features
offered by a specific DLT platform, Algorand. In particular, it leverages a native feature of the chosen
DLT that simplifies DvP transactions guaranteeing atomicity; as such, this approach needs the two
systems to be directly connected to interact with each other.

JEL Classification: E42.

Keywords: DvP, TIPS, DLT.

* Bank of Italy, Directorate General for Information Technology.

** Bank of Italy, Directorate General for Markets and Payment Systems.

Sintesi

La crescita di un mercato per asset digitali, sia nativi (ad es., non-fungible tokens, utility tokens) che
relativi a risorse non digitali (ad es., security tokens, stablecoins, e-money tokens), è strettamente
legata alla crescente diffusione, tra gli investitori, delle piattaforme basate su Distributed Ledger
Technologies (DLT). L’aumento del volume delle transazioni che coinvolgono asset digitali rende
utile indagare come la moneta di banca centrale possa contribuire a renderne il regolamento più
sicuro ed efficiente. Sebbene ciò non sia strettamente necessario al momento attuale, le banche
centrali dovrebbero prepararsi a garantire di poter mantenere la moneta di banca centrale al
centro del processo di regolamento delle attività finanziariamente rilevanti. Questo richiede
l’identificazione di possibili soluzioni per accrescere l’interoperabilità tra infrastrutture attualmente
indipendenti: quelle che disciplinano lo scambio di asset digitali e quelle che forniscono servizi di
regolamento in moneta di banca centrale. Un modo per raggiungere questo obiettivo è permettere
a queste transazioni di fluire nelle infrastrutture dei mercati finanziari, dove la moneta di banca
centrale è gestita in modo sicuro. Questo implica la costruzione di un “ponte” tra le piattaforme
DLT e le infrastrutture dei mercati finanziari.

Questo articolo analizza diversi modelli di interoperabilità e descrive i risultati di due attività
di sperimentazione, le quali valutano due diverse soluzioni per sincronizzare la “gamba” titoli
(asset‑leg) e la “gamba” contante (cash‑leg) di una transazione di tipo DvP (Delivery versus Payment).
Entrambe utilizzano la piattaforma TARGET Instant Payment Settlement (TIPS) per fornire i servizi di
regolamento della “gamba” contante. La prima, chiamata “TIPS Hash‑Link”, è un protocollo leggero,
basato su API e indipendente dalla DLT che consente un’integrazione a basso accoppiamento
delle infrastrutture dei mercati finanziari con la maggior parte delle piattaforme DLT. Ispirato al
protocollo Hash‑Time Locked Contracts (HTLC), TIPS Hash-Link è stato specificamente progettato
per superare alcuni scenari di errore comunemente sperimentati con HTLC, sfruttando TIPS come
garante per i fondi e uno smart contract per coordinare le operazioni del DvP sulla DLT in modo
sicuro e consistente. La seconda soluzione, chiamata “TIPS‑Algorand Just In Time Locking”, utilizza
le funzionalità offerte dalla specifica piattaforma DLT utilizzata, Algorand. In particolare, sfrutta una
funzionalità nativa della DLT scelta che semplifica le transazioni del DvP garantendone l’atomicità;
in quanto tale, questo approccio richiede che i due sistemi siano direttamente collegati per interagire
tra loro.

CONTENTS

1. Introduction 7

1.1 Background and business context 7

1.2 Scope of the document 8

1.3 Related work 10

2. DvP Integration Models 11

2.1 A list of relevant dimensions of analysis 12

2.2 Orchestrated DvP with Asset-leg Locking 13

2.3 Orchestrated DvP with Cash-leg Locking 14

 2.3.1 Just In Time Locking of the cash-leg 14

 2.3.2 Tokenized Cash-leg Locking 16

2.4 API-based DvP with Hash-Time Locked Contract 17

2.5 API-based DvP with Hash-Link Contract 19

2.6 Summary of DvP models analysis 21

3. Experiment 22

3.1 Actors of a cross-ledger DvP 22

 3.1.1 The Target Instant Payment Settlement System (TIPS) 23

 3.1.2 The Algorand DLT 24

3.2 TIPS Hash-Link Contract DvP 25

 3.2.1 TIPS Gateway 25

 3.2.2 Algorand Hash-Link Contract (HLC) 27

3.3 TIPS-Algorand Just In Time Locking DvP 29

 3.3.1 TIPS-Algorand Orchestrator 29

 3.3.2 Algorand Atomic Transfer 30

4. Tests and Results 31

4.1 Test scenarios 32

4.2 Results 33

4.3 Discussion 34

5. Conclusions 35

6. References 37

Appendices 38

1 Introduction1

1.1 Background and business context
The growing diffusion of distributed ledger technologies platforms among investors is one of
the factors driving the rise of a market for digital assets. The transfer of ownership in securities
transactions is a complex process; it is typically broken down into three main phases:2 the trading
phase, when a deal is established, with a seller agreeing to sell and a buyer agreeing to pay for
a security; the clearing phase, when the trading parties arrange for the transfer of money and
securities, typically by means of a central clearing counterparty (CCP), which aggregates trades
and nets out transactions for the trading day; the settlement phase, when money and securities
are actually exchanged in a coordinated manner between the parties involved on a settlement
date. Typically, the settlement date is a couple of business days after the trade date. Exchange of
money involves the use of a payment system (PS)3 enabling transfers either in commercial bank or
central bank money.4 The usual recourse to clearing intermediaries is needed in order to minimize
the counterparty credit risk between parties to a transaction and is obtained by various means
(e.g., mutualization of risks among all CCP members, netting of transactions, deposit of collateral,
creditworthiness monitoring of member parties, guarantee funds, and so on). The complexity of
this process, and the number of intermediaries involved, make securities settlement often slow
and costly.

In this context, the appealing promise of streamlining this process—lowering costs and execu-
tion times while maintaining comparable low levels of risk—is one of the key factors for the growing
diffusion of distributed ledger technology (DLT) platforms (see the note on "DLTs, blockchains, and
smart contracts").

1 We would like to thank Algorand Labs, and specifically Adriano Di Luzio, Cosimo Bassi, Stefano De Angelis and Federico
Demicheli, for their valuable expertise and support in the experimental activities.

2 See ECB, 2022b.
3 A PS is used to settle financial transactions by transferring monetary value. PSs may be physical or electronic, each with its

own procedures and protocols. Standardization enabled inter-operability, allowing some of these systems and networks to
grow on a global scale. Nonetheless, there are still many country-specific or product-specific systems. A very high-level
definition is provided in this document, because a PS is primarily responsible for transferring money and settling the
so-called “cash-leg” of a Delivery-versus-Payment. The PS usually holds a ledger overseeing correct money transfer. This
ledger can be organized using a token-based or an account-based abstraction. A token-based system holds a list of either
spent or unspent tokens, representing money. An account-based system stores the balance for each customer correctly
registered within the PS. For more details about token-based and account-based PS characterization, albeit focused on a
central bank digital currency scenario, please refer to Urbinati et al., 2021.

4 Central bank money: Liabilities of a central bank, in the form of either banknotes or bank deposits held at a central bank,
which can be used for settlement purposes. Commercial bank money: Commercial bank liabilities that take the form of
deposits held at a commercial bank which can be used for settlement purposes. See ECB, 2010.

7

DLTs, blockchains and smart contracts

The umbrella term Distributed Ledger Technology (DLT) encompasses a technological infra-
structure together with its protocols allowing access, verification, and update of information
stored on a common, shared ledger spread across multiple locations and/or entities. Since
data is distributed, the so-called consensus protocols ensure the achievement of an agree-
ment on data updates to be committed on the ledger.
A blockchain is a class of DLTs where the information is organized in blocks linked together in
an orderly fashion. Each block is chained, in an append-only fashion, to its predecessor by
means of a cryptographic hash, up to the first block in the chain — which is usually referred
to as a genesis block.
While not strictly tied to, nor required by, the architectural style they represent, DLTs often
support some form of programmability using scripts or smart contracts. Smart contracts are
deterministic computer programs stored on the ledger that execute when predetermined
conditions are met (e.g., see IBM, 2022). Smart contracts are usually adopted to automate
the execution of agreements. Being available on a public ledger, they enable participants to
audit implementation and verify outcomes without requiring any intermediary involvement.
Smart contracts are also often used to create tokens representing assets like securities in
digital form.

The adoption of a shared ledger among parties involved in financial trades is seen as a tre-
mendous opportunity in terms of timely and secure information exchange, operating potentially
365/24/7. The usage of smart contracts enables the creation of complex financial instruments and
enshrines the business logic in a guaranteed immutable and easily auditable form, potentially
reducing recourse to intermediaries.

1.2 Scope of the document
This paper focuses on the aforementioned settlement phase, under the hypothesis that the financial
instruments reside on some sort of DLT platform5 as a tokenized asset6, and the payment is made
in central bank money. This relates to the Delivery-versus-Payment (DvP) in the case known in the
literature as cross-ledger DvP, where cash and securities reside on separate ledgers, respectively
the central bank payment infrastructures and DLT platforms (see the note on "Delivery-versus-
Payment").

5 This excludes explicitly all the assets currently managed in the Eurosystem Platform Target2-Securities (T2S).
6 The programming capabilities of (some of the) blockchains enable the creation of special tokens, which can represent special

assets - both fungible and non-fungible. Some examples of fungible tokens are stablecoins, security tokens, and utility tokens.
Analyzing the legal aspects related to the issuance of tokenized assets is out of the scope of this paper. From the technical
perspective, a prominent example of fungible tokens standard is represented by ERC-20, which forms the basis of other token-
related standards on the Ethereum blockchain (see for more details: https://ethereum.org/it/developers/docs/standards/
tokens/erc-20/); for security tokens, the former is often extended by ERC-1400 (see: https://polymath.network/erc-1400,
https://thesecuritytokenstandard.org/, and https://github.com/ethereum/EIPs/issues/1411). Non-fungible tokens (NFTs)
are a non-interchangeable unit of data stored on a blockchain, which can be sold and traded. NFTs can represent a digital
art-work or, in general, a digital file. Ownership of a token is associated with special rights to the related object. For example,
owning a NFT is often associated with a license to use the underlying digital asset. The de facto standard in NFT issuance on
the Ethereum blockchain is named ERC-721, and is representative of the vast majority of currently traded NFTs; see for more
details: https://ethereum.org/en/developers/docs/standards/tokens/erc-721/.

8

https://ethereum.org/it/developers/docs/standards/tokens/erc-20/
https://ethereum.org/it/developers/docs/standards/tokens/erc-20/
https://polymath.network/erc-1400
https://thesecuritytokenstandard.org/
https://github.com/ethereum/EIPs/issues/1411
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/

Delivery-versus-Payment

Delivery-versus-Payment (DvP) is a form of settlement for securities, which links a securities
transfer and a funds (cash) transfer in such a way that the delivery occurs if and only if the
corresponding payment occurs (ECB, 2022a). A correct settlement requires that the systems
perform operations with “all-or-nothing” semantic.
This concept is quite general as it essentially accounts for fulfilling an obligation to provide
some kind of good or service if an agreed payment is finalised. However, the term is used
specifically in the context of financial markets, where the good to be delivered is usually a
security in exchange for a corresponding payment.
The presence of multiple ledgers leads to two main categories whereby a DvP can be con-
ceptually and technically designed: in a single-ledger DvP, both cash and securities are on
the same ledger; in a cross-ledger DvP, cash and securities are on two separate ledgers.

The objective of the study has been to investigate how central bank money can contribute to
making the settlement of DvP trades in digital assets safer and more efficient, increasing interoper-
ability between the DLT platforms regulating the issuance and exchange of those assets and the
systems providing central bank money settlement services.

From a theoretical perspective, multiple possible interoperability and integration models for
DvP have been explored and a comparison framework has been defined, with the identification
of relevant dimensions of analysis - from both a business and a technological point of view. Each
solution has been analysed and classified; moreover, a comprehensive failure analysis—with an
approach somewhat remindful of Failure mode and effects analysis (FMEA)—has been put in place,
pinpointing for each solution potential failure scenarios and effects.

In this context, a novel DvP interoperability model has been proposed based on this study,
called "API-based DvP with Hash-Link Contract", which draws upon the well-known Hash Time
Locked Contracts (HTLC) approach and overcomes some limitations of the latter in terms of safety
of DvP transactions, which is paramount in defining an interoperability model with central bank
money settlement systems, while at the same time imposing minimum technical requirements
on the asset-managing DLT.7 To our knowledge, this model has not been introduced before in the
literature, either in the central banking community or in the wider academic community.

From the experimental perspective, two interoperability models have been selected and evalu-
ated. The first one, API-based DvP with Hash-Link Contract model, has been selected to represent
loosely-coupled solutions which do not require the operation of a node on the asset-managing DLT.
The second one, Orchestrated DvP with Just In time Locking of the Cash-leg, has been chosen to rep-
resent solutions which require tight-coupled integration, operating a node of the asset-managing
DLT. In both cases, the Target Instant Payment Settlement (TIPS) platform was used to provide
payment services for the cash leg; TIPS was selected from the Eurosystem infrastructures, for,
among other reasons, its 365/24/7 availability. Algorand was the DLT platform chosen among a
number of candidates to manage the asset leg due to its permissionless forkless nature, with a
deterministic consensus protocol, and low block finalization time.

The main goal of the experiment was to verify the feasibility of the proposed models, effectively
validating interoperability between a DLT and the Eurosystem Market Infrastructures in the DvP
use-case. Several test-cases, both functional and non-functional, have been executed to verify
the system response both in positive cases ("happy path") and in various failure scenarios. The
architecture of both solutions is presented in depth from a technological point of view, along with
comprehensive testing results.

7 The requirements on the DLT side are essentially limited to the support of some cryptographic hash functions, which are
widely implemented by the vast majority of DLTs and blockchains, being an essential component of their inner working.

9

The conclusion section summarizes the results and findings, highlighting the strengths and
weaknesses of the experimented solutions. In particular, it shows how the proposed implementa-
tion of a novel interoperability model—named "TIPS Hash-Link"—represents a viable solution in
terms of performance and exhibits desirable characteristics in terms of low-coupling with respect
to the specific asset-managing DLT.

1.3 Related work
Several central banks investigated the use of DLTs in securities settlement, in order to gain a better
understanding of the opportunities offered by this new technology. This section lists some advanced
research works that have involved the settlement of payments, securities, and the definition of
DvP models.

In March 2018, the European Central Bank and the Bank of Japan, in the context of the second
phase of the collaborative Project Stella, focused on securities DvP in a DLT environment (Project
Stella, 2018). Besides providing a clear definition of different DvP scenarios, the Stella report details
and analyzes the process flows of novel techniques for single-ledger DvP and cross-ledger DvP,
based on Hash Time Locked Contracts. The main findings include that DLTs offer a new approach
for achieving DvP between ledgers, which could give rise to additional challenges in terms of safety
and efficiency that would need to be addressed.

In October 2018, the Bank of Canada, in collaboration with Canadian financial institutions and
technological companies, published the results of the third phase of Project Jasper.8 The project
focused on a PoC for a DLT-based integrated securities infrastructure providing DvP settlement to
help re-imagine the payment exchange process of CDSX - Canada’s clearing and settlement system
for securities. Jasper Phase III successfully demonstrated that a DLT platform can be used for a
payment and securities settlement system.

In November 2018, the Monetary Authority of Singapore published the results of the third phase
of Project Ubin.9 Ubin was launched in 2016 to explore the use of Blockchain and DLT in the financial
system, and the third phase analysed the DvP capabilities for the settlement of tokenized assets
across different blockchain platforms. The project demonstrated that DvP settlement finality, inter-
ledger interoperability, and investor protection can be achieved through specific solutions designed
and built on blockchain technology. Albeit the project only provides a high-level description of the
different DvP models, noting the importance of an arbitrator for dispute resolution. Section 2 also
discusses its importance in guaranteeing the safety of different DvP models.

