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Abstract

We measure the Euro Area (EA) output gap and potential output using a non-stationary dy-

namic factor model estimated on a large dataset of macroeconomic and financial variables. From

2012 to 2024, we estimate that the EA economy was tighter than policy institutions estimate,

suggesting that the slow EA growth results from a potential output issue, not a business cycle

issue. Moreover, we find that a decline in trend inflation, not slack in the economy, kept core

inflation below 2% before the pandemic and that demand forces account for at least 30% of the

post-pandemic increase in core inflation.

1 Introduction

The decomposition of GDP in potential output—the level of output consistent with current tech-

nologies and “normal” use of capital and labor—and the output gap—the percentage deviation of

GDP from its potential—is a fundamental task for policymakers. Potential output tells us how

fast an economy can grow in the long run; the output gap helps assess the cyclical position of the

economy and, thus, potential inflationary pressures (e.g., Jarociński and Lenza, 2018; Bańbura and
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Bobeica, 2023). Potential output and the output gap are essential for the common Euro Area (EA)

monetary policy and the fiscal policy of individual countries—they are among the main pillars of

the EA fiscal surveillance framework, ultimately affecting the fiscal capacity of each member coun-

try (European Commission, 2018). However, since both quantities are unobserved, policymakers

need a model to extract them from the data.

This paper proposes a new measure of potential output and the output gap for the EA based

on a non-stationary dynamic factor model estimated on a large dataset of macroeconomic and

financial variables. Compared to the prevailing literature, which focuses on theoretical structural

models with few variables of interest, we adopt a distinct approach because we let the data speak

by leveraging a large information set conditional on a few key macroeconomic priors—for example,

the long-run slowdown in output growth (Cette et al., 2016).

We conduct our analysis on a new large-dimensional dataset comprising 118 EA economic

indicators from 2001:Q1 to 2024:Q3. Four main results emerge from our analysis: first, our output

gap estimate is in line with those published by the European Commission (EC) and the International

Monetary Fund (IMF) until the 2011–2012 Sovereign Debt Recession (henceforth, SDR), after which

our output gap measure suggests that the EA economy was tighter than estimated by the EC and

the IMF. Moreover, we estimate that potential output growth decelerated after the 2008–2009

Global Financial Crisis (henceforth, GFC), and as of 2024:Q3, potential output growth has yet to

return to the pre-GFC pace. In other words, our results suggest that the EA has a potential output

issue, not a business cycle issue. Hence, if the goal is to achieve better economic conditions in the

EA, European countries should implement structural reforms and promote productivity-enhancing

investments that have long-run effects, while policies aiming at stimulating household consumption

and residential investments will have only short-term effects at best.

Second, we find that, on average, the Okun’s law relationship and the Phillips Curve are satisfied

in our model, even though we do not impose either of them; hence, cyclical movements in real

activity, unemployment, and inflation are interconnected (see, e.g., Bianchi et al., 2023).

Third, we find that core inflation remained below 2% after the GFC, not because there was

slack in the economy, but rather because trend inflation decreased by one percentage point—in line

with the idea that inflation expectations de-anchored on the downside after the GFC (Ciccarelli

and Osbat, 2017; Corsello et al., 2021). Moreover, we show that the output gap contributed to at

least 30% of the post-pandemic increase in core inflation, thus supporting existing literature that

suggests demand forces played a substantial role in the rise of post-pandemic inflation (Ascari et al.,

2



2023; Giannone and Primiceri, 2024; Bergholt et al., 2025). Finally, our output gap measure yields

better inflation forecasts than those derived from commonly used methods. These results confirm

that our data-driven measure is economically meaningful and valuable for policy analysis.

Fourth, we find that growth financed through household debt is not sustainable in the long

run, which is why incorporating financial indicators in the dataset, particularly credit indicators,

is necessary to pin down the output gap.

To measure potential output and the output gap, we first estimate the non-stationary dynamic

factor model by Quasi Maximum Likelihood using the EM algorithm jointly with the Kalman

smoother (Doz et al., 2012; Barigozzi and Luciani, 2024). Then, we extract a common trend from

the estimated common factors and compute the cyclical component by subtracting the common

trend from the common factors. Having estimated the common trend and the common cyclical

component, we measure potential output as the part of GDP explained by the common trends

and the output gap as the part of GDP explained by the common cyclical component. Our model

belongs to the class of unobserved component models, which is among the most indicated ones for

extracting the transitory component of GDP (Canova, 2025).

This model is an enhanced version of the model Barigozzi and Luciani (2023) used to measure

the US output gap, as it does not require a long sample to identify the trend and deals with the

Covid pandemic. Specifically, we use a three-step estimation procedure to account for the latter.

First, we estimate the model using only pre-Covid data. Second, we estimate the effects induced

by the Covid shock (level-shift and increased volatility). Third, we re-estimate the model on the

full dataset after purging the data from Covid-induced dynamics.

Our model is large-dimensional and non-stationary, thus allowing us to capture well-established

co-movements in macroeconomic variables while retaining data in levels. It is now widely recognized

that cross-sectional aggregation of a large number of series allows to consistently disentangle the

co-movements in the data from idiosyncratic dynamics (Stock and Watson, 2016) and that to obtain

meaningful estimates of potential output and the output gap a large information set is necessary

(Buncic and Pagan, 2023). To the best of our knowledge, this is the first paper that estimates the

EA output gap with such a rich information set.

Moreover, we go beyond the common practice of pre-transforming data to work with stationary

and centered variables. Thus, we can capture features crucial for identifying the common trend,

which would be inevitably lost if we were to difference the data to achieve stationarity (Ng, 2018).

This is important not only for estimating the output gap but also because accurately accounting
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for low-frequency movements helps eliminate any potential confounding effect when estimating the

relationship between real activity and inflation over the business cycle (Bianchi et al., 2023).

Related literature. How to estimate potential output and the output gap has been a hotly

debated topic for several decades (see, e.g., Canova, 2025). The literature has proposed two main

approaches: a theoretical approach and a statistical approach.

The theoretical approach uses theoretical models, such as production-function-based models

used by the EC (Havik et al., 2014) and the IMF (De Masi, 1997) or New-Keynesian DSGE models

(Justiniano et al., 2013; Burlon and D’Imperio, 2020; Furlanetto et al., 2021).

The statistical approach uses (univariate or multivariate) statistical models, sometimes paired

with some macroeconomic relationships of interest, e.g., the Phillips Curve. For example, many

papers rely on univariate models (e.g., Morley et al., 2003; Kamber et al., 2018; Hamilton, 2018;

Phillips and Jin, 2021; Phillips and Shi, 2021; Hartl et al., 2022), while few others employ multi-

variate non-stationary methods, which are either low-dimensional models (Jarociński and Lenza,

2018; González-Astudillo, 2019; Tóth, 2021; Hasenzagl et al., 2022), or medium-size, but stationary,

models (Aastveit and Trovik, 2014; Morley and Wong, 2020; Morley et al., 2023). Most of these

works focus on the US, while only a few focus on the EA, the most recent being Morley et al.

(2023).

Structure of the paper. The rest of the paper is organized as follows. In Section 2, we present

the data used in our analysis, and in Section 3, we present the model and the estimation strategy.

Then, in Section 4, we present our estimate of potential output and the output gap, and in Section

5, we dive deep into the economic content of these estimates, focusing on the Okun’s law and the

Phillips correlation. Next, we focus on inflation. Section 6 interprets inflation dynamics after the

GFC through the lens of our model, and Section 7 assesses the ability of our output gap estimate

to forecast inflation. Finally, Section 8 looks into what signals our model takes from financial

indicators to estimate the output gap, and Section 9 concludes.

A Supplemental Appendix contains additional details on the model, showing various robustness

analyses, and reporting additional results. Specifically, Appendix A provides full details on the

dataset, while Appendixes B, C, D, and E provide additional details about the model. Next,

Appendixes F, G, and H provide robustness analysis. Lastly, Appendix I compares our output gap

estimate with that obtained with alternative statistical methodologies, and Appendix J assesses
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the reliability of our output gap estimate.

2 A large Euro Area dataset

We construct a large macroeconomic dataset of n = 118 EA series, observed from 2001:Q1 to

2024:Q3 (T = 95). The dataset contains a wide range of macroeconomic indicators, including

national account statistics, industrial production and turnover indicators, labor market and com-

pensation indicators, price indexes, oil prices, natural gas prices, house prices, exchange rates,

interest rates, a stock market index, monetary aggregates, non-financial assets and liabilities, and

confidence indexes.

In terms of broad categories of data, we include in the dataset the usual suspects normally

considered for high-dimensional macroeconomic analysis (see, for example, McCracken and Ng,

2016, 2020).

In terms of which and how many series to include for each category, we use a mix of economic and

statistical reasoning. On the one hand, to identify the common factors driving the co-movement

in the data, it is crucial to pool information from many indicators; hence, a larger information

set should be preferred. On the other hand, a key assumption of the model is the presence of

mild cross-sectional correlation among the idiosyncratic components: violating this assumption

leads to a deterioration of the model’s performance (Boivin and Ng, 2006; Luciani, 2014). Thus,

when building a dataset for factor analysis, we face a trade-off between the need for a larger

information set and the risk of introducing too much idiosyncratic correlation. For this reason,

we selected the variables to include in the dataset to maximize economic signal while limiting

the noise, with exceptions motivated by economic reasoning. For instance, we include GDP and

its components since their informational content justifies a relatively high level of idiosyncratic

correlations. Similarly, consumption and employment are decomposed according to durability and

sectoral composition, respectively, while assets and liabilities are decomposed by ownership. In

contrast, we keep the consumer price index for energy while dropping the producer price index for

energy, as they carry the same signal (their correlation is greater than 0.95). Likewise, we drop the

consumer price index for industrial goods because it has a correlation greater than 0.95 with the

goods consumer price index.

As for the treatment of the series, we take logarithms for all variables except for confidence

indicators and those already expressed in percentage points. We keep all variables in levels except
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for price indicators, for which we take first differences; i.e., we work with inflation rates. This is a

common approach used in the literature to avoid spurious dynamics resulting from the potential I(2)

behavior in price indexes (Stock and Watson, 2016; McCracken and Ng, 2016, 2020). Appendix

A provides the complete list of variables included in the dataset, along with their sources and

treatment.

3 Methodology

In Section 3.1, we outline the model and its main features—we discuss all the details, formal

assumptions, and further comments in Appendix B. In Section 3.2, we sketch how we estimate

the model while referring the reader to Appendix C for a step-by-step guide on how estimation is

carried out in practice and Appendix D for the bootstrap procedure used to measure uncertainty

around our estimates.

3.1 The model

We denote the observed i-th time series at a given quarter t as yit, with 1 ≤ i ≤ 118 and 2001:Q1 ≤

t ≤ 2024:Q3. In our non-stationary dynamic factor model, each variable is the sum of (i) a

secular component Dit, which is treated either as deterministic or stochastic, (ii) q common factors

ft = (f1t · · · fqt)′, which capture the macroeconomic long- and short-run co-movements and have

a dynamics governed by a VAR, and (iii) an idiosyncratic component ξit, which captures local

dynamics or measurement errors and is possibly correlated across i and t.

We partition the n series according to two features. First, according to the nature of the secular

component, that is, whether Dit is a stochastic or a deterministic process. Second, according to the

nature of the idiosyncratic component, that is, whether ξit has a stochastic trend or it is stationary.

In particular, we model Dit as a local linear trend for GDP to account for the well-documented

slowdown in productivity (Cette et al., 2016) and for households’ financial liabilities (HHLB) and

households’ long-term loans (HHLB.LLN), which make up more than 80% of total household’s liabil-

ities, whose average growth rate has slowed down consistently since the GFC. For these variables,

we say that i ∈ L1. Moreover, we model Dit as a local level model for the unemployment rate

(UNETOT) to account for relevant labor market features (Cette et al., 2016)—this includes the

reallocation of employees across sectors, which contributed to the slowdown in the EA produc-

tivity growth—and for all consumer price inflation indexes (HICPOV, HICPNEF, HICPG, HICPSV,
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HICPNG, HICPFD) as well as oil and natural gas prices (POIL, PNGAS) to account for the slowdown

in inflation occurred after the GFC—accounting for low-frequency dynamics in inflation is crucial

to avoid potential confounding effects which may alter the relation between inflation and real ac-

tivity over the business cycle (Bianchi et al., 2023). For these variables, we say that i ∈ L0.1 For

all other series, Dit is either a linear trend with a constant slope, in which case we say that i ∈ Ib,

or Dit is just a constant equal to Di0. To determine Ib, we test the significance of the sample mean

of ∆yit (see Appendix A).

As for the idiosyncratic components, if ξit ∼ I(1), then we say that i ∈ I1 and we model ξit as a

random walk, while if ξit ∼ I(0), we say that i /∈ I1 and we leave its dynamics unspecified to avoid

over-parametrization of the model. To determine I1, we employ the test proposed by Bai and Ng

(2004) for the null hypothesis of an idiosyncratic unit root (see Appendix A).

Furthermore, we capture the effect of the Covid shock, which generated a large shift both in

the levels (Ng, 2021; Stock and Watson, 2025), and in the volatility (Lenza and Primiceri, 2022;

Carriero et al., 2024) of most macroeconomic EA series, through an additional common factor gt

(Stock and Watson, 2025), and a scalar st scaling the conditional volatility of the latent factors

(Lenza and Primiceri, 2022). While we model the former to have an impact on all series only in

2020 and 2021, we allow the latter to have an effect that persists even after the recovery from the

pandemic. These choices reflect the fact that mobility restrictions and lockdowns in the EA have

been on and off until early 2022, while in the US, they were enforced only at the beginning of the

pandemic.

