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Introduction

The study of household and firm heterogeneity plays a crucial role in understanding
macroeconomic fluctuations.

Heterogeneous household/firm models (e.g. HANK models), often imply that heterogeneity
offers additional insight for the analysis of aggregate fluctuations.

But:

- Semi-structural models of aggregate fluctuations typically neglect micro-level heterogeneity.

Functional VAR models emerged as a new tool for semi-structural analysis of aggregate
fluctuations while accounting for micro-level heterogeneity. Chang Chen Schorfheide (2024)

In practice, FunVARs can be used for modeling dynamic interactions between distributions and
traditional macroeconomic time series.
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Why functional VARs?

Analyze the propagation of aggregate shocks, while controlling for the distribution of
micro level heterogeneity.

Analyze the effect of macroeconomic shocks on the micro-level distributions.

Validate the predictions from heterogeneous agent models using micro and aggregate
macro data.

But also

Sharpen identification of aggregate shocks, through additional identifying restrictions.

Nowcast distributions observed at lower frequency exploiting macro time series observed
at higher frequency.
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Structure of the presentation

1 We start presenting a functional VAR model for a univariate distribution (household
income/consumption) that we use to study the distributional effects of uncertainty
shocks. This part introduces the theoretical model and the estimation.

2 Next we present a functional VAR model to handle multivariate distributions and we use
it to analyze firm heterogeneity and aggregate fluctuations in the US.

3 Finally, if time permits, we briefly discuss nowcasting distributions with a functional
MIDAS model.
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Motivation

Uncertainty shocks among drivers of the business cycle (e.g. Castelnuovo, 2019;
Fernandez-Villaverde and Guerron-Quintana, 2020);

Limited research on the distributional implications;

Modeling distributional dynamics using standard methods is problematic:
▶ Percentiles in standard VARs percentiles crossing;
▶ Moments in standard VARs number of moments is indefinite;
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Related literature

Use of Functional-VAR to model joint dynamics of aggregate variables and income
distribution (e.g. Chang M. et al., 2024).

Econometric methods for functional data:
▶ Bayesian (Kowal et al., 2017; Chang M. et al., 2024);
▶ Frequentist (Chang et al., 2016; Hu and Park, 2016);

Recent empirical applications of functional models:
▶ Inoue and Rossi (2018): monetary policy as functional schocks;
▶ Meeks and Monti (2023): Phillips curve with heterogeneous beliefs;
▶ Chang et al. (2022): effects of shocks on heterogeneous inflation expectations;
▶ Bjornland et al.(2023): effects of oil shocks on the distribution of stock returns;
▶ Chang and Schorfheide (2024): effects of monetary policy on earnings/consumption

distribution.
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Contribution

How to treat distributions for Functional Data Analysis (FDA): different transformations
have different pro and cons;

How to summarize the density through Functional-PCA (FPCA, Ramsay and Silverman,
1997): advantages over alternative methods (e.g. splines, Chang et al., 2024);

What are the effects of uncertainty shocks on income/consumption distribution;

Robustness of the results to different modeling strategies;

Estimation of the effects through Functional Local Projections.
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Preview of the results

Show through simulations that:
▶ FPCA on pt(·) provides best approximations, but produces inadmissible distribution

responses to shocks (i.e. densities with negative regions);
▶ FPCA on log(pt(·)) ensures non-negativity (not unit-integration) of distributions, but

provides worst approximations;
▶ FPCA on Log Quantile Density (LQD, Petersen and Muller, 2016) ensures non-negativity

and unit-integration of distributions, and provides accurate approximations;

Propagation of uncertainty shocks in two phases (Carriero et al, 2024):
▶ Short run: Unemployment increases; Investments are reduced; Share of employed with low

relative income decreases and share of low-consumption households increases 7−→ Decrease
inequality among employees, but higher consumption inequality;

▶ Longer horizon: Unemployment is reabsorbed; Labor productivity decreases; Mass of
low-income workers increases 7−→ Increased inequality among employees, but consumption
inequality is reabsorbed.
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The model

Assume that income/consumption observations are ξit ∼ iid pt , ξit ∈ Ξ;

Define ft (ξ) = g (pt (ξ))− ḡ to be some de-meaned transformation of the

distribution (i.e. ḡ = 1
T

∑T
t=1 g (pt (ξ)));

Specify yt to be a vector of macro/financial aggregate variables.

The F-VAR(p) is (see e.g. Inoue and Rossi, 2021; Chang et al., 2024):

yt = cy +

p∑
l=1

Bl ,yyyt−l +

p∑
l=1

∫
Bl ,yf

(
ξ́
)
ft−l

(
ξ́
)
d ξ́ + uy ,t

ft (ξ) = cf (ξ) +

p∑
l=1

Bl ,fy (ξ) yt−l +

p∑
l=1

∫
Bl ,ff

(
ξ, ξ́

)
ft−l

(
ξ́
)
d ξ̃ + uf ,t (ξ)
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Functional VAR (F-VAR)

Approximate the functions by terminating the Karhunen-Loeve at some truncation point,
K :

ft (ξ) ≈
∑K

k=1 ζk (ξ) ∗ αk,t = ζ′ (ξ)αt ; uf ,t (ξ) ≈
∑K

k=1 ζk (ξ) ∗ ũk,t = ζ′ (ξ) ũt ;

where ζ (ξ) is a K × 1 vector of coefficients, and αt and ũt are K × 1 random vectors.