In December 2020, the BIS Innovation Hub, the Swiss National Bank and the financial infrastruc-
ture operator SIX announced the conclusion of the first phase of Project Helvetia. The experiments
demonstrated the functional feasibility and legal robustness of settling tokenized assets in two
different ways, by means of two different experiments. The first, with a wholesale Central Bank
Digital Currency (CBDC) and the second by linking a DLT platform to the existing central bank
payment system.10 A second phase, completed in 2022, focused specifically on wholesale CBDC.

In March 2021, Deutsche Börse, Deutsche Bundesbank and Germany’s Finance Agency published
the results of an experiment in which they developed and successfully tested a settlement interface
for electronic securities, working with a range of other market participants. Securities settlement
using DLT is performed with the aid of a “trigger” solution and a transaction coordinator in TARGET2,
the Eurosystem’s large-value payment system. In doing so, the participants demonstrated that it
is possible to establish a technological bridge between blockchain technology and conventional
payment systems to settle securities in central bank money with no need to create central bank

8 See Bank of Canada et al., 2018.
9 See MAS et al., 2018.
10 See BIS Innovation Hub et al., 2018.

10

digital currency.11

In December 2021, Banque de France, the BIS Innovation Hub Swiss Centre, the Swiss National
Bank and a private sector consortium announced Project Jura12, which explores the direct transfer
of Euro and Swiss Franc wholesale CBDCs on a single DLT platform operated by a third party.
Tokenized asset and digital currencies are successfully settled on a DLT using single-ledger DvP
mechanisms.

Our document specifically focuses on cross-ledger DvPs as identified in the Stella Phase 2 report.
Section 2 identifies four main models to achieve cross-ledger DvP, and analyses them in detail
across a number of different dimensions. The DvP models are also divided into two categories,
named orchestrated DvP models and API-based DvP models. Among API-based DvP models, this
document presents a novel solution that, besides being DLT agnostic, introduces the role of the
DvP oracle, a trusted entity which guarantees the DvP safety in case of disputes between Buyer
and Seller. For two of these models (the novel API-based and an orchestrated one), the analysis
is also complemented with practical experiment that involves the TIPS payment system and the
Algorand DLT (see Section 3). Similarly to other works, this paper also concludes that it is possible
to establish a technological bridge between a DLT and a conventional payment system for the
settlement of securities in central bank money. Furthermore, this paper shows that API-based DvP
models can be made DLT-agnostic with advantages in terms of the effort required to develop and
integrate them with multiple and heterogeneous DLTs. In contrast, the orchestrated DvP models
can rely on specific DLT capabilities to provide additional functionality (see Section 5).

2 DvP Integration Models

This section presents various models for cross-ledger DvP. Each model is assessed against a set of
relevant dimensions of analysis described in Section 2.1. Being cross-ledger DvP the scope of this
work, this document considers a scenario where the asset-leg of each DvP transaction is settled on
a Distributed Ledger Technology (DLT) on which the asset is issued, whereas its cash-leg is settled
on a Payment System (PS). For each DvP transaction, there are two involved counterparties, named
Buyer and Seller. Buyer and Seller have agreed to exchange a given amount of securities against
payment in cash. The exchange needs to take place within a given time, which has also been agreed
upon by the two counterparties and depends, among other factors, also on the latency of the PS
and DLT instances adopted. The details of how this trading agreement between the parties is carried
out is out of the scope of this work. This section instead focuses on how to achieve atomicity of
the cash payment on the PS and delivery of securities on the DLT. It is assumed that both Buyer
and Seller can access the two systems, either directly or via a trusted intermediary (e.g., a bank).
For each DvP model, an Interoperability Solution is described: this is a system component that
needs to be developed in order to facilitate the DvP in that specific model. It is assumed that the
Interoperability Solution can access the PS and (if needed) the DLT. Moreover, the Interoperability
Solution can have accounts on the PS, and (if needed) a node and a wallet on the DLT. It is also
assumed that the Interoperability Solution is operated by the central bank that also operates the
PS. In the reference scenario, the PS, the DLT, and the Interoperability Solution are trusted, i.e., they
are not subject to persistent crash or Byzantine failures and do not deviate from their expected
behaviour. In particular, all DvP models assume to operate in absence of forks on the DLT, because
either the DLT is forkless (e.g., when deterministic consensus protocols are adopted—as usually
the case of permissioned DLTs) or it is highly improbable to revert confirmed transactions (e.g.,
due to the difficulty of performing a 51% attack). It is also assumed that communication channels
among the different actors are weakly synchronous, i.e., may be subject to unpredictable delays

11 See Deutsche Börse et al., 2021.
12 See Banque de France et al., 2021.

11

that do not grow indefinitely. This is likely to be true in a production system with transient network
faults. Moreover, communication channels are secure with exchanged messages assumed to be
confidential and authenticated, i.e., no impersonation attack can take place. Four main DvP models
are identified and distributed into two classes, namely "Orchestrated" and "API-based". In the first
two DvP models (Sections 2.2 and 2.3), the Interoperability Solution is also called Orchestrator,
because it coordinates the protocol steps on both the payment system and the DLT. In the other two
DvP models (Sections 2.4 and 2.5), the Interoperability Solution is also called API Gateway, because
it can be seen as an extension of the PS functionalities, by means of an Application Programming
Interface (API), which is independent from the specific DLT technologies adopted for the asset-leg.

2.1 A list of relevant dimensions of analysis
This section presents a non-exhaustive list of relevant dimensions for analysing the DvP integration
models. The solutions described in Sections 2.2–2.5 will be assessed against these dimensions.
Some dimensions should be considered crucial for the success of the solution, such as the safety of
the DvP. Others deal with technological coupling between the Interoperability Solution and the DLT
platform, and may affect the development and maintenance cost of the analysed solution; these
dimensions include, for example, the zero-code support for new DLTs or the solution agnosticism
towards the DLT. Finally, the relevance of some other dimensions depends on the scenario in which
the solution is deployed.
D1 DLT agnosticism. The capability to apply the solution to different DLTs/blockchain, under

minimal assumptions and considering that nothing is known or can be known about the correct
functioning and operation of the DLT platform. A DLT agnostic solution allows to interoperate
with a new DLT, not originally supported, without requiring new developments specifically tied
to that platform.

D2 No DLT node to operate. The capability of the solution to interoperate with a DLT without
requiring to manage a node for each integrated platform.

D3 No DLT wallet to own. The capability of the solution to interoperate with a DLT without requiring
to own a wallet for the native crypto-asset or any other asset that is issued on the DLT.

D4 Presence of a trusted DvP oracle. Whether the solution guarantees DvP safety by relying on a
trusted oracle that, acting impartially, provides the outcome of the DvP in case of a dispute.

D5 Safety, atomicity guarantees, and potential DvP failures. The guarantees provided by the solution
in terms of safety, regarding transaction atomicity (i.e., “all-or-nothing” transfer of cash and
security) and failure avoidance in case of unforeseen operational behaviour from one or both
parties involved, or the network connection between the parties and the platform.

D6 Liquidity efficiency. The capability of the solution to avoid locking cash liquidity (i.e. in escrow-
like scenarios) until the whole transaction is completed.

D7 Absence of the free option. Whether the solution does not offer, to one of the involved parties,
the right to choose to finalise the transaction or not while keeping the other party engaged,
without corresponding a fee for this right.13

D8 Specific features requirements of the DLT. Whether the solution relies on features that are specific
of a particular DLT. While it is reasonable to assume that a DLT should support widespread
cryptographic primitives (e.g., SHA-256), constraints upon specific programmability features or
signature algorithms of the platform are considered a specific feature requirement.

13 Equivalent of a “call” or “put” option for free.

12

2.2 Orchestrated DvP with Asset-leg Locking
The most simple DvP model in the DLT ecosystem involves an Orchestrator that acts as an escrow
for the asset-leg and an arbitrator of the DvP transaction. Two variants of this protocol exist. In the
simpler one, the Orchestrator acts as an actual temporary custodian of the asset, i.e., it receives
the asset from the Seller, and delivers it to the Buyer upon evidence of payment. During the DvP,
the Orchestrator has exclusive control over the asset that has to be delivered.

In a more advanced one, the Orchestrator shares the control of the asset with Buyer and Seller,
usually in an escrow arrangement that uses a 2-of-3 threshold signature14, where the 3 possible
signers are the Buyer, the Seller, and the Orchestrator, and two signatures are required to transfer
the asset. If Buyer and Seller agree among them on the result of the DvP transaction, then the
Orchestrator is not involved, since no arbitration is needed. This is what happens during normal
operation. On the contrary, if a dispute between the counterparties arises, either the Buyer or the
Seller can involve the arbitrator in the process (i.e., the Orchestrator), in order to solve the dispute
and release the asset from the escrow.

The more advanced protocol is considered, where the Orchestrator shares control of the assets
during the DvP. The steps of a successful scenario are illustrated in Figure 1: in Step1, the Seller
(and Buyer) initialize the DvP on the Orchestrator; in Step2, the Seller transfers the securities to the
escrow; in Step3, the Buyer makes the payment within the agreed timeout; in Step4, the Seller
authorizes the transfer of the securities from the escrow to the Buyer. In this scenario the DvP is
considered cooperatively executed, because no arbitrator was involved.

Figure 1. Orchestrated DvP with Asset-leg locking, success scenario.

Potential settlement failures may happen in the scenarios listed below.
• In Step3, if Buyer does not carry out the payment within the agreed timeout. In this case, the Buyer

can authorize the transfer of the securities from the escrow to the Seller (cooperative cancellation).
If this does not happen, the Seller has to involve the Orchestrator, acting as arbitrator, to unlock
the assets from the escrow. In this latest scenario, the DvP is considered forced cancelled, because
the arbitrator had to be involved.

• In Step4, if the Seller does not authorize the securities transfer from the escrow. In this case, the
Buyer has to involve the arbitrator, that acknowledges the payment and transfers the asset to the
Buyer (forced execution).

14 Multi-signature: https://en.bitcoin.it/wiki/Multi-signature#Multi-signature_application_examples.

13

https://en.bitcoin.it/wiki/Multi-signature#Multi-signature_application_examples

DvP failures cannot happen in the hypothesis that Buyer and Seller act in their own interest,
and the Orchestrator eventually fulfils its own responsibilities.

This DvP model relies on the Orchestrator as a trusted DvP oracle (D4), which acknowledges
payments and returns/transfers assets on the DLT. For this reason, the solution is not DLT agnostic
(D1) and the arbitrator has full visibility of the DvP transaction on the DLT. The solution requires new
development for each new DLT that needs to be integrated, since the arbitrator implementation
depends on the characteristics of the DLT that hosts the assets. The arbitrator operates a node on
the DLT (D2) and owns a wallet to sign transactions (D3). Since DvP failures are excluded, safety is
always guaranteed (D5). The solution locks the asset-leg only, while the cash is not locked (D6).
The Buyer owns an option to buy the asset, and may refuse to carry out the payment in the second
step (D7). The solution does not require special features to be supported by the DLT (D8), since it
only requires standard transactions (in the first, simpler, variant) and a threshold signature escrow
(in the second variant).

2.3 Orchestrated DvP with Cash-leg Locking
In this section, we illustrate two models that rely on the locking of the cash-leg of the DvP transaction,
in order to ensure the safety of the DvP. The first model relies on an Orchestrator keeping on-hold a
pre-authorized asset transfer transaction on the DLT until the payment occurs; by doing so, it can
reduce the amount of time in which the cash-leg is locked. For this reason, we call this solution "Just
In Time Locking" of the cash-leg, abbreviated as JITL. The second model relies on an Orchestrator
acting as bridge component that can transfer value from the PS to the DLT, and vice-versa, in the
form of a Non-Fungible Token (NFT)15 representing the cash on the DLT, within the context of a
specific DvP transaction. We call this solution "Tokenized Cash-leg Locking".

2.3.1 Just In Time Locking of the cash-leg

The JITL model uses a pre-signed transaction (or a package of transactions) that transfers the
securities from Seller to Buyer on the DLT. The transaction is not immediately broadcasted to the
DLT network, but it is given to the Orchestrator, that will release it only when the Buyer successfully
reserves, on the PS, an amount of funds needed to carry out the payment.

15 A token is non-fungible when it is unique (i.e., non-interchangeable) and cannot be divided into tokens with lower amounts.
For these reasons, the NFT can be used within the context of a specific DvP transaction only, and not as a general purpose
cash token on the DLT.

14

Figure 2. Orchestrated DvP with Just In Time Locking of the cash-leg.

A JITL DvP is illustrated in Figure 2; the steps of a successful scenario are the following. In
Step1, Buyer and Seller initialize the DvP with the Seller providing the Orchestrator with a valid
and pre-signed DLT transaction that eventually transfers the securities from Seller to Buyer on
the DLT.16 In Step2, Buyer transfers, within a timeout, cash needed for the payment to an escrow
technical account owned by the Orchestrator on the PS. In Step3, the Orchestrator broadcasts
Seller’s transaction to the DLT network, and the asset transfer to the Buyer completes on the DLT. In
Step4, the Orchestrator transfers cash from the escrow to the Seller account on the PS.

Potential settlement failures may happen in the scenarios listed below, while DvP failures cannot
happen in the hypothesis that Buyer and Seller act in their own interest, and the Orchestrator
eventually fulfils its own responsibilities.
• In Step2, Buyer does not perform the payment, or performs the payment with an incorrect amount.

In this case, the timeout expires and either Seller or Buyer can request the Orchestrator to cancel

16 The pre-signed transaction can either be a simple transfer of the asset from Seller to Buyer, signed by the Seller only, or a
more complex atomic package of DLT transactions signed by Seller, Buyer and also the Orchestrator, including the issuance
and redemption of a cash-leg representation on the DLT. For sake of clarity, this section presents the simplest model. In
Section 3.3, it is possible to find technical details on a more complex variant of the same kind, that provides additional safety
guarantees (e.g., in case the pre-signed transaction leaks from either the Seller or the Orchestrator, or their communication
channel) but has a different trade-off (e.g., it requires the Orchestrator to own a wallet on the DLT).

15

the DvP, delete the pre-signed transaction and, if necessary, refund partial cash payments.
• In Step3, Seller’s transaction does not get confirmed, e.g., because Seller spent the securities on

the DLT in the meantime. In this case, the Orchestrator cancels the DvP and returns cash to Buyer.
The DvP protocol relies on the Orchestrator as a trusted DvP oracle (D4), which handles cash

transfers on the PS. For this reason, the model is not DLT agnostic (D1) and the Orchestrator has
full visibility of the DvP transaction on the DLT. The model requires new development for each
new DLT that needs to be integrated, since the Orchestrator implementation needs to validate and
broadcast DLT transactions. The Orchestrator operates a node on the DLT (D2). A wallet to sign
transactions is not needed because the DLT transaction is a simple transfer from Seller to Buyer
(D3). Since DvP failures are excluded by the presence of the oracle, safety is always guaranteed
(D5). This DvP model locks the cash-leg for the time that is needed for the securities transaction to
confirm on the DLT (D6). Neither Buyer nor Seller own an option to buy/sell the asset, and both can
cause the third step to fail (D7). The model does not requires specific features on the DLT side: only
the ability to transfer an asset is needed. Since the Seller gives a valid and pre-signed transaction
to a third party, it would be desirable the ability to define self-expiring transactions, so that the DLT
can autonomously prevent asset transfers after expiration (D8).

2.3.2 Tokenized Cash-leg Locking

Most DLTs allow participants to issue assets on the ledger in the form of tokens, which are differ-
ent from the native asset of the ledger.17 For these ledgers, it becomes possible to achieve an
orchestrated DvP with cash-leg locking.