Formally, the model reads as follows:

yit = Dit + λ′
ift + γigtI2020:Q1≤ t ≤2021:Q4 + ξit, 1 ≤ i ≤ 118, 2001:Q1 ≤ t ≤ 2024:Q3, (1)

Dit = Dit−1 + bi,t−1Ii∈Ib
+ ϵit , ϵit ∼ (0, σ2

ϵi
Ii∈L0), (2)

bit = bit−1 + ηit , ηit ∼ (0, σ2
ηi
Ii∈L1), (3)

ft =
p∑

j=1
Ajft−j + {stI t ≥ 2020:Q1 + I t < 2020:Q1)}ut , ut

i.i.d.∼ (0,Σu), (4)

ξit = ξit−1Ii∈I1 + eit, eit ∼ (0, σ2
ei

), (5)

where IA = 1, if A is true, and IA = 0, otherwise. We set p = 2 based on the BIC criterion for

a VAR on the estimated factors, and q = 4 based on standard information criteria (Bai and Ng,
1 Appendix H shows robustness results for the estimate of the output gap when removing the time variation in the

secular trends.
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2002; Hallin and Lǐska, 2007). Details are in Appendix E.

Furthermore, we assume that one common trend, τt, which we model as a random walk, drives

the non-stationarity in the factors ft, an assumption in line with many theoretical models assuming

a common trend as the sole driver of long-run dynamics (e.g., Del Negro et al., 2007). In contrast,

we remain agnostic on the law of motion of the residual, i.e., the stationary cyclical component,

which we denote as ωt. Specifically, we consider the decomposition:

ft = ψτt + ωt, ωt ∼ (0,Σω), (6)

τt = τt−1 + νt, νt ∼ (0, σ2
ν). (7)

We can then identify the common trend τt by properly initializing the variance σ2
ν , which is anal-

ogous to controlling the signal-to-noise ratio. Details are in the next section. This identification

strategy for the common trend is consistent with the results of Kim and Kim (2022), who show that

extracting a common trend modeled with an unconstrained random walk component overfits GDP,

thus producing a potential output that fluctuates too much and generating the so-called “pile-up”

problem.

It is important to stress that we do not impose any parametric model for the dynamic evolution

of either νt or ωt. Regarding νt, we notice that if we modeled it as an ARMA process, our approach

would be equivalent to Morley et al. (2024) approach, who achieve identification by rescaling the

estimated parameters of an estimated ARMA for ∆τt (see Appendix F for a comparison between

the two approaches). Regarding ωt we notice that the common practice of modeling it as an AR(2)

poses identification problems since the same state-space representation can also be obtained with

an ARMA(2,1) specification (Kim and Kim, 2022).

The model we just described is a modified version of the model Barigozzi and Luciani (2023)

(BL) used to estimate the output gap in the US. We modified BL’s model to overcome two impor-

tant limitations. First, their model relies on estimating cointegrating relationships to identify the

common trends, thus requiring long time series to get a reliable estimate. As such, BL’s model can

be estimated only on US macroeconomic data for which more than 50 years of quarterly data are

available. Second, BL estimate their model on pre-Covid data; thus, to incorporate more recent

observations, some modification is needed to handle the different co-movements brought about by

the Covid pandemic. In this paper, we solve both limitations by introducing (6)-(7), which we can

estimate even on short samples, and by incorporating recently proposed methods to handle the

Covid period in the estimation strategy.
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Combining Equations (1) and (6), we obtain the decomposition of each observed variable:

yit = Dit + λ′
iψτt + λ′

iωt + γigtI2020:Q1≤ t ≤2021:Q4 + ξit. (8)

Focusing on GDP, we define potential output, POt, and the output gap, OGt, as:

POt = DGDP,t + λ′
GDPψτt, (9)

OGt = λ′
GDPωt. (10)

Hence, in our framework, potential output is the sum of the time-varying secular trend of GDP

(DGDP,t), which captures the long-run decline in EA output growth, and the part of GDP driven

by the common trend component (τt); the output gap is the part of GDP driven by the stationary

cyclical component (ωt).

From the definition of potential output (9) and output gap (10), we left out the idiosyncratic

component, ξGDP,t, and the Covid component, γGDPgt. While the idiosyncratic component is likely

to be just a measurement error (Aruoba et al., 2016), hence, it is clear why we are leaving it out;

the exclusion of the Covid shock deserves an explanation.

The Covid component represents the co-movements from 2020:Q1 to 2021:Q4 that neither

potential output nor the output gap captures. In principle, this component could be allocated to

the output gap, which would be equivalent to assuming that the productive capacity of the EA

“froze” due to the lockdowns. While this view is commonly accepted by European institutions

(Thum-Thysen et al., 2022), it is still unclear whether, and by what amount, the EA productive

capacity has been affected by the Covid shock. Thus, we remain agnostic on the allocation of

the Covid component between potential output and the output gap, and we will present it as a

standalone component.

3.2 Estimating the model

To estimate potential output and the output gap, we first estimate the DFM (1)-(5) using a three-

step estimation procedure, and then we estimate the model for the common trend (6)-(7) on the

estimated factors.

Estimating the dynamic factor model. To estimate the model in (1)-(5), we need to extract

the latent states ft, gt, Di,t (if i ∈ L1 or i ∈ L0), and ξit (if i ∈ I1), and estimate the parameters

λi, γi, Aj , st, Σu, σ2
ei

, ai, and bi (if i ∈ Ib), while we calibrate σ2
ϵi

(if i ∈ L0) and σ2
ηi

(if i ∈ L1)
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following Del Negro et al. (2017).2 To do so, we use a three-step estimation procedure that we

summarize below.

Step 1: Estimate the model up to 2019:Q4 (pre-Covid step). We obtain a preliminary

estimate of the parameters using non-stationary PCA (Bai and Ng, 2004; Barigozzi et al., 2021;

Onatski and Wang, 2021). Then, we run the EM algorithm, jointly with the Kalman smoother,

as described in Barigozzi and Luciani (2024) in the high-dimensional case.

Step 2: Estimate the Covid factor and volatility (Covid step). Using the parameter

estimated over the pre-Covid period, we apply the Kalman filter and smoother to extract the

latent states using data up to the end of the sample. To address the influence of the Covid

outliers on the estimates, we truncate the Kalman smoother at 2020:Q1, and then we continue

the backward iterations by re-initializing the Kalman smoother using the Kalman filter estimate

for 2019:Q4. This truncation avoids any backward spurious effect from the Covid period to

the pre-Covid estimates but creates a structural break in the estimated secular components in

2020:Q1. For this reason, we adjust the level of the smoothed secular components by judgmentally

allocating the break in 2020:Q1 to the idiosyncratic component, as suggested by Ahn and Luciani

(2024).3

At this point, we have an estimate of the states over the entire sample given the information

set prior to the Covid shock. This implies that the co-movements in the Covid period are left

unaccounted for and are captured by the idiosyncratic component ξit. Thus, since Covid was a

common shock affecting most of (if not all) the series in the dataset, we estimate the Covid factor

ĝt and its loadings γ̂i by PCA on the variance-covariance matrix of the idiosyncratic component

for the period 2020:Q1-2021:Q4, following Stock and Watson (2025).

Lastly, we estimate the Covid volatilities ŝt for the period 2020:Q1-2024:Q3 by maximum

likelihood and by using the factors extracted using pre-Covid parameters. We find that ŝt jumps

from 1 to about 3.5 at the onset of the Covid pandemic, and then remain larger than 2 until the

end of 2022, thus justifying our choice of imposing a time-varying volatility until the end of the

sample. In Appendix G, we show how our measures would change if we do not explicitly model
2 We calibrate the variances of the stochastic secular components so that when i ∈ L1, the standard deviation of

the secular trend is approximately 1% over 100 years, while when i ∈ L0, the standard deviation of the secular trend
is approximately 1% over 50 years.

3 An alternative approach we could have taken consists of adjusting for outliers on a series-by-series basis. How-
ever, we did not pursue this option because much of the additional volatility during the Covid shock is “economic”
volatility induced by the pandemic, not measurement error (Ng, 2021). A univariate outlier adjustment method can-
not distinguish between the two, so it likely removes economically relevant information. Indeed, if we do univariate
outlier adjustment, we get that the Covid factor is essentially zero, and the output gap is flat as if nothing happened.
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the effect of Covid, or if we use the exponential decay parametrization proposed by Lenza and

Primiceri (2022).

Step 3: Full sample estimation. We estimate all the parameters and latent states up to the

end of the sample, by using data net of the Covid component, i.e., with yit − γ̂iĝt. Specifically,

by using the factors estimated over the whole sample in Step 2 rescaled by ŝt in the last part

of the sample, we estimate the parameters, λ̂i, Âj , Σ̂u, σ̂2
ei

, âi, and b̂i, by maximizing the

expected likelihood. Finally, with the estimated parameters in hand, we obtain a final estimate

of the states, f̂t, D̂i,t, and ξ̂it, through the Kalman smoother again truncated in 2020:Q1 and

reinitialized before iterating backward, as explained in Step 2.

Estimating the common trend. Having estimated the model parameters and unobserved

states, we can now estimate the common trend. To this end, we estimate the state-space model

in (6)-(7) using the EM algorithm by replacing the true factors with the estimated factors. In

particular, we initialize σ2
ν in such a way that the standard deviation of the trend is approximately

1% over 100 years (Del Negro et al., 2017).

At convergence of the EM algorithm, we obtain a final estimate of the parameters, ψ̂, Σ̂ω, and

σ̂2
ν , and using these estimates, we have a final estimate of the trend τ̂t and of the cyclical component

ω̂t = f̂t − ψ̂τ̂t, obtained through the Kalman smoother. Given the estimates of the common trend

and the cyclical common component, we compute our final estimates of potential output and the

output gap according to (9) and (10), respectively.

As shown in Barigozzi and Luciani (2024), the estimation procedure we just outlined delivers

consistent estimators of all parameters and of the factors, provided that n and T grow to infinity

and the EM algorithm is initialized with the estimator of the loadings and factors introduced by

Barigozzi et al. (2021). Furthermore, to prove this result, we neither have to impose the Gaussianity

assumption nor have to require uncorrelatedness of the idiosyncratic components (ξit if i /∈ I1 or

eit if i ∈ I1) across i or t. Rather, we just have to impose standard moment conditions, such as

existence and summability of 4th-order cumulants.

4 Potential output and output gap of the Euro Area

Figure 1 presents our potential output estimate (black line), both in 100 × log levels (left plot)

and in year-on-year (YoY) growth rates (right plot). The right plot also includes potential output
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growth estimates from the EC (red line) and IMF (blue line).

Three main results emerge from Figure 1. First, potential output growth decelerated after the

GFC, and the SDR further compounded this deceleration—average potential output growth was

2.1% in 2008, and the subsequent peak was 1.6% right before the Covid pandemic. This result is

consistent with the results of Elfsbacka Schmöller and Spitzer (2021), who show that the decline in

total factor productivity that occurred during the two recessions induced hysteresis effects on the

level of GDP. Second, while the EC and IMF also estimate a slowdown in potential growth after the

GFC, they do not estimate any effects of the SDR on potential growth. Third, it is still too soon

to determine whether the Covid recession had a long-term effect on potential output growth—the

prevailing institutional perspective is that it did not (Thum-Thysen et al., 2022)—because while

potential growth rebounded fast after the Covid shock, reaching a peak in 2022:Q4 at 2%, it then

slowly declined to 0.95% in 2024:Q3, below the pre-Covid pace.

Figure 1: Potential output
100 × log levels Year-on-year growth rates
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Notes: In all charts, the black solid line is our estimate of potential output, the grey shaded areas are the 68% and 84%
confidence bands, and the dashed black line is GDP—we truncated the y-axis in the right chart for readability. In the
right chart, the blue and red lines are the potential output estimates published by the European Commission and the IMF,
respectively. The IMF estimate of YoY potential output growth reported in the right chart is the result of our own calculation.
Indeed, the IMF publishes only an estimate of the output gap from which we backed out potential output. Thus, the blue
line in the right chart does not account for any adjustment for Covid that the IMF might have done.

Figure 2 presents the estimated output gap, together with the estimates from the EC and the

IMF. Our output gap estimate looks similar to those of the EC and IMF in that the dating of the

turning points perfectly coincides. Moreover, the three estimates closely align until the SDR, as

they all suggest a substantial overheating of the economy in the pre-GFC period, followed by a

persistently negative output gap during the two recessions. However, our measure increased after

the SDR, hovering at about 2% from 2017 to the Covid pandemic, thus signaling a much tighter

economy than the EC or the IMF. Likewise, our measure indicates a much tighter economy after
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the Covid shock than the EC and the IMF.

Figure 2: Output gap
Levels Year-on-year growth rates
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Notes: The black line is our estimate of the output gap (OG) in levels (left plot) and YoY growth rates (right plot)—the
level of the output gap is the percentage deviation from potential, the YoY growth rates is OGt −OGt−4. Each black marker
denotes one year (four quarters), starting from 2001:Q1. The grey shaded areas are the 68% and 84% confidence bands. The
red and blue lines are the output gap estimates published by the European Commission and the IMF, respectively.

To conclude, Figure 3 decomposes GDP growth into the contribution of potential output, the

output gap, the Covid factor, and the idiosyncratic component. During the Covid pandemic, the

output gap subtracted 27.2 percentage points (p.p.) from quarter-on-quarter (QoQ) annualized

GDP growth in 2020:Q2 (inset box, right chart). With QoQ annualized GDP growth rate declining

at a -47%, a 27.2 p.p. contribution from the output gap seems dubious. However, as explained

in Section 3.2, our output gap estimate captures only business-as-usual co-movements, while the

Covid factor captures the additional co-movements induced by the Covid shock. As shown by

the inset box in the right plot in Figure 3, the Covid factor accounts for an additional -15 p.p.

of the QoQ GDP growth rate plunge in 2020:Q2. Since then, the Covid factor added around 23

p.p. in 2020:Q3, and its contribution declined in the following six quarters, alternating between

negative contribution when mobility restrictions were in place and positive contribution during the

reopening.

In summary, Figures 1–3 show that the EA has a potential output issue, not a business cycle

issue. Since the seminal work of Blanchard and Quah (1989), it is common to assume that supply

shocks have permanent effects, while demand shocks have only transitory effects. Empirical studies

support this assumption. Specifically, Forni et al. (2025) show that the impulse response functions

to a supply (demand) shock are almost identical to those of a permanent (transitory shock). Addi-

tionally, Benati and Lubik (2021) find that it is essentially impossible to detect aggregate demand

shocks that permanently affect GDP.
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Figure 3: Decomposition of GDP growth
Year-on-year growth rate Quarter-on-quarter annualized growth rates

trend cycle idio COV
2020:Q2 0.8 -27.2 -5.5 -15.0
2020:Q3 1.0 22.0 -2.4 23.3

Notes: The black line with dot markers is GDP growth. The bars represent the contribution of each component to GDP
growth. The left plot shows YoY growth rates, while the right plot shows QoQ growth at an annual rate. Growth rates are
computed using the log approximation.