The F-VAR becomes a standard finite-dimensional Factor Augmented VAR:[
yt
αt

]
=

[
cy
c̃ f

]
+

p∑
l=1

[
Bl ,yy Bl ,yf Cα

Bl ,fy Bl ,ff Cα

] [
yt−l

αt−l

]
+

[
uy ,t
ũf ,t

]
,

where Cα ≡
∫
δ
(
ξ́
)
ζ′
(
ξ́
)
d ξ́, and ut =

[
u′y ,t , ũ

′
t

]′
has zero mean and variance Ω.

Inference can now be performed applying conventional techniques;

It can be given a structural interpretation based on identifying assumptions;
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Empirical Approach

We follow a three-step approach:

1 Estimate the distribution of interest for every t from a sample of draws;

2 Transform the distributions and approximate the resulting function through FPCA;

3 Jointly model the FPCs and a set of random variables with a (Bayesian) VAR.
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FDA on Distributions
LQD transfomation

Performing FDA on distributions poses unique challenges:

Consider the Log Quantile Density (LQD) associated with pt (ξ)
(Petersen and Muller, 2016);

g (pt (·)) = log

{
d

dz
Qt (z)

∣∣∣∣
z=x

}
= − log {pt (Qt (x))}

where Q (z) = F−1 (z) is the quantile function (inverse cdf), and x ∈ [0, 1].
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LQD transformation
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FDA on Distributions
FPCA on the LQD transformation

Use Tsay’s (2016) FPCA approach:

▶ Let X denote a T × N matrix with (t, i)th element xt,i = ft (ξi ) = g (p̂t (ξi ))− ḡ (ξ),
t = 1, ...,T , i = 1, ...,N.

▶ Truncated Singular Value Decomposition (SVD):

X = SVD ′ + E ;

▶ The principal components D will serve as functional basis ζ (·);
▶ The scores VS ′

t (St : t-th row of S), will serve as factors αt ;



15 / 66

Functional IRFs
Functional IRF let us analyze changes in the distribution of interest w.r.t its steady
state after a shock occurs.

Given the finite dimensional representation of the Functional-VAR, the IRFs of αt at
horizon h after a shock εj = d , IRFα (h, εj = d), can be easily computed;

These need to be mapped back to IRFs for the distribution of interest, IRFp (h, εj = d),
by:

1 Computing the model-implied steady-state distribution:

pss (·) = g−1
(
ζ (·)′ αss + ḡ

)
2 Computing the expected distribution h periods after the shock:

pss+h (·) |εj=d = g−1
(
ζ (·)′ (αss + IRFα (h, εj = d)) + ḡ

)
3 Computing the difference between the two:

IRFp (h, εj = d) = pss+h (·) |εj=d − pss (·)
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Interpretation of F-IRFs
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The figure shows the difference between pss+h (·) |εj=std(εj) and pss (·).
▶ The horizontal axis shows the support Ξ;
▶ The vertical axis mesures the difference between the two densities;
▶ h is the horizon of the response.
▶ In this example, the red is the true FIRF, in blue the estimated one with credible sets.
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Simulated Data: Krusell and Smith (1998) DGP

Simulated data borrowed from Chang M. et al. (2022);

T = 160 artificial observations from the SVAR(1) resulting from the log-linearized
solution of the Krusell and Smith (1998) model. Observe:

▶ Productivity level, the capital stock, the employment level (nv = 3);
▶ Centered moments of the distribution of assets among the employed;

A sample of N = 9230 is drawn from the asset distribution;

The impact matrix implied by the model is lower triangular, the first structural
shock is a productivity shock.
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Krusell and Smith (1998) DGP: F-IRFs

Figure: Red lines: true responses of pt (·) to one standard deviation technology shocks. Solid blue lines:
posterior median responses, dashed blue lines: 90% credible bands. The number of FPC is selected as the
smallest one for which 90% of variance is explained. (Timing convetion is different than the one in Chang et
al.(2024): here shock happens at t = 0, there at t = 2)
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Uncertainty shocks: the model
Augment the VAR model analyzed by Jurado et al. (JLN, 2015) by including alternately
income/consumption distributions as ft(·);
Earnings-to-GDP data constructed by Chang M et al. (2022) based on the Current
Population Survey (CPS);

Consumption data from thr Consumption Expenditure Survey;

Convert the monthly SVAR of JLN in a quarterly F-SVAR model and focus on the period
1989:Q1 - 2017:Q3 for income, and 1990:Q2 - 2016:Q4 for consumption;

The nv = 11 endogenous variables included in the model are: (i) real GDP, (ii) real PCE,
(iii) GDP deflator, (iv) real wages, (v) real investments, (vi) labor productivity, (vii)
unemployment rate, (viii) Federal Funds Rate, (ix) S&P500 index, (x) M2 growth rate,
and (xi) JLN’s macro-uncertainty measure;

Assume K = 7 (different K s do not affect results for K > 2);

The macro-uncertainty shock is identified by ordering the uncertainty measure last among
the aggregate variables in a Cholesky identification scheme.