At the beginning of the process, the Buyer reserves an amount of cash that is needed for the
payment of the asset, e.g., by transferring it to an account controlled by the Orchestrator. Then, the
Orchestrator issues, on the DLT, a special token that represents Buyer’s funds, and transfers this
token to the Buyer. The token is non-fungible (i.e., an NFT), and can be used only in the context of
the specific DvP transaction for which it was issued: Buyer can either transfer the token to Seller,
which in turn will return it to the Orchestrator, or the Buyer can directly return the token to the
Orchestrator. The transfer of the token from Buyer to Seller happens contextually with the transfer
of the asset from Seller to Buyer, directly on the DLT. For this to happen safely, the DLT must provide
support for Single Ledger DvP18. Ultimately, Seller can claim the funds locked by the Orchestrator,
by transferring the received token back to it: this will release the funds from the escrow and credit
Seller’s account.

The steps of a successful scenario of the cash-leg locking with tokenization are the following. In
Step1, Buyer transfers cash needed for payment to a technical account owned by the Orchestrator
on the PS. InStep2, Orchestrator issues the NFT on the DLT, and transfers it to Buyer. InStep3, Buyer
and Seller engage in a single ledger DvP between asset and cash NFT. In Step4, Seller transfers the
NFT to the Orchestrator. In Step5, Orchestrator transfers cash from the technical account to Seller,
and PS credits Seller’s account of the payment amount.

Potential settlement failures may happen in the scenarios listed below, while DvP failures cannot
happen in the hypothesis that Buyer and Seller act in their own interest, and the Orchestrator
eventually fulfils its own responsibilities.
• At Step3, if Buyer and Seller do not engage in the single ledger DvP; Buyer can return the NFT to

the Orchestrator, to get its account credited.

17 The native asset of a DLT is here defined as the one used to pay the transaction fees to the DLT confirmation network;
examples are bitcoin for the Bitcoin blockchain, ether for the Ethereum blockchain, and algo for the Algorand blockchain.

18 Existing DLTs offer three main technical solutions to implement a single ledger DvP. Some DLTs (e.g., Algorand Chen et al.,
2019) offer dedicated primitives to swap of two assets defined on the ledger. From the user-developer perspective, this is
the simpler solution to adopt. Other DLTs (e.g., Bitcoin Nakamoto, 2008) allow to create and sign a single transaction with
different asset types in the inputs and outputs. DLTs with expressive script languages (e.g., Ethereum Buterin, 2014) offer a
more general approach with the creation of dedicated smart contract to encode the swap logic.

16

This DvP model does not rely on a third party acting as trusted DvP oracle (D4), because it
models the DvP as single-ledger DvP that takes place on the DLT. The DvP is performed as an atomic
transaction, where the atomicity is guaranteed by the DLT functioning. For this reason, the DLT
recalls the functionalities of a DvP oracle; nevertheless, it is not considered as such, because the
DvP oracle definition includes only third parties (i.e., it excludes the PS and the DLT). For this reason,
the model is not DLT agnostic (D1) and the Orchestrator has full visibility on the DvP transaction
on the DLT. The model requires new development for each new DLT to be integrated, since the
Orchestrator implementation depends on the characteristics of the DLT hosting the assets. The
Orchestrator operates a node on the DLT (D2) and owns a wallet to sign transactions (D3). Since
DvP failures are excluded, safety is always guaranteed (D5). This DvP model locks the cash-leg,
potentially with indefinite time, so it is not efficient (D6). Neither Buyer nor Seller own an option to
buy/sell the asset, and both may decide to not execute the third step, i.e., the single ledger DvP
(D7). The model requires the DLT to support issuance of tokenized and non-fungible assets, as well
as functionalities for single-ledger DvP (D8).

2.4 API-based DvP with Hash-Time Locked Contract
This DvP model relies on API Gateway, which is sitting in front of the PS and exposes additional
functionalities by mean of APIs. The API gateway operates a technical account on the PS, which can
receive and hold funds to be transferred from Buyer to Seller. It also enables the secure exchange
of messages from Seller to Buyer. We call this DvP model “API-based DvP with HTLC”, because it
leverages Hash Time Locked Contracts (HTLC19, Poon et al., 2016) on the PS and DLT to regulate
both the cash and securities transfer. An HTLC is a special contract that is widely available on DLTs;
it enables time-bounded conditional transfers. Besides acting as an escrow, it combines two types
of locks: hash-lock and time-lock. The hash-lock allows unlocking the funds (or assets) in escrow by
providing a correct secret phrase (referred to as preimage) within an agreed timeout. The time-lock
adds an expiration time to the escrow. The recipient of the funds (or assets) locked within the
escrow should claim them before expiration.20 Otherwise, the original sender can claim back the
funds (or assets).

An API-based DvP with HTLC is illustrated in Figure 3; the steps of a successful scenario are
the following. In Step1, the Seller randomly generates a preimage and keeps it secret; then, they
calculate a commitment H of the preimage (e.g., its cryptographic hash). In Step2, the Seller
transfers securities from his account to an HTLC on the DLT. The HTLC locks securities on the
commitment H until a timeout Timeout1 expires; In Step3, using the API gateway, the Buyer moves
funds from his account to a technical HTLC account on the PS. The HTLC locks funds on the same
commitment used for the securities, until a timeout Timeout2 (with Timeout2 < Timeout1) expires;
In Step4, the Seller claims the Buyer’s funds providing the preimage to the API gateway: the funds
move from the HTLC account to the Seller account on the PS. The API gateway timely notifies the
Buyer and provides him with the preimage. In Step5, leveraging the preimage, the Buyer can unlock
the Seller’s securities from the HTLC and moves them to his account on the DLT.

Potential failures may happen in the scenarios listed below.
• In Step3, the Buyer does not move funds to the technical account. This results in a settlement

failure. However, the Seller can get back his securities as soon as Timeout1 expires.
• In Step4, the Seller does not claim the Buyer’s funds within Timeout2. A settlement failure occurs.

The Buyer can get back his funds as soon as Timeout2 expires, and, as soon as Timeout1 expires,
the Seller can also get back the securities.

19 Hash Time Locked Contracts: https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts.
20 In a blockchain, the time-lock can either be expressed in terms of minimum number of blocks to be confirmed from the lock

transaction (relative time-lock) or with a blockchain height (absolute time-lock).

17

https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts

Figure 3. API-based DvP with HTLC, success scenario and critical DvP failure scenario.

• In Step5, the Buyer cannot claim the securities before Timeout1 expires. A DvP failure occurs,
resulting in a critical loss of integrity. The DvP safety is compromised, because the Seller can
collect both the funds and the securities. It is important to highlight that this failure may materi-
alize for external causes which do not depend on the Buyer. In particular, a temporary network
unavailability on the communication channel between the API and the Buyer, may prevent the
Buyer to timely receive the cash transfer notification in Step4. Moreover, a delay on the commu-
nication channel between the Buyer and the DLT, may prevent the Buyer to timely send the asset
transfer request in Step5. A mitigation technique for this risk is to set Timeout1 reasonably high,
as a function of the principal amount: all other factors being equal, a higher amount implies a
higher risk and requires a longer timeout. Note that the timeout value determines a trade-off
between safety and efficiency in the DvP process: a longer timeout increases safety but decreases
efficiency (during the DvP the asset is locked in the HTLC and cannot be transferred by the Seller),
while a shorter timeout increases efficiency but can be detrimental for safety.

This model facilitates the DvP settlement by introducing specific APIs in front of the PS. The
model is DLT agnostic, and does not require new development for supporting new DLTs (D1). There-

18

fore, it does not require to operate a node on the DLT (D2), or to own a wallet to sign transactions
(D3). This model does not rely on a trusted DvP oracle (D4); as a direct consequence, it introduces
critical failures that compromise the DvP (step 5): the safety of the DvP transaction is not always
guaranteed (D5). The weakness of this model revolves around the idea of solving the DvP using
timeouts instead of arbitrators: for this reason, a failure to deliver a given instruction within a given
timeout may cause a DvP failure (see Project Stella, 2018, section on DvP failure). The API-based
DvP with HTLC solution locks the cash-leg for the time that is needed for confirming the securities
transaction (D6). The Seller owns a free option, as they can unlock securities by not claiming the
Buyer’s funds in the third step (D7). The model requires the DLT to support HTLC functionalities
(D8).

An advantage of this model is that it allows participants to reuse an existing hash value to create
an HTLC linked with other DvP transactions using the same hash value. In such a way, related DvP
transactions across multiple ledgers can be created. This characteristic may enable additional
applications, such as cross-border payments, that are however beyond the scope of this work.

The recent definition of the adaptor signature scheme21 has introduced an alternative way of de-
fining this DvP model. In particular, an adaptor signature can be used in place of the hash preimage,
to link the cash and asset transfer. Adaptor signatures rely on elliptic curve cryptography. The smart
contracts that use adaptors instead of hash values are called Point-Time Locked Contracts (PTLC),
where the point on a curve is a public key against which the signature is verified. The adoption of
PTLCs in place of HTLCs improves the confidentiality of the DvP on public ledgers, because the logic
underlying the smart contract can be hidden in the success scenario, so that the asset transaction
appears indistinguishable from a regular transfer on the DLT. However, the adoption of PTLCs does
not change the safety considerations regarding this DvP model: Not introducing a trusted DvP
oracle, it admits critical DvP failures that could compromise the safety of DvP transactions.

2.5 API-based DvP with Hash-Link Contract
This section presents a novel DvP model that relies on an API gateway to simplify the DvP definition
and settlement. The “API-based DvP with Hash-Link Contract” builds upon the primitives of an
HTLC, and introduces a trusted oracle, as in the orchestrated models, that solves possible disputes
between Buyer and Seller. The involvement of a trusted oracle allows to guarantee the safety of DvP
transactions, also in case of temporary unavailability of one of the involved actors (and, in particular,
of the API gateway itself). The API gateway plays the role of trusted DvP oracle. This model defines
a Hash-Link Contract (HLC) on the DLT that locks securities until some specific conditions are met.
From a business perspective, these conditions are the following: (i) the Buyer agrees on the return
of securities to the Seller, or (ii) the Seller agrees on the transfer of securities to the Buyer, or (iii)
there is a dispute between Buyer and Seller and the oracle is involved. The knowledge of preimages
is used to signal the decision of the oracle, that has exclusive knowledge of two preimages, namely
cancellation preimage and execution preimage. If the DvP oracle decides to solve the dispute in
favour of the Seller, e.g., because the payment did not occur within an agreed timeout, then it
reveals the cancellation preimage to the Seller, which in turn uses it to get back the securities from
the HLC. On the contrary, if the DvP oracle solves the dispute in favour of the Buyer, e.g., because
the corresponding payment did already occur, then it reveals the execution preimage to the Buyer,
which uses it to claim the securities from the HLC.

21 Adaptor signature scheme: https://bitcoinops.org/en/topics/adaptor-signatures/.

19

https://bitcoinops.org/en/topics/adaptor-signatures/

Figure 4. API-based DvP with Hash-Link Contract.

An API-based DvP with HLC is illustrated in Figure 4; the steps of a successful scenario are the
following. In Step1, the Seller initializes a DvP transaction by interacting with the API gateway. The
latter generates the two preimages and communicates their commitment (e.g., a cryptographic
hash) to both Buyer and Seller. To resolve possible future disputes, the API gateway, acting as
oracle, starts a timer for the current DvP, which expires according to the information received.
In Step2, the Seller transfers securities from his account to an HLC on the DLT. The HLC locks
securities until it is provided with a valid signature (from either the Seller or the Buyer) or a preimage
(either execution or cancellation). Unlocking with the Seller’s signature or the execution preimage
moves the securities to the Buyer’s account on the DLT. Unlocking with the Buyer’s signature or the
cancellation preimage takes back the securities to the Seller’s account on the DLT. In Step3, using
the API gateway, the Buyer moves funds from his account to the Seller’s account on the PS. The API
gateway readily notifies both Buyer and Seller of the correct completion of the funds reserve. In
Step4, the Seller unlocks the HLC to move securities to the Buyer’s account on the DLT. This case is
called cooperative execution, because Buyer and Seller collaborate to successfully complete the

20

DvP transaction.
Potential settlement failures may happen in the scenarios listed below. DvP failures cannot

happen in the hypothesis that Buyer and Seller act in their own interest, and the API gateway
eventually fulfils its own responsibilities. The API gateway, acting as DvP oracle, guarantees the
protocol safety, also in case of temporary unavailability of involved actors and arbitrary delays on
the communication channels.
• In Step3, the Buyer does not move funds to the Seller’s account on the PS. This results in a

settlement failure. The Seller can get back his securities by retrieving the cancellation preimage
from the API gateway as soon as the timeout expires. This case is called forced cancellation.

• In Step4, the Seller does not collaborate with the Buyer to open the HLC. The Buyer can obtain
the execution preimage from the API gateway and collect the securities from the HLC on the DLT.
This case is called forced execution.

The API-based DvP with Hash-Link Contract model introduces the presence of a trusted DvP
oracle for solving disputes between Buyer and Seller (D4). Using hash preimages instead of digital
signatures allows to maintain a very low level of coupling between API gateway and DLT. This model
is DLT agnostic, and does not require new development for supporting new DLTs (D1). Therefore,
this model does not require to operate a node on the DLT (D2), or to own a wallet to sign transactions
(D3). The API gateway only needs to support the same hash function of the DLT platform. Differently
from the API-based DvP with HTLC, this DvP model guarantees the safety of the DvP transaction
(D5). This DvP model locks only the asset-leg for the time needed for confirming the funds transfer
transaction (D6). The Buyer has the free option, as they can avoid transferring funds in the third
step described above, while the Seller has already engaged the securities in the HLC (D7). The
model requires the DLT to support HLC functionalities (D8).

2.6 Summary of DvP models analysis
In this section, the different DvP models are compared against the dimensions of analysis intro-
duced in Section 2.1. Table 1 summarizes the results. Notice that the different dimensions are not
equally important. First, if a DvP model does not guarantee settlement safety (D5), it will be hardly
considered for an actual DvP implementation. This is, for example, the case of the API-based with
HTLC model. Second, the dimensions assessing the neutrality of the model and the coupling with
the DLT platform (D1, D2, D3, D8) are prioritized. For example, the DLT agnosticism can be useful
when it enables the integration of new DLTs with a very limited effort, thus avoiding the need of
developing new DLT-specific adapters. Dedicated development for new DLT could slow down the
integration process, thus indicating a less extensible solution. The need for the Interoperability
Solution to own a wallet for the native DLT crypto-asset is also a relevant downside, because it intro-
duces strong coupling with the DLT. Also, the need for specific features could affect the neutrality of
the Interoperability Solution Operator. However, specific DLT features might be necessary to imple-
ment a DvP model, such as the ability to deploy contracts, non-fungible assets, or perform atomic
transfers. Third, other dimensions that affect the DvP cost for participants are considered, such as
the liquidity efficiency (D6) and the absence of the free option (D7). Finally, other dimensions such
as presence of a trusted oracle (D4), are less important in the specific scenario considered in this
document. Overall, there is not a single DvP model that dominates all the others. The DvP models
using an Orchestrator enable safety and can be adopted when a tighter control of what happens on
the DLT is desirable. Nevertheless, these models have higher coupling with the DLT platform and
require higher effort on the development side. To improve the Interoperability Solution operator
neutrality with respect to DLTs, API-based DvP with HLC appears as the most suited DvP model.

Table 1 below summarises the analysis of the DvP models presented in this section.

21

Table 1. Summary of the DvP models analysis.