Based on this evidence, we assume that the common trend τt—hence, potential output—is

mainly driven by supply forces, while the cyclical common component ωt—hence, the output gap—

is mainly driven by demand forces. Consequently, to achieve better economic conditions in the

EA, European countries should implement structural reforms and promote productivity-enhancing

investments that have long-run effects. In contrast, policies aiming at stimulating household con-

sumption and residential investments will have only short-term effects at best because, as we will

show in Section 8, growth financed through household debt is not sustainable in the long run.

5 What about the Okun’s law and the Phillips curve?

Our estimate of the output gap has a different meaning than that of the EC and IMF, which derive

the output gap and potential output according to the so-called “production function approach”

(Kiley, 2013). In production-function-based models, the output and unemployment gaps are related

through the Okun’s law, and the output gap is related to inflation through the Phillips curve. Thus,

in these models, the unemployment gap decreases whenever the output gap increases, and vice-

versa, and low inflation suggests a negative output gap, while high inflation indicates a positive

gap.

In our model (like any statistical model), we do not impose any Okun’s law or Phillips curve.

Thus, we must be careful when we compare our estimate with that of the EC or the IMF because

their output gap measures are designed to indicate potential inflation pressure, whereas ours is not.

Nonetheless, in Sections 5.1 and 5.2, we show that, on average, our model satisfies the Okun’s law

relationship and exhibits Phillips correlation.
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5.1 The Okun’s law

The left plot in Figure 4 shows that in our model, the unemployment rate gap and the output

gap are negatively correlated; that is, our model captures the Okun’s law relationship in the data.

Over the whole sample, on average, for every percentage point increase in the output gap, the

unemployment gap decreases 0.6 p.p. (grey dotted line). Moreover, this correlation has decreased

after Covid from -0.56 (blue dash-dotted line) to -0.23 (red solid line), suggesting a (temporary)

disconnect between the labor and goods and services market post-Covid in the EA as also noted

by Berson et al. (2024). The right plot in Figure 4 shows the expanding window estimate of the

Okun’s law coefficient β in the regression (URt − DUR,t) = α + βOGt + εUR,t, where DUR,t is the

time-varying mean of the unemployment rate defined in (2). On average, the Okun’s law coefficient

varies between -0.55 to -0.60.4

Figure 4: Okun’s Law
Unemployment rate gap vs. output gap Okun’s law coefficient (expanding window)

Notes: The left chart shows the Okun’s law relationship with the output gap on the horizontal axis and the unemployment
rate gap on the vertical axis. Each circle corresponds to an output gap - unemployment gap pair at a given time t. The grey
dotted, blue dashed-dotted, and red solid lines are the least squares fit lines for the full, pre-Covid, and post-Covid samples,
respectively, obtained by omitting the observation for 2020:Q2 (orange dot).

The right chart shows the least squares estimate, based on an expanding window starting from 2015:Q1, of the Okun’s
law slope β given by the regression (URt − DUR,t) = α + βOGt + εUR,t, where DUR,t is the time-varying mean of the
unemployment rate defined in (2). Each dot is an estimate of β while the whiskers are ± one HAC standard errors.

To further corroborate the intuition that there is a tight relationship between our output gap

estimate and labor market indicators, Figure 5 shows the Generalized Impulse Response Functions

(GIRFs) of the common component of the unemployment rate, GDP, potential output, and the

output gap to a 1 p.p. shock to the common component of the unemployment rate.5 Results
4 We also estimated the relationship between the output gap and hours worked gap and find a positive correlation

in line with the results of Morley et al. (2023).
5 The lag-h GIRF of all variables is obtained by computing the differences between the h-step ahead forecast of their

common component conditional on a shock to a given variable at time T + 1 minus the h-step ahead unconditional
forecast of the common component, i.e., when no shock is imposed. Both forecasts are computed conditional on all
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confirm that our model, on average, associates an unemployment rate increase with an output gap

decrease. After the shock, the common component of the unemployment rate remains 1 p.p. (or

more) above the baseline for about a year and a half before decreasing and slowly returning to zero.

In response, GDP decreases and keeps decreasing, reaching a through a year after the shock; then,

it slowly returns to baseline. The model attributes most of the GDP response to movements in the

output gap, while potential output slightly decreases only after a few quarters. The shock is fully

absorbed in about 4 years.

Figure 5: Generalized Impulse Response Functions to a shock to the unemployment rate
Common component: UR Common component: GDP Potential output and output gap
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Notes: The black solid/dashed lines are the GIRFs to a 1 p.p. shock to the common component of the unemployment rate.
The major ticks in the x-axis represent quarters after the shock.

5.2 The Phillips curve

The left plot in Figure 6 shows that in our model, the core inflation rate gap (i.e., the cyclical

common component of core inflation) and the output gap are positively correlated; that is, there is

Phillips correlation in the data, and our model captures it. Over the whole sample, on average, for

every percentage point increase in the output gap, the core inflation gap increases 4 basis points

(dotted grey line). Moreover, this correlation has increased significantly after Covid from 0.022

(dashed-dotted blue line) to 0.079 (solid red line). The right plot in Figure 6 shows the expand-

ing window estimate of the slope of the Phillips curve α in the following expectation-augmented

specification (e.g., Conti, 2021): πt = c+αOGt + βπt−1 + γπe
t + επ,t, where πt is core inflation and

πe
t are the long-run (5-year ahead) inflation expectations in the Survey of Professional Forecasters.

The results suggest that the relationship between inflation and the output gap has strengthened

after Covid, a point also made by Lane (2024).

To further corroborate the intuition that there is a relationship between our output gap estimate

and inflation indicators, Figure 7 shows the GIRFs of the common component of core inflation,

information available at time T (the last observation in our sample) by means of the Kalman filter (Bańbura et al.,
2015; Crump et al., 409).
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Figure 6: Phillips Curve
Core Inflation gap vs Output gap Phillips Curve slope (expanding window)

Notes: The left chart shows the Phillips curve relationship with the output gap on the horizontal axis and the core inflation
gap on the vertical axis. Each circle corresponds to an output gap - core inflation gap pair at time t. The grey dotted, blue
dashed-dotted, and red solid lines are the least squares fit lines for the full, pre-Covid, and post-Covid samples, respectively,
obtained by omitting the observation for 2020:Q2 (orange dot).

The right chart shows the least squares estimate, based on an expanding window starting from 2015:Q1, of the slope of the
Phillips curve given by the following expectation-augmented specification: πt = c + αOGt + βπt−1 + γπe

t + επ,t, where πt is
core inflation and πe

t are the long-run (5-year ahead) inflation expectations in the Survey of Professional Forecasters. Each dot
is an estimate of α while the whiskers are ± one HAC standard errors.

GDP, potential output, and the output gap to a 0.5 p.p. shock to the common component of core

inflation. Results confirm that our model, on average, associates an increase in inflation with an

output gap increase. The GIRF of the common component of core inflation peaks one quarter after

the shocks before decreasing and slowly returning to zero. In response, GDP initially increases,

but after about a year, it starts decreasing, reaching a trough about 2 years after the shock—the

shock is fully absorbed in 5 years. The response of potential output is negative and persistent. The

output gap initially increases, then decreases, and increases again before returning to zero.

Figure 7: Generalized Impulse Response Functions to a shock to core inflation
Common component: core HICP Common component: GDP Potential output and output gap
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Notes: The black solid/dashed lines are the GIRF to a 0.5 p.p. shock to the common component of core inflation. The
major ticks in the x-axis represent quarters after the shock.
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6 Inflation dynamics through the lens of our model

In Section 5.2, we show that, although we did not create it specifically to signal inflationary pres-

sures, our output gap measure does provide insights related to inflation dynamics. In light of these

results, further inspection of Figure 2 raises two important questions: How can we reconcile an

output gap of 2% between 2017 and 2019 when inflation was just 1%, well below the 2% ECB

target? How does our model interpret post-pandemic inflation dynamics?
To answer these questions, in Figure 8, we plot the decomposition of core inflation (HICPNEF)

implied by our model:

yHICPNEF,t = π̄c
t + π̃c

t + γHICPNEFgtI2020:Q1≤ t ≤2021:Q4 + ξHICPNEF,t, (11)

π̄c
t = DHICPNEF,t + λ′

HICPNEFψτt, (12)

π̃c
t = λ′

HICPNEFωt, (13)

where π̄c
t is trend inflation, and π̃c

t is the inflation gap. Similar to Hasenzagl et al. (2019), we estimate

that after the GFC, trend inflation decreased from 2% to about 1% in 2016, a level at which it stabilized

until the Covid pandemic. This result aligns with the findings of Ciccarelli and Osbat (2017) and Corsello

et al. (2021), who show that inflation expectations de-anchored on the downside after the SDR. Thus, we

conclude that after the GFC, core inflation remained below 2% primarily because trend inflation decreased,

not because there was slack in the economy, which explains why we estimate an output gap above 2% when

core inflation was 1%.

Figure 8: Decomposition of core inflation
Year-on-year inflation Quarter-on-quarter annualized inflation

data trend cycle idio
2019:Q4 1.2 0.9 0.3 0.0
2023:Q1 5.4 2.3 1.6 1.5
2024:Q3 2.7 2.5 0.4 -0.2

Notes: The black line with dot markers is core inflation. The bars represent the contribution of each component to core
inflation. The left plot shows YoY inflation, while the right plot shows QoQ inflation at an annual rate.

Next, we turn our attention to post-pandemic inflation dynamics. As shown in the inset box of the

left chart in Figure 8, YoY core inflation increased about 4.2 p.p. between 2019:Q4 and 2023:Q1. Trend
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inflation and the core inflation gap jointly account for about 65% of this 4.2 p.p. increase, while idiosyncratic

factors drive the remaining portion. Since its 5.4% peak in 2023:Q1, YoY core inflation decreased to 2.7% in

2024:Q3. The core inflation gap accounts 40 basis points of this decline, and the idiosyncratic components

for 250 basis points, while trend inflation increased 20 basis points.

As we explained at the end of Section 4, the cyclical common component—therefore, the core inflation

gap—primarily reflects demand forces. Under this assumption, the results of the decomposition in Figure

8 show that demand forces accounted for at least 30% of the post-pandemic increase in core inflation, thus

supporting existing literature that indicates that demand dynamics played a significant role in the inflation

surge following the pandemic (Ascari et al., 2023; Giannone and Primiceri, 2024; Bergholt et al., 2025).

Figure 8 clearly shows that other significant factors shaping post-pandemic inflation dynamics are idiosyn-

cratic. For example, lingering Covid-specific effects (e.g., supply chain bottlenecks) that are not captured by

the Covid factor. Another possibility is that the concurrent sharp rise in oil and natural gas prices following

the onset of the Russia-Ukraine war induced second-round effects beyond those experienced in the pre-Covid

sample. Finally, labor market tightness might have induced a non-linear response of prices that our linear

model fails to capture. These factors might have a more or less persistent effect. Thus, our estimate of the

role of demand forces should be considered a lower bound.

7 Has our output gap measure predictive power for inflation?

Any output gap measure must be good at predicting inflation to be considered a credible indicator of

current/future inflationary pressure. Thus, to assess the forecasting properties of our output gap estimate,

we replicate the analysis conducted in Bańbura and Bobeica (2023), and we employ the following model:

πt+4 = απt + βOGt + vt+4, (14)

where πt = 100 log(Pt/Pt−1) is the quarter-on-quarter inflation rate in quarter t, Pt is the harmonized

consumer price index (either headline or core), πt+4 =
∑4

i=1 πt+i is year-on-year inflation in quarter t + 4,

and OGt is the output gap. Bańbura and Bobeica (2023) labeled model (14) the “benchmark model,” and

they show that, despite being very simple, it delivers decent forecasts compared to more complex alternative

models.

Our exercise compares the inflation forecast obtained using the benchmark model (14) with a forecast

obtained by replacing our estimate of the output gap with different univariate and multivariate statistical

models: the HP filter, the filter by Hamilton (2018), the boosted HP filter by Phillips and Shi (2021), the

Butterworth filter as recommended by Canova (2025), and the large Bayesian VAR approach by Morley

et al. (2023)—Appendix I describes these alternative models. We carry out the forecasting exercise on

expanding windows, where the first window is a 60-quarter window. We look at the forecasting performance
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of the different output gap measures over two distinct samples: a pre-Covid sample, 2015:Q4–2019:Q4, and

a post-Covid sample, 2022:Q1–2024:Q3.

Table 1 compares the forecasting performance of the different output gap measures in terms of relative

Root Mean Squared Error (RMSE)—numbers lower than one indicate a better forecasting performance when

using our output gap estimate. As shown in rows (1)-(8), in the pre-Covid period, when inflation was low

and stable, our output gap measure performed better than all the other alternatives in forecasting headline

inflation and better than most alternatives when forecasting core inflation. However, in the post-Covid

period, when inflation surged and then declined, our model outperformed all the other measures, sometimes

substantially.

Table 1: 4-quarter ahead year-on-year inflation forecasting
Relative Root Mean Squared Errors

2015:Q4-2019:Q4 2022:Q1-2024:Q3
Output Gap Measure Headline Core Headline Core

(1) HP Filter (λ = 1600) 0.91 1.00 0.97 0.89
(2) HP Filter (λ = 51200) 0.92 1.01 0.94 0.89
(3) Hamilton Filter 0.99 0.97 0.97 0.90
(4) Boosted HP Filter (λ = 1600) 0.90 0.95 0.89 0.87
(5) Boosted HP Filter (λ = 51200) 0.90 0.99 0.91 0.88
(6) Christiano-Fitzgerald Filter 0.90 0.82 0.98 0.88
(7) Butterworth Filter 0.95 0.95 0.96 0.88
(8) Multivariate Beveridge-Nelson 0.91 0.97 - -

Notes: The table shows the relative RMSE of forecasting year-on-year inflation using (14), where OGt is either our output
gap estimate, or an alternative output gap estimate. Our benchmark output gap estimate is always the numerator of the
RMSE, thus numbers lower than 1 indicate a better forecasting performance when using our benchmark output gap estimate.
Rows (1)–(8) compare our benchmark estimate with alternative models. In row (8) forecasts are obtained with the output gap
measure by Morley et al. (2023) which is available only until 2021:Q3. Therefore, we only present results for the pre-Covid
forecasting exercise.