20 / 66

Uncertainty shocks: IRFs

0 4 8 12 16 20 24 28 32 36 40
-2

-1

0
rGDP

0 4 8 12 16 20 24 28 32 36 40

-2

-1

0
rPCE

0 4 8 12 16 20 24 28 32 36 40

-20

0

20

GDPdef

0 4 8 12 16 20 24 28 32 36 40

-1

0

1
rW

0 4 8 12 16 20 24 28 32 36 40
-10

-5

0

rINV

0 4 8 12 16 20 24 28 32 36 40
-2

-1

0

1
Lprod

0 4 8 12 16 20 24 28 32 36 40
-0.5

0

0.5

1
unr

0 4 8 12 16 20 24 28 32 36 40

-0.5

0

0.5
ffr

0 4 8 12 16 20 24 28 32 36 40

-10

0

10
sp500

0 4 8 12 16 20 24 28 32 36 40
-4

-2

0

M2

0 4 8 12 16 20 24 28 32 36 40
-0.2

0

0.2

U
m

 h3

Figure: IRFs to an uncertainty shock implied by: a SVAR (red), F-SVAR (blue), 68% credible bands (dashed lines and
shaded areas).
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Uncertainty shocks: F-IRFs

Response of distributions to an uncertainty shock:
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The horizontal axis measures the earnings/consumption relative to the per-capita level;

h denotes the horizon in quarters.
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Uncertainty shocks: Gini IRF
The F-IRFs of income distribution can be mapped to the IRF of the Gini coefficient:
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Earnings inequality decreases in the short run, but it increases at longer horizons. The degree of
consumption inequality increases significantly in the short run.
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Uncertainty shocks: comments

Aggregate effects:
▶ IRFs predicted by the F-SVAR are similar to those generated by the standard SVAR.

Distributional effects:
▶ Propagation in two phases:

⋆ In the short run (up to 3 years): while unemployment increases, the share of workers with low
relative income decreases, and the mass of people employed receiving income above the
average increases;

⋆ In the longer run: while unemployment is reabsorbed, the share of occupied with low relative
income increases to the detriment of the middle-income class (probably due to the decrease of
labor productivity triggered by the decrease in investments experienced at short horizons).
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Further developments: Functional LP

F-IRFs can be also estimated by Local Projections;
1 Estimate responses of αt : IRα(t, h, di ) = E [αt+h | εt = di ,ℑt ]− E [αt+h | εt = 0,ℑt ];
2 Compute the Functional IRFs through the mapping: IRf (ξ, t, h, di ) = ζ′ (ξ)× IRα(t, h, di );

Suppose [y1t , y2t , . . . , ynv−1,t ] is predetermined w.r.t. [Ut , αt ]
′.

The joint response of α to an impulse in U can be estimated through the multivariate
regression:

αt+h = ah + Bh
1 yt\U + βh

1Ut +

p∑
l=1

Bh
l+1

[
y ′t−l , α′

t−l

]′
+ eh,t

where IRα(t, h, di = [1, 0, . . . , 0]′) = βh
1 .

Can be estimated by OLS with (system-wide) HAR standard errors;

Results obtained by Functional LP are equivalent.
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Uncertainty Shocks: F-IRFs
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This paper

Introduce a Functional VAR model for modelling firm heterogeneity arising in more than one
dimension.

Approximate the multivariate distribution of firm’s level characteristics using dimension reduction
techniques for tensor data objects:

- Principal component analysis on unfolded tensors.
- Multilinear principal component analysis.
- CP decomposition.

Combining both firm-level data and aggregate macroeconomic data:

▶ Analyze the micro and macro propagation of TFP shocks and monetary policy shocks in
the US economy.

▶ Identification of cross-sectional uncertainty shocks and estimation of their effects on the
US economy.
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Related literature

Semi structural multivariate time series models which leverage both micro and macro data for
analyzing aggregate fluctuations.

Chang Chen Schorfheide (2024); Chang Schorfheide (2024); Huber Marcellino Tornese (2024); Huang (2024)

→ This paper: Modelling heterogeneity arising in more than one dimension.

Aggregate fluctuations and firm heterogeneity.
Lenza Savoia (2024)
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Why modeling the joint distribution?
Functional IRF of the marginal distributions of x1 and x2 after the shock

Figure: The figure shows the functional IRFs of the marginal labor and capital distributions after a shock. In blue we
report the change in the probability mass with respect to the steady state distribution, reported in red.
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Why modeling the joint distribution?
FIRF of the joint distribution of (x1, x2) after the shock

Figure: The figure reports the contours from a bivariate functional IRFs, compatible with the changes in the marginal
distributions. In blue we report negative changes in the probability mass of the joint distribution w.r.t the steady state
distribution, while in yellow we report positive changes.
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Why modeling the joint distribution?
FIRF of the joint distribution of (x1, x2) after the shock

Figure: The figure reports the contours from another bivariate functional IRFs, equally compatible with the changes in the
marginal distributions. In blue we report negative changes in the probability mass of the joint distribution w.r.t the steady
state distribution, while in yellow we report positive changes.
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Why modeling the joint distribution? / 2

Identifying macroeconomic shocks—especially when these shocks are naturally defined as
exogenous shifts in specific features of a joint distribution.

