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Abstract

In theories of creative destruction, product innovation is a key driver of aggregate growth. In this
paper, we confront the predictions of these theories about product dynamics with empirical pat-
terns in product-level data on the near-universe of French manufacturing firms. We find that the
process of product innovation frequently exhibits bursts–episodes in which firms rapidly add mul-
tiple products to their portfolio. Such bursts lead to substantial shifts in revenue and explain the
majority of the variance in firm-level growth. We introduce a model of firm product innovation
compatible with such a process that also nests the canonical models of creative destruction. We
show that innovation bursts alter the equilibrium composition of age, size, and innovation effi-
ciency of firms, and further explain the concentration of production among superstar firms. Our
model thus enables the joint study of the determinants of industry concentration and growth in a
setting consistent with the empirical patterns of product dynamics.
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1. Introduction

Product innovation lies at the heart of modern theories of firm growth through creative destruction

(Aghion and Howitt, 1992; Grossman and Helpman, 1991; Aghion et al., 2014). According to these the-

ories, innovative firms invest in research and development (R&D) to create new products superior to

those of competitors, and to expand their market share, output, and profits. The canonical approach,

pioneered by Klette and Kortum (2004), portrays product innovation as a gradual process, where firms

incrementally add new products one at a time through independent innovation events.1 This charac-

terization implies steady firm growth, limiting the frequency of rapid expansions and the emergence

of superstar firms.

In this paper, we use newly assembled, comprehensive product-level data from French manufac-

turing to show that such an account of product innovation may be at odds with empirical patterns. We

show that firms experience what we term innovation bursts, relatively rare but transformative episodes

in which a firm rapidly expands its product portfolio, introducing many new products and gaining sig-

nificant market share.

Such bursts of product creation may stem from innovations that simultaneously spawn multiple

commercial applications. Consider, for instance, the case of Laboratoire Science & Nature (LSN), a

French manufacturing firm specializing in green and natural cosmetic products. For many years after

its inception in the late 1980s, LSN produced only a handful of products. Then in the mid-2010s, the

firm developed a new technology to use mineral-rich seawater from the marshlands of Guérande, in

western France, to create a new line of anti-aging skincare products such as deodorants, body lotions,

and makeup removers. In a short span of time, LSN expanded its number of products by several folds

and substantially grew both its employment and revenue.2 Through the lens of the canonical theories

of creative destruction, the story of LSN is exceedingly unlikely. Our data suggest that such bursts of

product innovation are far more frequent than these theories predict.

What are the consequences of such burst-like behavior in product innovation? To answer this

question, we construct a model of growth and firm dynamics that can match the observed empiri-

cal distribution of product creation, as well as a number of other facts in our data on the firm-level

growth contributions of product creation, product destruction, and growth on continuing products,

and on the evolution of product-level revenue within firms. Our model nests the canonical theories of

creative destruction and allows us to examine the interplay between industry concentration and ag-

gregate growth. We directly calibrate this model using the data on product-level dynamics, providing

a good fit with the observed facts. Using the calibrated model, we study one example of the implica-

tions of innovation bursts for growth, showing that the relationship between firm size and innovation

efficiency is much weaker in our model compared to the standard theories of creative destruction. In

1Since their seminal contribution, these theories have been extended in many directions to study the consequences of
product innovation for many macro-level phenomena such as aggregate productivity growth, business dynamism, com-
petition, and product-market concentration (e.g., Lentz and Mortensen 2008, Akcigit and Kerr 2018, Acemoglu et al. 2018,
Cavenaile et al. 2020, Peters 2020, Aghion et al. 2023, Akcigit and Ates 2023).

2This information is in part based on an interview conducted in 2024 with Olivier Guilbaud, president of LSN.
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contrast to the latter theories, we find that size-dependent innovation policies are far less cost-effective

in spurring aggregate growth in our framework.

We begin the paper by using our product-level data from French manufacturing (discussed in de-

tail in Section 2) to present multiple facts on product creation and destruction (presented in Section 3).

First, we verify some of the core assumptions of the standard theories of creative destruction on the

invariance of the rates of product creation and destruction with respect to firm size and age. Next, we

show that the distribution of the number of products is highly concentrated among large firms and has

a thick, Pareto-like right tail. More importantly, we also document that the distribution of newly cre-

ated products also exhibits a substantial degree of concentration, with a similar Pareto-like right tail.

In other words, we find bursts of product innovation, such as those exhibited by LSN, to be far from

rare: a small share of firms is typically responsible for a large share of all product innovations in every

year. We provide various robustness checks to ensure that what we observe in the data as bursts of new

products indeed constitute episodes of meaningful product innovation, and are not the byproducts of

the specifics of data construction or reporting. Together, these facts point to the dynamics of prod-

uct innovation as an important determinant of the high degree of concentration of production often

observed in firm-level data.

We also use our data to measure the contribution of creative destruction to revenue growth at the

firm and aggregate levels, defined as the share of growth explained by changes in revenue due to the

introduction of new products or the loss of old ones. This contribution, in contrast to that of revenue

growth on continuing products, is more important for firms experiencing rapid growth or decline. This

is in line with the important role of innovation bursts in shaping firm dynamics, and further leads to

the fact that creative destruction plays a major role in explaining the observed variations in revenue

growth across firms.

Finally, we examine the evolution of product-level revenue growth. The initial revenue of new

products exhibits a persistent, firm-specific component. Beyond the first year, we find that growth in

the revenue of a product exhibits a marked decline over the course of its life cycle. Thus, not only does

product innovation grow firm revenue in the first year of the introduction of a new product, it further

enables the firm to sustain a faster rate of growth in the ensuing next few years compared to the growth

it can generate on a mature product.

In Section 4 we rationalize these facts in a model of endogenous growth in which firms invest in

innovation to create new products or to improve the quality of their existing products. In the model,

a firm’s product innovation may bring about a technology with applications across multiple product

lines, leading to a burst of new products. This burst-like stochastic process of product creation is con-

sistent with the high concentration of new products in the data. It naturally nests the canonical Klette

and Kortum (2004) model for the special case in which an innovation only expands firms’ portfolio by

a single product.

We model two additional features to help explain our facts on the evolution of product-level rev-

enue. First, we allow for heterogeneity in innovation efficiency, to capture the observed persistent,

firm-specific component of initial product revenue (Lentz and Mortensen, 2008; Acemoglu et al., 2018).
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Second, we allow investments in quality upgrading on existing products to exhibit diminishing returns;

successive innovations to improve quality of a product using the same firm-level technology become

increasingly incremental over its life cycle (Akcigit and Kerr, 2018; Acemoglu et al., 2022). As a product

matures, firms find it increasingly harder to find ideas to improve the production process (Bloom et al.,

2020).

Innovation bursts help explain the high degrees of production concentration typically observed

in firm-level data, associated with the Pareto distribution of firm size (Axtell, 2001; Luttmer, 2010).

As is well known, canonical theories of firm dynamics through creative destruction can only match

such high degrees of concentration if extended to allow for growth in the total number of products

(Luttmer, 2011).3 Here, we propose a fundamentally distinct driver of the concentration of production,

based on the lumpy nature of innovative ideas, as reflected in the empirically observed concentrated

distribution of product creation.

In Section 5, we quantify the model and assess its normative implications for innovation policy.

Given the data’s close links to the model, we calibrate most parameters directly from moments in our

product-level data. For comparison, we similarly calibrate a conventional model of creative destruc-

tion without innovation bursts. We first confirm that, unlike the conventional model, ours can match

the empirical distribution of product creation (unconditionally or conditional on the firm’s product

count), as well as the high degree of production concentration. Our model also fits the life cycle of

product revenue growth. While untargeted, the model also reasonably matches the decomposition of

revenue growth to the contributions of product creation and destruction and that of continuing prod-

ucts.

Finally, we use the calibrated model to study an example of the normative implications of innova-

tion bursts. Due to heterogeneity in innovation externalities across firms, the social planner would like

to reallocate R&D resources in the market equilibrium toward firms who use them more efficiently.

Under the conventional model, firms with higher efficiency are far more likely to accumulate many

products and grow large. Thus, a government can use observable firm size as a proxy for unobservable

firm-level efficiency. Innovation bursts weaken this link: we show that the more burst-like the process,

the higher the share of low-efficiency firms among large firms. Relative to the a similarly calibrated

standard model, the share of these firms among those with more than 10 products rises more than 3

times in our calibrated model. As a result, we find that a size-dependent 1% R&D subsidy to product

innovation for firms with more than 10 products is up to half as cost effective, in terms of growth per

subsidized dollar, in our model compared to the standard models.