In conclusion, the results in this section prove that our output gap measure is not only a measure of the

cyclical position of the economy but also a reliable inflation gauge.

8 The role of credit indicators

Borio et al. (2017) argue that financial indicators are crucial to meaningfully assess the business cycle, as

credit expansions often lead to economic overheating, especially from the late 1990s onward. In support of

this result, Berger et al. (2022) find that a large share of the US economy overheating in the build-up of the

financial crisis was due to financial imbalances in the credit and housing market. Moreover, Claessens et al.

(2012), Rünstler and Vlekke (2018), and Winter et al. (2022) find that the business and financial cycles are

correlated and co-move in the medium run.

To understand what signals our model takes from financial indicators to estimate the output gap, we

focus on household liabilities because they have become an important driver of the business cycle in many

advanced economies since the early 2000s (Mian et al., 2017). Indeed, while in the 1990s, non-financial
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corporations were the main driver of the financial cycle, households were behind both the pre-GFC excess

leverage, which boosted household demand, and the subsequent deleveraging, which curtailed household’s

demand (Mian and Sufi, 2018; Plagborg-Møller et al., 2020; Reichlin et al., 2020). In terms of the EA area,

Gambetti and Musso (2017) find that loan supply shocks significantly affect the EA business cycle.

Figure 9 shows the impact of a scenario in which household liabilities increase faster than projected in

the baseline for about 31⁄2 years. In this scenario, household liabilities reach a level about 61⁄4 p.p. higher

than in the baseline before returning to baseline after about 8 years.6

Figure 9: Scenario analysis
Household liabilities Household liabilities

(Data and counterfactual) (Conditional and unconditional forecast)

GDP Potential output and output gap
(Scenario dynamic effects) (Scenario dynamic effects)

Notes: In the upper-left chart, the black line is the data (in 100×log-levels), and the red line is a linear path starting from
the value of household liabilities in 2003:Q1 and ending in 2011:Q4. In the upper-right chart, the black line are the data,the
blue line is the scenario we simulate, and the red line is the forecast of household liabilities when no alternative scenario is
imposed. In the lower charts, the black solid/dashed lines are the dynamic effects of the simulated scenario.

The lower charts in Figure 9 show the dynamic effects of this scenario on the log level of GDP and on
6 To calibrate this scenario, we computed the difference between the actual times series of household liabilities

between 2003:Q1 and 2011:Q4 and a counterfactual scenario in which household liabilities would have grown linearly
during this period (the red line in the upper-left chart of Figure 9). Then, we smoothed this difference with a 5-th
order degree polynomial and added it to the unconditional forecast of household liabilities (the red line in the upper-
right chart in Figure 9), which gives us a path for household liabilities (blue line) conditional on which we can obtain
forecasts for all the variables in the model.
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the output gap and potential output.7 Specifically, GDP increases for a little over three years, reaching a

peak at 3 p.p. above the baseline. Then, it declines and, after six years, turns negative. The response of the

output gap mimics that of GDP, but it is a little faster. Potential output slowly increases for the first five

years and then returns to the baseline. These results show that growth financed through household debt is

not sustainable in the long run.

To conclude, we repeat the inflation forecasting exercise in Table 1 using the output gap estimated when

omitting all credit indicators. We find that, in this case, the predictive performance of the output gap is

about 5% worse than our benchmark measure. This result supports our claim that including credit variables

in the dataset when estimating the output gap is crucial, as the model including credit indicators outperforms

the model excluding credit indicators.

9 Conclusions

This paper proposes a new measure of potential output and the output gap for the EA based on letting a large

number of macroeconomic and financial indicators speak. To do so, we estimate a large-dimensional non-

stationary dynamic factor model, which allows us to capture co-movements across series while incorporating

relevant macroeconomic priors, such as the long-run decline in output growth.

Our output gap estimate is in line with those published by the EC and the IMF in most of the sample.

However, our estimate diverges significantly after the SDR when our output gap measure suggests that the

EA economy was tighter than estimated by the EC and the IMF. This result suggests that the EA has a

potential output issue, not a business cycle issue. Hence, if the goal is to achieve better economic conditions

in the EA, European countries should implement structural reforms and promote productivity-enhancing

investments that have long-run effects. In contrast, policies aiming at stimulating household consumption

and residential investments will have only short-term effects at best, as our findings indicate that growth

financed through household debt is not sustainable in the long run.

Moreover, although we did not create our output gap measure specifically to signal inflationary pressures,

it does provide insights related to inflation dynamics because, on average, the Phillips Curve is satisfied.

In particular, we find that core inflation remained below 2% after the GFC, not because there was slack in

the economy, but rather because trend inflation decreased by one percentage point—in line with the idea

that inflation expectations de-anchored on the downside after the GFC (Ciccarelli and Osbat, 2017; Corsello

et al., 2021). Finally, we show that the output gap contributed to at least 30% of the post-pandemic increase

in core inflation, thus supporting existing literature that suggests demand forces played a substantial role in

the rise of post-pandemic inflation (Ascari et al., 2023; Giannone and Primiceri, 2024; Bergholt et al., 2025).
7 This is equivalent to computing the effect of a sequence of shocks. Hence, it is estimated the same way we

estimated the GIRFs in Section 5.
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Summary
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A Data Description
Table A2 provides a brief description for each of the 118 series in our dataset. Moreover, for each variable,
Table A2 indicates the source, the unit of measure, the seasonal adjustment treatment, the transformation (if
any), model for the deterministic component for the idiosyncratic component. Table A1 presents a glossary
to proper understand the data description presented in Table A2.

All the series were retrieved in February 2025, with the sample starting in January 2000 and ending in
October 2024, the last observation available for all the series. After dropping missing values and transforming
the variables, the actual starting point for the analysis is 2001:Q1. Monthly series, which constitute around
one-third of the dataset, are aggregated at the quarterly level by simple averages; hence, the sample used
for the analysis is 2001:Q1-2024:Q3 (T = 95).

Most of the series in the dataset are available already seasonally adjusted from the source, while others,
e.g., financial variables and producer price indexes, are only available not seasonality adjusted. In these
cases, we deseasonalize the series using a simple dummy variable approach.

Table A1: Glossary
Source Unit
EUR = Eurostat CLV= Chain-linked volumes
OECD = Organization for Economic Co-operation and Development 1000-ppl= Thousands of persons
ECB = European Central Bank 1000-U = Thousands of Units
FRED = Federal Reserve Economic Data CP = Current Prices

SA F Trans Trend Idio
NSA = No Seasonal Adjustment Q = Quarterly 0 = No Transformation 0 = No Trend 0 = I(0)
SA = Seasonal Adjustment M = Monthly 1 = First Differences 1 = Deterministic Trend 1 = I(1)
SCA = Seasonal and Calendar Adjustment 2 = Log-Transformations 2 = Time-Varying Trend
MSA = Manual adjustment 3 = First-Differences in Logs 3 = Time-varying Mean
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Table A2: Data description: Euro Area
ID Ticker Series Unit SA F Source Trans Trend Idio

(1) National Accounts
1 GDP Real Gross Domestic Product CLV(2015) SCA Q EUR 2 2 0
2 EXPGS Real Export Goods and services CLV(2015) SCA Q EUR 2 1 0
3 IMPGS Real Import Goods and services CLV(2015) SCA Q EUR 2 1 0
4 GFCE Real Government Final consumption expenditure CLV(2015) SCA Q EUR 2 1 0
5 HFCE Real Households consumption expenditure CLV(2015) SCA Q EUR 2 1 1
6 CONSD Real Households consumption expenditure: Durable Goods CLV(2015) SCA Q EUR 2 1 1
7 CONSND Real Households consumption expenditure: Non-Durable Goods and Services CLV(2015) SCA Q EUR 2 1 1
8 GCF Real Gross capital formation CLV(2015) SCA Q EUR 2 0 0
9 GCFC Real Gross fixed capital formation CLV(2015) SCA Q EUR 2 0 1
10 GFACON Real Gross Fixed Capital Formation: Construction CLV(2015) SCA Q EUR 2 0 1
11 GFAMG Real Gross Fixed Capital Formation: Machinery and Equipment CLV(2015) SCA Q EUR 2 0 1
12 AHRDI Adjusted Households Real Disposable Income %change SCA Q EUR 0 0 0
13 AHFCE Actual Final Consumption Expenditure of Households %change SCA Q EUR 0 0 0
14 GNFCPS Gross Profit Share of Non-Financial Corporations Percent SCA Q EUR 0 0 0
15 GNFCIR Gross Investment Share of Non-Financial Corporations Percent SCA Q EUR 0 0 0
16 GHIR Gross Investment Rate of Households Percent SCA Q EUR 0 1 0
17 GHSR Gross Households Savings Rate Percent SCA Q EUR 0 0 0

(2) Labor Market Indicators
18 TEMP Total Employment (domestic concept) 1000-ppl SCA Q EUR 2 1 1
19 EMP Employees (domestic concept) 1000-ppl SCA Q EUR 2 1 1
20 SEMP Self Employment (domestic concept) 1000-ppl SCA Q EUR 2 0 1
21 THOURS Hours Worked: Total 2015=100 SCA Q EUR 2 0 1
22 EMPAG Quarterly Employment: Agriculture, Forestry, Fishing 1000-ppl SCA Q EUR 2 1 0
23 EMPIN Quarterly Employment: Industry 1000-ppl SCA Q EUR 2 0 0
24 EMPMN Quarterly Employment: Manufacturing 1000-ppl SCA Q EUR 2 0 0
25 EMPCON Quarterly Employment: Construction 1000-ppl SCA Q EUR 2 0 1
26 EMPRT Quarterly Employment: Wholesale/Retail trade, transport, food 1000-ppl SCA Q EUR 2 1 1
27 EMPIT Quarterly Employment: Information and Communication 1000-ppl SCA Q EUR 2 1 1
28 EMPFC Quarterly Employment: Financial and Insurance activities 1000-ppl SCA Q EUR 2 0 1
29 EMPRE Quarterly Employment: Real Estate 1000-ppl SCA Q EUR 2 0 0
30 EMPPR Quarterly Employment: Professional, Scientific, Technical activities 1000-ppl SCA Q EUR 2 1 1
31 EMPPA Quarterly Employment: PA, education, health ad social services 1000-ppl SCA Q EUR 2 1 1
32 EMPENT Quarterly Employment: Arts and recreational activities 1000-ppl SCA Q EUR 2 1 0
33 UNETOT Unemployment: Total %active SA M EUR 0 3 0
34 UNEO25 Unemployment: Over 25 years %active SA M EUR 0 1 0
35 UNEU25 Unemployment: Under 25 years %active SA M EUR 0 1 0
36 RPRP Real Labour Productivity (person) 2015=100 SCA Q EUR 2 1 1
37 WS Wages and salaries CP SCA Q EUR 2 1 0
38 ESC Employers’ Social Contributions CP SCA Q EUR 2 1 0

(3) Credit Aggregates
39 TAS.SDB Total Economy - Assets: Short-Term Debt Securities MLNe MSA Q EUR 2 0 1
40 TAS.LDB Total Economy - Assets: Long-Term Debt Securities MLNe MSA Q EUR 2 1 0
41 TAS.SLN Total Economy - Assets: Short-Term Loans MLNe MSA Q EUR 2 1 0
42 TAS.LLN Total Economy - Assets: Long-Term Loans MLNe MSA Q EUR 2 1 1
43 TLB.SDB Total Economy - Liabilities: Short-Term Debt Securities MLNe MSA Q EUR 2 0 1
44 TLB.LDB Total Economy - Liabilities: Long-Term Debt Securities MLNe MSA Q EUR 2 1 1
45 TLB.SLN Total Economy - Liabilities: Short-Term Loans MLNe MSA Q EUR 2 1 1
46 TLB.LLN Total Economy - Liabilities: Long-Term Loans MLNe MSA Q EUR 2 1 1
47 NFCAS Non-Financial Corporations: Total Financial Assets MLNe MSA Q EUR 2 1 0
48 NFCAS.SLN Non-Financial Corporations - Assets: Short-Term Loans MLNe MSA Q EUR 2 1 0
49 NFCAS.LLN Non-Financial Corporations - Assets: Long-Term Loans MLNe MSA Q EUR 2 1 0
50 NFCLB Non-Financial Corporations: Total Financial Liabilities MLNe MSA Q EUR 2 1 0
51 NFCLB.SLN Non-Financial Corporations - Liabilities - Short-Term Loans MLNe MSA Q EUR 2 1 1
52 NFCLB.LLN Non-Financial Corporations - Liabilities - Long-Term Loans MLNe MSA Q EUR 2 1 1
53 GGAS General Government: Total Financial Assets MLNe MSA Q EUR 2 1 0
54 GGAS.SLN General Government - Assets: Short-Term Loans MLNe MSA Q EUR 2 1 0
55 GGAS.LLN General Government - Assets: Short-Term Loans MLNe MSA Q EUR 2 0 1
56 GGLB General Government: Total Financial Liabilities MLNe MSA Q EUR 2 1 1
57 GGLB.SLN General Government - Liabilities: Short-Term Loans MLNe MSA Q EUR 2 1 0
58 GGLB.LLN General Government - Liabilities: Long-Term Loans MLNe MSA Q EUR 2 0 1
59 HHAS Households: Total Financial Assets MLNe MSA Q EUR 2 1 1
60 HHAS.SLN Households - Assets: Short-Term Loans MLNe MSA Q EUR 2 1 0
61 HHAS.LLN Households - Assets: Long-Term Loans MLNe MSA Q EUR 2 1 0
62 HHLB Households: Total Financial Liabilities MLNe MSA Q EUR 2 2 0
63 HHLB.SLN Households - Liabilities: Short-Term Loans MLNe MSA Q EUR 2 0 0
64 HHLB.LLN Households - Liabilities: Long-Term Loans MLNe MSA Q EUR 2 2 0