For example, cross-sectional uncertainty shocks can be interpreted as an exogenous
shift in the cross-sectional dispersion of firm-level productivity.

In terms of the observables, these shocks manifest as exogenous changes in the
cross-sectional dispersion of firms’ output, conditional on their capital and labor inputs.
For example considering:

outputit = f (kit , lit) + σtεit (1)

CSU shocks manifest as ↑ σt .
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FunVAR
Modeling the dynamic interaction between micro level heterogeneity and the aggregates

We consider the following Functional VAR model

y t = cy +

p∑
s=1

B l,yyy t−s +

p∑
s=1

∫
Bs,yl (x)lt−s(x)dx + uy ,t (2)

lt(x) = cl(x) +
p∑

s=1

Bs,ly (x)y t−s +
P∑

s=1

∫
Bll(x , x ′)lt−s(x ′)dx ′ + ul,t(x) (3)

where y t are the macroeconomic aggregates and x are the firm-level characteristics (it is a vector),
l(.) is the Centered Log Ratio transformation of the multivariate distribution function. For example for
x = [x1, x2] with x1 capital and x2 labor we have:

lt(x) := CLR(f (x1, x2)) = log(f (x1, x2))−
1

|Ω|

∫
Ω

log(f (x1, x2)) dx1dx2 (4)

see (Petersen et. al (2021)) for details on this transformation.
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Challenges of approximating multidimensional distributions

Curse of Dimensionality: Multidimensionality of x requires a much larger number of
basis functions compared to the unidimensional case. (e.g. splines)

Increased Computational Costs.

We resort to:

PCA on the vectorized tensor.

Multilinear principal component analysis.

CP decomposition.

.
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Approximation of the multidimensional distribution

Let’s consider x = [x1, x2] with x1 capital and x2 labor. We assume that we observe:

lt(x)obs = lt(x) + εt (5)

on a bi-dimensional grid, that is {lt(x1,i , x2,j)obs : i = 1, . . . ,N1, j = 1, . . . ,N2}

where
l(x)obs = CLR(f̂ (x))

and

f̂ (x1, x2) =
1

N1N2h1h2

N1∑
i=1

N2∑
j=1

K

(
x1 − x1,i

h1
,
x2 − x2,j

h2

)
is a multivariate kernel probability density estimate.
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Firms’ joint capital and labor distribution
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Approximation of the multidimensional distribution

We assume that the true CLR transformed distribution can be expanded with a finite number
of basis functions, that is:

lt(x1, x2) =
K∑
j=1

βj ,thj(x1, x2) (6)

This assumption lets us write the functional VAR as a factor augmented VAR.[
y t

βt

]
= Φ0 +Φ1

[
y t−1

βt−1

]
+ . . .+Φp

[
y t−p

βt−p

]
+

[
uy ,t

ũq,t

]
(7)

vec(Lt)︸ ︷︷ ︸
N1N2×1

= H︸︷︷︸
N1N2×K

βt︸︷︷︸
K×1

+ εt︸︷︷︸
N1N2×1

(8)
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Estimation

We estimate the Factor augmented VAR in two steps:

- Step 1: Estimate the basis functions, i.e the loadings H .
▶ PCA on vectorized tensor.
▶ Multilinear principal component analysis.
▶ CP decomposition.

- Step 2: Estimate the factor augmented VAR model.[
y t

βt

]
= Φ0 +Φ1

[
y t−1

βt−1

]
+ . . .+Φp

[
y t−p

βt−p

]
+

[
uy ,t

ũq,t

]
(9)

β1:T can be either estimated in step 1 and treated as observed in step 2 or treated as latent
factors and jointly estimated in step 2 (e.g. Doz Giannone Riechlin (2011)).
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Unfolding and principal component analysis

Unfolding, consists in the vectorization of Lt .

Principal component analysis is performed on the unfolded data and seeks to minimize

min
H,βt

1

T

T∑
t=1

∥vec(Lt)− Hβt∥2 (10)

- Pros: Simple, need to determine the number of principal components K .

- Cons: In small sample can be difficult to precisely estimate all the N1N2K parameters in
H .
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Multilinear principal component analysis
Multilinear principal component analysis assumes:

lt(x1, x2) =

K1∑
i=1

K2∑
j=1

βij ,thi (x1)hj(x2) = (h(x1)⊗ h(x2))′βt (11)

In terms of the observable we have:

Lt = H2BtH ′
1 + E t (12)

and seek to find H1 and H2 that minimize (Hung et. al (2012))

min
H1,H2

1

T

T∑
t=1

∥∥Lt − H2BtH ′
1

∥∥2 (13)

- Pros: Lower number of parameters to estimate.