Related Literature. Our paper contributes to the large body of research in the tradition of the

Schumpeterian growth models of creative destruction, confronting them with data on the dynamics of

product churn and turnover. Most prior attempts for testing the predictions of these models regarding

3In our data, the total number of products is fairly stable over time. Luttmer (2011) shows, even in an environment with
sustained growth in the number of products, standard models predict that the largest firms in the data may take centuries
to grow to their current scales. He proposes a theoretical solution in which young firms go through a phase of fast product
creation before transitioning into their long-run behavior. For other examples of similar approaches to match empirical
firm-size concentration, see, e.g., Cao et al. (2017); Acemoglu et al. (2022); Peters and Walsh (2021), and for an alternative
approach based on a static assignment model, see Geerolf (2017).
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the dynamics of product innovation have instead relied on indirect evidence drawn from patent data

(e.g., Akcigit and Kerr 2018).4

As a notable exception, using bar-code-level retail scanner data on non/semi-durable consumer

products, Argente et al. (2024) show that product creation is a major contributor to firm growth, and

that revenue growth falls within each bar code. They provide evidence that a combination of creative

destruction by competitors and cannibalization by the firm’s own innovation contribute to these pat-

ternwhs, and provide a model to study the implied interaction between firms’ product creation and

own-product innovation. Our paper is distinct from theirs in our focus on the heterogeneity in the

distribution of product creation and the evidence in favor of innovation bursts. Our data, furthermore,

covers the entire manufacturing sector, including durables, and defines products at a level broader

than bar codes, ensuring clear differentiation among them. Based on our empirical results, we at-

tribute the falling revenue growth of continuing products in our data to the possibility that ideas for

improving quality get harder to find as products mature.

Beyond theories of firm innovation and dynamics, Bernard et al. (2010) show that product dynam-

ics, at the level of 5-digit industry codes, are consistent with a multi-product extension of the Melitz

(2003) model, while Broda and Weinstein (2010) use bar-code-level scanner data to study the impli-

cations of product dynamics for the measurement of aggregate prices.5 Due to the wider availability

of customs records, the dynamics of exported products have also been widely studied (e.g., Fitzgerald

et al., 2024; Albornoz et al., 2023). Others have explored the implications of product dynamics at the

business cycle frequency as a channel to amplify shocks (e.g., Dekle et al., 2015; Benguria et al., 2022).

Finally, multiple recent studies have documented the fact that industry concentration has been

rising over the past few decades, in the US and globally (e.g. Autor et al. 2020; Kwon et al. 2024; Ma et al.

2024). Concurrently with the rise of large firms, there has been a gradual decline in the growth of total

factor productivity, despite a sustained rise in R&D investments (Bloom et al. 2020). By constructing

a theory of creative destruction that directly matches the firm-level evidence on concentration and

product innovation, our paper offers a laboratory for studying the interplay between concentration,

innovation, and growth.6

2. Data

We use detailed data on the composition of the product portfolio of firms in the French manufacturing

sector. The data combines firm-level income statement and balance sheet data from tax records with

a detailed survey of the product portfolio of firms, covering revenues and quantities sold at the level of

detailed product categories.

4In a recent contribution, Argente et al. (2020) build an explicit empirical connection between firms-level patents and
products and show their association is weaker among market leaders.

5Hottman et al. (2016) use similar data to examine the contribution of the product margin to firm heterogeneity.
6Recent examples of Schumpeterian growth models that relate trends in industry concentration and growth include Ak-

cigit and Ates (2021), Olmstead-Rumsey (2022), Akcigit and Ates (2023), Aghion et al. (2023), Cavenaile et al. (2023), Weiss
(2023), De Ridder (2024), and Yao (2025).
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2.1. Sources

Our main source of information on firm product portfolios is the Enquête Annuelle de Production

(EAP), which is a survey collected by the French statistical office (INSEE). The EAP surveys the uni-

verse of French manufacturing firms with at least 20 employees or 5 million euros in revenue, com-

prising around 90% of the value of aggregate manufacturing output.7 The data is available from 2009

to 2019. We start our analysis in 2010, when the survey methodology was finalized. We drop firms in

EAP that do not belong to the manufacturing sector, such as those in mining, repairs, and installation

industries.

The survey contains revenue, quantity, and average unit values for each product category that a

firm produces each year at the level of 10-digit product codes following the PRODFRA classification,

which is the official classification of French products published by INSEE. The high level of detail in

these codes, distinguishing among 4500 distinct products, enable us to investigate changes in each

firm’s product portfolio. The first six digits are the harmonized European classification of products by

activity codes (CPA), which are sufficiently narrow to identify customs policies. The remaining digits

contain a further sub-classification that is produced particularly for France by INSEE and that nests the

8-digit European PRODCOM classification.8 To ensure consistency of product codes over time, in our

baseline analysis, we use a modified 10c-digit product classification obtained through a concordance

procedure that affects around 10% of products (see Online Appendix B.1 for further details). All main

results are robust to using the original 10-digit classification, where we instead drop products with

changes in codes rather than attempt to concord them.

We combine this product data with the Fichier Approaché des Résultats d’Esane (FARE). FARE pro-

vides firm-level income statement and balance sheet data such as total sales, wage bill, and capital, for

the universe of French firms. Our baseline sample is the intersection of FARE and EAP. Additionally,

we obtain the number of plants from social security filings (Déclaration Annuelle de Données Sociales,

DADS) and determine firms’ ownership status (whether independent or part of a group) using the Li-

aisons Financières entre Sociétés (LiFi) data. All data is merged using a common firm identifier, the

SIREN code.

2.2. Summary Statistics

Table 1 provides the summary statistics. Due to the size cut-off for inclusion, firms in our data are

typically larger and older than typical French manufacturing firms. Focusing on the product-level in-

formation, we find that the median firm in a typical year has a single product and adds or loses no

product every year. The picture is somewhat different for the average firm that produces 1.93 prod-

ucts, adds 0.13 new products, losing 0.2.

The table does not fully reflect the high degree of concentration of the distribution of product

counts. Figure 1a plots the distribution and its degree of concentration by plotting the firm’s product

7The survey additionally includes a random sample of small firms. As this sample is redrawn every year, it is not suitable
for our analysis of firm-level product dynamics, which requires panel data.

8For example, the 8-digit code 20421945 includes ‘pre-shave, shaving and after-shave preparations’, while the 10-digit
codes 2042194510 and 2042194520 distinguish between lotions and ‘foams and gels’.
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Table 1: Summary Statistics

Variable Mean St. Dev. Median 10th Pct. 90th Pct. Observations
Sales 22291 283587 3319 584 29533 223883
Age 28 19 24 8 52 223883
Employees 67 307 20 4 120 223883
Revenue per Product 9607 179085 2001 316 15635 223883
Number of Products 1.93 2.64 1 1 4 223883
Lost Products .2 .81 0 0 1 203156
New Products .13 .8 0 0 0 193718
Continuing Products 1.81 2.32 1 1 4 193718

Notes: Age and employment are defined in years and full-time-equivalence, respectively. Sales are 1000s of 2015 euros.

count against its ranking in the sample (logarithmic scale). The relationship between product count

and its rank is approximately linear. Thus, the number of firm-level products follows an approximate

power law with a Pareto-like right tail.The slope of the count-rank relationship implies that the largest

20% of firms produce 46% of all products.9 This is in line with the widely documented fact that other

measures of firm size (e.g., revenue and employment) also follow a power law and is highly concen-

trated among a small share of superstar firms (see, e.g. Axtell 2001, Luttmer 2007, Gabaix 2009, Gari-

cano et al. 2016).10 Figure 1b shows that the right tail of the distribution of revenue per product in our

data also follows a power law.

Figure 1. Decomposing Firm Concentration into Products and Revenue Per Product
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Notes: The figures plot the relationship between a firm’s size (horizontal axes) and the firm’s rank (vertical axes). Size is either product
count or revenue per product (in 1000s of 2015 euros). Rank is measured as the ratio of firms’ rank starting from the largest firm, divided
by the total number of observations in the data, so that rank equals the share of firms with more than n products. Plots are based on the
FARE-EAP for 2019. The distribution for 2010 to 2018 is plotted in Appendix Figure C.2.

9A regression of the log-rank on log-firm size relationship yields an tail index of 1.94.
10Among firms in our sample, the largest 20% of firms are responsible for 84% of revenue and employ of 78% workers. This

is closely in line with the heuristic 80/20% Pareto principle, stating that 80% of the outcome of interest typically belongs to
20% of agents. If we assume a Pareto distribution, the percentage y of the number of products that is produced by the largest
x% of firms equals y = x(θ−1)/θ , where θ is the tail index. For the 80/20% rule, we find a Pareto tail index of around 1.16, fairly
close to the tail index of 1 implied by Zipf’s law.

6



Table 2: Product Creation and Destruction

By Size All 1 2 3 4-5 6-8 8+
Product creation rate 0.066 0.066 0.067 0.068 0.058 0.056 0.083

Product destruction rate 0.082 0.065 0.111 0.117 0.117 0.110 0.129

By Age Bins All 0-5 5-10 10-15 15-20 20-25 25-50 50+
Product creation rate 0.066 0.075 0.061 0.063 0.059 0.064 0.068 0.074

Product destruction rate 0.082 0.094 0.090 0.080 0.080 0.080 0.079 0.081

Notes: Product creation: number of products that a firm starts producing divided by its original number of products. Product destruction:
number of products that a firm stops producing divided by its original number of products. Different columns report the results conditional
on the firm’s number of products in preceding period nt−1 (upper panel) or age bins (lower panel).

3. Stylized Facts on Product Creation and Destruction

In this section, we use our data to document a number of facts on the dynamics of firm-level product

portfolios and how they shape the dynamics of firm revenue growth across firms and within each firm’s

life-cycle.

3.1. How Do the Rates of Product Creation/Destruction Vary with Firm Size/Age?

We begin our investigation by testing one of the key predictions of the standard theories of creative

destruction on the relationship between the rates of product creation, destruction, and firm size. Fol-

lowing Klette and Kortum (2004), these theories predict that the firm-level rates of product creation and

destruction are independent of a firm’s product count. In addition, they posit that product destruction

occurs in an undirected and random fashion across all existing products. Together, these predictions

yield a strong form of Gibrat’s law: the growth rate of a firm’s product portfolio is independent of its

size.