In absence of available data on durable and non-durable goods for the Euro Area, we follow Casalis and Krustev (2022) and build the aggregate
series of durable consumption (CONSD) aggregating the data for the 20 individual Euro Area countries. Since data for services and non-durable
goods are unavailable for many individual countries as well, we build an aggregate measure of non-durable goods (CONSND) which also includes
semi-durable goods and services.
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Table A2: Data description: Euro Area
ID Ticker Series Unit SA F Source Trans Trend Idio

(4) Labor Costs
65 ULCIN Nominal Unit Labor Costs: Industry 2016=100 SCA Q EUR 2 1 0
66 ULCMQ Nominal Unit Labor Costs: Mining and Quarrying 2016=100 SCA Q EUR 2 1 0
67 ULCMN Nominal Unit Labor Costs: Manufacturing 2016=100 SCA Q EUR 2 1 0
68 ULCCON Nominal Unit Labor Costs: Construction 2016=100 SCA Q EUR 2 1 0
69 ULCRT Nominal Unit Labor Costs: Wholesale/Retail Trade, Transport, Food, IT 2016=100 SCA Q EUR 2 1 0
70 ULCFC Nominal Unit Labor Costs: Financial Activities 2016=100 SCA Q EUR 2 1 0
71 ULCRE Nominal Unit Labor Costs: Real Estate 2016=100 SCA Q EUR 2 1 0
72 ULCPR Nominal Unit Labor Costs: Professional, Scientific, Technical activities 2016=100 SCA Q EUR 2 1 0

(5) Exchange Rates
73 REER42 Real Exchange Rate (42 main industrial countries) 2010=100 NSA M EUR 2 0 0
74 ERUS Exchange Rate (US dollar) 2010=100 NSA M EUR 2 0 0

(6) Interest Rates
75 IRT3M 3-Months Interest Rates Percent NSA M EUR 0 0 1
76 IRT6M 6-Months Interest Rates Percent NSA M EUR 0 0 1
77 LTIRT Long-Term Interest Rates (EMU Criterion) Percent NSA M EUR 0 0 1

(7) Industrial Production and Turnover
78 IPMN Industrial Production Index: Manufacturing 2021=100 SCA M EUR 2 0 1
79 IPCAG Industrial Production Index: Capital Goods 2021=100 SCA M EUR 2 0 1
80 IPCOG Industrial Production Index: Consumer Goods 2021=100 SCA M EUR 2 1 0
81 IPDCOG Industrial Production Index: Durable Consumer Goods 2021=100 SCA M EUR 2 1 0
82 IPNDCOG Industrial Production Index: Non Durable Consumer Goods 2021=100 SCA M EUR 2 1 0
83 IPING Industrial Production Index: Intermediate Goods 2021=100 SCA M EUR 2 0 1
84 IPNRG Industrial Production Index: Energy 2021=100 SCA M EUR 2 1 0
85 TRNMN Turnover Index: Manufacturing 2021=100 SCA M EUR 2 1 1
86 TRNCAG Turnover Index: Capital Goods 2021=100 SCA M EUR 2 1 1
87 TRNDCOG Turnover Index: Durable Consumer Goods 2021=100 SCA M EUR 2 0 0
88 TRNNDCOG Turnover Index: Non Durable Consumer Goods 2021=100 SCA M EUR 2 1 0
89 TRNING Turnover Index: Intermediate Goods 2021=100 SCA M EUR 2 0 0
90 TRNNRG Turnover Index: Energy 2021=100 SCA M EUR 2 0 0

(8) Prices
91 PPICAG Producer Price Index: Capital Goods 2021=100 MSA M EUR 3 0 0
92 PPIDCOG Producer Price Index: Durable Consumer Goods 2021=100 MSA M EUR 3 0 0
93 PPINDCOG Producer Price Index: Non Durable Consumer Goods 2021=100 MSA M EUR 3 0 0
94 PPIING Producer Price Index: Intermediate Goods 2021=100 MSA M EUR 3 0 0
95 PPIFD Producer Price Index: Food 2021=100 MSA M EUR 3 0 1
96 HICPOV Harmonized Index of Consumer Prices: Overall Index 2010=100 SCA M ECB 3 0 1
97 HICPNEF Harmonized Index of Consumer Prices: All Items: no Energy & Food 2010=100 SCA M ECB 3 3 0
98 HICPG Harmonized Index of Consumer Prices: Goods 2010=100 SCA M ECB 3 3 0
99 HICPSV Harmonized Index of Consumer Prices: Services 2010=100 SCA M ECB 3 3 0
100 HICPNG Harmonized Index of Consumer Prices: Energy 2010=100 MSA M EUR 3 3 0
101 HICPFD Harmonized Index of Consumer Prices: Food 2010=100 MSA M EUR 3 3 0
102 DFGDP Real Gross Domestic Product Deflator 2015=100 SCA Q EUR 3 0 0
103 HPRC Residential Property Prices (BIS) MLNe SCA Q FRED 3 0 0
104 POIL Crude Oil Prices: Brent - Europe e/barrel MSA Q FRED 3 3 0
105 PNGAS Global price of Natural gas, EU e/MMbtu MSA Q FRED 3 3 0

(9) Confidence Indicators
106 ICONFIX Industrial Confidence Indicator Index SA M EUR 0 0 1
107 CCONFIX Consumer Confidence Indicator Index SA M EUR 0 0 0
108 ESENTIX Economic Sentiment Indicator Index SA M EUR 0 0 1
109 KCONFIX Construction Confidence Indicator Index SA M EUR 0 0 1
110 RTCONFIX Retail Confidence Indicator Index SA M EUR 0 0 0
111 SCONFIX Services Confidence Indicator Index SA M EUR 0 1 1
112 BCI Cyclically-Adjusted Business Confidence Index 2010=100 SA M OECD 0 0 1
113 CCI Cyclically-Adjusted Consumer Confidence Index 2010=100 SA M OECD 0 0 0

(10) Monetary Aggregates
114 CURR Money Stock: Currency MLNe SCA M ECB 2 1 1
115 M1 Money Stock: M1 MLNe SCA M ECB 2 1 1
116 M2 Money Stock: M2 MLNe SCA M ECB 2 1 1

(11) Others
117 SHIX Share Prices 2010=100 SA M OECD 2 0 1
118 CAREG Passenger’s Cars Registrations 1000-U SCA M ECB 2 0 1
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B Assumptions
In this section, we state all the formal assumptions underlying the model outlined in Section 3.1, and we

provide both econometric and economic justifications for these assumptions. Throughout the text, we let

t19Q4, t20Q1 and t21Q4 denote 2019:Q4, 2020:Q1 and 2021:Q4, respectively.

Identifying assumptions for the space spanned by the factors.
(1) The number of factors q is such that q < n and is independent of n.

(2) The q-dimensional vector ft is such that E[∆ft] = 0 and E[∆ft∆f ′
t ] = I.

(3) The n× q matrix Λ = (λ1 · · ·λn)′, with λi = (λi1 · · ·λiq)′, 1 ≤ i ≤ n, is such that limn→∞ n−1Λ′Λ = H

positive definite.

(4) The scalar gt is such that E[∆gt] = 0 and E[(∆gt)2] = 1.

(5) The n-dimensional vector γ = (γ1 · · · γn)′, is such that limn→∞ n−1γ′γ > 0.

(6) The q-dimensional vector ut is such that E[ut] = 0, E[utu′
t] = Σu is positive definite, and E[utu′

t−k] = 0

for k ̸= 0. Moreover, st is deterministic with st > 0.

(7) The idiosyncratic innovations eit, 1 ≤ i ≤ n, are such that E[eit] = 0, E[e2
it] = σ2

ei
> 0 for all t. Moreover,

there exist finite constants Mij > 0 independent of t and 0 < ρ < 1 independent of t, i, and j such that

|E[eitej,t−k]| ≤ Mijρ
|k| for all k ∈ Z, with

∑n
i=1,i̸=j Mij ≤ M and

∑n
j=1,j ̸=i Mij ≤ M for some finite

constant M > 0 independent of i, j, and n.

(8) E[eitus] = 0, for all i, t, s.

Assumptions (1)-(3) require the q factors ft to be pervasive so that they have a non-negligible effect on

the variables of interest (Bai and Ng, 2004; Barigozzi et al., 2021). Following Stock and Watson (2025), these

assumptions are extended in parts (4) and (5) to the Covid factor, gt, where pervasiveness stems from the

common nature of the Covid shock affecting most of the series included in the dataset. Including both 2020

and 2021 in the Covid period is consistent with the evolution of the pandemic in Europe.

Assumption (6) assumes white noise innovations whose volatility changes over time after the Covid

shock—time-varying volatility is not a prominent feature in the pre-2020 sample (Jarociński and Lenza, 2018).

Accounting for the change in volatility due to Covid has proven to be fundamental both for estimation and

forecasting, and here we adopt an approach similar to Lenza and Primiceri (2022) by introducing a scaling

term st modeled independently for each period starting from 2020:Q1. Lenza and Primiceri (2022) analyze

monthly US data and impose an exponential decay for st starting in June 2020. In contrast, we estimate one

parameter for each period starting in 2020:Q1 because many series exhibit large variation even after the first
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half of 2020, which is not surprising given that (i) mobility restriction measures in the EA were much more

restrictive than in the US, lasted for longer, and were also implemented in 2021, and (2) the Russia-Ukraine

war had a much larger impact on Europe by pushing natural gas prices (and gasoline prices to a lesser extent)

to the roof, and in creating a lot of macro-financial uncertainty. Moreover, as Morley et al. (2023) pointed

out, quarterly data do not allow for a sharp identification of the decay parameter.

Assumption (7) allows the idiosyncratic innovations to be mildly cross-sectionally correlated and serially

correlated with summable autocovariances, thus compatible with stationary ARMA dynamics (Bai and Ng,

2004; Barigozzi et al., 2021). Last, Assumption (8) requires the idiosyncratic and factor innovations to be

uncorrelated at all leads and lags, a requirement consistent with the idea of global macroeconomic shocks

being unrelated to local dynamics.

Assumptions on the dynamic specifications on the non-stationary idiosyncratic components and the
secular components.

(9) Let I1 be the set of indexes such that ξit ∼ I(1) if i ∈ I1, then nI = #{i : i ∈ I1} is such that

0 < nI < n.

(10) Let Ib be the set of indexes such that bit ̸= 0 if i ∈ Ib, then nB = #{i : i ∈ Ib} is such that 0 < nB < n.

Moreover, Di0 = ai ̸= 0, for all i.

(11) Let σ̂2
∆yi

and σ̂2
yi

be the sample variances of ∆yit and yit respectively, computed for 1 ≤ t ≤ t19Q4 and

t21Q4 + 1 ≤ t ≤ T .

(a) Let L1 := {GDP, HHLB, HHLB.LLN} be the set of indexes such that for i ∈ L1 we have σ2
ηi

̸= 0,

then E[ηit] = 0 and we set σ2
ηi

= (1600σ̂2
∆yi

)−1.

(b) Let L0 := {UNETOT, HICPOV, HICPNEF, HICPG, HICPSV, HICPFD, POIL, PNGAS} be

the set of indexes such that for i ∈ L0 we have σ2
ϵi

̸= 0, then E[ϵit] = 0 and we set σ2
ϵi

= (800σ̂2
yi

)−1.

Assumption (9) allows the idiosyncratic component to be I(1) for some, but not all, of the series. This

assumption is crucial when estimating the model on a large dataset. Imposing the assumption of all idiosyn-

cratic components being I(0) would be overly restrictive, as it implies cointegration for any q-dimensional

vector of series (Barigozzi et al., 2021). While cointegration may hold for certain series, it is highly unlikely

to hold for many others. To accommodate potential cointegration, we allow only a limited number nI of

variables to possess a non-stationary idiosyncratic component. Our dataset, where only nI = 57 out of

n = 118 series exhibit a non-stationary idiosyncratic component, supports this assumption.

Assumption (10) allows for a non-stationary secular component for some, but not all, of the variables

in the dataset. This modeling choice is coherent with the properties of a standard macroeconomic dataset.
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Specifically, variables related to the real sector of the economy, such as consumption or investments, commonly

display a distinct (upward) trend. Conversely, this may not hold for other variables, such as inflation rates

or interest rates, for example. This intuition finds support in the empirical data, where only nB = 58 out of

n = 118 series exhibit a linear trend.

Assumptions (10) and (11a) imply that GDP, households’ financial liabilities and long-term loans, have

a secular component given by the local linear trend model

Dit = ai + bitt, bit = bi,t−1 + ηit, i ∈ L1, (B1)

where ai = Di0.

We introduce a local-linear trend for GDP to capture the gradual drift in the secular decline in long-run

output growth documented both for the US and the EA (Cette et al., 2016; Antolin-Diaz et al., 2017; Gordon,

2018). The literature has identified several factors contributing to this slowdown, with particular emphasis

on declining productivity growth. This decline has been more pronounced in the EA due to heterogeneity

between core and peripheral countries, as peripheral countries are experiencing a larger misallocation of

economic resources (Cette et al., 2016). Therefore, it is crucial to accurately account for these features to

assess GDP’s long-run dynamics. This assessment is essential for estimating potential output, as it avoids

spuriously inflating the output gap with unexplained predictable variation (Ng, 2018).

We introduce a local-linear trend for household financial liabilities and long-term loans, which constitute

about 85% of total household liabilities, to capture the slowdown in their average growth rates that occurred

since the GFC.

Assumptions (10) and Assumption (11b) implies that the unemployment rate, all consumer price inflation

indexes, oil and natural gas prices have a secular component given by the local level model

Dit = ait, ait = ai,t−1 + ϵit, i ∈ L0, (B2)

This specification captures relevant labor and demographic factors that may affect the unemployment rate

secular trend, such as, for example, the aging of the population and the misallocation of resources in the labor

market due to “soft budget constraints” or stringent labor market policies can lead to a mismatch between

employers’ needs and the skill-set of the unemployed (Cette et al., 2016). Similarly, this specification also

allows us to account for the slowdown in inflation occurred after the GFC.