- Cons: Conditional on a choice of K1 and K2. Can be restrictive.
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CP decomposition

CP analysis assumes:

l(x1, x2) =
K∑

k=1

βt,kh
(1)
k (x1)h

(2)
k (x2) . (14)

We estimate the loadings by Alternating Least Squares (ALS) (Carroll and Chang 1970;
Harshman 1970). An alternative is iterated PCA Babii, Ghysels, and Pan (2024).

- Pros: Lower number of parameters to estimate w.r.t PCA. Only K to determine w.r.t
multilinear PCA.

- Cons: Less flexible when different modes of the data exhibit varying complexity or
correlation structures
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Factors augmented VAR model

We rely on cross validation for choosing between PCA on the vectorized tensor,
multilinear principal component analysis and CP decomposition.

We perform Bayesian inference on parameters of the factor augmented VAR model

[
y t

βt

]
= Φ0 +Φ1

[
y t−1

βt−1

]
+ . . .+Φp

[
y t−p

βt−p

]
+

[
uy ,t

ũq,t

] [
uy ,t

ũq,t

]
∼ N (0,Σ) (15)

As the factor augmented VAR can become high dimensional, we leverage Bayesian
shrinkage exploiting the asymmetric conjugate prior by Chan (2022).

Semi-structural analysis regards ut as as a linear combination of the structural shocks εt .
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Simulation from Winberry (2018) heterogeneous firms model
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Approximation by principal component on the vectorized tensor
Bivariate (log(k), log(l)) distribution from Winberry (2018) RBC heterogeneous firm model

Figure: The figure shows the true (red) and the approximated (black) bivariate log-capital and log-labor distribution from
for one sample period in the simulation.
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Evidences from simulation: Winberry (2018) RBC heterogeneous firm model

IRFs of aggregate to TFP shock

Figure: The figure shows the Impulse Response Functions (IRFs) of the macroeconomic aggregates to a one standard
deviation TFP shock. In black we report the IRF of the Winberry (2018) heterogeneous firm model. In red bold line we
report the posterior mean estimate from the FunVAR while in dashed red line we report the 5th and 95th credible sets.
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Evidences from simulation: Winberry (2018) RBC heterogeneous firm model

Functional IRF of the bivariate (capital, labor) distribution h = 4

Figure: The figure shows the bivariate FIRF, i.e. the change in the probability mass w.r.t. the steady state following the
TFP shock. On the left hand side the true FIRF, on the right hand side the posterior mean estimate from the FunVAR.
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Evidences from simulation: Winberry (2018) RBC heterogeneous firm model

Functional IRF of the bivariate (capital, labor) distribution h = 8

Figure: The figure shows the bivariate FIRF, i.e. the change in the probability mass w.r.t. the steady state following the
TFP shock. On the left hand side the true FIRF, on the right hand side the posterior mean estimate from the FunVAR.
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Evidences from simulation: Winberry (2018) RBC heterogeneous firm model

Functional IRF of the bivariate (capital, labor) distribution h = 24

Figure: The figure shows the bivariate FIRF, i.e. the change in the probability mass w.r.t. the steady state following the
TFP shock. On the left hand side the true FIRF, on the right hand side the posterior mean estimate from the FunVAR.
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Evidences from simulation: Winberry (2018) RBC heterogeneous firm model

Functional IRF of the bivariate (capital, labor) distribution h = 4

Figure: The figure shows the contours from the true
bivariate FIRFs from the heterogeneous firm model.
Yellow (blue) for positive (negative) changes in probability
mass w.r.t the steady state distribution. Dashed red lines
are the steady state mean values in the heterogeneous
firm model.

Figure: The figure shows the posterior mean estimate from
the FunVAR only if the 15th − 85th credible set does not
contain zero.Yellow (blue) for positive (negative) changes
in probability mass w.r.t the steady state distribution.
Dashed red lines are the steady state mean values.
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Evidences from simulation: Winberry (2018) RBC heterogeneous firm model

Functional IRF of the bivariate (capital, labor) distribution h = 8

Figure: The figure shows the contours from the true
bivariate FIRFs from the heterogeneous firm model.
Yellow (blue) for positive (negative) changes in probability
mass w.r.t the steady state distribution. Dashed red lines
are the steady state mean values in the heterogeneous
firm model.

Figure: The figure shows the posterior mean estimate from
the FunVAR only if the 15th − 85th credible set does not
contain zero.Yellow (blue) for positive (negative) changes
in probability mass w.r.t the steady state distribution.
Dashed red lines are the steady state mean values .
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Evidences from simulation: Winberry (2018) RBC heterogeneous firm model

Functional IRF of the bivariate (capital, labor) distribution h = 24

Figure: The figure shows the contours from the true
bivariate FIRFs from the heterogeneous firm model.
Yellow (blue) for positive (negative) changes in probability
mass w.r.t the steady state distribution. Dashed red lines
are the steady state mean values in the heterogeneous
firm model.