Empirically, we define the product creation rate as the number of product codes for which a firm

earns revenue at time t but not at t − 1 divided by the number of product codes for which the firm

earns revenue at t −1. The product destruction rate is the share of the firm’s products at t −1 for which

it does not report revenue at t .

Table 2 presents average product creation and destruction rates. We present unconditional aver-

ages and averages conditional on the number of products (top panel) and firms’ age (bottom panel).

The first row displays the product creation rate, the bottom row gives the destruction rate. We find

that firms on average add 0.066 products to their portfolio for every product that they initially pro-

duce, while they stop producing 0.082 products for every such product. The gap between incumbents’

product creation and destruction rates means that the number of products that an incumbent firm

produces on average shrinks over time. That is expected when new firms enter the economy, while

the economy’s total number of firm-products is approximately constant over time–which is the case in

our data. The gap between product creation and destruction rates thus quantifies the contribution of

entrants to product creation.

7



Turning to the results by initial product count, the table shows no particular pattern for product

creation rates across firms with different initial sizes: the rate at which small and large firms expand

their portfolio is similar, ranging from 0.056 to 0.083 per products initially produced. This means that,

in line with the assumptions of Klette and Kortum (2004) and the following literature, the expected

number of new products firms add to their portfolios in expectation scales linearly with the sizes of

their portfolios. The rate of product destruction is similar for all firms with more than two products,

but it is lower for firms that produce a single product. The unusually low rate among single-product

firms is likely to stem from selection in the data: the EAP has a size threshold, implying that the single-

product firms in the data earn higher revenue on their product compared to other firms.

Across different age groups, no systematic pattern emerges in firm creation or destruction rates.

The youngest firms (aged 0-5 years) exhibit slightly higher rates of churn than firms of neighboring

ages, but their average product creation rates are only marginally higher than those of the oldest firms

(aged 50+ years).

3.2. Innovation Bursts and the Concentration of Product Creation

We next investigate the distribution of product creation across firms.11 As mentioned in the introduc-

tion, all models building on the innovation process proposed by Klette and Kortum (2004) predict that,

conditional on the firm’s product count, the number of newly created products follows a distribution

with a thin right tail. Thus, it is highly unlikely for firms to experience rapid product innovations in

these theories.

Figure 2 plots the distribution of a firm’s number of new products. We plot the relationship be-

tween the firm’s number of new products and its rank in that distribution, as we did for firm size in

Figure 1. Figure 2(a) plots the distribution across all firms, showing that it is is highly concentrated.

The number of new products follows a Pareto-like distribution, with the linear regression having a

near perfect fit.12

In Figure 2(b,c,d), we plot the distribution for the number of products, but now condition on firm’s

initial size. Doing so is useful as we have already seen in Figure 1 that the cross-sectional distribution of

firms’ product count is highly concentrated. That, in combination with the fact that product creation

rates in Table 2 were stable in size, could suffice to make the distribution of product creation resemble

the distribution in Figure 2(a). Conditioning on size thus answers the question of whether the concen-

tration of product creation is merely a reflection of the cross-sectional concentration of firms’ product

counts.

Figure 2(b,c,d) show, to the contrary, that the high degree of concentration in product creation

persists when we condition on the firm’s initial product count.13 Even among firms that initially pro-

duce only a single product, some add tens of new products to their portfolio. In other words, firms

11We focus on creation rather than destruction because the number of products that firms lose is bounded by the number
they produce.

12The distribution in Figure 2(a) implies that 76% of product creation comes from just 20% of firms.
13Note that the slope of the log-rank, log-new products relationship in Figure 2 only accounts for firms that add at least

one product to their portfolio. A large share of firms (66%) report no product creation at all. For single-product firms con-
centration is even more extreme, with all product creation coming from just 7% of firms.
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Figure 2. Distribution of Number of New Products
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Notes: The figures plot the relationship between a firm’s number of new products (horizontal axes) and the firm’s rank (vertical axes),
conditional on the firm’s product count in the prior period (nt−1). The (rescaled) rank is measured as the ratio of firms’ rank starting from
the largest firm, divided by the total number of observations in the data. Linear reference lines exclude the observation with the greatest
number of added products; certain data points are combined to respect confidentiality rules.

can experience sudden bursts of product creation that, as we will see, are exceedingly unlikely under

benchmark theories of creative destruction. This pattern is widespread across firms with any initial

number of products in our data. Figures 2(c) and 2(d) show that a sizable share of firms with initially 5

and 10 products also experience bursts of product creation.

Firms that experience an innovation burst also grow rapidly in terms of sales. Figure 3 uses the

product-level revenue in the EAP data to plot average revenue earned on new products against the

firm’s number of new products. The left-hand figure plots this for all firms, the right-hand figure con-

ditions on size by only including single-product firms. The flat line implies that a firm that has created,

say, 10 products, will on average earn 10 times more revenue from newly created products than a firm

that created a single product. Figure C.3 in Appendix C shows the same pattern holds for firms starting

with 5 and 10 products. If innovation bursts were an artifact of some firms classifying similar products

in many different product classification codes, one would expect average revenue per new product to

fall sharply in the number of new products. This would also be the case if the new products were close

substitutes. To the contrary, we find that average revenue per product is similar across firms reporting

different numbers of new products.
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Figure 3. Average Revenue Per New Product
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Notes: Figures plot the logged ratio of total revenue earned on new products divided by the total number of new products on the vertical

axis, against the number of new products on the horizontal axis. The line represents a kernel-weighted local polynomial smoothing of

degree 5, together with its 95% confidence band.

We next present various robustness checks to ensure that innovation bursts are indeed episodes

in which firms expand their product portfolio. We show that innovation bursts are visible at different

levels of aggregation, reflect organic growth rather than acquisitions, and do not cannibalize a firm’s

existing products. Moreover, we show that bursts are prevalent among firms of different ages and in-

novation histories, and across industries.

Level of Aggregation Figure 4 shows that the distribution of product creation is similar if we define a

“product” at different levels of aggregation. If innovation bursts are merely driven by the accuracy with

which different firms classify and report their revenue across product codes, the distribution should

become less concentrated if we define products at higher levels of aggregation. The figure shows that

this is not the case: the distribution of the number of new products is similar at the 6-digit, 8-digit and

the 10c-digit level. Figure C.4 (Online Appendix C) presents similar results conditional on producing 5

and 10 products. We thus conclude that innovation bursts are episodes of rapid firm expansion, rather

than an artifact of the way that some firms report changes to their product portfolio.

Mergers and Acquisitions We also verify that innovation bursts are driven by organic growth rather

than mergers and acquisitions (M&A). If a firm’s product portfolio changes due to the latter, those

changes are unlikely to involve true product creation.

As M&A is difficult to track in the data, we use three different approaches to proxy for firm bound-

aries, two of which are plotted in Figure 5. As M&As are more prevalent among business groups, Fig-

ure 5(a) considers the set of single-product firms that do not belong to business groups; since M&As

are likely to change the number of establishments a firm owns, Figure 5(b) considers the set of single-

product firms that do not add any new plants between the two periods under consideration. In both

cases, we find that the distribution remains fairly similar to our baseline, suggesting that innovation

bursts are not likely to be driven by M&A. Appendix Figure C.5 show that this is also the case for firms

10



Figure 4. Distribution of Number of New Products by Level of Aggregation
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Notes: The figures plot the relationship between a firm’s number of new products (horizontal axes) and the firm’s rank (vertical axes). The
figure provides overlapping plots of the log rank against the log number of products added at the 10c-digit concorded product level (blue
circles), 10-digit PRODFRA level (brown squares), 8-digit (red diamonds) and 6-digit level (green triangles).

of different sizes. Finally, we are also able to track whether firms experience a change in intangible

capital. Intangible capital’s chief component is goodwill, which rises when firms acquire a competitor.

Appendix Figure C.6 shows that, when excluding firms with changes in intangibles, the distribution or

product creation remains almost unchanged.

Cannibalization We next show that innovation bursts have limited effects on firms’ existing products.

If bursts cannibalized firms’ other products, firms that expand their product portfolio would be more

likely to cease producing their older goods, or earn less revenue on them. Argente et al. (2024) find ev-

idence for such cannibalization in the barcode-level, nondurable, convenience consumer goods using

scanner data. In our data, we only find modest cannibalization. Appendix Table C.3 shows that the

probability that a firm stops producing an existing product increases by only 8% if its product creation

rate increases by 100%. Full cannibalization would imply an increase in those odds of 100%. In Section

3.4, we further show that bursts have little effect on per-product revenue of continuing products.

Innovation Bursts by Firm Age, Innovation History, and Sector Online Appendix C presents various

graphs to show that product creation is concentrated in bursts for firms of different ages, innovation

histories, and sectors. Figures C.7 show that the slope of the log-rank, log-number of new products

distribution of firms with below or above-median age is similar. Figure C.8 finds the same for firms

that innovated in the previous period and firms that did not. Moreover, we do not find any evidence

for autocorrelation in bursts. That is, firms adding many products in their previous episode of prod-

uct creation are not more likely to be in the tail of product creation the next time they add products.