All the other variables in the dataset have either a deterministic linear trend or a constant mean, i.e,

Dit = ai + bit if i ∈ Ib, or Dit = ai otherwise. Although it is technically possible to model a time-

varying component for all the variables in the dataset, such an approach would introduce complexities in the

Page 7 of 28



Supplementary material for the paper: Measuring the Euro Area Output Gap

estimation framework, with the number of latent states increasing linearly with the number of series.

In Assumption (11) we fix the variances of the stochastic secular components following Del Negro et al.

(2017) in order to effectively capture the gradual and persistent nature of the secular trends. This specification

implies that when i ∈ L1, the standard deviation of the secular trend is approximately 1% over 100 years,

while when i ∈ L0, the standard deviation of the secular trend is approximately 1% over 50 years. This

choice consistent with the notion of a slow-moving secular component.

Assumptions on the dynamics of the factors, trend, and cycles.

(12) The polynomial det(I −
∑p

j=1 Ajz
j) = 0 has 1 root in z = 1 and the remaining q − 1 roots in |z| > 1.

(13) The q-dimensional vector ψ is such that β′ψ = 0, where β is the q× (q− 1) matrix having as columns

the cointegrating vectors of ft, i.e., such that β′ft is weakly stationary.

(14) The q-dimensional vector ωt is weakly stationary and such that E[ωt] = 0 and E[ωtω
′
t] = Σω is positive

definite.

(15) The scalar νt is such that E[νt] = 0 and E[ν2
t ] = σ2

ν > 0.

(16) E[νtωt] = 0 for all t.

Assumption (12) imposes that 1 common trend drives the non-stationarity in the common factors, hence,

that the factors are cointegrated with q − 1 cointegrating relations—our data provide strong support for the

presence of just one common trend. This is a standard assumption in the literature, which often assumes

that common productivity trend is the sole driver of long-run economic growth (see, e.g., Del Negro et al.,

2007).

Assumptions (13) and (14) imply that ωt, defined in (6), belongs to the cointegration space of the common

factors. This view is consistent with theoretical models assuming that the output gap represents deviations

from long-run equilibria determined by a common productivity trend (Del Negro et al., 2007).

Assumption (15) assumes that νt is a stochastic process—hence τt is a common stochastic trend—but it

does not constraint νt to be a white noise—hence τt to be a random walk. Indeed, our estimates suggest that

νt is autocorrelated, in line with the theoretical arguments by Lippi and Reichlin (1994).

Finally, Assumption (16) implies contemporaneous orthogonality between potential output and the output

gap, which is also assumed in the non-parametric approaches used by Barigozzi and Luciani (2023).

Then, the extended state-space form of the model is given by:

yit = Dit + λ′
ift + γi gtI t20Q1 ≤ t ≤ t21Q4 + ζit + zit, 1 ≤ i ≤ n, 1 ≤ t ≤ T, (B3a)
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ft =
p∑

j=1
Ajft−j + {stI t ≥ t20Q1 + (1 − I t ≥ t20Q1)}ut, ut

i.i.d.∼ (0,Σu), (B3b)

Dit =


ai + bit if i ∈ Ib,

Dit−1 + bit−1, bit = bit−1 + ηit if i ∈ L1, ηit∼(0, σ2
ηi

),
Dit−1 + ϵi,t if i ∈ L0, ϵit∼(0, σ2

ϵi
),

ai otherwise,

(B3c)

ζit =
{

ξit, ξit = ξi,t−1 + eit if i ∈ I1, eit∼(0, σ2
ei

),
0 if i /∈ I1,

(B3d)

zit =
{

z∗
it if i ∈ I1, z∗

it
i.i.d.∼ (0, Ri),

eit if i /∈ I1, eit∼(0, Ri),
(B3e)

Ri =
{

σ2
z if i ∈ I1,

σ2
ei

if i /∈ I1.
(B3f)

As defined in Assumption (9), I1 denotes the set of series with an I(1) idiosyncratic component. As

defined in Assumption (10), Ib denotes the set of series with a deterministic linear trend. Finally, as defined

in Assumption (11), L1 denotes the set of series with a time-varying trend modeled as a local-linear trend,

while L0 denotes the set of series with a time-varying mean modeled as a random walk.

C Estimation in detail
In this section, we provide details on the estimation procedure described in Section 3.2.

Estimating the dynamic factor model

Initialization
In order to apply the Kalman filter and smoother, we need initial estimates of all the quantities described

in Equations (B3a)-(B3f), with the exception of σ2
ηi

, σ2
ϵi

, both set as in Assumption 11, and σ2
z set to 10−2,

as suggested by Opschoor and van Dijk (2023) who show that smaller values might be detrimental for the

performance of the algorithm.

We denote with the superscript “19” all quantities computed with data up to 2019. Let y̆19
it = (y19

t −ă(0),19
i −

b̆(0),19
i · t)/σ̂2

∆y19
i

, where σ̂2
∆y19

i
is the sample variance of ∆y19

it , and ă(0),19
i and b̆(0),19

i are estimated by regressing

y19
it on a constant and a time trend, whenever i ∈ Ib or i ∈ L1. If i ∈ Ia or i ∈ L0 we let y̆it = y19

it − ă(0),19
i ,

where ă(0),19
i is the sample average of yit. The standardized slopes are denoted as b̂(0),19

i = b̆(0),19
i /σ̂2

∆y19
i

. We

initialize the loadings using the estimator of Barigozzi et al. (2021): the n × q matrix of estimated loadings

Λ̂(0),19 = (λ̂(0),19
1 , . . . , λ̂(0),19

q )′ is obtained by principal components on the standardized first differences of the

data, i.e. (∆y19
it − ∆y19

i )/σ̂2
∆y19

i
, where ∆y19

i is the sample mean of ∆y19
it . Given the loadings, we also

obtain a first estimate of the q common factors, f̂ (0),19
t = n−1Λ̂(0),19′ y̆19

t and of the idiosyncratic components,

ξ̂(0),19
it = y̆19

it − λ̂(0),19′

i f̂ (0),19
t . Furthermore, we obtain Â(0),19

j , j = 1, . . . , p, by fitting a VAR(p) on f̂ (0),19
t . Given the
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residuals û(0),19
t = f̂ (0),19

t − Â(0),19f̂ (0),19
t−1 , where Â(0),19 is the companion form representation of the autoregressive

matrices Â(0),19
1 , . . . , Â(0),19

p , an estimate of the latent covariance is given by Σ̂(0),19
u = Ĉov(û(0),19

t ), where Ĉov is

the sample covariance matrix. Finally, when i /∈ I1 we set R̂(0),19
i = (σ̂(0),19

ei
)2 = V̂ar(ξ̂(0),19

it ), where V̂ar is the

sample variance. And when i ∈ I1 we set (σ̂(0),19
ei

)2 = V̂ar(∆ξ̂(0),19
it ).

Table C1: Initialization of states for the Kalman filter

f 19
0|0 = f̂ (0),19

0

vec
(
P19

0|0

)
=
(
Ipq2 − Â(0),19 ⊗ Â(0),19

)−1
vec

(
Σ̂(0),19

u

)
D19

i,0|0 = b̂(0),19
i

D19
i,0|0 = 0

D19
i,0|0 = 0

b19
i,0 |0 = b̂(0),19

i

if i ∈ {Ib,L1}
if i ∈ L0

if i /∈ {Ib,L0,L1}
if i ∈ {Ib,L1}

P D(19)

i,0|0 = 1
(1−0.99)2σ

2
ηi

P D(19)

i,0|0 = σ2
ϵi

P D(19)

i,0|0 = 0
P b(19)

i,0|0 = 1
(1−0.99)2σ

2
ηi

if i ∈ L1
if i ∈ L0

if i /∈ {L0,L1}
if i ∈ L1

ζ19
i,0|0 = ξ̂(0),19

i1

P ζ(19)

i,0|0 = 1
(1−0.99)2 V̂ar

(
∆ξ̂(0),19

it

) if i ∈ I1

if i ∈ I1

Table C1 provides an overview of the initial values of the states for the Kalman filter.

Step 1: Estimate the model up to 2019:Q4 (pre-Covid step)
Given the initial values of the parameters and the states, we run the Kalman filter and smoother using a

standardized version of the data in levels, up to 2019, that is:

ỹ19
it =


y19

it −ǎ19
i

σ̂2
∆y19

i

if i ∈ {Ib,L1}

y19
it −ȳ19

i

σ̂2
∆y19

i

otherwise

Given ỹ19
t = (ỹ1,t, . . . , ỹn,t)′, we obtain a new estimate of the states, namely the factors f 19

t | T , the time-varying

secular components D19
t | T and slopes b19

t | t, and the non-stationary idiosyncratic components ζ19
t | T , along with

the corresponding conditional covariances.

Given the smoothed states, we estimate all the parameters as follows:

- Factor loadings:

λ̂19′

i =
(

T∑
t=1

(
ỹ19

it − D19
i,t | T − ζ19

i,t | T

)
f 19′

t | T

)(
T∑

t=1
f 19
t | T f 19′

t | T + P19
t | T

)−1
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- Parameters of the law of motion of the common factors:

Â19 =
(

T∑
t=2

f 19
t|T f 19′

t−1|T + P19
t,t−1 | T

)(
T∑

t=2
f 19
t−1|T f 19′

t−1|T + P19
t−1 | T

)−1

Σ̂19
u = 1

T

(
T∑

t=2

(
f 19
t|T f 19′

t|T + P19
t | T

)
− Â19

T∑
t=2

(
f 19
t|T f 19′

t−1|T + P19
t,t−1 | T

))

- Slopes of secular trend:

b̂19
i =

(
T∑

t=1

(
ỹ19

it − λ̂19′

i f 19
t|T − ζ19

i,t|T

)
t

)(
T∑

t=1
t2

)−1

- Variance of I(1) idiosyncratic components:

σ̂2,19
ei

= 1
T

T∑
t=2

(
ζ19

i,t|T ζ
19′

i,t|T + P ζ(19)
i,t | T

)
+ 1
T

T∑
t=2

(
ζ19

it−1|T ζ
19′

it−1|T + P ζ(19)
i,t−1 | T

)
−

− 2
T

T∑
t=2

(
ζ19

it|T ζ
19′

it−1|T + P ζ(19)
i,t,t−1 | T

)
- Covariance prediction error:

R̂19
i = 1

T

T∑
t=1

{(
ỹ19

i,t − λ̂19′

i f 19
t|T − Ii∈Ib

D19
i,t|T − Ii∈I1ζ

19
i,t|T

)2
+ λ̂19′

i P19
t,T | T λ̂

19
i +

+ Ii∈Ib
PD(19)

i,t | T + Ii∈I1P
ζ(19)
i,t | T

}
Step 2: Estimate the Covid factor and volatility (Covid step)
Given the estimated parameters up to 2019:Q4, we run the Kalman filter and smoother using standardized

data in levels for the entire sample, that is:

ỹit =


yit−ǎi

σ̂2
∆yi

if i ∈ {Ib,L1}
yit−ȳi

σ̂2
∆yi

otherwise

In computing ȳi, σ̂2
∆yi

and ăi, we treat Covid outliers as missing values. Given ỹt = (ỹ1,t, . . . , ỹn,t)′, we

obtain the estimated states given the pre-Covid parameters. In doing so, we truncate the Kalman smoother

in correspondence of 2020:Q1, to avoid spurious backward effects from the presence of Covid outliers. The

estimated states are denoted as f (0)
t | T , D(0)

t | T , b(0)
t | T and ζ(0)

t | T .

Given the smoothed states, let:

ξ̂t = ỹt − Λ̂19f (0)
t|T − D(0)

t|T
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and denote as Ξ̂ = (ξ1, . . . , ξt)′ the T × n matrix of idiosyncratic components. Then we estimate the Covid

factor by estimating the first principal component using the n×n variance-covariance matrix of the estimated

idiosyncratic components from 2020:Q1 to 2021:Q4, denoted as Σ̂ΞC . This is the procedure proposed by

Stock and Watson (2025) that we modify to account for non-stationarity in the idiosyncratic component. This

done by partitioning the matrix of idiosyncratic components during the Covid period as Ξ̂C = (Ξ̂C,1|Ξ̂C,0),

where Ξ̂C,1 and Ξ̂C,1 are the matrices of estimated idiosyncratic components in the period 2020:Q1 to 2021:Q4

for i ∈ I1 and i ∈ I0, respectively. Then, we estimate Σ̂ΞC (Hamilton, 2020, Chapter 17; Bai, 2004):

Σ̂ΞC =

 1
(T C )2 Ξ̂C,1′Ξ̂C,1 1

(T C )3/2 Ξ̂C,1′Ξ̂C,0

1
(T C )3/2 Ξ̂C,0′Ξ̂C,1 1

T C Ξ̂C,0′Ξ̂C,0


where T c = 8 denotes the time-periods between 2020:Q1 and 2021:Q4.

Given Σ̂ΞC , we obtain the Covid factor and the corresponding loadings as:

γ̂ =
√
n · V̂Ξ̄C

ĝ = 1√
n

· (Ξ̂CV̂Ξ̄C )

where ĝ is the TC × 1 vector with entries ĝt and V̂ΞC is the n × 1 eigenvector corresponding to the largest

eigenvalue of Σ̂Ξ̂C . Given ĝ, the associated loadings are γ̂ = (γ̂1, . . . , γ̂n)′.

Next, give the estimate of states and the Covid factor, we account for the presence of changes in the

volatility after the Covid shock by modifying the Lenza and Primiceri (2022) procedure to accommodate for

quarterly data. Let s∗
t = stI t ≥ t20Q1 + (1 − I t ≥ t20Q1), the likelihood writes as:

L(f (0) |A,Σu, s
∗
1 , . . . , s

∗
T ) ∝

T∏
t=2

∣∣(s∗
t )2Σu

∣∣− 1
2 · exp

{
−1

2

T∑
t=2

(
f (0)
t|T − Af (0)

t−1|T

)′ (
s2

t Σu

)−1
(

f (0)
t|T − Af (0)

t−1|T

)}

∝

(
T∏

t=2
(s∗

t )−n

)
|Σu|−

T −1
2 · exp

{
−1

2

T∑
t=2

(
f∗(0)
t|T − Af∗(0)

t−1|T

)′
(Σu)−1

(
f∗(0)
t|T − Af∗(0)

t−1|T

)}

where f∗(0)
t | T = f (0)

t | T /s
∗
t , with corresponding variance-covariance matrix P∗(0)

t | T .