Dimensions Asset-leg
locking

Just in time
cash-leg
lockinga

Tokenized
cash-leg
locking

Hash-Time
Locked

Contract
Hash-Link
Contracts

D1: DLT agnosticism No No No Yes Yes
D2: No DLT node to operate No No No Yes Yes
D3: No DLT wallet to own No Yes No Yes Yes
D4: Use of a DvP oracle Yes Yes No No Yes
D5: Safety of the DvP Yes Yes Yes No Yes
D6: Liquidity efficiency Yes Nob No No Yes
D7: No free option No Yes Yes No No
D8: Specific DLT features Yesc No Yesd Yese Yesf

a This column shows the analysis for the simplest JITL model only. Other models may differ in: (i) the need to hold a
wallet on the DLT, (ii) the need for specific DLT features, such as token issuance and single ledger DvP, (iii) additional safety
guarantees in scenarios with a more powerful adversarial model; b Cash-leg is locked only for the time required for the
asset transfer; c Threshold signatures wallet; d Token issuance and single-ledger DvP; e Hash functions and Time-locked
transactions; f Hash functions only.

3 Experiment

The experiment aims to develop and evaluate Proof-of-Concept (PoC) solutions for secure execution
of a DvP between a distributed ledger and a payment system, hosting respectively assets and cash.
Section 3.1 introduces the actors and systems involved in the PoC: the Target Instant Payment
Settlement (TIPS) system presented in Section 3.1.1, which provides the settlement services of
the DvP cash-leg; the Algorand blockchain, presented in Section 3.1.2, where the asset-leg of the
DvP resides. Among the different DvP integration models, two of them were selected for a deeper
investigation: Section 3.2 presents "TIPS Hash-Link", an instance of the API-based DvP with Hash-
Link Contract model; Section 3.3 presents "TIPS-Algorand Just In Time Locking", an instance of
the Orchestrated DvP with Just In Time Locking model. The former represents a loosely-coupled
solution that does not require any connection with the DLT. The latter represents a solution tailored
for a specific DLT and, as such, requires a tight-coupled integration and also to operate a node on
the DLT.

3.1 Actors of a cross-ledger DvP
The experiment considers a typical cross-ledger DvP scenario in which a Seller and a Buyer, interact
to exchange assets on a DLT for cash on a payment system. Figure 5 represents the two involved
actors, together with the asset and cash ledgers: the Algorand22 DLT implements the platform
holding the asset-leg, while TIPS implements the platform holding the cash-leg of the DvP. Buyer
and Seller own the assets on the DLT thanks to private keys stored in their respective wallets,
represented in blue.

22 The name "Algorand" is used to represent the network of nodes collectively operating the DLT.

22

Figure 5. Actors of a cross-ledger DvP: Seller owns assets on the Algorand DLT and wants to sell them to Buyer
for an agreed amount in cash; the cash-leg resides on a separate ledger, i.e., on the TIPS system.

3.1.1 The Target Instant Payment Settlement System (TIPS)

In this experiment, the payment system is instantiated as the Target Instant Payment Settlement
(TIPS23) platform, which provides the settlement services of the cash-leg. TIPS was selected,
among the other market infrastructures owned by the Eurosystem such as Target2, for its 365/24/7
operational model, which most closely resembles the service offered by a DLT platform.

TIPS manages commercial banks’ accounts and regulates central bank money flows among
these accounts. Customers (e.g., Buyer and Seller) have no visibility on TIPS and cannot hold
accounts in it: they can only access the TIPS services through a commercial bank acting as a trusted
intermediary. The interaction with TIPS takes place via the Message Exchange Processing for TIPS
(MEPT, 4CB, 2019) protocol. Without loss of generality of the DvP models, and only for the scope of
this experiment, a simplifying assumption is considered: the PoC assumes that Buyer and Seller
have direct access to the settlement services provided by TIPS, they own a TIPS account and have
(direct or indirect) access to it. Buyer and Seller accounts are used to move the liquidity for the
cash-leg of the DvP transactions.

The realization of the PoC required the set up of a dedicated TIPS processing environment. The
new environment was implemented within the Bank of Italy’s Private Cloud infrastructure (Figure 5)
and inherited all the characteristics of the production one. From a physical point of view, the TIPS
environment of the PoC was distributed over three data centers, thus creating an active-active
architecture that replicates the components of the TIPS settlement engine as in the production
environment. Virtual machines located in each data center host the application components and
the middleware necessary for the construction of the TIPS settlement engine. All virtual machines
have been created using the API exposed by the Private Cloud platform, which in turn is based on
OpenStack.

23 See Renzetti et al., 2021 and Arcese et al., 2021.

23

3.1.2 The Algorand DLT

Algorand24 is a permissionless and public blockchain founded in 2017 by the ACM Turing Award
winner and MIT professor Silvio Micali and developed by the Algorand Foundation25 and by Algorand
Inc., a company based in Boston. This PoC benefited from a collaboration with experts from
Algorand, who provided advice on the best use of constructs and specific features of the DLT.

Algorand consensus. Algorand uses a Pure Proof of Stake (PPoS) consensus protocol to update the
distributed ledger. The PPoS algorithm allows Algorand to confirm transactions and update the
blockchain with latency in the order of seconds while scaling to many users. PPoS leverages a
novel Byzantine Agreement protocol to reach consensus, which is aimed to ensure a high level of
security without lacking in scalability and decentralization.26 Algorand ensures that users never
have divergent views of confirmed transactions (i.e. it ensures that forks do not occur), even if some
of the users are malicious and the network is temporarily partitioned.27

Algorand infrastructure. To interact with the blockchain, a user (e.g., Buyer, Seller) must operate a
DLT node, which acts as a peer of the Algorand blockchain network. To simplify resource demand,
lightweight nodes exist: they act only as a client of the network and do not directly participate in
the consensus protocol that grows the chain. This experiment adopts an Algorand node hosted
by Purestake28. Furthermore, to sign transactions and operate upon their assets, a user holds a
pair of public/private cryptographic keys; when a transaction is signed with the user’s private key,
the authorship is clear and cannot be repudiated. To improve privacy, a user can hold multiple
public/private keys. A wallet helps to store such keys and simplify the process of transaction signing.

Algorand ledger. Algorand’s native asset, i.e., the asset that is used to pay transaction fees in
the Algorand ledger, is called the Algo. By holding Algos, users can also register to participate in
consensus, which means that they will participate in the process of proposing and voting on new
blocks to grow the chain. The Algorand functionalities include the creation of non-native assets
on the blockchain, called Algorand Standard Assets (ASA). An ASA can be configured to represent
either a fungible or a non-fungible token (i.e., NFT) and, in addition, allow transfer restrictions to
be placed on it. Before a new ASA can be transferred to a specific user, the receiver must opt-in to
receive it.29 The Algorand ledger organizes the state using accounts (account-based ledger), which
live on the blockchain and are associated with specific on-chain data, e.g. a balance; an Algorand
address is used to identify an Algorand account. The account-based organization of the DLT state in
Algorand smoothly fits with the ability to run smart contracts to update the DLT state.

Algorand programmability. Two main forms of programmability exist in Algorand: smart contracts
and smart signatures. Smart contracts are pieces of code deployed on the DLT, which have public
addresses, and can hold an internal state. Their execution is triggered by transactions directed
to their address. Their business logic often includes pre-conditions and actions, whose output
leads to internal state update or to funds/assets transfer. The smart contract logic is executed by
the DLT nodes, and its state is also kept “on-chain”. Running the smart contract logic requires the
payment of fees, whose value is proportional to the amount of operations performed.30 Instead,
storing the state requires the escrow of a minimum balance that will be returned after clearing the
state. A Smart signature31 is a programmable logic executed while spending a transaction. It can

24 See Chen et al., 2019.
25 https://algorand.foundation/about-us
26 https://algorand.foundation/algorand-protocol/about-algorand-protocol/pure-proof-of-stake
27 https://www.algorand.com/technology/white-papers
28 https://www.purestake.com/
29 https://developer.algorand.org/docs/get-details/asa/
30 https://developer.algorand.org/tutorials/understanding-teal-opcode-budget/
31 https://developer.algorand.org/docs/get-details/dapps/smart-contracts/#smart-signatures

24

https://algorand.foundation/about-us
https://algorand.foundation/algorand-protocol/about-algorand-protocol/pure-proof-of-stake
https://www.algorand.com/technology/white-papers
https://www.purestake.com/
https://developer.algorand.org/docs/get-details/asa/
https://developer.algorand.org/tutorials/understanding-teal-opcode-budget/
https://developer.algorand.org/docs/get-details/dapps/smart-contracts/#smart-signatures

be thought as an account whose private key includes the source code: knowledge of the source
code is a necessary condition to issue a transaction on behalf of the smart signature account. The
transaction will be successfully completed only if the smart signature allows it: e.g., by hard-coding
the transaction beneficiaries, a smart signature can enforce payment towards their accounts only.
Smart signatures do not store additional state on the DLT but the transaction itself. They can be
used to define escrows as well as delegate signature authority. For this reason, they are usually
created with a disposable semantic. An instance of a smart signature is created from a template
with a limited scope, e.g., in the context investigated in this document, to serve a single DvP. Serving
a limited number of actors, smart signatures are also less risky than smart contracts: an exploit in
a smart contract would affect all users interacting with it. Smart contracts and signatures can be
written in a programming language called TEAL, or in higher level language such as Python, that is
then compiled to TEAL. The compiled TEAL program produces an Algorand address and a private
key, called Logic Signature. The latter can be used to evaluate the business logic while spending a
transaction: the transaction is allowed when it evaluates to True against the TEAL logic.

3.2 TIPS Hash-Link Contract DvP
This section describes the PoC implementing the API-based DvP with Hash-Link Contract model
described in Section 2.5, sitting between the TIPS and Algorand platforms introduced in Section 3.1.
The core component of the PoC is the TIPS Gateway, represented in Figure 6, which implements
the Hash-Link specific functionalities.

Figure 6. The TIPS Hash Link proof of concept.

3.2.1 TIPS Gateway

Software Architecture. The TIPS Gateway is a modular application written in Java, and composed of
the following modules:
• The API Controller exposes the functionalities to initialize the DvP (as in Step1), to forward pay-

ments messages to the payment system (as in Step3), and to force either the cancellation or the
execution of the DvP. It also executes preliminary checks on the validity of the received messages,
and translates them into the corresponding events that will be internally forwarded to the Event

25

Manager. The API is designed to be asynchronous: when the controller receives a request, it
dispatches the corresponding event to the Event Manager, and sends a response back to the
client, indicating that the request has been successfully received and taken in charge. The result
of the request, once ready, will be sent back via a callback URL provided by the client.

• The Event Manager oversees the overall DvP flows, coordinating the interactions with the other
systems as well as Buyer’s and Seller’s client. It is an asynchronous component that activates
upon reception of internal events. This allows to easily scale the TIPS Gateway when the system
is overloaded.32 The Event Manager manages the DvP phases as follows: in the initialization
phase (Step1), it creates a new DvP descriptor—filled with a unique DvP identifier, execution
and cancellation preimages, Seller and Buyer identifiers— and stores it using the Data Layer.
To compute the public preimage commitments, TIPS Gateway uses the SHA2 hash function.33

Finally, to solve the DvP in case of dispute, the event manager starts a timer that locks the DvP
for a predefined amount of time (i.e., timelock). In the payment phase (Step3), the Buyer pays the
Seller through gateway, which forwards the request to the TIPS system. Then, it updates the DvP
instance according to the TIPS response, and notifies Buyer and Seller of the payment outcome.
In the forced execute phase, it queries TIPS to get information about the existence of a payment
with a specific identifier and, if it exists, it provides the execution preimage to the Buyer. In the
Forced cancellation phase: it checks that the timeout provided for the DvP is expired. If it is, it
queries TIPS to get information about the payment with the specific identifier. If it does not exist,
it prevents any future payment, for the specific DvP id, from being entered and, finally, it provides
the cancellation preimage to the Seller.

• The Data Layer provides primitives to store and retrieve a DvP descriptor, which holds information
regarding an instance of DvP transaction between Seller and Buyer; the DvP descriptor stores
data and metadata such as the DvP and assets identifiers, preimages and timelocks. The Data
Layer allows decoupling the persistence layer from the other components of TIPS Gateway.

• The PS Library (PS Lib) uses message queues to communicate with TIPS, either by sending
instructions or by receiving messages signaling the occurrence of events that need to be forwarded
to the Event Manager. It has been designed to introduce an abstraction layer over different
payment systems, and to define a simple interface that masks the logic needed to operate on a
specific one.

Gateway Application Programming Interface (API). The API Controller exposes simple APIs enabling
users to access the TIPS Gateway functionalities, while controlling the exposed objects and ac-
tions, and hiding the underlying implementation details. To design the TIPS Gateway with ease
of interoperability with existing standards, the API Controller has been designed considering two
principles: REST-like API definition and compliance with standards for data transmission. The
REST-like API definition allows to simplify the Buyer/Seller interaction with the TIPS Gateway. Due
to the asynchronous nature of the communication, the designed APIs are asynchronous as well:
they return HTTP response status codes, informing whether the request has been taken in charge or
not. To receive TIPS Gateway answers, the customers are requested to expose specific endpoints. In
a real world scenario, these endpoints can be hosted by a trusted party (e.g., a commercial bank as
currently occurs for payments managed by TIPS); however, in this experiment, no intermediaries are
considered between Buyer/Seller and TIPS. The designed APIs accept a payload defined according
to the design principles of the pan-European interoperability standard for payment systems defined
by The Berlin Group34. Moreover, the APIs take into account the work conducted so far within the

32 In an asynchronous application, commands are encapsulated in events that are stored in internal queues, waiting for
workers able of executing them.

33 The experiment uses SHA2 (Dang, 2015), although other hash functions can be used as long as the DLT supports them (e.g.,
Dworkin, 2015, which is already supported by several DLTs, including Algorand).

34 The Berlin Group (https://www.berlin-group.org) is a pan-European payments interoperability standards initiative and

26

https://www.berlin-group.org

Financial Stability Board (FSB) Stage3 Roadmap35. Specifically, business information is carried-out
by ISO2002236 (pain and pacs) messages. This promises to easily support future services and
needs. Also, the usage of ISO20022 messages would allow a simple connectivity through existing
Network Service Providers for TIPS, which offer connectivity services via XML message. More details
about the APIs can be found in Appendix B. When the API Controller receives a request, it performs
a preliminary validation and translates it into an internal event that will be forwarded to the Event
Manager. While doing so, the API Controller sends an HTTP response back to the request client,
indicating that the request has been successfully taken in charge (i.e., 202 ACCEPTED status code).
Otherwise, an error code is returned.

Infrastructure. From an infrastructure point of view, the TIPS Gateway is deployed in Bank of Italy
private cloud.

3.2.2 Algorand Hash-Link Contract (HLC)

The implementation of TIPS Hash-Link is quite straightforward because it has a low coupling with
the DLT: The TIPS Gateway manages the creation of execution and cancellation preimages, and
accepts payments from Buyer; The Seller is in charge of creating the HLC on the Algorand DLT; The
Buyer has to perform the payment, and then complete the DvP in a cooperative or forced manner.

Particularly interesting for the Algorand side of this DvP model is the Step2, in which the Seller
transfers the assets from his account to an HLC, acting as an escrow and managing the assets-leg
settlement. It is important to note that the HLC definition lies outside the responsibility perimeter of
the TIPS Gateway, and its development can be left entirely to the market. Nevertheless an example
of such smart contract template for the Algorand blockchain is provided to the reader in this section
as a reference.

On Algorand, the HLC can be implemented using either a smart contract or a smart signature,
and this PoC implements HLC using smart signatures. Specifically, an HLC is created using a TEAL
template with the following parameters: S, address of Seller account on Algorand; B, address of
Buyer account; HE, hash of execution preimage; HR, hash of cancellation preimage; TIPS_GW_TX_ID,
DvP identifier generated by TIPS Gateway; ASSET_ID, assets to exchange (i.e., ASA). The compiled
parameterized template produces the smart signature that populates the transaction Logic Signa-
ture; note that, by changing the template parameters (e.g., another DvP involving the same Seller
and Buyer), also the generated smart signature is different.