Figure: The figure shows the posterior mean estimate from
the FunVAR only if the 15th − 85th credible set does not
contain zero.Yellow (blue) for positive (negative) changes
in probability mass w.r.t the steady state distribution.
Dashed red lines are the steady state mean values.
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Empirical analysis and pre-view of the results

We use the model for studying the effects of TFP shocks and monetary policy shocks on
the joint capital and labor distribution of US firms.

We find that TFP shocks have a persistent effect on the joint labor-capital distribution,
with the effects peaking between one and two years after the shock. Results on TFP shocks

We find that monetary policy shocks have a less persistent contractionary effect on the
joint labor-capital distribution. Results on MP shocks

We use the model for identifying cross-sectional uncertainty shocks and estimate their
effects on the US macroeconomy.

We find cross-sectional uncertainty shocks to be contractionary.
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Cross-sectional uncertainty shocks



54 / 66

Cross sectional uncertainty shocks

A significant number of structural models highlight the importance of cross-sectional
uncertainty as a key driver of macroeconomic fluctuations. (Bloom 2009; Christiano et al.
2014; Bloom et al. 2018; Arellano et al. 2019)

In terms of the observables, these shocks manifest as exogenous changes in the
cross-sectional dispersion of firms’ output, conditional on their capital and labor inputs.

We assume that the relationship between the FVAR residuals and the cross-sectional
uncertainty shocks εCSUt , is as follows:

ut = ΣtrqεCSUt (16)

We identitify CSU shocks by finding the orthogonal rotation q that maximizes the change
in the variance of the output distribution conditional on capital and labor endowment on
impact.
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Data and estimation sample

Data:

- Aggregate data: real GDP, consumption, investment, employment and real wages.

- Firm level data: Compustat data on employment (l), capital (k), and sales (y).

Estimation sample: 1984Q4 - 2019Q4
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Cross sectional uncertainty shocks
Impulse response function of the aggregate variables to a CSU shock

Figure: The figure shows the impulse response function to a cross sectional uncertainty shock.
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Introduction

Micro-level distributions of household and firm characteristics originating from surveys are
typically released infrequently, creating a lag in economic insights.

Monitoring and anticipating real-time changes in distributions necessitates seeking timely signals
from variables and indicators available before the official data release.

However, very limited research has been devoted to nowcasting and forecasting distributions
using higher frequency indicators.
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This paper

Introduce a functional MIDAS model to leverage high-frequency information for forecasting and
nowcasting distributions observed at a lower frequency.

Approximate the functional MIDAS model with a finite-dimensional SUR-MIDAS regression model.

To identify the relevant predictors, we develop a Group Lasso with spike-and-slab prior for the
SUR MIDAS regression model.

We use the model to nowcast the yearly U.S. households’ income distribution from the March
CPS-ASEC leveraging quarterly macroeconomic and financial indicators.

▶ Exploiting high frequency macroeconomic and financial indicators enhances forecast accuracy
for the entire target distribution and for key features of the distribution that signal changes in
inequality.
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Nowcasting distributions in a mixed frequency framework

We aim to forecast/nowcasts a distribution of interest (e.g. the household income
distribution) observed at a lower frequency ft(x).

We aim to exploit a potentially high dimensional vector of regressors observed at a higher

frequency (e.g macro/financial indicators) x (m)
t .

We construct a model that links ft(x) to its own lags L(l)ft(x) and the lags of the high

frequency indicators L(l/m)x (m)
t .
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The model
Functional MIDAS regression model

We consider the following functional MIDAS regression model:

qt+h(τ) = cq(τ) +

pq∑
l=1

∫ 1

0
Bqq,l(τ, τ

′)L(l)qt(τ
′)dτ ′︸ ︷︷ ︸

lags of qt(τ)

+

px−1∑
l=0

Bqx ,l(τ)L(l/m)x (m)
t︸ ︷︷ ︸

lags of x (m)
t

+uq,t+h(τ),

(17)

where x (m)
t is the nx × 1 vector of high-frequency macroeconomic indicators, qt+h(τ) is the

LQD transformation of the household income probability density function, L(.) is the lag

operator, such that L(1/m)x t = x (m)
t−1/m and L(1)qt(τ) = qt−1(τ).
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Nowcasting exercise

We consider the household nominal income distribution from the March Current
Population Survey Annual Social and Economic Supplements (CPS-ASEC) given by the
variable hhincome.

We de-trend the household-level nominal income by dividing by 2/3 of nominal GDP
per-capita and then compute the inverse hyperbolic sine function transformation as in
Chang Schorfheide (2024).