The maximum-likelihood estimators of A and Σu given the factors are:

Ǎ =
(

T∑
t=2

f∗(0)
t|T f∗(0)′

t−1|T + P∗(0)
t,t−1 | T

)(
T∑

t=1
f∗(0)
t−1|T f∗(0)′

t−1|T + P∗(0)
t−1 | T

)−1

Σ̌u = 1
T

(
T∑

t=2

(
f∗(0)
t|T f∗(0)′

t|T + P∗(0)
t | T

)
− Ǎ

T∑
t=2

(
f∗(0)
t|T f∗(0)′

t−1|T + P∗(0)
t,t−1 | T

))
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Substituting Ǎ and Σ̌u in the likelihood, we obtain the concentrated likelihood:

L(f (0) |Ǎ, Σ̌u, s
∗
1 , . . . , s

∗
T ) =

T∏
t=2

(s∗
t )−n ·

∣∣∣Σ̌u

∣∣∣− T
2

By numerically maximizing the concentrated likelihood we obtain the volatility parameters ŝt.

Step 3: Full sample estimation
Given the Covid factor estimated in Step 2, we obtain all the other parameters in the model:

- Factor loadings:

λ̂′
i =

(
T∑

t=1

(
ỹit − D(0)

i,t | T − ζ(0)
i,t | T

)
f (0)′

t | T − γ̂iĝt

)(
T∑

t=1
f (0)
t | T f (0)′

t | T + P(0)
t | T

)−1

- Slopes of secular trend:

b̂i =
(

T∑
t=1

(
ỹit − λ̂′

if
(0)
t|T − ζ(0)

i,t|T − γ̂iĝt

)
t

)(
T∑

t=1
t2

)−1

- Variance of I(1) idiosyncratic components:

σ̂2
ei

= 1
T

T∑
t=2

(
ζ(0)

i,t|T ζ
(0)′

i,t|T + P ζ(0)
i,t | T

)
+ 1
T

T∑
t=2

(
ζ(0)

it−1|T ζ
(0)′

it−1|T + P ζ(0)
i,t−1 | T

)
−

− 2
T

T∑
t=2

(
ζ(0)

it|T ζ
(0)′

it−1|T + P ζ(0)
i,t,t−1 | T

)
- Covariance prediction error:

R̂i = 1
T

{
T∑

t=1

(
ỹ(0)

i,t − λ̂(0)′

i f (0)
t|T − Ii∈Ib

D(0)
i,t|T − Ii∈I1ζ

(0)
i,t|T − γ̂iĝt

)2
+ λ̂′

iP
(0)
t,T | T λ̂i+

+ Ii∈Ib
PD(0)

i,t | T + Ii∈I1P
ζ(0)
i,t | T

}
Given the estimated parameters, using data net of the Covid component, i.e. ỹt − γ̂ĝt, we obtain a final

estimates of all the states, ft | T , Dt | T , bt | T , ζt | T and their conditional covariances with the Kalman filter

and smoother. Note that, for this final run, the Kalman filter and smoother do not need to be truncated in

2019:Q4 because we have already controlled for the Covid pandemic.

Estimating the common trend
With the estimated factors, ft | T , we obtain an estimate of the trend and cyclical component by means of the

EM algorithm. To run the algorithm, we need an initial estimate of the parameters ψ, Σω, and σ2
ν .

Page 13 of 28



Supplementary material for the paper: Measuring the Euro Area Output Gap

(a) Let τ̂ (0)
t be the initial estimate of the common trend. We set τ̂ (0)

t = fj,t | T , where fj,t | T is the factor

explaining the largest share of long-run dynamics. Specifically, let Ŝj(ω) denote the estimated spectral

density of ∆fj,t | T for frequency ω, and ŝj(ω) be the corresponding standardized spectral density. Let

s̄j be the integral of ŝj(ω) over frequencies ≥ 8 years. The common trend is initialized as the factor

fj,t | T with the highest value of s̄j . This corresponds to an initial value of ψ, denoted as ψ̂(0), such

that ψ̂(0)
j = 1 and ψ̂

(0)
−j = 0.

(b) Given ψ̂(0) and τ̂
(0)
t , we obtain an initial estimate of the cyclical component ω̂(0)

t = f (0)
t | T − ψ̂(0)τ̂

(0)
t

(c) We initialize σ2
ν following Del Negro et al. (2017), so that σ̂2,(0)

ν = (400σ̂2
∆τ )−1, where σ̂2

∆τ is the

sample variance of ∆τ̂ (0)
t . We chose a very small value for the variance of σ̂2,(0)

ν to incorporate our

prior assumption of a slow-moving trend.

(d) Lastly, since by construction ω̂(0)
t has a sample covariance matrix of reduced rank (q − 1), in order to

run the EM algorithm we initialize this covariance as Σ̂(0)
ω = T−1∑T

t=1 ω̂
(0)
t ω̂

(0)′
t + κIq, where we set

κ = 10−2, in agreement with the recommendations by Opschoor and van Dijk (2023).

Once the initial estimates for the algorithm have been computed, in the E-step we run the Kalman filter

and smoother to obtain a new estimate of the trend, namely τ (1)
t | T , along with an estimate of its conditional

variance and covariance, P (1)
t | T and P

(1)
t,t−1 | T , respectively. The smoothed trend is then used to estimate the

parameters in the M-step. This procedure is repeated iteratively until convergence.

For a generic iteration k of the algorithm, we estimate the parameters as follow:

- Trend loadings:

ψ̂(k) =
(

T∑
t=1

ft | T τ
(k)
t | T

)(
T∑

t=1
τ2(k)

t | T + P τ (k)
t | T

)−1

- Variance of common trend:

σ̂2(k)
ν = 1

T

T∑
t=2

(
τ2(k)

t|T + P τ (k)
t | T

)
+ 1
T

T∑
t=2

(
τ2(k)

t−1|T + P τ (k)
t−1 | T

)
−

− 2
T

T∑
t=2

(
τ (k)

t|T τ
(k)
t−1|T + P τ (k)

t,t−1 | T

)
- Covariance of transitory component

Σ̂(k)
ω = 1

T

T∑
t=1

{(
ft | T − ψ̂(k)τ (k)

t | T

)(
ft | T − ψ̂(k)τ (k)

t | T

)′
+ ψ̂(k)P τ (k)

t | T ψ̂
(k)′
}

The algorithm is stopped using the likelihood-based criterion of Doz et al. (2012), with a threshold of 10−3.

At convergence, we obtain an estimate of the trend and transitory components, τt | T and ωt | T , respectively,

along with the estimated parameters ψ̂, σ̂2
ν and Σ̂ω.
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Ultimately, given the estimated trend and transitory components, the estimated output gap and potential

output are defined as:

P̂Ot = DGDP,t | T + λ̂′
GDPψ̂τt | T ,

ÔGt = λ̂′
GDPωt | T

D Confidence bands
To obtain confidence bands for our quantities of interest, we follow the procedure outlined in Barigozzi and

Luciani (2023). In particular, we simulate all the states in the model using the simulation smoother of

Durbin and Koopman (2002), and we generate all the stationary residuals of the model using a stationary

block bootstrap procedure (Politis and Romano, 1994). In practice, we have an estimate of all the states,

namely ft | T , Dt | T , bt | T and ζt | T , an estimate of the Covid factor ĝt and the estimated volatility parameters

ŝt, t≥ t20Q1. Then, the algorithm is structured as follows:

1. Simulate the states by the simulation smoother (Durbin and Koopman, 2002)

(a) Common factors:

i. simulate f̃ (b)
1 ∼ N

(
f1 | T ,P1|T

)
;

ii. simulate ũ(b)
t ∼ N

(
0q, Σ̌u

)
;

iii. for t = 2, . . . , T generate f̃ (b)
t =

∑p
k=1 Ǎk f̃ (b)

t−k + {stI t ≥ t20Q1 + (1 − I t ≥ t20Q1)}ũ(b)
t .

(b) I(1) idiosyncratic components. For each i ∈ I1:

i. simulate ξ̃(b)
i1 ∼ N

(
ξi,1 | T , P

ζ
i,1|T

)
;

ii. simulate ẽ(b)
it ∼ N

(
0, σ̂2

ei

)
;

iii. for t = 2, . . . , T generate ζ̃(b)
it = ξ̃

(b)
it ; ξ̃(b)

it = ξ̃
(b)
it−1 + ẽ

(b)
it .

(c) Time-varying secular components:

• i ∈ L1:

i. simulate b̃(b)
i,1 ∼ N

(
bi,1 | T , P

b
i,1|T

)
, and set D̃(b)

i,1 = b̃
(b)
i,1 ;

ii. simulate η̃(b)
t ∼ N

(
0, σ2

ηi

)
;

iii. for t = 2, . . . , T generate b̃(b)
i,t = b̃

(b)
i,t−1 + η̃

(b)
t ;

iv. for t = 2, . . . , T generate D̃(b)
i,t = D̃(b)

i,t−1 + b̃
(b)
i,t .

• i ∈ L0:

i. simulate D̃(b)
i,1 ∼ N

(
bi,1 | T , P

D
i,1|T

)
ii. simulate ϵ̃(b)

t ∼ N
(
0, σ2

ϵi

)
;
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iii. for t = 2, . . . , T generate D̃(b)
i,t = D̃i,t−1 + ϵ̃

(b)
t .

2. Simulate the stationary residuals of the model, zt = (z1,t, . . . , zn,t)′, using a stationary block-bootstrap

(Politis and Romano, 1994) with an average block length of four quarters. Denote the resulting

simulated residuals as z̃(b)
t = (z̃(b)

1,t , . . . , z̃
(b)
n,t)′.

3. Generate the data. For t = 1, . . . , T , generate:

(a) ỹ
(b)
it = D̃(b)

it + λ̂′
if̃

(b)
t + γ̂iĝt + ζ̃

(b)
it + z̃

(b)
it , for i ∈ {L0,L1}.

(b) ỹ
(b)
it = Di,t | T + λ̂′

if̃
(b)
t + γ̂iĝt + ζ̃

(b)
it + z̃

(b)
it , for all other variables.

where ζ̃(b)
it = 0 ∀t = 1, . . . , T if i /∈ I1

4. Using ỹ(b)
t = (ỹ(b)

1,t , . . . , ỹ
(b)
n,t)′, estimate the model as described in Appendix C to get a new estimate

of the loadings, Λ̂(b) = (λ̂(b)′

1 , . . . , λ̂
(b)′

N )′, and all the other parameters in the model, as well as a new

estimate of the states f (b)
t | T ,D

(b)
t | T ,b

(b)
t | T and ζ(b)

t | T .

5. Center the estimated states: f̄ (b)
t | T = ft | T − f̃ (b)

t , D̄(b)
t | T = Dt | T − D̃(b)

t +D(b)
t | T , b̄(b)

t | T = bt | T − b̃(b)
t +b(b)

t | T

and ζ̄(b)
t = ζt | T − ζ̃(b)

t + ζ(b)
t | T .

6. Run the trend cycle decomposition on the estimated factors f̄ (b)
t to get a new estimate of the common

trend τ
(b)
t | T , the transitory component ω(b)

t | T , and the parameter ψ̂(b).

7. Estimate potential output as P̂O
(b)
t = D̄(b)

GDP,t | T + λ̂
(b)′

GDPψ̂
(b)τ

(b)
t | T , and the output gap as ÔG

(b)
t =

λ̂
(b)′

GDPω
(b)
t | T .

Repeating this procedure B times, we obtain a distribution of the output gap: {ÔG
(b)
t , b = 1, . . . , B}. Then,

we construct the (1 − α) confidence interval as [ÔGt + zα/2σ̂
OG
t , ÔGt + z1−α/2σ̂

OG
t ], where σ̂OG

t is the sample

standard deviation of {ÔG
(b)
t − ÔGt} and zα/2 = −z1−α/2 is the α/2-th quantile of a standard normal

distribution.

E Number of Common Factors
In this section, we present the results of various information criteria employed to select the number of common

factors.

Assumptions (1)-(3), and (7) imply that the covariance and spectral density matrix of the differenced

data ∆yt = (∆y1t · · · ∆ynt)′ has at most q eigenvalues diverging as n → ∞, with all the others staying

bounded. This allows us to consistently recover the numbers of common factors and common trends via the

log-information criteria IC of Bai and Ng (2002), Hallin and Lǐska (2007), and Alessi et al. (2010), as well

at the eigenvalue-ratio criterion by Ahn and Horenstein (2013), and the test proposed by Onatski (2009). In
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order to avoid spurious effects from the Covid period, we employ standardized and de-meaned first-differenced

data up to 2019:Q4.

Table E1: Number of common factors
Criteria q

Alessi et al. (2010) 4
Ahn and Horenstein (2013) 1
Bai and Ng (2002) 4
Hallin and Lǐska (2007) 4
Onatski (2009) 1

As shown in Table E1, the ABC, BN, and HL criteria suggest q = 4, while the AH criteria and the ON

test suggest q = 1. We picked q = 4 because it is well documented that (i) the criteria of Ahn and Horenstein

(2013) may underperform if there is a significant difference in the explanatory power of the different factors,

which is the case in our dataset where the first factor has a much larger explanatory power than the others;

and (ii) the Onatski (2009) may not perform well when T is small compared to n.

F Identification à la Morley et al. (2023)
Morley et al. (2024), henceforth MTW, propose an alternative trend smoothing approach to correct the

estimated trend whenever it displays some serial correlation in first differences despite being assumed to be

a random walk. We can apply the MTW approach in our setting by estimating an ARMA(1,1) model on the

first difference of the estimated common trend ∆τ̂ (0)
t . The trend estimate corrected as in MTW is given by

∆τ̃t =
(

1 + θ̂

1 − ϕ̂

)
ε̂t, (F1)

where ϕ̂ and θ̂ are the estimated ARMA parameters, and ε̂t are the ARMA residuals. By cumulating ∆τ̃t,

we obtain the corrected estimate of the common trend, τ̃t.