To publish the HLC on the Algorand blockchain, the Seller creates an atomic transfer37 with
the following three transactions. With the first transaction, the Seller deposits some Algos in the
HLC (i.e., 0.201 A): This amount represents the minimum amount of Algos necessary for the HLC to
execute the steps required by the protocol. Further details in Appendix A. The second transaction
prepares the HLC account to receive the ASA representing the assets, i.e., opt-in; this is a mandatory
operation for an account to receive an ASA in Algorand. With the third transaction, the Seller sends
the ASA representing the assets to the HLC. As a whole, this atomic transfer creates and funds an
HLC acting as an escrow.

API framework with the aim of defining open and common schemes that every payment system should adopt to reach a
concrete harmonization.

35 Financial Stability Board (FSB) Stage3 Roadmap and in particular the Building Block 15 “Harmonising API protocols for data
exchange” is a standardization approach for the definition of a global standard for the API applied to the cross-border usage.
See: https://www.fsb.org/2020/10/enhancing-cross-border-payments-stage-3-roadmap.

36 https://www.iso20022.org
37 https://developer.algorand.org/docs/get-details/atomic_transfers

27

https://www.fsb.org/2020/10/enhancing-cross-border-payments-stage-3-roadmap
https://www.iso20022.org
https://developer.algorand.org/docs/get-details/atomic_transfers

Atomi cT r ansf er



P ayT x

{
amount : 0.201A

r eceiver : HLC

}
Sel l er

Opt I nT x
{
asset : asset

}
Logi cSi g (HLC)

AssetT r ansf erT x

{
asset : asset
r eceiver : HLC

}
Sel l er

The DvP completes on the DLT with one of the following scenarios: cooperative execution,
cooperative cancellation, forced execution, or, alternatively, forced cancellation.

In Cooperative Execution, Seller is notified about the payment and publishes a transaction on
Algorand to move the assets on the Buyer’s account. In Algorand, this requires to create an atomic
transfer with three transactions. The first is a technical transaction (with amount 0) needed to
encode through the digital signer, the Seller’s willingness to perform the operation. This transaction
piggybacks (using the note38 field) the DvP identifier. The second transaction moves assets to the
Buyer. The third transaction gives back the deposit to the Seller. This atomic transfer also closes
the HLC account: the DvP is indeed completed.

Atomi cT r ansf er



P ayT x

{
amount : 0

r eceiver : HLC

}
Sel l er

AssetT r ansf erT x

{
asset : asset
r eceiver : Buyer

}
Logi cSi g (HLC)

P ayT x

{
amount : 0

r eceiver : Sel l er

}
Logi cSi g (HLC)

In Cooperative Cancellation, Buyer and Seller jointly agree to abort the DvP. The Buyer submits,
to the Algorand DLT, an atomic transfer to return the assets to the Seller. This atomic transfer
looks like the one used in cooperative execution, with the transaction signer and assets receiver
accordingly set: Buyer signs the transaction; Seller receives the assets.

In Forced Execution, the Buyer queries the TIPS Gateway to obtain the execution preimage. TIPS
Gateway checks with TIPS whether the payment has been performed by the Buyer for the DvP. If so,
it returns the preimage. The Buyer can now submit an atomic transfer on the DLT to unlock the
assets from the escrow by providing his signature and the execution preimage to the HLC. Also in
this case, the atomic transfer includes three transactions: The first runs the HLC with the Buyer
signature and the cancellation preimage; the second transfers the assets; the last returns the HLC
deposit to the Seller.

38 https://developer.algorand.org/docs/get-details/transactions/transactions/#common-fields-header-and-type

28

https://developer.algorand.org/docs/get-details/transactions/transactions/#common-fields-header-and-type

Atomi cT r ansf er



P ayT x

{
amount : 0

r eceiver : HLC

}
Buyer

AssetT r ansf erT x

{
asset : asset
r eceiver : Buyer

}
Logi cSi g (HLC)

P ayT x

{
amount : 0

r eceiver : Sel l er

}
Logi cSi g (HLC)

In Forced Cancellation, the Seller queries the TIPS Gateway to obtain the cancellation preimage.
TIPS Gateway checks whether the DvP timeout is expired. If it is expired, the gateway interact with
TIPS to check whether Buyer performed the payment. If the payment does not exist, TIPS prevents
any future payments for the DvP. Hence, TIPS Gateway returns the cancellation preimage to the
Seller, who can submit an atomic transfer to unlock the assets. The atomic transfer includes three
transactions: The first runs the HLC with the Seller signature and the cancellation preimage; the
second transfers the assets to the Seller’s account; the last returns the HLC deposit to the Seller.

Further details on the HLC design can be found in Appendix A.

3.3 TIPS-Algorand Just In Time Locking DvP
This section describes the PoC implementing the Just In Time Locking DvP model described in
Section 2.3.1, where a DvP Orchestrator coordinates operations between the TIPS and Algorand plat-
forms introduced in Section 3.1. The core component of the PoC is the TIPS-Algorand Orchestrator,
represented in Figure 7, which implements the business logic to carry out the DvP.

Figure 7. Tips-Algorand JITL proof of concept.

3.3.1 TIPS-Algorand Orchestrator

Software Architecture. From a software developer point of view, the orchestrator application is a
modular software written in Java, and composed of the following modules:

29

• The API Controller exposes the functionalities to initialize the DvP (as in Step1) and to forward
payments messages to the PS (as in Step2). It also executes preliminary checks on the validity of
the received messages, and translates them into the corresponding events that will be internally
forwarded to the Event Manager.

• The Event Manager handle the events coming from other software modules (e.g. the API con-
troller), and manages the DvP flows, orchestrating the interactions with the other software
components. In the initialization phase (Step1) it creates a new DvP descriptor, with a new unique
identifier, and stores it. Then, it prepares an atomic transfer skeleton whose transactions must
each be signed by the corresponding DvP actors (see details later in the section). In the execution
phase (Step2 and Step3), it tries to reserve the buyer funds on TIPS. If the reserve completes
successfully, it signs the remaining transactions in the package, and submits it to the DLT. Once
the transactions have been finalized on DLT, the Event Manager proceeds with the confirmation
of the transaction on TIPS. If any error occurs between the reserve on TIPS and the transaction
finalization on the DLT, a reject and cancellation request will be send to TIPS. Finally, in the can-
cellation phase, if the DvP timeout expires before the payment occurs, then the Event Manager
destroys the transactions signed during the initialization phase to prevent further DvP executions.
As detailed in Section 2.3.1, by overseeing the DvP settlement, the TIPS-Algorand Orchestration
has to be a trusted component of the system.

• The Data Layer, is used to store and retrieve DvP records in the database, in particular the pre-
signed DvP transactions that are delivered to the orchestrator by Buyer and Seller in Step1 of the
process.

• The PS Library (PS Lib), uses message queues to communicate with TIPS, either by sending
instructions or by receiving messages signaling the occurrence of events that need to be forwarded
to the Event Manager.

• The DLT Library (DLT Lib), is a new software module developed for the experiment phase, which
provides an high-level abstraction layer over different DLTs. The library defines a simple interface
that masks the logic to operate on a specific DLT. Interacting with a DLT usually introduces both
some complexity, and often, a formalism with technical details that are specific to the chosen
DLT. For example, each DLT interaction usually implies the execution of some transactions that
need to be formed with a specific DLT formalism in mind. In order to keep the software modular
and maintainable, the implementation of the DLT integration logic has been grouped within a
library and abstracted to the above layers. This allows exposing an high level API. The current
DLT lib implementation supports Algorand, and uses the Algorand Java SDK39.

Infrastructure. The TIPS-Algorand Orchestrator is deployed in the Bank of Italy private cloud, just
like the PS. It has to directly reach the Algorand network: to this end it communicates with an
Algorand node hosted by Purestake through the public Internet. Finally, it also manages a wallet
for the Algorand blockchain, that is used to sign transactions, as we will detail later.

3.3.2 Algorand Atomic Transfer

This PoC implements an improved version of the protocol, which modifies the pre-signed transac-
tion used in the first step of the JITL DvP model. The pre-signed transaction is actually implemented
as a package of transactions, which are executed atomically on the Algorand DLT using its atomic
transfer functionality.

The DvP package is composed by a set of seven transactions, whose purpose is the transfer of
the assets and a Locked Liquidity ASA (LLA), representing reserved funds on the Algorand DLT:
• The first and the second ensure that Buyer and Seller are entitled to the ownership of the LLA

39 Algorand Java SDK: https://developer.algorand.org/docs/sdks/java/.

30

https://developer.algorand.org/docs/sdks/java/.

(opt-in);
• The third transfers the LLA, initially owned by the TIPS-Algorand Orchestrator in its own wallet,

to the Buyer;
• The fourth and the fifth transactions represent the actual DvP: they respectively transfers the LLA

from Buyer to Seller, and the assets from Seller to Buyer;
• The sixth transfers the LLA from Seller to the TIPS-Algorand Orchestrator;
• Finally, the seventh transaction destroys the LLA.
The package of the atomic transfer transactions is generated by the TIPS-Algorand Orchestrator
and initially signed only by Buyer and Seller. The partially signed package is transferred to the
Orchestrator (Step1), which will in turn sign the remaining unsigned transactions, just before
Buyer’s funds are reserved (Step2). Then, the Orchestrator broadcasts the final version of the
atomic transfer to the DLT nodes for confirmation (Step3). The actual transfer of the assets takes
place thanks to the fifth transaction, while all the other transactions are necessary to ensure that
the LLA circulates from TIPS-Algorand Orchestrator to Buyer, from Buyer to Seller, and from Seller
back to the Orchestrator, which finally destroys it. In this way, it is not possible to use the LLA
outside of a specific DvP. When the atomic transfer is processed by the DLT, the TIPS-Algorand
Orchestrator proceeds with the confirmation of the payment depending on the atomic transfer
result: the payment is performed only if the DLT successfully confirms all the transactions in the
atomic transfer.

The following diagram shows the details of the package of transactions composing the atomic
transfer just described, used in the PoC. The subscript at the end of each transaction indicates
the transaction sender, which coincides with its signer. The use of a LLA, and the package of
transactions in place of a single transaction that simply transfers the asset from Seller to Buyer,
further improves the security of the arrangement, because it always requires an additional signature
from the Orchestrator. A drawback of this approach is an increased complexity of the transaction,
that requires the use of an ASA.

Atomi cT r ansf er



Opt I nT x
{
asset : LLA

}
Buyer

Opt I nT x
{
asset : LLA

}
Sel l er

AssetT r ansf erT x

{
asset : LLA

r eceiver : Buyer

}
Or chest r at or

AssetT r ansf erT x

{
asset : LLA

r eceiver : Sel l er

}
Buyer

AssetT r ansf erT x

{
asset : asset

r eceiver : Buyer

}
Sel l er

AssetT r ansf erT x

{
asset : LLA

r eceiver : Or chest .

}
Sel l er

AssetDest r oyT x
{
asset : LLA

}
Or chest r at or

4 Tests and Results

In order to show the feasibility of the designed solutions and analyze some specific flows, the two
implemented DvP models were tested. Section 4.1 presents a suite of test cases evaluated for both
the DvP solutions: test cases investigate the normal operation (i.e., cooperative execution) as well
as exceptional flows (i.e., forced execution, forced cancellation, failures, duplicate requests).

To get a rough idea of the DvP solutions’ performances, Section 4.2 presents a simple derivation

31

of throughput and complexity of TIPS Hash-Link (T-HL) and TIPS-Algorand Just-in-time Locking
(TA-JITL). We combined this approach with systematic latency measurements, aiming at reaching
robust conclusions regarding performances.

4.1 Test scenarios
For TA-JITL the tests mainly covered the TIPS Gateway component because it manages the whole
logic. In T-HL, instead, also the smart contract was tested, but in a separated way, because it is
thought to be independent and with a different ownership from the TIPS Gateway. Also complete
end-to-end tests were executed in both protocols. For T-HL they only covered the initialization
phase of all use cases and the final phases of forced use cases only: cooperative ones are based
upon an agreement between buyer and seller, external to TIPS, and then do not need the TIPS
Gateway intervention for the final phases.

Regarding the TIPS Gateway, the designed test scenarios depend on the available operations
offered by the specific integration model. Since the two models are different, also the test cases
need to be different. In particular, for the Hash-Link protocol, the test scenarios depend on the
following operations: initialization, payment, forced execution and forced cancellation. For the TA-
JITL protocol, instead, the test scenarios are restricted to three operations: initialization, execution
and cancellation. The only common element is the way the tests were executed. In order to facilitate
this step an ad-hoc software module was developed. It is written in Java and provides a controller
that exposes a set of APIs that allow to manage the several flows to be tested. It orchestrates the
invocations to the Buyer and Seller, triggering the needed actions time after time.

Tables 2 and 3 list the test cases executed for Hash-Link and Just-In-Time Locking respectively.
The first column contains a brief description of the scenario, the “Initial state” column is the set of
the conditions that has to be met before the event specified in the column “Action” is triggered, and
in the “Expected result” column is described what has to happen in order for the test to complete
without errors.

Table 2. Hash-Link test cases.

Scenario Initial state Action Expected result

Bad init - init, wrong data Error: operation not permitted
Good init - init New DvP generated, hashed preimages returned
Bad cancellation after init init forced cancellation before timelock Error, no preimage returned
Execution after init init + no pay forced execution Error, no preimage returned
Good cancellation after init init + no pay forced cancellation after timelock Cancellation preimage returned
Pay init pay (before timelock) Payment forwarded to TIPS, result returned
Pay after timelock init pay (after timelock) Error, payment rejected
Double payment init + pay pay Error, payment rejected
Cancellation after pay init + pay forced cancellation Error, no preimage returned
Execution after pay init + pay forced execution Execution preimage returned
Cancellation after execution init + pay + execution forced cancellation Error, no preimage returned
Double execution init + pay + execution forced execution Execution preimage returned
Pay after cancellation init + cancellation pay Error, payment rejected
Execution after cancellation init + cancellation forced execution Error, no preimage returned
Double cancellation init + cancellation forced cancellation Cancellation preimage returned
Execution after wrong pay in TIPS init + pay wrong datag in TIPS forced execution Error, no preimage returned

g This case evaluates the TIPS-Gateway ability to check whether the Buyer’s payment matches what was agreed in the DvP
initialization. Payment mismatches may occur if the Buyer maliciously performs the payment in TIPS directly, without
interacting with the TIPS-Gateway, which holds DvP-related information.

32

Table 3. Just-In-Time Locking test cases.

Scenario Initial state Action Expected result

Bad init - init, wrong data Error: operation not permitted
Good init - init New DvP generated, DLT transactions prepared
Bad cancellation after init init cancellation before timelock Error: operation not permitted
Good cancellation after init init cancellation after timelock Transactions deleted
Execution with cash-leg error init cash-leg error Error, data cleaned on TIPS and DLT
Execution with asset-leg error init asset-leg error Error, data cleaned on TIPS and DLT
Wrong execution after timelock init execution after timelock Error, reservation rejected
Execution init execution before timelock DvP executed on TIPS and DLT
Cancellation after execution init + execution cancellation Error: DvP in executed state
Double execution init + execution execution Error: DvP already executed
Execution after cancellation init + cancellation execution Error: DvP in cancelled state
Double cancellation init + cancellation cancellation Error: DvP already cancelled

Regarding the smart contract, two wallets, representing the Buyer and the seller, were created
in the Algorand TestNet40 and were used to exchange the assets on the DLT. The DLT operations
involving the two accounts and, for TIPS Hash-Link, the flows allowed by the smart contract were
validated using AlgoExplorer41 as counterproof. Moreover, the smart contract was also tested from
a security point of view, trying to manipulate it with a set of tampering attempts: all the executed
attempts failed, without compromising the smart contract and then the correctness of the nested
flows. More details about the smart contract can be found in Appendix A.