The sample period is 1968-2023 and the evaluation sample is 1998-2023.
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Variable Mnemonic Transformation

Real Gross Domestic Product GDPC1 %∆
Real Government Receipts FGRECPTx %∆
Federal Government: Current Expenditures FGEXPND %∆
Real Personal Consumption Expenditures PCECC96 %∆
Real Disposable Personal Income DPIC96 %∆
Real Exports of Goods EXPGSC1 %∆
Real Imports of Goods & Services IMPGSC1 %∆
All Employees: Total nonfarm PAYEMS %∆
Civilian Labor Force Participation Rate CIVPART %∆
Civilian Unemployment Rate UNRATE %∆
Number of Civilians Unemployed for 27 Weeks and Over UEMP27OV %∆
Average Weekly Hours Of Production And Nonsupervisory Employees AWHNONAG %∆
Average (Mean) Duration of Unemployment UEMPMEAN ∆
Housing Starts HOUST %∆
Real Average Hourly Earnings of Production and Nonsupervisory Employees: Total AHETPIx %∆
Real Average Hourly Earnings of Production and Nonsupervisory Employees Construction CES2000000008x %∆
Real Average Hourly Earnings of Production and Nonsupervisory Employees Manufacturing CES3000000008x %∆
Consumer Price Index all items CPIAUCSL %∆
S&P 500 SP 500 %∆
Effective Federal Funds Rate FEDFUNDS ∆
10-Year Treasury Constant Maturity Rate (Percent) GS10 ∆
Cons. Expectations UMCSENTx level
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Nowcasting the household income distribution in the US
Forecast accuracy from 1998 to 2023

h = 0 Avg KL Avg HD Avg QS20 Avg QS50 Avg QS80

RIDGE-SUR-MIDAS 0.44 0.85 1.06 0.92 0.96
BLSS-SUR MIDAS 0.45 0.82 0.76 0.78 0.86

Table: The metrics are expressed in ratio with respect to the VAR approximation of the Functional VAR model with
Minnesota type of prior that does not exploit high frequency macroeconomic indicators.

h = 1
4

h = 2
4

h = 3
4



65 / 66

Nowcasting the household income distribution in the US
Forecast accuracy from 1998 to 2023

h = 0 RMSE Mean RMSE Variance RMSE Skewness RMSE Kurtosis RMSE IR RMSE GINI RMSE CV

RIDGE-SUR-MIDAS 0.53 0.90 0.49 0.47 0.83 0.33 0.52
BLSS-SUR MIDAS 0.50 0.86 0.55 0.50 0.93 0.38 0.66

Table: The metrics are expressed in ratio with respect to the VAR approximation of the Functional VAR model with
Minnesota type of prior that does not exploit high frequency macroeconomic indicators.

h = 1
4

h = 2
4

h = 3
4
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Thank you for your attention.
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Appendix

Appendix
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Appendix

Appendix: Firm heterogeneity and aggregate fluctuations: a
functional VAR model for multidimensional distributions

Massimiliano Marcellino Andrea Renzetti Tommaso Tornese
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Appendix

Distributional effects of TFP shocks in the US
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Appendix

TFP shocks: the model

Data:

- Aggregate data: Fernald (2014) TFP Series, real GDP, real consumption expenditure,
real fixed investment, real interest rate, real compensation, employment.

- Firm level data: Compustat data on employment (emp) and capital (ppent).

Identification strategy:

- Internal instrument using Fernald (2014) TFP Series.

Estimation sample: 1984Q4 - 2019Q4

Back
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Appendix

TFP shocks
Effect on the aggregate variables

Figure: The figure shows the Impulse Response Functions (IRFs) of the macroeconomic aggregates to a one standard
deviation TFP shock. In red bold line we report the posterior mean estimate from the FunVAR while in dashed red line we

report the 15th and 85th credible sets. Back
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Appendix

TFP shocks
Effect on the moments of the firm-level joint capital labor distribution

Figure: The figure shows the Impulse Response Functions (IRFs) of the moments of the bivariate capital labor distribution
to a one standard deviation TFP shock. In red bold line we report the posterior mean estimate from the FunVAR while in

dashed red line we report the 15th and 85th credible sets. Back
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Appendix

TFP shocks
Effect on the firm-level joint capital labor distribution

h = 0 h = 1 h = 4

Figure: Contours of the posterior mean estimate of the bivariate labor and capital distribution FIRF following an
aggregate TFP shock.The dashed line reports the posterior mean steady state values.The dashed line reports the posterior

mean steady state values. Back
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Appendix

TFP shocks
Effect on the firm-level joint capital labor distribution

h = 8 h = 15

Figure: Contours of the posterior mean estimate of the bivariate labor and capital distribution FIRF following an

aggregate TFP shock.The dashed line reports the posterior mean steady state values. Back
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Appendix

Distributional effects of monetary policy shocks in the US
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Appendix

Monetary policy shocks: the model

Data:

- Aggregate data: industrial production, the unemployment rate, commodity price index,
CPI index, the excess bond premium (Gilchrist and Zakraǰsek 2012) and the two-year
Treasury yield.

- Firm level data: Compustat data on employment (emp) and capital (ppent).

Identification strategy:

- Internal instrument using Bauer and Swanson (2023) orthogonalized MP shocks series.