Turning to differences across sectors, although our data limits us to the manufacturing sector, we find

that innovation bursts are prevalent across different broad industries within this sector. Figures C.9

and Figure C.10 offer two distinct ways to determine the most prominent broad-industry affiliation

corresponding to different positions within the distribution of product creation. The figure shows that
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Figure 5. Distribution of Number of New Products by Proxies of Fixed Firm Boundary (nt−1 = 1)
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Notes: The figures plot the relationship between a firm’s number of new products (horizontal axes) and the firm’s rank (vertical axes). The
(rescaled) rank is measured as the ratio of firms’ rank starting from the largest firm, divided by the total number of observations in the data.
The two panels plot the baseline Figure 2(b) against the distribution of new products of firms that do not belong to a business group (left
panel) and of firms that do not add new plants over the period (right panel).

all industries are represented across the distribution; hence, we conclude that innovation bursts are

broad-based and not limited to specific industries.

3.3. How Important Is Product Creation/Destruction for Firm Growth?

So far, we have focused on how firm product portfolios evolve through product creation and destruc-

tion. In this section, we use our data to study the contribution of such churn to firm dynamics, by

decomposing firm-level revenue growth to the distinct contributions of product creation/destruction

and the growth in the revenues of existing products.

We measure firm growth using the symmetric growth rate (Davis et al. 2006), which divides the

change in size between period t and t −h by average size across both periods. In contrast to changes

in log size, this growth rate can be calculated for continuing firms as well as firms that enter or exit,

which is why it has become a standard measure in work on firm dynamics. We decompose the growth

in revenue of firm i form time t −h to t as

Ri t −Ri t−h
1
2 (Ri t +Ri t−h)

= RN
i t

1
2 (Ri t +Ri t−h)

− RL
i t−h

1
2 (Ri t +Ri t−h)

+ R−
i t −R+

i t−h
1
2 (Ri t +Ri t−h)

. (1)

The first two terms capture growth in revenue due to product creation and destruction, the third term

captures growth on products that firms continue to produce. Here, RN
i t denotes revenue on products

produced at time t but not at t −h; RL
i t−h is revenue that the firm earned at t −h on products that it

stopped producing between t −h and t ; R−
i t is the revenue that the firm earns at time t on the products

that it was already producing at t −h, and R+
i t−h is the revenue earned at t −h on this same set of

continuing products.

We quantify the contribution of product innovation and destruction in Table 3. In the top panel,

we first present the average size of each term over a single and a five-year horizon. Observations are

weighted by the denominator on the left-hand side of equation (1) to measure contributions to aggre-

12



Table 3: Contribution of Product Innovation and Destruction to Revenue Growth

Overall Growth Product Innovation Product Destruction Continuing Products
Mean value
1-year 0.004 0.022 -0.024 0.006
5-year 0.027 0.076 -0.075 0.026

Shapley-Owen Contribution
1-year 100.0 16.0 55.2 28.8
5-year 100.0 37.4 49.7 12.9

Notes: The table decomposes revenue growth into revenue loss from product loss, revenue gain from product gain, and changes in revenue

on products the firm continues to produce. Revenue is deflated by the GDP deflator. Observations in the upper panel are weighted by

denominator 0.5(Ri t +Ri t−h ).

gate revenue growth. The first row shows that, even though each of the two creation/destruction have

sizable effects, their net effect is small.

This simple exercise may thus suggest from the table that the net effect of product creation and de-

struction, henceforth labeled “creative destruction,” is small or even negative.14 However, this average

result masks substantial heterogeneity across firms in the growth contribution of creative destruction.

To show this, the bottom panel of Table 3 measures how much of the variation in revenue growth is due

to creative destruction. It does so using the Shapley value, which quantifies the marginal contribution

of each component in decomposition (1) to the R2 in regressions on all possible combinations of the

components (see, e.g., Ozkan et al., 2023). The table shows that creative destruction explains over 70%

(87%) of the variation in revenue growth over 1-year (5-year) horizons.15 A variance decomposition as

performed in Hottman et al. (2016) yields quantitatively similar results.

In Figure 6, we show that this large contribution of creative destruction is due to its effect on the

tails of firm revenue growth, Following the the decomposition suggested first by Garcia-Macia et al.

(2019), we split the sample of firms into 40 equally sized bins based on the firms’ revenue growth.16 The

top figure quantifies the importance of each bin for explaining the aggregate revenue growth. Moving

from zero to the right side, the figure plots the ratio of the total change in revenue across the firms

in each bin by the total change in revenue across all firms with positive growth. Thus, the height of

the bars accounts for the contribution of firms in each bin to the overall growth of all growing firms.

Moving from zero to the left, we similarly report the ratio of the total fall in the revenue of all firms

within each bin to the overall fall in the revenues of all shrinking firms.

The figure shows that 18% of revenue destruction comes from firms with revenue growth between

-1.95 and -2, while 14% of revenue creation comes from firms with revenue growth between 1.95 and 2.

14Note that we exclude from the decomposition firms in their first year in the product-level EAP data if they have already
appeared in the previous years of the comprehensive FARE dataset. As a result, innovation bursts that push firms over the
size threshold to feature in the EAP are therefore excluded from the data. Thus, our results are likely to underestimate the
importance of product innovation for revenue growth.

15The contribution of product creation is more similar to product destruction over the longer horizon, which is likely
because the sales of a new product does not reach its full scale in the first year. For example, if firms start producing new
goods uniformly over the year, revenue for new products will on average only capture half a year of sales (Bernard et al., 2010)
This lowers the measured contribution of product innovation to revenue growth.

16Garcia-Macia et al. (2019) use this approach to account for the contribution of firms with different growth rates to overall
job creation and job destruction.

13



Figure 6. Creative Destruction and Aggregate Revenue Growth
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Notes: The horizontal axis measures firm growth through the symmetric growth rate, defined as the change in revenue between t and t −1

divided by average revenue in t and t −1. Growth rates are separated into 20 negative bins and 20 positive bins. The top figure presents the

contribution of changes in revenue across firms in a particular growth bin as a percentage of total revenue creation (the sum of increases

in revenue across growing firms) for positive bins or as a percentage of total revenue destruction (the sum of decreases in revenue across

shrinking firms) for negative bins. The bottom panel decomposes a bin’s overall revenue change into changes coming from continuing

products and the net of product innovation and destruction – creative destruction.

While most changes in overall revenue growth originate from the many firms that have modest growth

rates, the tails of revenue growth still matter in the aggregate. In the bottom figure, we decompose a

bin’s total change in revenue into changes in revenue for continuing products (grey) and the net change

from creative destruction (green). As we move toward the tails of the distribution, the contribution of

creative destruction gradually rises. In the extreme tails, the lion’s share of the growth comes from

creative destruction.

In Online Appendix D, we show that the contribution of creative destruction to overall revenue

growth is similar for firms of different age and size, although the contribution is (by definition) exhaus-

tive for entrants.

Concentration of Revenue Growth We have so far shown that creative destruction plays an impor-

tant role in the tails of firm growth and that product creation is highly concentrated. A natural question

is whether overall revenue growth is also highly concentrated and well described by a power law. On-

line Appendix D confirms that the distributions of revenue and employment growth are much more

concentrated than a log-normal distribution would predict. The log-normal distribution is a natural

starting point as, motivated by Gibrat (1931), firm dynamics models with random shocks to productiv-
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ity typically assume that firm growth is log-normal (see, e.g., Hopenhayn 2014).17 The appendix also

shows that the fat-tailed distribution of revenue growth is visible for firms of different age and size.

3.4. Does Creative Destruction Matter for the Evolution of Product-Level Revenue?

In Section 3.3 we saw that while creative destruction is key for the two tails of firm growth, the major

share of the overall revenue growth comes from products that firms continue to produce. In the last

part of our empirical investigation, we use our data to study how creative destruction matters for the

evolution of product-level revenue. We first show that the initial revenue of new products is driven

by a firm-level factor, and then show that, after each instance of product creation, the growth in the

product-level revenue subsequently falls over the course of the product life cycle.

3.4.1. Revenue of Newly Created Products Are Auto-correlated at the Firm Level

What determines the initial revenue that a new product brings to an innovating firm? Standard models

of creative destruction (e.g., Lentz and Mortensen, 2008; Acemoglu et al., 2018) often assume ex-ante

heterogeneity in innovative capacity of firms, which influences how much their new products upgrade

the quality of the prior state-of-the-art techniques. Through the lens of these models, the initial rev-

enue brought about by a new product reflects this degree of upgrading. Thus, we begin by studying

whether the initial product-level revenue is auto-correlated for firms that experience multiple episodes

of product creation.18

For firms that experience at least two episodes of product creation, Figure 7 shows the binscatter

plot of the average revenue per new product in the current period against the average revenue per new

product in their the previous episode of product creation. We take out 10-digit product fixed effects.

The left-hand panel shows that on average, revenue on new products is higher for firms whose past

instances of product creation had brought in relatively more revenue. The coefficient from a corre-

sponding linear regression is 0.39 and is highly significant. Moreover, the positive relationship dis-

appears when we additionally control for firm fixed effects in the right-hand panel, suggesting that

the driver of the persistence is indeed a firm-level factor. This is in line with the existence of ex ante

firm-level heterogeneity in the quality improvements embodied in product creation.