4.2 Results
The two solutions can be compared from a performance perspective. Every DLT has two key per-
formance indicators: block time and block size. The block time is the time between two consecutive
blocks confirmations, whereas the block size is the maximum number of transactions that can
be added in a single block. Currently the Algorand DLT has a block time (t) of 4.5 seconds and a
block size (k) of 5000 transactions.42 Neglecting the execution time and delays introduced by the
Buyer, Seller, and Interoperability Solution, the finalization of a DvP requires two blocks, both for
the T-HL solution and for the TA-JITL solution. As detailed in Section 3, the T-HL protocol requires
the execution of two Atomic Transfer operations: one for the HLC creation and another for the DvP
settlement; likewise, TA-JITL needs a block for the creation of the LLA; once the LLA is created, its
identifier can be included into the atomic transfer with asset exchange in a second block. Since
the first transaction (i.e., HLC or LLA creation) can be broadcasted immediately after (hence, with a
waiting time of t) or immediately before a block is published (with no waiting time): its average
approval time is therefore 1

2 t , with t the block time. To publish the second atomic transfer, it
is always necessary to wait at least for another block time t . Therefore, the average minimum
completion time C̄ (t) of the asset-leg settlement on the DLT is on average 3

2 t for both solutions:

C̄ (t) = 1

2
t + t (1)

Under the assumption that the DLT is not overloaded, and Buyer, Seller, and the Interoperability
Solutions are the only active actors participating in the DvP, the maximum DLT throughput can
be computed. The maximum throughput (T) of both the solutions depends on the number of
transactions (n) required for each DvP, the number of transactions the DLT can include in each

40 Algorand offers three public networks where the blockchain is deployed with different purposes: MainNet, TestNet, and
BetaNet (https://developer.algorand.org/docs/get-details/algorand-networks/). This PoC uses the TestNet, which allows
testing application with the current version of the protocol and realistic network conditions.

41 https://algoexplorer.io/
42 https://developer.algorand.org/docs/get-started/basics/why_algorand/#performance

33

https://developer.algorand.org/docs/get-details/algorand-networks/
https://algoexplorer.io/
https://developer.algorand.org/docs/get-started/basics/why_algorand/#performance

block k , and on the block time t , as follows:

T (k , t , n) = k

nt
(2)

Given that T-HL requires 6 transactions to complete a DvP, while TA-JITL requires 8 transaction,
from (3) follows that the former has a theoretic throughput that is 33% higher than the latter:

TT −HL (k , t , n) −TTA−J IT L (k , t , n)
TTA−J IT L (k , t , n)

=
k
6t −

k
8t

k
8t

=
1

3
∼ 33% (3)

Table 4 summarizes theoretic performance of the two DvP solutions: T-HL and TA-JITL. All the
calculations are theoretical, and strictly dependent on the Algorand block time t and block size n .
They however provide a meaningful estimation of the performances of the two solutions, since
the interactions with the DLT are the only parts of the schemes neither tunable nor scalable in the
scope of the current paper.

Table 4. Theoretic Performance of TIPS Hash-Link (T-HL) and TIPS-Algorand Just-in-time Locking (TA-JITL).

Performance Metric T − HL T A − J IT Lh

Average completion time (s) 6.75 6.75
Throughput (DvP/s) 185 139

h The implemented variant of the protocol was presented for its simplicity. Other definitions that reduce the number of
required transactions improving both performance metrics can be defined.

The improvement just of the blockchain parameters (k and t) would result in better performance
for the two DvP solutions, both in terms of minimum completion time and maximum throughput.

4.3 Discussion
While showing similar performance in terms of average completion time, T-HL results in higher
throughput; this is motivated by the usage of fewer transactions to complete the DvP with respect
to TA-JITL. The experiment outcome provides further confirmation of the opportunities offered by
the adoption of an API-based DvP with Hash-Link Contract model to solve cross-ledger DvPs while
keeping a low coupling with the DLT, as discussed in Section 2.

The experiment allowed also to compare the two solutions against the effort needed for their
realization. In addition to handling the life cycle of the DvP, the TA-JITL protocol requires the
development of a software component that has also to manage the wallet on the DLT and has to
operate a DLT node to execute operations on it. All these activities would be the responsibility of
developers and maintainers of the Interoperability Solution. The off-chain communication among
Buyer, Seller, and the trusted oracle could be offered as an additional feature of the Interoperability
Solution (e.g., offered by the TIPS Gateway as done in the experiment) or as a value-added third
party service. Also in the latter case, the Interoperability Solution needs to interact with the third
party, thus increasing its functioning responsibilities and workload. The TA-JITL solution is closely
intertwined with the Algorand DLT so as to make full use of the Algorand technical features and
constructs. Although interesting, this solution has some peculiarities that could be limiting in some
use cases (e.g., when the Interoperability Solution must not own a wallet).

Being a more general solution, T-HL promises an easy integration with other DLT technologies,
as it requires neither direct DLT interaction nor wallet management. This is a relevant key point for
a central bank that aims to preserve neutrality by not clinging to specific technologies or suppliers.
Nonetheless, T-HL assumes a solid definition of the HLC template, which is crucial to avoid DvP
threats or failures. To this end, HLC templates should be carefully developed, extensively tested,

34

and then conveniently secured. These activities could be performed by a third party service. The
PoC does not focus on the definition of a solid HLC template, being outside the responsibility of the
Interoperability Solution developers. Conversely, TA-JITL uses only simple DLT transactions, which
require the DvP actors to pay special attention only to the transactions to be signed. In a sense,
T-HL shifts the complexity of the asset-leg settlement on the smart contract definition instead of
the transaction orchestrations performed by TA-JITL.

5 Conclusions

This paper investigates different interoperability models for a cross-ledger DvP, between assets
residing on a DLT, and the cash residing on the ledger of a different payment system (e.g., operated by
a central bank, for settlement in central bank money). In particular, four DvP models are identified,
and classified according to whether the Interoperability Solution acts as a gateway for the payment
system, or as a DvP orchestrator between the payment system and the distributed ledger. The
different models are analyzed across different dimensions, including—among the others—the DLT
agnosticism, presence of a trusted DvP oracle, safety, liquidity efficiency, absence of a free option.
The analysis favored cash-leg locking efficiency - as money is exchanged more frequently than
assets - which should be achieved without any particular deterioration as the number of connected
DLTs increases.

Afterwards, the paper describes a detailed experiment, which instantiates the payment system
as TIPS (for providing the settlement services of the DvP cash-leg), and the DLT as the Algorand
blockchain (for regulating the asset-leg of the DvP). The experiment implements two PoC for two
different DvP models: TIPS Hash-Link is an instance of the API-based DvP with Hash-Link Contract
model; and TIPS-Algorand Just In Time Locking is an instance of the Orchestrated DvP with Just In
Time Locking model.

The experiment confirmed the feasibility of the chosen DvP models as viable solutions for
enabling interoperability between a DLT and the Eurosystem Market Infrastructures.43 For both
solutions, the ability to address a potentially extended use of digital asset management services
with central bank money settlement services has emerged. The flexibility offered by these models
allows them to be applied to retail business cases, taking into consideration the new ongoing
experiment being conducted with external market players, such as ABI44.

In the current context of growing interest in transactions involving the exchange of digital
assets—such as stablecoins, security tokens, non-fungible tokens and so on—this experiment
demonstrated a possible usage of central bank money for cash settlement. In particular, the
proposed implementations can effectively contribute to safer and more efficient settlement of
DvP trades, enabling interoperability with a wide array of DLT platforms—and different degrees of
integration effort compared to other already established approaches.

The implemented solutions preserve the atomic nature of a DvP transaction, building a “bridge”
between the DLT asset management platform and the central bank payment system. In accom-
plishing this task, this architecture offers the potential to standardize communications with DLTs
and, crucially, avoid the need to issue central bank money as cash tokens on DLTs—a key point of
other approaches—thus preserving the central bank’s control over the cash-leg of the DvP.

Adopting such approaches could offer the opportunity to build services capable to settle trans-
actions involving tokenized assets in central bank money, without influencing the TARGET infra-
structure, monetary policy, oversight, and financial stability, and, notably, without requiring any
change on the DLT side45. This approach would enable interoperability with DLTs, responding to

43 This in order to create a payment solution that complements “the existing” one, for assets and business cases currently not
managed by other TARGET Services (e.g., T2S) since issued or represented on a DLT.

44 ABI, Associazione Bancaria Italiana https://www.abi.it/Pagine/default.aspx
45 Changes to DLTs are usually difficult to apply especially considering their nature, their adoption, and consequently the

35

https://www.abi.it/Pagine/default.aspx

current market trends, in a comparatively shorter time frame than approaches requiring the defini-
tion of a native digital central bank money (i.e., a cash tokenization approach) on self or third-party
operated DLTs, which could better fit a medium or long term solution from the perspective of the
Eurosystem’s market infrastructures.

importance of getting the changes approved by the underlying communities.

36

References
4CB. (2019). Message Exchange Processing for TIPS (MEPT) (tech. rep.). International Organization for Stand-

ardization. https://www.ecb.europa.eu/paym/target/tips/profuse/shared/pdf/TIPS_MEPT_-
_Message_Exchange_Processing_for_TIPS_-_v1.2_final_rev.pdf

Arcese, M., Di Giulio, D. & Lasorella, V. (2021). Real-Time Gross Settlement systems: breaking the wall of
scalability and high availability. (2021-02). https://www.bancaditalia.it/pubblicazioni/mercati-
infrastrutture-e-sistemi-di-pagamento/approfondimenti/2021-002/N.2-MISP.pdf

Bank of Canada, TMX Group, Payments Canada, Accenture & R3. (2018). Jasper phase III: Securities Settlement
using Distributed Ledger Technology (tech. rep.). Payments Canada. https://www.payments.ca/sites/
default/files/jasper_phase_iii_whitepaper_final_0.pdf

Banque de France, BIS Innovation Hub, Swiss National Bank & a private sector consortium. (2021). Project
Jura: cross-border settlement using wholesale CBDC. https://www.bis.org/about/bisih/topics/cbdc/
jura.htm

BIS Innovation Hub, Swiss National Bank & SIX. (2018). Project Helvetia Phase I: Settling Tokenised Assets in
Central Bank Money (tech. rep.). BIS Innovation Hub. https://www.bis.org/publ/othp35.pdf

Buterin, V. (2014). A next-generation smart contract and decentralized application platform (tech. rep.). Eth-
ereum Foundation. https://ethereum.org/en/whitepaper/

Chen, J. & Micali, S. (2019). Algorand: A Secure and Efficient Distributed Ledger. Theoretical Computer Science,
777(100), 155–183. https://doi.org/10.1016/j.tcs.2019.02.001

Dang, Q. (2015). Secure Hash Standard. https://doi.org/10.6028/NIST.FIPS.180-4
Deutsche Börse, Deutsche Bundesbank & Germany’s Finance Agency. (2021). Dlt-based securities settlement in

central bank money successfully tested. https://www.bundesbank.de/en/press/press-releases/dlt-
based-securities-settlement-in-central-bank-money-successfully-tested-861444

Dworkin, M. (2015). Sha-3 standard: Permutation-based hash and extendable-output functions. https://doi.
org/10.6028/NIST.FIPS.202

ECB. (2010). The payment system. https://www.ecb.europa.eu/pub/pdf/other/paymentsystem201009en.pdf
ECB. (2022a). Glossary: Delivery versus payment. https://www.ecb.europa.eu/services/glossary/html/glossd.

en.html
ECB. (2022b). Securities trading, clearing and settlement. https://www.ecb.europa.eu/stats/payment_

statistics/securities/html/index.en.html
IBM. (2022). What are smart contracts on blockchain? https://www.ibm.com/topics/smart-contracts
MAS, SGX, Anquan Capital, Deloitte & Nasdaq. (2018). Delivery versus Payment on Distributed Ledger Tech-

nologies: Project Ubin (tech. rep.). Monetary Authority of Singapore. https://www.mas.gov.sg/-
/media/MAS/ProjectUbin/Project-Ubin-DvP-on-Distributed-Ledger-Technologies.pdf

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review, 9. https:
//bitcoin.org/bitcoin.pdf

Poon, J. & Dryja, T. (2016). The bitcoin lightning network: Scalable off-chain instant payments (tech. rep.).
Lightning Network. https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_
smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf

Project Stella. (2018). Securities Settlement Systems: Delivery-Versus-Payment in a Distributed Ledger Environ-
ment (tech. rep.). European Central Bank and Bank of Japan. https://www.ecb.europa.eu/pub/pdf/
other/stella_project_report_march_2018.pdf

Renzetti, M., Bernardini, S., Marino, G., Mibelli, L., Ricciardi, L. & Sabelli, G. M. (2021). TIPS - TARGET Instant
Payment Settlement Il sistema europeo per il regolamento dei pagamenti istantanei. Markets, In-
frastructures, Payment Systems, (2021-01). https://www.bancaditalia.it/pubblicazioni/mercati-
infrastrutture-e-sistemi-di-pagamento/questioni-istituzionali/2021-001/MIS-20210129.pdf

Urbinati, E., Belsito, A., Cani, D., Caporrini, A., Capotosto, M., Folino, S., Galano, G., Goretti, G., Marcelli, G., Tiberi,
P. & Vita, A. (2021). A digital euro: a contribution to the discussion on technical design choices. Markets,
Infrastructures, Payment Systems, (2021-10). https://www.bancaditalia.it/pubblicazioni/mercati-
infrastrutture-e-sistemi-di-pagamento/questioni-istituzionali/2021-010/N.10-MISP.pdf

37

https://www.ecb.europa.eu/paym/target/tips/profuse/shared/pdf/TIPS_MEPT_-_Message_Exchange_Processing_for_TIPS_-_v1.2_final_rev.pdf
https://www.ecb.europa.eu/paym/target/tips/profuse/shared/pdf/TIPS_MEPT_-_Message_Exchange_Processing_for_TIPS_-_v1.2_final_rev.pdf
https://www.bancaditalia.it/pubblicazioni/mercati-infrastrutture-e-sistemi-di-pagamento/approfondimenti/2021-002/N.2-MISP.pdf
https://www.bancaditalia.it/pubblicazioni/mercati-infrastrutture-e-sistemi-di-pagamento/approfondimenti/2021-002/N.2-MISP.pdf
https://www.payments.ca/sites/default/files/jasper_phase_iii_whitepaper_final_0.pdf
https://www.payments.ca/sites/default/files/jasper_phase_iii_whitepaper_final_0.pdf
https://www.bis.org/about/bisih/topics/cbdc/jura.htm
https://www.bis.org/about/bisih/topics/cbdc/jura.htm
https://www.bis.org/publ/othp35.pdf
https://ethereum.org/en/whitepaper/
https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.6028/NIST.FIPS.180-4
https://www.bundesbank.de/en/press/press-releases/dlt-based-securities-settlement-in-central-bank-money-successfully-tested-861444
https://www.bundesbank.de/en/press/press-releases/dlt-based-securities-settlement-in-central-bank-money-successfully-tested-861444
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://www.ecb.europa.eu/pub/pdf/other/paymentsystem201009en.pdf
https://www.ecb.europa.eu/services/glossary/html/glossd.en.html
https://www.ecb.europa.eu/services/glossary/html/glossd.en.html
https://www.ecb.europa.eu/stats/payment_statistics/securities/html/index.en.html
https://www.ecb.europa.eu/stats/payment_statistics/securities/html/index.en.html
https://www.ibm.com/topics/smart-contracts
https://www.mas.gov.sg/-/media/MAS/ProjectUbin/Project-Ubin-DvP-on-Distributed-Ledger-Technologies.pdf
https://www.mas.gov.sg/-/media/MAS/ProjectUbin/Project-Ubin-DvP-on-Distributed-Ledger-Technologies.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://www.ecb.europa.eu/pub/pdf/other/stella_project_report_march_2018.pdf
https://www.ecb.europa.eu/pub/pdf/other/stella_project_report_march_2018.pdf
https://www.bancaditalia.it/pubblicazioni/mercati-infrastrutture-e-sistemi-di-pagamento/questioni-istituzionali/2021-001/MIS-20210129.pdf
https://www.bancaditalia.it/pubblicazioni/mercati-infrastrutture-e-sistemi-di-pagamento/questioni-istituzionali/2021-001/MIS-20210129.pdf
https://www.bancaditalia.it/pubblicazioni/mercati-infrastrutture-e-sistemi-di-pagamento/questioni-istituzionali/2021-010/N.10-MISP.pdf
https://www.bancaditalia.it/pubblicazioni/mercati-infrastrutture-e-sistemi-di-pagamento/questioni-istituzionali/2021-010/N.10-MISP.pdf

Appendices
A Hash-Link Contract: Implementation Details

This appendix aims to show the structure of the HLC smart contract and describes how the execution
result of each phase is displayed on AlgoExplorer, a tool for browsing blocks of the Algorand
blockchain. Below is shown the main section of the smart contract template.