In practice, smoothing as in (F1) seems to be less efficient than our proposal of using the Kalman

smoother due to the presence of some residual Covid volatility in the estimated factors that affects the ARMA

estimation. In particular, V̂ar(∆τ̂t) = σ̂2
ν = 0.092 (computed by excluding observation in 2020 and 2021 from

the calculation) when estimating the model with our method, and V̂ar(∆τ̃t) = (1 + θ̂)(1 − ϕ̂)−1σ̂2
ε = 0.17,

when estimating the model as in (F1), using MTW’s method, where σ̂2
ε is the sample variance of ε̂t. Although

these values are quite similar, they become very different if we compute them using the whole sample; indeed,

they increase to 0.095 and 0.52, respectively. This difference is essentially due to anomalous fluctuations in

the ARMA residuals ε̂t during 2020-2021.

Figure F1 compares our output gap estimate with the one obtained by applying the correction proposed
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by Morley et al. (2024). As expected, the two approaches yield very similar estimates, but in 2021 and 2022,

when the MTW corrections reduce the estimate of the output gap from +4% to +3%.

Figure F1: Output gap estimate with identification à la Morley et al. (2024)
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Notes: The black bold line is our estimate of the output gap.
The grey shaded areas are the 68% and 84% confidence bands.
The light red line is the estimated output gap obtained applying
the correction of the preliminary estimated trend proposed by
Morley et al. (2024) (MTW).

G Accounting for Covid

G.1 Why adjusting for the Covid shock matters
Section 3.2 explained how we accounted for the Covid shock when estimating the model. The upper plots

in Figure G1 compare our benchmark estimates with the one we would have obtained if we had estimated

the model over the full sample without applying any adjustment for the Covid shock (“no adj.”). As can be

seen, ignoring the Covid shock affects the estimates of potential output and the output gap throughout the

sample, which is undesirable; moreover, ignoring the Covid shock distorts the estimate of common dynamics

in 2020 and 2021.

Having shown that accounting for the Covid shock is necessary, the question is whether a strategy different

from the one we adopted would have been desirable. For example, what if we had estimated all parameters

up to 2019:Q4 and then extracted the states by simply truncating the Kalman smoother? Despite being

effective, this strategy is sub-optimal because estimating the parameters up to 2019 becomes less and less

justifiable as new data come in. Moreover, if the increase in volatility induced by the Covid shock turns

out to be very persistent, confidence intervals would be underestimated because they only account for the

pre-Covid volatility regime. By accounting for the Covid shock, we avoid both these issues.

The lower plots in Figure G1 compare our benchmark estimate with the one obtained by estimating

the parameters up to the last quarter of 2019 (“pars 2019”). The two estimates are very similar up to the

pandemic, after which the estimate using the up-to-2019 parameters points towards much larger fluctuations
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Figure G1: Output gap when using pre-Covid parameters or without Covid adjustment
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Notes: The black solid line is our benchmark estimate and the grey shaded areas are the 68% and 84% confidence bands, the
black dashed line is GDP YoY growth rate, the red lines are the estimates obtained with two alternative estimation strategies:
1. (left) fixing parameters estimated up to 2019:Q4 (pars 2019); 2. (right) estimating the model with no adjustment for Covid
(no adj.).

in potential output growth and a much larger output gap, which, if taken at face value, signals a very tight

economy.

G.2 Covid volatiliy
Section 3.2 explained how we accounted for the effect of the Covid shock on the volatility of the common

factors. Specifically, we follow Lenza and Primiceri (2022) and introduce a factor st that scales the volatility

of the common factors from the beginning of the pandemic onward. Lenza and Primiceri (2022) analyzed

monthly US data and impose an exponential decay for st starting in June 2020. In contrast, we estimate one

parameter for each period starting in 2020:Q1. This choice is motivated by both the different impact and

policy response of the Covid pandemic in Europe and by the fact that, as Morley et al. (2023) pointed out,

quarterly data do not allow for a sharp identification of the decay parameter.

The left plot in Figure G2 shows the estimated scaling factor st obtained under both our parametrization

(black line) and under the exponential decay parametrization proposed by Lenza and Primiceri (2022) (red

line). Our estimate of the volatility closely tracks the evolution of the pandemic, as it spikes in the first two

quarters of 2020 when mobility restrictions were most stringent in Europe, and pick-up again in 2021:Q1
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when the spread of the Delta variant reached its peak. Moreover, we estimate that the volatility is very

persistent—the decay we get is very close to 1 (≈ 0.98)—much more persistent than estimated by Lenza

and Primiceri (2022), who estimated their model on monthly US data. This difference is likely due to the

evolution of the pandemic in Europe, where mobility restriction measures were much more restrictive than

in the US, lasted for longer, and were also implemented in 2021. Moreover, the Russia-Ukraine war had a

much larger impact on Europe by pushing natural gas (and gasoline prices to a lesser extent) to the roof and

creating a lot of macro-financial uncertainty. This result motivates the need to allow for time variation in

the factor volatility until the end of the sample.

Figure G2: Output gap estimate with alternative Covid volatility
Estimated Covid volatility Output gap
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Notes: In the left plot, the black line is our estimate of Covid volatility (st), the red line is the estimate obtained by assuming
the exponential decay parametrization of the Covid volatility as in Lenza and Primiceri (2022). In the right plot, the black
line is our benchmark estimate and the grey shaded areas are the 68% and 84% confidence bands, the red line is the estimate
obtained with the exponential decay parametrization of the Covid volatility.

As shown in the right plot in Figure G2, the two parametrizations lead to virtually identical results.

G.3 Alternative estimator for the Covid factor
The approach we described in Appendix C to estimate the Covid factor has the benefit of retaining all the

information in ξ̂t, but it has the problem of relying only on eight data points. That said, since we are only

interested in the first eigenvector of Σ̂Ξ̂C , and given the extent to which the series co-moved during the Covid

period, even a few data points should be informative. However, the estimates could be imprecise, thereby

motivating an alternative estimation strategy.

As an alternative approach, we estimate the Covid factor by estimating the first principal component

using the TC × TC variance-covariance matrix of the estimated idiosyncratic components from 2020:Q1 to

2021:Q4, denoted as Σ̃ΞC . In order to estimate Σ̃ΞC , we consider ξ̂it if i ∈ I0 and ∆ξ̂it if i ∈ I1, i.e. we

take first-differences of all non-stationary idiosyncratic components.(viii) We obtain the Covid factor and the
(viii)In this case ξ̂i will be a T − 1 vector denoting at time t the level of the idiosyncratic component for i ∈ I0 and
the growth rate of the idiosyncratic component for i ∈ I1.
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corresponding loadings as:

g̃ =
√
TC · ṼΞ̄C

γ̃ = 1√
TC

· (Ξ̂CṼΞ̄C )

where g̃ is the TC × 1 vector with entries g̃t and ṼΞC is the TC × 1 eigenvector corresponding to the largest

eigenvalue of Σ̃Ξ̂C . Given g̃, the associated loadings are γ̃ = (γ̃1, . . . , γ̃n)′.

This second strategy allows us to estimate Σ̃Ξ̂C with N data points, thereby yielding a more precise

estimate. However, this comes at the cost of missing important information due to differencing of the non-

stationary idiosyncratic component. Which one of the two approaches is better?

As a robustness exercise, in this Appendix we look at what would have been the output gap estimate, had

we adopted the second strategy to estimate the Covid factor that we just laid out. As shown in Figure G3,

the results obtained with the alternative Covid factor are almost identical to those obtained in the benchmark

specification. This is not surprising, since the co-movoments observed in most of the series during the Covid

period are so large to be easily identified even with a limited range of observations.

Figure G3: Output gap estimate with the alternative Covid factor
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2003 2005 2007 2009 2011 2013 2015 2017 2019 2021 2023

-6

-4

-2

0

2

4

GDP
BLLgBLL

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024

-8

-6

-4

-2

0

2

4

6

BLLgBLL

Notes: The black solid line is our benchmark estimate and the grey shaded areas are the 68% and 84% confidence bands.
The red solid lines are the estimates obtained with the alternative Covid factor (B̃LL). The level of the output gap is the
percentage deviation from potential.

H No time-varying parameters
Figure H1 compares the benchmark estimates of the output gap (right plot) and YoY potential output growth

(left plot) with those obtained without allowing for a local linear trend for GDP, household liabilities, and

long-term loans and no time-varying mean for the unemployment rate and inflation indicators. Removing

the time variation in the secular trends leads to a flatter estimate of potential output growth—hence, a lower
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output gap—in the post-pandemic periods. This result shows that allowing for a time-varying trend for GDP

is crucial to properly capture the slowdown in potential output in the latter part of the sample.

Figure H1: Output gap estimate when imposing no time-varying parameters
Potential Output: YoY Growth Rates Output Gap: Levels
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Notes: The black solid line is our benchmark estimate, the grey shaded areas are the 68% and 84% confidence bands, the
black dashed line is GDP YoY growth rate, the red line is the estimate obtained without time-varying parameters (no TV
pars). The level of the output gap is the percentage deviation from potential.

I Comparison with alternative measures
In this section, we compare our estimates of potential output and the output gap with those obtained using

four different univariate filters and one multivariate approach:

1) The Hodrick and Prescott (1997) filter (HP), with two different values for the smoothing parameter λ:

(i) λ = 1600, commonly used for quarterly data, (ii) λ = 51200, as proposed by Borio (2014) to capture

variability at lower frequencies.

2) The Hamilton (2018) filter (Ham), where the trend is the 8−step ahead forecast of quarterly GDP growth,

obtained using the 4 most recent values of quarterly GDP for each time t, and the cycle is the residual

obtained from this regression.

3) The boosted HP filter (bHP) of Phillips and Shi (2021), which improves on the standard HP filter by

applying the filter recursively on the residuals extracted from previous iterations. The number of iterations

m is a tuning parameter that controls the intensity of the updating, and it is chosen to minimize the

information criterion proposed by the authors.

4) The Christiano and Fitzgerald (2003) filter (CF), with cutoff frequencies for the transitory component

between 8 and 32 quarters.

5) A Butterworth filter (BT) for the transitory component, as proposed by Canova (2025). This filter can

be cast in state-space form, and its squared-gain function defines the frequencies attributed to the cycles.

Here, we employ a first-order polynomial n = 1, with a cutoff point for the frequency set at ω = 0.04 and

scale G0 = 1.
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6) The multivariate Beveridge-Nelson (BN) decomposition based on a large Bayesian VAR, as proposed by

Morley et al. (2023). The authors estimate the Euro Area output gap from 1999:Q1 to 2021:Q3. Here,

due to the lack of availability of their data, we keep their original estimates, truncating the figure in

correspondence with our starting point, i.e. 2001:Q1.

Figure I1 presents the results of this exercise. Overall, the output gap obtained with our methodology aligns

with those estimated with univariate models in terms of peaks and troughs. However, there are several

differences in terms of shape and amplitude.

Figure I1: Output gap estimates with alternative methods
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Notes: The black line is our benchmark estimate and the grey shaded areas are the 68% and 84% confidence bands, the red
and blue lines are alternative estimates.

J Real-time reliability
There is skepticism in the literature on the reliability of model-based output gap estimates in real time

because of the size of end-of-sample revisions (Orphanides and van Norden, 2002). Model-based estimates

of the output gap are subject to revisions in real time because new information leads to changes in both

the estimates of the model parameters and the latent states. In this section, we assess the reliability of our

output gap estimate through a quasi-real-time exercise on expanding windows, where the first window begins

in 2000:Q1 ends in 2015:Q1 (T = 57).

Looking at the upper charts in Figure J1, it is clear that the model is slow in recognizing how deep the

2012 Sovereign debt crisis is, only doing so once data for 2016 becomes available. Inasmuch as this result is

disappointing, we cannot help but notice that 60 observations are probably too few to pin down the output

gap accurately. As more information becomes available, the model’s estimate of the output gap stabilizes, so
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much so that from 2017 onward, the quasi-real-time estimate is very close to the final estimate.

Moving to the Covid pandemic and its aftermath, it is evident that our strategy for adapting to the

COVID shock was viable only starting from the second half of 2020 or even 2021. Moreover, it is reasonable

to assume that anybody would have understood that doing nothing and allowing the Covid shock to affect

the estimates was a huge mistake. Thus, we consider the quasi-real-time performance of the simple strategy

of freezing the parameters to pre-Covid data. As shown by the green line, if we had followed this approach,

we would have had very reliable output gap estimates, as opposed to extreme estimates, had we chosen to do

nothing. Finally, by comparing the red and the green lines, we can appreciate the impact of the adjustment

we implemented to account for the Covid shock.
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Figure J1: Output Gap: quasi-real time, expanding window
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Notes: The black line is the estimate of the output gap obtained using the final sample of data, up to 2024:Q3. The red line
in Figure J1 displays the evolution of our quasi-real-time estimate of the output gap obtained using the procedure outlined in
Section 3. The blue line shows the estimate we would have obtained without any adjustment for the Covid shock. Lastly, the
green line is the estimate we would have obtained if we had frozen the parameter estimate at the value in 2019:Q4.
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Figure J2: Output gap: quasi-real time results
Adjusted for Covid HP CF
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Notes: the black line is the estimate of the output gap obtained over the full sample, and the thin grey lines are the estimate
obtained on all the other subsamples. Each black dots represent the estimate of the output gap for quarter Q and year Y
obtained on the sample ending at quarter Q and year Y.

Figure J2 compares the quasi-real-time estimate of the output gap from our model with those obtained

from an HP filter and a Christiano-Fitzgerald band-pass filter. As mentioned earlier, our estimate’s weakness

is that the one obtained on the sample ending in 2015 is quite different from the final estimate. However, its

strength is that from 2017 onward, the quasi-real-time estimates converge to the final and are very robust. In

contrast, the HP filter and the Christiano-Fitzgerald filter yield quasi-real-time estimates that are never to

far from the final estimate. However, they converge to the final estimate very late, making them unreliable

for real-time analysis.
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