3.4.2. Product-Level Revenue Growth Falls over the Product’s Life Cycle

Lastly, we show that the growth of revenue of a continuing product gradually falls over the course of

its life cycle. Thus, by introducing new products that have higher potential for within-product quality

improvements, creative destruction makes an indirect contribution to firm-level revenue growth on

continuing products.

17Similar patterns have recently been documented using ORBIS (Jaimovich et al., 2023) and Compustat (Melcangi and
Sarpietro, 2024) firm-level data. Our results echo recent findings in the literature on income dynamics which shows that
individual income growth is also better described by a fat-tailed distributions (see, e.g., Guvenen et al. (2021). Gabaix et al.
(2016) discuss the importance of the income growth process to explain stationary distributions of income and wealth.

18Since the rate of product creation is fairly small, it is difficult to use the data to uncover systematic firm-level differences
in the rates of product creation given the limited time span of our sample.
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Figure 7. Firm-Level Persistence in Average Revenue from New Products
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Notes: The figure presents a binned scatter plot. Horizontal axes give average revenue per new product that an innovating firm earned the

previous year that it added products to its portfolio. Vertical axes gives revenue on a product that the respective firm is producing for the

first time in that year. Both axes are on the log scale. We demean the data using 10-digit product fixed effects, and additionally by firm fixed

effects on the right-hand figure. Appendix Table C.2 gives the regression table for the linear fits.

Figure 8 plots the relationship between revenue growth and product tenure—the time since a

firm began producing a product. Before calculating average growth by tenure, we subtract each firm-

product’s average revenue growth over its observed life cycle to avoid selection bias: revenue growth

may influence how long a firm keeps producing a product. Thus, the figure shows how a firm-product’s

revenue growth deviates from its life cycle average as tenure increases. Each point represents the av-

erage revenue growth at a given year of tenure, relative to growth at tenure 1, and after absorbing

firm-product fixed effects.

The figure shows a significant decline in revenue growth over a product’s life cycle, averaging a

decrease of about 0.5 percentage points per year. The decline of revenue growth over the life cycle of

a product means that creative destruction and revenue growth on continuing products interact. For

firms to sustain revenue growth on their products, they must improve the quality or cut production

costs of the products that they sell. When firms begin to produce a new product, their revenue growth

is rapid and exceeds the average growth over the entire spell of their product. As time passes, rev-

enue growth falls over the product’s life cycle. Thus, it appears that the firm-level opportunities to

sustain growth through the upgrading of own products decline as the product matures. This means

that creative destruction offers two benefits: besides directly contributing to revenue growth of the

firm engaging in product creation, it also enables a sequence of follow-up innovations.

We should note that the falling growth over the life cycle in Figure 8 appears not to be driven by

cannibalization as a side effect of product creation in our data.19 The figure is similar for products

owned by firms that engage in product creation over the horizon, for example, and firms that do not

19As mentioned in the introduction, Argente et al. (2024) document a similar pattern to Figure 8 at the bar-code level using
scanner data from the US. They find that around two-fifths of the life cycle pattern is driven by cannibalization. Our finding
that cannibalization plays a minor role might be due, in part, to the fact that we look at 10-digit product codes rather than
bar codes.
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Figure 8. Life Cycle of Revenue Growth
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Notes: Vertical axis: avg. product revenue growth relative to growth at tenure 1 and after absorbing firm-product fixed effects. Horizontal

axis: years since firm started producing the product. Confidence bounds (90% level) are based on clustered std. errors. To avoid mis-

measuring tenure as a result of the concordance procedure, the figure is constructed using the original 10-digit PRODFRA codes. Figure

C.11 shows similar results using the 10c-digit concorded product codes.

(Appendix Figure C.12). A more formal analysis in Appendix Table C.4 shows that product creation has

limited effects on a firm’s existing products.

Conditioning on Size, Age or Sector The decline in revenue growth in a product’s tenure is present

across firms of different initial size, age, and industry. In Online Appendix Figure C.13 and C.14, we re-

spectively show that revenue growth declines in product tenure for firms across these different classes

of firms. In Appendix Figure C.15, we further show that the revenue decline in tenure also similarly

appears across diffrent Broad Economic Classification (BEC) classes of industries in our data.

4. The Model

In this section we describe our parsimonious model of creative destruction through innovation bursts

that rationalizes the facts documented in the previous section. We start by describing the static and

dynamic optimization of the firm, and then characterize the model’s stationary balanced growth path

equilibrium.

4.1. Households, Firms, and the Aggregate Econonmy

An infinitely-lived representative household has log utility over consumption Ct , which is discounted

at a rate ρ over time. Time is continuous and indexed by t, which is omitted when convenient. The

household supplies a single unit of labor inelastically. Consumption is a CES aggregate of a continuum

of differentiated goods with a constant measure:

C =
∫ 1

0

( ∑
i∈I j

qi j yi j

) ϵ−1
ϵ

d j


ϵ
ϵ−1

(2)
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where ϵ > 1 is the elasticity of substitution, goods are indexed by j , firms are indexed by i, and I j

denotes the set of firms that own the technology to produce good j at quality qi j .

Firm i is defined by the combination of the products for which it owns the leading level of quality

as well as its innovation efficiency. Firm i can produce the quantity of output yi j in product j that it

produces with a production function yi j = li j , where li j denotes production labor, hence marginal

costs are equal across products and firms. All firms that can produce each j compete à la Bertrand, but

subject to an infinitesimally small cost for operating in that market. Given the identical marginal costs

across firms, this means that only the firm with the highest-quality technology to produce j will enter

and produce in equilibrium, charging the monopoly markups ϵ
ϵ−1 , as in Acemoglu et al. (2018).

Letting the aggregate price index of the households be the numeraire, the demand for product j

from the firm i with the highest quality is yi j = C p−ϵ
i j qϵ−1

i j where C denotes aggregate consumption

and pi j the product price. As we saw this product price is given by a constant markup ϵ/(ϵ−1) over

marginal cost, which equals the wage rate w . Thus, product-level demand is an isoelastic function of

quality:

yi j = Y
(

ϵ
ϵ−1 w

)−ϵ qϵ−1
i j , (3)

where we have also used that aggregate consumption C in equilibrium equals output Y .

Defining aggregate productivity Q as the ratio of output to production labor, we have

Qϵ−1 =
∫ 1

0

∫
qϵ−1

i j di d j . (4)

The equilibrium wage is a constant markdown over aggregate productivity, w = (
ϵ−1
ϵ

)
Q. Substituting

this result in Equation (3) allows us to write the profit of firm i on its sales of product j as a function

of product quality relative to aggregate productivity q̂i j ≡ qi j /Q of each product relative to the econ-

omy’s productivity index π(q̂i j ) = 1
ϵ q̂ϵ−1

i j Y . Thus, a firm with a product portfolio Ji has total profits
Y
ϵ

∑
j∈Ji

q̂ϵ−1
i j .

As we will see below, incumbent firms and potential entrants also hire workers to conduct re-

search and development (R&D). Defining total production labor L as all labor used to produce goods,

L = ∫ 1
0

∫
li j di d j , labor market equilibrium requires L = 1−Le −Lr d where Lr d and Le denote labor

involved in R&D by incumbents and entrants, respectively.

4.2. Innovation Bursts

Firms expand their portfolio of products through innovation bursts that occur according to a stochastic

Poisson process with endogenous arrival rates. Each burst generates an “idea” that enables the pro-

duction of one or more products the firm has not previously offered, each drawn randomly from the

continuum of product lines in the economy. Each of these new products surpasses the quality of the

prior incumbent in the corresponding product line. Large innovation bursts are breakthroughs with

applications across a broader range of technologies, allowing a firm to advance the frontier quality of

multiple product lines using a single idea. However, such bursts are uncommon; more often, firms

develop innovations that enable them to add very few products to their portfolio.
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Formally, we model each innovation burst as a set with nc
i elements, where each element corre-

sponds to a randomly chosen, newly created product j ∈ [0,1] with a corresponding quality improve-

ment λb,i j > 1 over the product line’s incumbents’ quality q−i j , such that the quality qi j at which the

innovator produces its new products is given by qi j = q−i j λb,i j .

The number nc
i of such new products in the burst is a random variable that follows a Zeta distri-

bution, with the probability mass function given by

P (nc
i = n) = n−θ

ζ(θ)
, where ζ(θ) =

∞∑
i=1

1

iθ
, (5)

where ζ(·) is the zeta function. The Zeta distribution is the discrete counterpart of the Pareto distribu-

tion. Tail parameter θ > 1 determines the thickness of the tail of innovation bursts. As θ approaches

one, innovation bursts have a Zipf’s distribution. As θ increases, innovation bursts become less dis-

persed. The average number of product innovations in a burst is given by the ratio of ζ(θ− 1) and

ζ(θ), which is finite as long as θ exceeds two. In the limiting case where θ approaches infinity, every

burst has a single product, nc
i = 1, and the model reduces to the standard process of Klette and Kortum

(2004).

To achieve a particular Poisson arrival rate xb,i ≥ 0 of innovation bursts, firm i must hire R&D

researchers zb,i . The relationship between the arrival rate of bursts and the number of researchers is

given by zb,i = ηb xψb,i n−(ψ−1)σ
i , (6)

where ni denotes the firm’s current product count. The number of researchers that the firm employs

is convex in the rate of innovation (ψ> 1) and declines in the number of goods that the firm produces

(σ > 0). The former implies diminishing returns to R&D and the latter implies that current access

to more leading technologies makes firms more productive innovators. Following Klette and Kortum

(2004), this assumption reflects the idea that a firm’s product count also proxies for its knowledge or

organizational capital, making its innovation activity more productive. As such, the arrival rate of in-

novation bursts will increase with product count. As in Akcigit and Kerr (2018), we allow the extent to

which innovation scales in size to be governed by σ. The standard case in which the rate of product

creation scales linearly with product count corresponds to the case of σ= 1.