1 return \
2 Seq([
3 Cond([
4 Global.group_size () == Int(3),
5 Assert(Or(prepare_checks ,
6 cooperative_exec_checks ,
7 cooperative_refnd_checks ,
8 forced_exec_checks ,
9 forced_refnd_checks ,))

10],),
11 assert_security_check (),
12 Approve (),
13])

Listing 1. HLC: main condition

The source code in Listing 1 shows that the HLC smart contract returns an “approve” only if it is
involved in one of the five expected scenarios: Prepare, CooperativeExecution, CooperativeCancel-
lation, ForcedExecution, or ForcedCancellation.

A.1 Prepare phase
The following code section represents which checks are performed by the HLC in order to detect
and approve a valid prepare phase.

1 prepare_at_checks = And(
2 Global.group_size () == Int(3),
3 Gtxn [0]. type_enum () == TxnType.Payment ,
4 Gtxn [1]. type_enum () == TxnType.AssetTransfer ,
5 Gtxn [2]. type_enum () == TxnType.AssetTransfer ,
6)
7 prepare_participants_checks = And(
8 Gtxn [0]. sender () == seller ,
9 Gtxn [2]. sender () == seller ,

10 Gtxn [0]. receiver () == Gtxn [2]. asset_receiver (),
11 Gtxn [0]. receiver () == Gtxn [1]. asset_receiver (),
12 Gtxn [1]. sender () == Gtxn [1]. asset_receiver (), # opt -in tx
13)
14 prepare_assets_checks = And(
15 Gtxn [0]. amount () >= Int(min_funding_amount),
16 Gtxn [1]. xfer_asset () == asset ,
17 Gtxn [1]. asset_amount () == Int(0), # opt -in tx
18 Gtxn [2]. xfer_asset () == asset ,
19 Gtxn [2]. asset_amount () == Int(1),
20)
21 prepare_checks = And(
22 prepare_at_checks ,
23 prepare_participants_checks ,
24 prepare_assets_checks ,
25)

Listing 2. HLC: prepare checks

38

In particular, three kind of checks are performed:
1. The atomic transfer-related checks (prepare_at_checks): it expects an atomic transfer made of

three transactions; the first is a Payment transaction, the second and the third are AssetTransfer
transactions.

2. The participant-related checks (prepare_participants_checks): it expects that the sender
addresses of the first and the third transactions are equal to the Seller address, and that the
remaining addresses are equal to the HLC one. The logic executes, substantially, the following
chain of equality:

T x [0] .r eceiver == T x [2] .r eceiver == T x [1] .r eceiver == T x [1] .sender

Note that, even if the HLC address is not explicitly checked, we can infer that it is present into
T x [1] .sender , since the HLC logic has been triggered. All the transaction parties are then either
explicitly or implicitly validated.

3. The assets-related checks (prepare_assets_checks): here the focus is on the ASA identifier
(asset id), to be used in the second and third transaction, respectively with an amount of 0
(opt-in semantics) and 1. The first check is related to the minimum amount of Algos the HLC
needs in order to complete the DvP through one of the four foreseen finalization phases.

Funding amount

Currently, the funding amount check is hardcoded to 0.201 Algos (row 15 of Listing 2). This
value represents the minimum amount of Algos necessary to the HLC to be able to execute
the steps foreseen by the protocol.
The smart contract must be able to cover the fees associated with the operations it will
have to carry out, and must own the minimum balance required by the Algorand DLT to
operate. Every account, in order to be able to issue a transaction, must have a balance of
0.1 Algos, plus 0.1 Algos for each asset holding. Since the HLC, after the execution of the
prepare phase, owns one ASA, its balance must never go under 0.2 Algos.
The HLC performs exactly three operations: an opt-in, during the prepare phase, an asset
transfer and a pay, during the finalization phase. The execution of each of these opera-
tions costs 0.001 Algos. Then, after the prepare phase the HLC balance goes from 0.201

to 0.200 Algos, while after the finalization phase the balance is 0.198 Algos. This seems
to violate the check on the minimum balance just described, but this is not the case: the
check is not performed when an account is going to be closed. In particular, the finalization
phase consists of an atomic transfer where the pay transaction (third transaction) has the
"cl ose_r emai nder _t o" field set, which requires to close the HLC account, transferring all
the remaining funds to the Seller. This is the reason why the amount of this pay transaction
is 0 Algos. The close operation would be permitted only if the account does not own any
ASA. To delete the ASA, the AssetTransfer Transaction (second transaction of the atomic
transfer) has the "asset_cl ose_t o" field set: it tells Algorand that the account does not
want to hold and receive assets of the type specified inside the transaction. This action is
also known as "opt-out", and leads to a reduction of the account minimum balance (the
opposite of what happens with the "opt-in" operation).

Figure 8 shows the HLC account after a prepare phase is concluded. It shows the HLC balance of
0.2 Algos and 1 BOND and the 3 transactions which constitute the Atomic Transfer. Inspecting one
of the three transactions it is visible also the "Gr oup ID" of the Atomic Transfer (Figure 9).

39

Figure 8. The prepare phase on AlgoExplorer.

40

Figure 9. The prepare phase on AlgoExplorer: Detail of a transaction including the Group ID of the atomic
transfer.

A.2 Finalization phases
This section describes the checks that the HLC performs in order to detect and approve a valid
request of DvP finalization phase: Listing 3 for the cooperativeExecution, Listing 4 for the cooperat-
iveCancellation, Listing 5 for the forcedExecution and Listing 6 for the forcedCancellation.

The approach is very similar to the one seen in the prepare phase (Section A.1). The checks
are performed in lines 9 and 20–22 of Listing 3 (and lines 3 and 15–17 of Listings 4, 5, and 6, as
well). The first validates the note field of the first transaction: it must contain the expected DvP
identifier (i.e., TIPS_GW_TX_ID) and the expected command to execute (i.e., bilateral execution
"Bx", bilateral cancellation "Br", forced execution "Ux", or forced cancellation "Ur") depending
on the finalization phase scenario). The second checks relate to the closeRemainderTo and
assetCloseTo transaction fields: these validations checks aim to avoid unwanted appropriation
of assets or funds. For the ForcedExecution (ForcedCancellation), line 4 of Listing 5 (Listing 6) defines
the validation checks for the provided exeuction preimage (cancellation preimage).

Figures 10, 12, 14 and 17 shows the HLC account after the conclusion of the respective finalization
phase. It is visible the balance of the HLC, empty for both funds and assets.

The three transactions on the top of the table are related to the finalization phase, whereas the
three at the bottom to the prepare phase. Following the order, row 3 includes the pay transaction
with the command (details respectively in Figures 11, 13, 15 and 18); row 2 includes the asset
transfer to the correct party and the opt-out of the HLC from the asset; at row 1 includes the HLC
account cancellation. In Figures 16 and 19 it is visible respectively the execution and the cancellation

41

preimages passed into the note field of the second transaction.
1 bx_at_checks = And(
2 Global.group_size () == Int(3),
3 Gtxn [0]. type_enum () == TxnType.Payment ,
4 Gtxn [1]. type_enum () == TxnType.AssetTransfer ,
5 Gtxn [2]. type_enum () == TxnType.Payment ,
6)
7 bx_asset_checks = And(
8 Gtxn [0]. amount () == Int (0),
9 BytesEq(Gtxn [0]. note(), Concat(tips_tx_id , Bytes("|Bx"))),

10 Gtxn [1]. xfer_asset () == asset ,
11 Gtxn [1]. asset_amount () == Int(1),
12 Gtxn [2]. amount () == Int (0),
13)
14 bx_participants_checks = And(
15 Gtxn [0]. sender () == seller ,
16 Gtxn [1]. asset_receiver () == buyer ,
17 Gtxn [0]. receiver () == Gtxn [1]. sender (),
18 Gtxn [0]. receiver () == Gtxn [2]. sender (),
19 Gtxn [2]. receiver () == seller ,
20 Gtxn [0]. close_remainder_to () == Global.zero_address (),
21 Gtxn [1]. asset_close_to () == buyer ,
22 Gtxn [2]. close_remainder_to () == seller ,
23)
24 cooperative_exec_checks = And(
25 bx_at_checks ,
26 bx_asset_checks ,
27 bx_participants_checks ,
28)

Listing 3. HLC: cooperative execution checks

42

Figure 10. The cooperative execution on AlgoExplorer.

43

Figure 11. The cooperative execution on AlgoExplorer: Details of a transaction including the atomic transfer
Group Id and notes.

1 br_asset_checks = And(
2 Gtxn [0]. amount () == Int (0),
3 BytesEq(Gtxn [0]. note(), Concat(tips_tx_id , Bytes("|Br"))),
4 Gtxn [1]. xfer_asset () == asset ,
5 Gtxn [1]. asset_amount () == Int(1),
6 Gtxn [2]. amount () == Int (0),
7)
8

9 br_participants_checks = And(
10 Gtxn [0]. sender () == buyer ,
11 Gtxn [1]. asset_receiver () == seller ,
12 Gtxn [0]. receiver () == Gtxn [1]. sender (),
13 Gtxn [0]. receiver () == Gtxn [2]. sender (),
14 Gtxn [2]. receiver () == seller ,
15 Gtxn [0]. close_remainder_to () == Global.zero_address (),
16 Gtxn [1]. asset_close_to () == seller ,
17 Gtxn [2]. close_remainder_to () == seller ,
18)
19

20 cooperative_refnd_checks = And(

44

21 bx_at_checks ,
22 br_asset_checks ,
23 br_participants_checks ,
24)

Listing 4. HLC: cooperative cancellation checks

Figure 12. The cooperative cancellation on AlgoExplorer.

45

Figure 13. The cooperative cancellation on AlgoExplorer: Details of a transaction including the atomic transfer
Group ID and notes.

1 ux_asset_checks = And(
2 Gtxn [0]. amount () == Int (0),
3 BytesEq(Gtxn [0]. note(), Concat(tips_tx_id , Bytes("|Ux"))),
4 Sha256(Gtxn [1]. note()) == exec_hash ,
5 Gtxn [1]. xfer_asset () == asset ,
6 Gtxn [1]. asset_amount () == Int(1),
7 Gtxn [2]. amount () == Int (0),
8)
9

10 ux_participants_checks = And(
11 Gtxn [0]. sender () == buyer ,
12 Gtxn [1]. asset_receiver () == buyer ,
13 Gtxn [0]. receiver () == Gtxn [1]. sender (),
14 Gtxn [0]. receiver () == Gtxn [2]. sender (),
15 Gtxn [2]. receiver () == seller ,
16 Gtxn [0]. close_remainder_to () == Global.zero_address (),
17 Gtxn [1]. asset_close_to () == buyer ,
18 Gtxn [2]. close_remainder_to () == seller ,
19)
20

46

21 forced_exec_checks = And(
22 bx_at_checks ,
23 ux_asset_checks ,
24 ux_participants_checks ,
25)

Listing 5. HLC: forced execution checks

Figure 14. The forced execution on AlgoExplorer.

47

Figure 15. The forced execution on AlgoExplorer: Details of the first transaction including the atomic transfer
Group ID and notes.

48

Figure 16. The forced execution on AlgoExplorer: Details of a second transaction with the execution preimage.

49

1 ur_asset_checks = And(
2 Gtxn [0]. amount () == Int (0),
3 BytesEq(Gtxn [0]. note(), Concat(tips_tx_id , Bytes("|Ur"))),
4 Sha256(Gtxn [1]. note()) == rfnd_hash ,
5 Gtxn [1]. xfer_asset () == asset ,
6 Gtxn [1]. asset_amount () == Int(1),
7 Gtxn [2]. amount () == Int (0),
8)
9

10 ur_participants_checks = And(
11 Gtxn [0]. sender () == seller ,
12 Gtxn [1]. asset_receiver () == seller ,
13 Gtxn [0]. receiver () == Gtxn [1]. sender (),
14 Gtxn [0]. receiver () == Gtxn [2]. sender (),
15 Gtxn [2]. receiver () == seller ,
16 Gtxn [0]. close_remainder_to () == Global.zero_address (),
17 Gtxn [1]. asset_close_to () == seller ,
18 Gtxn [2]. close_remainder_to () == seller ,
19)
20

21 forced_refnd_checks = And(
22 bx_at_checks ,
23 ur_asset_checks ,
24 ur_participants_checks ,
25)

Listing 6. HLC: forced cancellation checks

50

Figure 17. The forced cancellation on AlgoExplorer.

51

Figure 18. The forced cancellation on AlgoExplorer: Detail of first transaction including the atomic transfer
Group ID and notes.

52

Figure 19. The forced cancellation on AlgoExplorer: Detail of second transaction including the cancellation
preimage.

53

A.3 Global security checks
In addition to all checks previously described, there are further ones that must always be carried
out on every transaction interacting with the HLC, regardless of the use case. In the context of the
current work, two important ones have been identified.

1 ...
2 max_fee = 1000
3 ...
4

5 @Subroutine(TealType.none)
6 def assert_security_check ():
7 i = ScratchVar(TealType.uint64)
8 return Seq([
9 For(i.store(Int (0)), i.load() < Global.group_size (), i.store(i.load()

+ Int(1))).Do(
10 Assert(And(
11 Gtxn[i.load()].fee() <= Int(max_fee),
12 Gtxn[i.load()]. rekey_to () == Global.zero_address (),
13))
14)
15])

Listing 7. HLC: global security checks

The first enforces, on each transaction, a fixed fee46, set to the minimum fee of the Algorand DLT.
This control ensures that the HLC can never go out of funds due to outbound transactions with
unexpected high fees set. This avoids Denial of Service scenarios where the DvP cannot complete
due to HLC lack of funds. Otherwise, this kind of attack would lead to the situation where the Seller
obtains the payment, but the Buyer does not obtain the asset, which remains locked inside the
HLC.

It is also checked that rekey47 field is always unset. The rekey address has a permanent
delegation semantics: if an account A1 issues a transaction with the rekey address set to the
address A2, the Algorand DLT will start accepting transactions spending assets or funds owned by
the account A1, signed with the private key associated to A2. This feature is particularly dangerous
if used by a HLC address acting as escrow. In fact, rekeying the HLC address would lead to the theft
of the assets and funds deposited within it.

B TIPS Gateway API detail

B.1 Documentation
The API documentation describes all the services offered by the interface with a detailed description
of how to use them, aiming to cover everything a customer would need to know for practical
purposes.