Estimation sample: 1984Q4 - 2019Q4

Back
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Appendix

Monetary policy shocks
Effect on the aggregate variables

Figure: The figure shows the Impulse Response Functions (IRFs) of the macroeconomic aggregates to a one standard
deviation TFP shock. In red bold line we report the posterior mean estimate from the FunVAR while in dashed red line we

report the 15th and 85th credible sets. Back
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Appendix

Monetary policy shocks
Effect on the moments of the firm-level joint capital labor distribution

Figure: The figure shows the Impulse Response Functions (IRFs) of the moments of the bivariate capital labor distribution
to a one standard deviation TFP shock. In red bold line we report the posterior mean estimate from the FunVAR while in

dashed red line we report the 15th and 85th credible sets. Back
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Appendix

Monetary policy shocks
Effect on the firm-level joint capital labor distribution

h = 0 h = 1 h = 4

Figure: Contours of the posterior mean estimate of the bivariate labor and capital distribution FIRF following an
aggregate monetary policy shock.The dashed line reports the posterior mean steady state values.The dashed line reports

the posterior mean steady state values. Back
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Appendix

Monetary policy shocks
Effect on the firm-level joint capital labor distribution

h = 8 h = 15

Figure: Contours of the posterior mean estimate of the bivariate labor and capital distribution FIRF following an

aggregate monetary policy shock.The dashed line reports the posterior mean steady state values. Back
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Appendix

Appendix: Nowcasting distributions: a functional MIDAS
model.

Massimiliano Marcellino Andrea Renzetti Tommaso Tornese
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Appendix

Evaluation criteria

For h = {0, 14 ,
2
4 ,

3
4} we transform qt+h(τ) into ft+h(x).

We compute our nowcasts considering the posterior mean estimates of ft+h(x).

We evaluate the nowcasts of the household income distribution comparing:

- Average Kullback–Leibler (KL) divergence and Hellinger Distance (HD) from a kernel density
estimate of the income distribution.

- Average quantile scores (QS) for selected quantiles of the income distribution.
- Root mean squared error (RMSE) of the following moments and features of the income
distribution: mean, variance, kurtosis, Interquartile Range (IR), Gini index and the
Coefficient of Variation (CV).
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Appendix

Nowcasting the household income distribution in the US
Forecast accuracy from 1998 to 2023

h = 1
4 Avg KL Avg HD Avg QS20 Avg QS50 Avg QS80

RIDGE-SUR-MIDAS 0.43 0.85 1.07 0.92 0.95
BLSS-SUR MIDAS 0.36 0.85 0.78 0.79 0.81

Table: The metrics are expressed in ratio with respect to the VAR approximation of the Functional VAR model with
Minnesota type of prior.

Back
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Appendix

Nowcasting the household income distribution in the US
Forecast accuracy from 1998 to 2023

h = 2
4 Avg KL Avg HD Avg QS20 Avg QS50 Avg QS80

RIDGE-SUR-MIDAS 0.47 0.86 1.11 0.95 0.98
BLSS-SUR MIDAS 0.53 0.85 0.70 0.69 0.74

Table: The metrics are expressed in ratio with respect to the VAR approximation of the Functional VAR model with
Minnesota type of prior.

Back
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Appendix

Nowcasting the household income distribution in the US
Forecast accuracy from 1998 to 2023

h = 3
4 Avg KL Avg HD Avg QS20 Avg QS50 Avg QS80

RIDGE-SUR-MIDAS 0.47 0.87 1.13 0.97 1.01
BLSS-SUR MIDAS 0.37 0.84 0.64 0.68 0.78

Table: The metrics are expressed in ratio with respect to the VAR approximation of the Functional VAR model with
Minnesota type of prior.

Back
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Appendix

Nowcasting the household income distribution in the US
Forecast accuracy from 1998 to 2023

h = 1
4 RMSE Mean RMSE Variance RMSE Skewness RMSE Kurtosis RMSE IR RMSE GINI RMSE CV

RIDGE-SUR-MIDAS 0.53 0.89 0.49 0.47 0.83 0.34 0.52
BLSS-SUR MIDAS 0.51 0.90 0.45 0.45 0.89 0.28 0.61

Table: The metrics are expressed in ratio with respect to the VAR approximation of the Functional VAR model with
Minnesota type of prior.

Back
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Appendix

Nowcasting the household income distribution in the US
Forecast accuracy from 1998 to 2023

h = 2
4 RMSE Mean RMSE Variance RMSE Skewness RMSE Kurtosis RMSE IR RMSE GINI RMSE CV

RIDGE-SUR-MIDAS 0.55 0.89 0.52 0.49 0.83 0.35 0.55
BLSS-SUR MIDAS 0.53 0.86 0.61 0.61 0.94 0.45 0.68

Table: The metrics are expressed in ratio with respect to the VAR approximation of the Functional VAR model with
Minnesota type of prior.

Back
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Appendix

Nowcasting the household income distribution in the US
Forecast accuracy from 1998 to 2023

h = 3
4 RMSE Mean RMSE Variance RMSE Skewness RMSE Kurtosis RMSE IR RMSE GINI RMSE CV

RIDGE-SUR-MIDAS 0.57 0.91 0.52 0.49 0.82 0.35 0.55
BLSS-SUR MIDAS 0.50 0.90 0.45 0.44 0.99 0.34 0.58

Table: The metrics are expressed in ratio with respect to the VAR approximation of the Functional VAR model with
Minnesota type of prior.

Back
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Appendix

Thanks for your attention!
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