4.3. Firm Heterogeneity, Entry, and Exit

In addition to the heterogeneity in the number and qualities of their products, firms are also hetero-

geneous in terms of the efficiency with which they use R&D researchers to generate innovation bursts.

We characterize this heterogeneity through variations in types h of the distribution Hb,h(λ) from which

firm i draws the quality improvement λb,i j embodied in its new product j (Lentz and Mortensen,

2008). Firms that belong to a higher innovation type h on average achieve higher quality improvements

in their innovation bursts, in the sense that the average momentλb,h defined asλb,h ≡ Eb,h[λϵ−1]1/(ϵ−1),

is increasing in h. Since subsequent innovators improve the quality of the product in proportion to its
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current quality, these firms also generate a greater positive externality to other firms. We assume that

the firm’s innovation efficiency is a fixed, firm-level characteristic.20

Firms endogenously enter and exit the economy. There is a unit measure of potential entrants that

hire researchers to create a new product. To achieve an innovation arrival rate xe , the potential entrant

must hire ze = ηe xψe researchers. These entrepreneurs are ex-ante identical: they know the probability

G(h) that they will have innovation efficiency type h but only learn about their type after creating their

new product.

Firms stop producing a product when a different firm comes up with a higher-quality version of

that product. The rate at which such displacement occurs is the rate of creative destruction, which

is endogenously determined by the rate of entry and the rate of innovation bursts by incumbents. As

we will see later when characterizing the behavior of firms along a stationary equilibrium path, firm

i chooses its rate of innovation bursts as a function of the two sources of heterogeneity: its innova-

tion efficiency hi and its product count ni , so that xb,i = xb,hi (ni ). Accordingly, the rate of creative

destruction is given by

xd = xe + ζ(θ−1)

ζ(θ)

∑
h,n

Mh(n) xb,h(n), (7)

where Mh(n) is the measure of firms with efficiency h and product count n. Creative destruction due

to incumbents, the second term on the right, equals their rate of innovation bursts times the expected

number of new products ζ(θ−1)/ζ(θ) per burst. As usual, firms exit when innovation by other firms

causes them to cease producing their sole good.

4.4. Firm Innovation on Own Products

In addition to expanding their product portfolio through innovation bursts, firms also invest in inno-

vation to upgrade the quality of the products currently in their portfolios. Quality raises demand, so

higher quality raises revenue on firms’ existing products.

To engage in own-product innovation, firms make targeted R&D investments. If a firm is success-

ful, it raises the quality by which own-product j is produced by a factor λo,i j ≡ 1+λβsi j . Here λ is a

random component drawn from a common distribution Ho(λ), si j denotes the firm’s number of past

own-product innovations on product j , and 0 < β ≤ 1. When β < 1, quality improvements on own

products diminish as innovations accumulate, allowing us to match the life cycle of revenue growth

within the firm. This is similar to how diminishing returns over product life cycles are modeled by

Acemoglu et al. (2022).

To achieve an arrival rate of xo,i j of own-product innovations, firm i must hire zo,i j researchers

along

zo,i j = ηo xψo,i j co(q̂i j , si j ),

where ηo > 0 is the efficiency of the quality upgrading innovation on own products. R&D on own-

product innovation rises in the relative quality of the product and falls in the number of previous pro-

cess innovations. For ease of analysis, and because own-product innovation is not a key theoretical

20In principle, innovation efficiency h can evolve stochastically over time, or be affected by age (e.g., Acemoglu et al., 2018).
As we explain in Section 5, our evidence suggests that efficiency is a persistent firm characteristic.
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contribution of the paper, we choose a functional form for co(q̂i j , si j ) such that the equilibrium rate

of own-product innovation does not depend on q̂i j and si j . As a result, firms choose equal innova-

tion rates on all products within their portfolio, irrespective of product quality or the number of past

innovations.

In addition to quality changes arising from innovation, we assume product quality may also change

over time due to idiosyncratic shocks to consumer taste. These shocks are independently and identi-

cally distributed over time and across products. Importantly, we assume such shocks apply to all po-

tential producers within the same product line, so that they affect the producer’s revenue and profits,

while not altering the identity of the producer.

4.5. Innovation Bursts and the Equilibrium Distribution of Innovation Efficiency

In an economy where innovation bursts can be large (that is, θ is finite) firms can grow rapidly. Experi-

encing a burst of product creation allows a firm to substantially grow its product portfolio, even if the

quality improvements associated with these new products are smaller due potentially to the firm’s low

innovation efficiency.

Let us derive an expression for the innovation-efficiency composition of firms along a stationary

equilibrium path. Letting xb,h(n) and Mh(n) stand, as in Equation (7), for innovation burst rate and

the measure of firms with n products and with innovation efficiency h, the change in the measure of

single-product firms over time is given by

Ṁh(1) =G(h) xe +2Mh(2) xd −Mh(1)
(
xb,h(1)+xd

)
.

The first term on the right-hand side captures new h-type firms from entry, the second term captures

the inflow from firms of type h that used to produce two products but that have lost one due to creative

destruction, and the final term captures outflow either through creatively destroyed firms exiting or

through expansion by firms that draw an innovation burst.

For multi-product firms, the equation is

Ṁh(n) =
n−1∑
k=1

Mh(k)
(n −k)−θ

ζ (θ)
xb,h(k)+ (n +1) Mh(n +1) xd −Mh(n)

(
xb,h(n)+n xd

)
.

The first term on the right-hand side shows how bursts alter the composition of firms. In a world

without innovation bursts, i.e. when product creation is a Poisson process (θ → ∞), only firms that

produce n −1 products can become producers of n products. Because of larger bursts, however, some

firms are able to jump from being small producers to being large firms, and the likelihood that this

happens increases as θ declines.

The stationary composition of firms is found by setting Ṁh(n) to zero for all sizes and innovation

efficiencies. For single-product firms, the resulting measure of firms by type is Mh(1) = (xe / xd )G(h).

For multi-product firms, the measure is given by the sequence

Mh(n +1) = 1

(n +1) xd

(
Mh(n)

(
xh,b(n)+n xd

)−n−1∑
k=1

Mh(k)
(n −k)−θ

ζ (θ)
xh,b(k)

)
. (8)
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4.6. Firm Value and Innovation Decisions

As labor supply is constant, the growth g in aggregate productivity is the sole source of output growth,

which grows at the same rate g along the balanced growth path. Given the standard structure of house-

hold consumption-saving decisions, we find the standard Euler equation, r − g = ρ, where r and g are

the interest rate and growth rate of output along the path. This allows us to next set up the dynamic

optimization problem of a firm i , which involves choosing the optimal arrival rate of innovation bursts,

xb,i , as well as the optimal rate of quality improvements for each of its existing products, xo,i j .

Let Vh,t (q̂i ) denote the value function for a firm with innovation efficiency h and with a prod-

uct portfolio q̂i . The portfolio is a matrix with ni rows, where each row has information on a prod-

uct for which the firm has the highest quality product: the relative quality q̂i j , which determines the

profit, and the number of prior own-product innovations si j , which determines the efficacy of its own-

product innovation activity. Along the balanced growth path, aggregate quality Q grows at rate g and

firm value satisfies:

r Vh,t (q̂i )− V̇h,t (q̂i ) = (9)

max
xb,i ,

{
xo,i j

}



Yt
ϵ

∑
j∈Ji

q̂ϵ−1
i j − g

∑
j∈Ji

q̂i j
∂Vh,t (q̂i )
∂q̂i j

+∑
j∈Ji

xd
[
Vh,t

(
q̂i \

{
q̂i j , si j

})−Vh,t (q̂i )
]

+∑
j∈Ji

xo,i j E
[
Vh,t

(
q̂i \ {q̂i j , si j }∪+

{
λo, j (si j ) q̂i j , si j +1

})−Vh,t (q̂i )
]

+xb,i
∑∞

k=1
k−θ
ζ(θ) Eh

[
Vh,t

(
q̂i ∪+ {λb,iℓ q̂iℓ,0}k

ℓ=1

)−Vh,t (q̂i )
]

−wt ηb xψb,i n−σ(ψ−1)
i −wt ηo

∑
j∈Ji

xψo,i j co(q̂i j , si j )−F (q̂i )


,

where V̇h,t denotes the change in firm value Vh,t with time.

The first line on the right-hand side contains the sum of the flow of profits, Yt
ϵ q̂ϵ−1

i j , and the de-

cline in profits over time from the gradual increase in average quality. The second line contains the

expected change in value if the firm stops producing j because of creative destruction. The term

Vh,t
(
q̂i \

{
q̂i j , si j

})
denotes the value of producing the portfolio of products q̂i except product j with

relative quality q̂i j , on which the firm has implemented si j own-product improvements. The third

line contains change in value from own-product innovation. The fourth row contains the expected

increase in value due to innovation bursts. This is equal to the arrival rate of innovation bursts, xb,i ,

multiplied by the expected increase in the firm’s value if it acquires an innovation burst. The term

Vh,t
(
q̂i ∪+ {λb,iℓ q̂iℓ,0}k

ℓ=1

)
denotes the rise in value if the burst contains k new products, with the ℓ-th

product having an initial relative quality q̂iℓ. This value is weighted by the probability density function

of k, which is k−θ/ζ(θ). The first and second term in the last row contain the firm’s total R&D expendi-

ture. The final term F (·) is a fixed cost that firms must pay to operate, which we assume exactly equals

the option value of own-product innovation, to simplify exposition.