Documentation is crucial for the development and maintenance of applications using the APIs.
For this reason, the designed API has been documented using Swagger48, which presents, for each
endpoint, the following information:
• the method;
• the XML business payload through the XSD definition, an explanation of the semantic applied

and a description on how to populate the needed fields;
• an example of the business payload, applied to the specific business context.

46 https://developer.algorand.org/docs/get-details/transactions/transactions/#common-fields-header-and-type
47 https://developer.algorand.org/docs/get-details/accounts/rekey/
48 https://swagger.io/

54

https://developer.algorand.org/docs/get-details/transactions/transactions/#common-fields-header-and-type
https://developer.algorand.org/docs/get-details/accounts/rekey/
https://swagger.io/

This approach has been adopted for all the TIPS Gateway functionalities exposes through APIs.

B.1.1 TIPS Gateway Endpoints

DvP initiation

Path /v0/init
Method POST
Caller Seller
Details Asynchronously triggers the generation of a TIPS Transaction ID and of two preimages H(R) and H(R’)
Request body pain.009.001.06 - MandateInitiationRequest
Response code 202

Payment

Path /v0/instruct-payment
Method POST
Caller Buyer
Details Called by the buyer to instruct the payment of the TIPS transaction with the given Transaction ID
Request body pacs.008.001.02 - FIToFICustomerCreditTransfer
Response code 202

Forced cancellation

Path /v0/refund
Method POST
Caller Seller
Details Enables the seller to ask TIPS Gateway to disclose the secret R’ used in the forced cancellation scenario
Request body pain.013.001.08 - CreditorPaymentActivationRequest
Response code 202

Forced execution

Path /v0/execute
Method POST
Caller Buyer
Details Enables the buyer to ask TIPS Gateway to disclose the secret R used in the forced execution scenario
Request body pain.013.001.08 - CreditorPaymentActivationRequest
Response code 202

B.1.2 Buyer and Seller Endpoints

DvP initiation answer

Path /v0/init-answer
Method POST
Caller TIPS Gateway
Details Receives the answer of the DVP initialization
Request body pain.012.001.06 - MandateAcceptanceReport
Response code 204

55

Payment answer

Path /v0/instruct-payment-answer
Method POST
Caller TIPS Gateway
Details Receives the answer of a payment instruction
Request body pacs.002.001.03 - FIToFIPaymentStatusReport
Response code 204

Forced cancellation answer

Path /v0/refund-answer
Method POST
Caller TIPS Gateway
Details Receives the answer of the forced cancellation
Request body pain.014.001.08 - CreditorPaymentActivationRequestStatusReport
Response code 204

Forced execution answer

Path /v0/execute-answer
Method POST
Caller TIPS Gateway
Details Receives the answer of the forced execution
Request body pain.014.001.08 - CreditorPaymentActivationRequestStatusReport
Response code 204

B.2 Example
To better understand how the API documentation has been structured with Swagger, the following
example describes in detail the Forced execution case of TIPS Hash-Link.

56

B.2.1 Data constellation

Figure 20. Data constellation

B.2.2 Actors

• The seller (Alice) owns the asset A in the DLT network. She wants to sell the asset reaching the
final settlement of the cash leg in TIPS. Her bank is BCITITMMXXX;

• The buyer (Bob) wants to buy the asset A. At the end of the DvP, every party of the DLT network
recognize it as the new owner of the asset A. His bank is UNCRITMMXXX;

B.2.3 Scenario

With the Forced execution functionality, Bob asks TIPS Gateway to disclose the execution preimage R
(e.g., its value isE9873D79C6D87DC0FB6A5778633389F4453213303DA61F20BD67FC233AA33262).
The TIPS Gateway releases R if and only if the cash-leg of the DVP has already been settled in TIPS.
Providing the execution preimage R to the HLC, the asset A ownership is transferred to Bob, thus
successfully terminating the DvP.

B.2.4 TIPS Gateway Endpoint

POST /v0/execute
Required Request Body
Based on ISO20022 pain.013.001.08 - CreditorPaymentActivationRequest message, with the following
usages for fields with main business importance:

57

Field Name Description XML path Mand. Usage

Number of trans-
actions

Number of transactions car-
ried out by the message

/Document/CdtrPmtActvtnReq/GrpHdr/NbOfTxs Yes Fixed value 1

Buyer BIC BIC of the party who sent
the message

/Document/CdtrPmtActvtnReq/GrpHdr/InitgPty
/Id/OrgId/AnyBIC

Yes Debtor/Buyer, in
case of forced ex-
ecution

Requested action Type of the action requested /Document/CdtrPmtActvtnReq/PmtInf/PmtTpInf
/CtgyPurp/Prtry

Yes “EXE” for forced
execution

Transaction ID TIPS Transaction Identifica-
tion

/Document/CdtrPmtActvtnReq/PmtInf/CdtTrfTx /P-
mtId/InstrId

Yes

End to End Identi-
fication

End to End Identification /Document/CdtrPmtActvtnReq/PmtInf/CdtTrfTx /P-
mtId/EndToEndId

Yes Not used in the
forced execution
processing

XML body example:
1 <?xml version="1.0" encoding="UTF -8"?>
2 <Document xmlns="urn:iso:std:iso:20022:tech:xsd:pain .013.001.08" xmlns:xsi="

http: //www.w3.org /2001/ XMLSchema -instance">
3 <CdtrPmtActvtnReq >
4 <GrpHdr >
5 <MsgId >001</MsgId>
6 <CreDtTm >2020 -12 -20 T22:30:00 .00Z</CreDtTm >
7 <NbOfTxs >1</NbOfTxs >
8 <InitgPty >
9 <Id>

10 <OrgId >
11 <AnyBIC >UNCRITMMXXX </AnyBIC >
12 </OrgId >
13 </Id>
14 </InitgPty >
15 </GrpHdr >
16 <PmtInf >
17 <PmtMtd >TRF</PmtMtd >
18 <PmtTpInf >
19 <CtgyPurp >
20 <Prtry >EXE</Prtry>
21 </CtgyPurp >
22 </PmtTpInf >
23 <ReqdExctnDt >
24 <Dt>2020 -12 -20</Dt>
25 </ReqdExctnDt >
26 <Dbtr>
27 <Id>
28 <OrgId >
29 <AnyBIC >UNCRITMMXXX </AnyBIC >
30 </OrgId >
31 </Id>
32 </Dbtr>
33 <DbtrAgt >
34 <FinInstnId >
35 <BICFI >UNCRITMMXXX </BICFI>
36 </FinInstnId >
37 </DbtrAgt >
38 <CdtTrfTx >
39 <PmtId>
40 <InstrId >Q6XOVDKD1M2K00QPLND4RWD2ZNQU4XR4C1 </InstrId >
41 <EndToEndId >NONREF </EndToEndId >
42 </PmtId >
43 <Amt>
44 <InstdAmt Ccy="EUR">10000</InstdAmt >

58

45 </Amt>
46 <ChrgBr >SLEV</ChrgBr >
47 <CdtrAgt >
48 <FinInstnId/>
49 </CdtrAgt >
50 <Cdtr/>
51 </CdtTrfTx >
52 </PmtInf >
53 </CdtrPmtActvtnReq >
54 </Document >

Response: 202 - Asynchronous request accepted. The result, when ready, will be sent to cus-
tomer endpoint

B.2.5 Buyer endpoint

POST /v0/execute-answer
Required Request Body
Based on ISO20022 pain.014.001.08 - CreditorPaymentActivationRequestStatusReport message,
with the following usages for fields with main business importance:

Field Name Description XML path Mand. Usage

Request result Result of the requested ac-
tion

/Document/CdtrPmtActvtnReqStsRpt /OrgnlPmtIn-
fAndSts/TxInfAndSts/StsRsnInf/Rsn/Prtr

Yes “ACCP” for accep-
ted, “RJCT” for re-
jected

Secret Returned secret Document/CdtrPmtActvtnReqStsRpt /OrgnlPmtIn-
fAndSts/TxInfAndSts/StsRsnInf/AddtlInf

No Secret R, in case
of accepted
forced execution
answer

XML body example:
1 <?xml version="1.0" encoding="UTF -8"?>
2 <Document xmlns="urn:iso:std:iso:20022:tech:xsd:pain .014.001.08" xmlns:xsi="

http: //www.w3.org /2001/ XMLSchema -instance">
3 <CdtrPmtActvtnReqStsRpt >
4 <GrpHdr >
5 <MsgId >005</MsgId>
6 <CreDtTm >2020 -12 -20 T22:30:00 .00Z</CreDtTm >
7 <InitgPty/>
8 </GrpHdr >
9 <OrgnlGrpInfAndSts >

10 <OrgnlMsgId >002</OrgnlMsgId >
11 <OrgnlMsgNmId >pain .013.001.08 </OrgnlMsgNmId >
12 </OrgnlGrpInfAndSts >
13 <OrgnlPmtInfAndSts >
14 <OrgnlPmtInfId >NONREF </OrgnlPmtInfId >
15 <TxInfAndSts >
16 <StsRsnInf >
17 <Rsn>
18 <Prtry>ACCP</Prtry>
19 </Rsn>
20 <AddtlInf >

DWGDSAYY0OMOISPWWUGTUTKMGRVBPWXY9XN8ACDFBF1HXZUNZZUQEXMYFAYZJBF1 </AddtlInf
>

21 </StsRsnInf >
22 </TxInfAndSts >
23 </OrgnlPmtInfAndSts >
24 </CdtrPmtActvtnReqStsRpt >
25 </Document >

59

Response: 204 - Message received.

60

PaPers Published in the ‘Markets, infrastructures, PayMent systeMs’ series

n. 1 TIPS - TARGET Instant Payment Settlement – The Pan-European Infrastructure for the
Settlement of Instant Paymentsi, by Massimiliano Renzetti, Serena Bernardini, Giuseppe
Marino, Luca Mibelli, Laura Ricciardi and Giovanni M. Sabelli (InstItutIonal Issues)

n. 2 Real-Time Gross Settlement systems: breaking the wall of scalability and high availability,
by Mauro Arcese, Domenico Di Giulio and Vitangelo Lasorella (ReseaRch PaPeRs)

n. 3 Green Bonds: the Sovereign Issuers’ Perspective, by Raffaele Doronzo, Vittorio Siracusa and
Stefano Antonelli (ReseaRch PaPeRs)

n. 4 T2S - TARGET2-Securities – The pan-European platform for the settlement of securities in
central bank money, by Cristina Mastropasqua, Alessandro Intonti, Michael Jennings, Clara
Mandolini, Massimo Maniero, Stefano Vespucci and Diego Toma (InstItutIonal Issues)

n. 5 The carbon footprint of the Target Instant Payment Settlement (TIPS) system: a comparative
analysis with Bitcoin and other infrastructures, by Pietro Tiberi (ReseaRch PaPeRs)

n. 6 Proposal for a common categorisation of IT incidents, by Autorité de Contrôle Prudentiel et
de Résolution, Banca d’Italia, Commissione Nazionale per le Società e la Borsa, Deutsche
Bundesbank, European Central Bank, Federal Reserve Board, Financial Conduct Authority,
Ministero dell’Economia e delle Finanze, Prudential Regulation Authority, U.S. Treasury
(InstItutIonal Issues)

n. 7 Inside the black box: tools for understanding cash circulation, by Luca Baldo, Elisa Bonifacio,
Marco Brandi, Michelina Lo Russo, Gianluca Maddaloni, Andrea Nobili, Giorgia Rocco,
Gabriele Sene and Massimo Valentini (ReseaRch PaPeRs)

n. 8 The impact of the pandemic on the use of payment instruments in Italy, by Guerino Ardizzi,
Alessandro Gambini, Andrea Nobili, Emanuele Pimpini and Giorgia Rocco (ReseaRch PaPeRs)
(in Italian)

n. 9 TARGET2 – The European system for large-value payments settlement, by Paolo Bramini,
Matteo Coletti, Francesco Di Stasio, Pierfrancesco Molina, Vittorio Schina and Massimo
Valentini (InstItutIonal Issues) (in Italian)

n. 10 A digital euro: a contribution to the discussion on technical design choices, by Emanuele Urbinati,
Alessia Belsito, Daniele Cani, Angela Caporrini, Marco Capotosto, Simone Folino, Giuseppe
Galano, Giancarlo Goretti, Gabriele Marcelli, Pietro Tiberi and Alessia Vita (InstItutIonal Issues)

n. 11 From SMP to PEPP: a further look at the risk endogeneity of the Central Bank, by Marco
Fruzzetti, Giulio Gariano, Gerardo Palazzo and Antonio Scalia (ReseaRch PaPeRs)

n. 12 TLTROs and collateral availability in Italy, by Annino Agnes, Paola Antilici and Gianluca
Mosconi (ReseaRch PaPeRs) (in Italian)

n. 13 Overview of central banks' in-house credit assessment systems in the euro area, by Laura
Auria, Markus Bingmer, Carlos Mateo Caicedo Graciano, Clémence Charavel, Sergio Gavilá,
Alessandra Iannamorelli, Aviram Levy, Alfredo Maldonado, Florian Resch, Anna Maria Rossi
and Stephan Sauer (InstItutIonal Issues)

n. 14 The strategic allocation and sustainability of central banks' investment, by Davide Di Zio,
Marco Fanari, Simone Letta, Tommaso Perez and Giovanni Secondin (ReseaRch PaPeRs) (in Italian)

n. 15 Climate and environmental risks: measuring the exposure of investments, by Ivan Faiella,
Enrico Bernardini, Johnny Di Giampaolo, Marco Fruzzetti, Simone Letta, Raffaele Loffredo
and Davide Nasti (ReseaRch PaPeRs)

n. 16 Cross-Currency Settlement of Instant Payments in a Multi-Currency Clearing and Settlement
Mechanism, by Massimiliano Renzetti, Fabrizio Dinacci and Ann Börestam (ReseaRch PaPeRs)

n. 17 What’s ahead for euro money market benchmarks?, by Daniela Della Gatta (InstItutIonal

Issues) (in Italian)

n. 18 Cyber resilience per la continuità di servizio del sistema finanziario, by Boris Giannetto
and Antonino Fazio (InstItutIonal Issues) (in Italian)

n. 19 Cross-Currency Settlement of Instant Payments in a Cross-Platform Context: a Proof of
Concept, by Massimiliano Renzetti, Andrea Dimartina, Riccardo Mancini, Giovanni Sabelli,
Francesco Di Stasio, Carlo Palmers, Faisal Alhijawi, Erol Kaya, Christophe Piccarelle, Stuart
Butler, Jwallant Vasani, Giancarlo Esposito, Alberto Tiberino and Manfredi Caracausi
(ReseaRch PaPeRs)

n. 20 Flash crashes on sovereign bond markets – EU evidence, by Antoine Bouveret, Martin
Haferkorn, Gaetano Marseglia and Onofrio Panzarino (ReseaRch PaPeRs)

n. 21 Report on the payment attitudes of consumers in Italy: results from ECB surveys,
by Gabriele Coletti, Alberto Di Iorio, Emanuele Pimpini and Giorgia Rocco (InstItutIonal Issues)

n. 22 When financial innovation and sustainable finance meet: Sustainability-Linked Bonds,
by Paola Antilici, Gianluca Mosconi and Luigi Russo (InstItutIonal Issues) (in Italian)

n. 23 Business models and pricing strategies in the market for ATM withdrawals, by Guerino
Ardizzi and Massimiliano Cologgi (ReseaRch PaPeRs)

n. 24 Press news and social media in credit risk assessment: the experience of Banca d’Italia’s
In-house Credit Assessment System, by Giulio Gariano and Gianluca Viggiano (ReseaRch
PaPeRs)

n. 25 The bonfire of banknotes, by Michele Manna (ReseaRch PaPeRs)