Next, we characterize the firm value function along a balanced growth path.

Proposition 1. The value of a firm with innovation efficiency h that produces a portfolio q̂ with n

products grows at rate g along the balanced growth path and is given by

Vh,t (q̂) = wt

(
v∗ ∑

j∈J
q̂ϵ−1

j + n Oh(n)

)
, (10)
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where v∗ ≡ L/(ϵ−1)
ρ+(ϵ−1)g+xd

and where Oh(n) denotes per-product option value of product creation, satis-
fying

(ρ+nxd )Oh (n) = (n −1)xd Oh (n −1)+ (ψ−1)/ψ

(ψηb )
1

ψ−1

(
ζ(θ−1)
ζ(θ) λ

ϵ−1
b,h v∗+

∞∑
k=1

k−θ
ζ(θ) (n +k)Oh (n +k)−n Oh (n)

)
ψ
ψ−1 nσ−1. (11)

Moreover, optimal innovation policies for product creation and own-product quality upgrading are

characterized by

xb,h(n) =
(

1
ψηb

(
ζ(θ−1)
ζ(θ) λ

ϵ−1
b,h v∗+

∞∑
k=1

k−θ
ζ(θ) (n +k)Oh(n +k)−n Oh(n)

)) 1
ψ−1

nσ, (12)

xo =
(

v∗
ψηo

) 1
ψ−1

. (13)

Proof. See Appendix A.2.1.

As Equation (12) shows, the rate of innovation bursts increases in the expected number of products

in an innovation burst (that is, falls in θ), falls in the cost of innovation ηb , rises in the present value

of expected profits v∗, in expected product improvement λb,h , and in the firm’s product count. As

expected, Equation (13) shows that the own-product innovation falls in the cost of innovation ηo and

rises in the present value of expected profits v∗. The constancy of own-product innovation in the

number of past innovations s is a consequence of our simplifying assumption about the fixed costs of

each product. This leaves variation in quality step sizes over the product life cycle as the sole driver of

the declining relationship between product-level revenue growth and tenure.

4.7. Innovation Bursts and Growth

Along the balanced growth path, productivity growth is the sum of contributions from creative de-

struction and from own-product improvements:

g = ζ(θ−1)
ζ(θ)

∑
h

(
λ
ϵ−1
b,h −1
ϵ−1

)(∑
n

Mh(n) xb,h(n)

)
+

(∑
h G(h)λ

ϵ−1
b,h −1

ϵ−1

)
xe +

(
Es

[
λo (s)ϵ−1

]
−1

ϵ−1

)
xo , (14)

where λo (s)ϵ−1 ≡ EHo

[(
1+λβs

)ϵ−1
]

gives an average moment of expected quality improvements for

products with s past innovations and Es[·] denotes the expectation over the numbers of past innova-

tions across incumbent-owned products.

We can use Equation (14) to examine the impact of innovation bursts on aggregate productivity

growth. First, innovation bursts appear directly in the expression through the term ζ(θ−1)/ζ(θ) that

determines the average size of bursts. However, as in Equation (7), a higher average size of bursts

matches the same rate of growth and creative destruction by a correspondingly lower average rate of

the arrival of bursts xb,h(n).

The more important effect of bursts on growth stems from their impact on the distribution of

innovation efficiency and size across incumbent firms, captured in Equation (14) through the term∑
n Mh(n) xb,h(n). The presence of innovation bursts changes the size composition of firms with inno-

vation efficiencies h, as given by the measure Mh(n) and characterized by Equation (8). Since firms of
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different size and innovation efficiency generically make different contributions to aggregate growth

(reflected in the variations in their innovation rates xb,h(n)), this implies that innovation bursts matter

for the overall rate of aggregate growth. The only exception is perhaps the baseline setting in Klette and

Kortum (2004): without heterogeneity in innovation efficiency and with a linear relationship between

size and innovation (σ= 1). Any deviations from this special case would lead to the prediction that the

per-product rate of innovation xb,h(n)/n varies across firms with different efficiency h or size n.21

To better understand this influence, let us focus on the empirically relevant case of σ = 1, where

the main driver of variations in per-product innovation rates xb,h(n)/n is the heterogeneity in effi-

ciency types h. This setting is in line with the facts we documented in Section 3: the rate of product

creation does not systematically vary with firm-level product count and that the revenue from newly

created products is auto-correlated at the firm level. In this environment, larger firms are more likely to

have higher efficiency types since this allows them to accumulate more products over time (Lentz and

Mortensen, 2008). However, as the bursts of product creation become more thick-tailed, large firms be-

come increasingly likely to have been those with a large single burst of product creation rather than to

have had multiple successful smaller instances of product creation. As such, the connection between

firm product count and innovation efficiency weakens with burst-like innovation. As Equation (14)

shows, the resulting changes in the composition of size and innovation efficiency lead to different pre-

dictions regarding the contributions of large and small firms to aggregate growth. In Section 5.3 below,

we examine these differences in the context of a specific size-dependent innovation policy.

5. Quantification

We next quantify the framework and shows that it replicates the empirical facts from Section 3. We use

the quantified model to illustrate its normative implications, by comparing the design of innovation

policy with and without accounting for innovation bursts.

5.1. Calibration

To calibrate the model, we infer most model parameters directly from the data on product dynamics.

This contrasts with the common approach to calibrating models of creative destruction, which typi-

cally relies only on indirect inference based only on firm-level information. Table 4 summarizes the

parameters.

Product Innovation The key novel parameter of our model is the tail of the zeta distribution, θ, which

determines the thickness of the tail of the distribution of product creation. We calibrate θ to match the

relationship between the number of newly created products among single-product firms and their

21While here we focus on the analysis of the stationary equilibrium, innovation bursts also matter for the speed of transi-
tions in response to shocks, e.g., by accelerating the transitional dynamics after the entry of firms with different characteris-
tics from incumbents.
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Table 4: Summary of Parameter Values

Parameter Description Value
θ Tail parameter of the zeta distribution 3.10
σ Degree of returns to product counts in product innovation 1.00
ηe Product creation R&D cost scalar for entrants 14.9
ηb Product creation R&D cost scalar 10.4
ψ Convexity of R&D costs in innovation rate 2.00
ρ Discount rate 0.02
β Decline rate of follow-up process innovation size .830
xo Poisson rate of process innovations 1.00
λ Process innovation step size .042
Ξ Standard deviation of idiosyncratic quality shocks .272
ϵ Elasticity of substitution 4.00
ρ Discount rate 0.02
G Entrant share of type L and H [0.91,0.09]
λb,h Average quality improvement size of product innovation L and H [1.0001,1.0870]

corresponding rank in the distribution, as in Figure 2b. At θ = 3.1, the model matches the slope of -2.57

in the figure.22

To account for the ex-ante heterogeneity in innovation efficiency, we introduce two types of firms,

h ∈ {L, H }. Both draw quality improvements from Pareto distributions Hb,h(λ) with a minimum value of

1 but with different tail parameters, so that average draws equalλb,L andλb,H , whereλb,L <λb,H . Since

innovation by high-efficiency types improves product quality more than innovation by low-efficiency

types, this type of heterogeneity leads to an autocorrelation in the size of revenue from new products.

Therefore, to calibrate the relative efficiencyλb,H /λb,L , we target the slope of the line in Figure 7, which

is 0.39.

To pin down the remaining degree of freedom between λb,L and λb,H , we choose the average de-

gree of quality improvement that delivers the aggregate productivity growth rate of 1.6%, matching the

French average in the Penn World Table (Feenstra et al. 2015). Combined with the own-product in-

novation parameters, this is achieved by setting λb,L to about 1 and λb,H to 1.087. This resembles the

average quality improvements by efficient and inefficient innovators in Lentz and Mortensen (2008).

To calibrate the type distribution of entrants, we target the ratio of the variances of revenue on

products that are new to a firm and the variance of revenue on continuing products, which is higher if

the shares of firm types are close. This ratio is 1.07 in the data.

Turning to the frequency of innovation bursts among incumbents, we have two key parameters:

(1) the innovation cost scalar ηb which governs the average rate of arrival of bursts, and (2) σ, which

controls how product creation scales with size. We set σ to 1 to match the lack of a clear relationship

between firm product count and product creation rates in Table 2. We calibrate ηb to match observed

incumbent product creation rates, which average 0.066 (Table 2), while the average number of prod-

ucts per burst, ζ(θ− 1)/ζ(θ), is 1.29. Thus, ηb is set to 10.4 so that bursts arrive at an average rate of

22As firms may experience multiple innovation bursts within a year, the distribution of the number of newly created prod-
ucts differs from the distribution of the size of innovation bursts. Hence, we cannot infer θ directly from the slope of the
rank-size relationship in Figure 2. Instead we perform a grid search to find the θ that delivers the log-rank, log-new products
relationship that we observe in the figure.

25



0.051, the ratio of these two values. Finally, we set the curvature parameterψ to 2, so the cost elasticity

of R&D equals 1, a standard value (e.g., Bloom et al. 2002).

As for the rate of product creation by entrants, we do not directly observe these rates in the data

due to the fact that the EAP data covers only firms beyond a size threshold. Instead, we rely on the

fact that the total number of products is constant over time in our model, a fact that also provides a

good approximation for the observed pattern in our data. When weighted by size, firms lose an average

of 0.1 products for every product that they initially produce, while they only gain 0.066 products (see

Table 2). Therefore, the contribution of entrants xe is implied to be 0.034. This is achieved by setting

ηe to 14.9.

Own-Product Innovation The quality improvements due to own-product innovation λo and their

rate of arrival xo play an interchangeable role in the model. We set the Poisson arrival rate xo to 1, such

that firms on average improve the quality of their existing products once per year. We then calibrate

λo to 0.042 to match the average rate 0.6% of growth in real revenue on firms’ continuing products,

as found in the upper panel of Table 3. The degree of decreasing returns to follow-up innovation,

β, determines the rate at which quality growth declines in a product’s tenure. The expected annual

decline in the growth of revenue with tenure is given by E
[
∂2 ln pi j t yi j t

∂t∂s

]
= λβs (ϵ−1) lnβ where s is the

product tenure. We calibrate β to 0.83, which delivers the decline in revenue growth in Figure 8.

Other Parameters The discount rate ρ is set to 0.02. The idiosyncratic product-level quality shocks

cause changes in sales unrelated to innovation. Greater volatility in these shocks raises the contribu-

tion of continuing products to the overall variance of firm revenue growth. We assume a mean-zero,

log-normal distribution for productivity shocks with standard deviation Ξ, set at 0.272 to match the

28.8% Shapley value of continuing products in revenue growth (Table 3). Finally, the elasticity of sub-

stitution ϵ, which controls the markup, is set to 4 to reflect a markup of 1.33, consistent with evidence

for French manufacturing firms (De Ridder et al. 2022).

Parametrization of the Benchmark Model We compare the performance of the model with innova-

tion bursts to a benchmark model where product creation is a Poisson process, which is the assump-

tion underlying standard models such as Klette and Kortum (2004), Akcigit and Kerr (2018), Acemoglu

et al. (2018) and Garcia-Macia et al. (2019). To implement this, we set θ to a large number and adjust

the innovation costs such that firms still add an average of 0.066 products per product that they initially

produce. This is achieved when we set ηb to 7.3. The remainder of the parameters are unchanged.

5.2. Model Performance

Next, we assess the model’s ability to match the targeted and untargeted moments, including those we

presented in our discussion of the stylized facts in Section 3. The model’s performance on targeted

moments is summarized in Table 5, which shows that all moments are matched with precision. The
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Table 5: Performance on Targeted Moments

Parameter Moment Target Model
Product Innov.
θ Regression of new products (log) on rank (log) if Nt−1 =1 -2.57 -2.57
σ Scaling of number of innovation bursts in firm size 1.00 1.00
ηb Arrival rate of innovation bursts (per existing product) .051 .051
ηe Entry rate .034 .034
λb Growth rate of total factor productivity .016 .016

Own Products
xo , λ Revenue growth on continuing products .006 .006
β Change in revenue growth in product tenure -.005 -.005
Ξ Shapley-Owen contrib. of own products to revenue growth 28.8% 28.8%

Firm Types
λb,L/λb,H Persistence of revenue per new product within firms 0.39 0.39
G(h) Relative standard deviation of existing vs new product revenue 1.07 1.07

Other
ϵ Markup 1.33 1.33

results in the remainder of the section come from a simulation of the quantified economy for 10,000

firms over 40 years.23

Figure 9 compares the distribution of product creation in the data and the model. The empirical

distribution is plotted with green diamonds, while simulations from the model with innovation bursts

are plotted with blue circles. To understand the importance of the fact that product innovations come

in bursts, the figures also plot the distribution of product creation from simulations of a model with an

equal amount of overall innovation, but for the benchmark model where product creation is a Poisson

process.

The results in Figure 9 shows that the model accurately matches the high concentration of product

innovation in the data. Pooling firms of all size in the top-left panel, the linear relationship between the

level and the rank of the number of new products fits almost perfectly with an R2 of 0.99. The similarity

of the new-product distribution in the simulation and the data suggests that product innovation has

a similar degree of concentration in the model and the data. Conditioning on size, the model with

innovation bursts again closely matches the empirical distributions. The benchmark model in which

the instances of product creation do not come in bursts, in contrast, fits the empirical pattern poorly.

In this case, the resulting distribution of product creation is close to a Poisson distribution, which leads

to substantially lower degrees of concentration. Even though the simulation tracks 10,000 for 40 years,

no firm adds more than 5 products in any year, in sharp contrast to the data.

In addition to matching the empirical pattern of product creation, innovation bursts also help ex-

plain the overall concentration of production observed in the data. Figure 10 plots the distribution of

firm product count where, as before, the x- and y-axes show size and rank, respectively, in logarithmic

23We simulate the economy for 40 years rather than the 10 years of the data that we have for the EAP survey. This is because
the fat-tailed distribution of product innovation implies that in small samples, the convergence of sample moments to true
moments may be slow.
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Figure 9. Distribution of Number of New Products: Data and Model
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Notes: Figures plot the distribution of the number of products firms add to their portfolio. Green diamonds are data. Blue circles are from
a model with innovation bursts. Red squares are based on a model with Poisson product innovation.

scale. The figure shows that innovation bursts are vital for explaining the observed concentration of

production across large firms. When product innovation comes in bursts, the distribution of the num-

ber of products in the model is similar to the distribution of the model. Instead, under the benchmark

model of one product per innovation, the number of large firms is negligible. This is a familiar short-

coming of standard models of creative destruction (see, e.g., Akcigit and Kerr 2018). This means that

innovation bursts offer an alternative explanation for the emergence of large firms through product

innovations. Luttmer (2011) shows that models of creative destruction can feature Pareto-tailed firm

size distribution in the presence of growth in the total number of products (see also, e.g., Cao et al.

2017, Peters and Walsh 2021). However, as we mentioned earlier, we do not observe such a growth in

our data.

Table 6 summarizes the model’s ability to explain the fraction of firm growth that is driven by

product creation, product destruction and revenue growth on continuing products. As a reminder, we

have only targeted the contribution of continuing products to revenue growth over 1-year horizons,

while the remainder of the moments are untargeted. The model matches the fact that within the con-

tribution of creative destruction, product creation explains a smaller part of the variation in revenue

growth than product destruction. This is due to the fact that new products can be introduced at any
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Figure 10. Untargeted Moment: Firm Size Distribution
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Notes: The figure plots the firm-size distribution in the log-log space. The vertical axis measures firms’ rank divided by the number of

observations. The horizontal axis measures the number of products that firms produce. Data is from the EAP. Simulations are based on

10,000 firms with identical type distributions and overall product arrival rates. Product arrival is a Poisson process in Klette and Kortum

(2004) simulations and a Poisson-burst process along (5) in the Innovation Burst simulation.

point within the preceding year, leaving less than a full year of time for the firm to earn revenues on

them (Bernard et al., 2017). The gap between the contribution of product creation (by incumbents)

and product destruction is greater in the data than the model, which may be due to the fact that we

underestimate entry in the EAP data.24 Over 5-year horizons, all moments in the table are untargeted,

and the model is able to quantitatively match the fact that product churn is a much larger contributor

to overall revenue growth over longer horizons, and to qualitatively match the relative contribution of

product destruction and product creation.

Figure 11 presents the life cycle of revenue growth in the model and in the data. Recall that we have

targeted the decline in revenue growth in the data between the first and the second years, while the

remaining data points are untargeted. The figure shows that the model’s pattern of predicted decline

in innovation efficiency over the product life cycle beyond the first two years is also in close agreement

with the data.

Table 6: Untargeted Moments: Shapley-Owen Decomposition in the Model vs the Data

Overall Growth Product Creation Product Destruction Continuing Products
Data (1-year) 100.0 16.0 55.2 28.8 (target)
Model (1-year) 100.0 23.8 47.4 28.8 (target)

Data (5-year) 100.0 37.3 49.8 12.9
Model (5-year) 100.0 25.2 66.5 8.26

Notes: The table decomposes total revenue growth into revenue loss from product loss, revenue gain from product gain, and changes in

revenue on products that the firm is continuing to produce.

24Firms only enter EAP if they earn at least 5 million euros of revenue or employ 20 employees. We only consider a product
“new” if we observe the firm prior to introduction of a product, which means that we under-count entry of new products
when firms add a product to their portfolio in the year that they first appear in EAP.
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Figure 11. Life Cycle of Revenue Growth
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Notes: The vertical axis plots average growth of product revenue among all firm-products in the sample, where the average growth rate of

a firm-product’s revenue is subtracted from growth at each horizon. The horizontal axis plots the number of years that have passed since

the firm first started producing the product. Confidence bounds are at the 90% level.

As a final untargeted moment, Appendix Figure C.16 shows that model is able to replicate the

broad empirical pattern that the bulk of overall revenue destruction and creation occurs at firms with

modest changes in sales, and that continuing products are responsible for the bulk of that growth.

The model is also able to match that the tails of growth, in particular firm entry and exit, make up a

significant part of overall revenue creation and destruction. The model also qualitatively matches the

fact that the larger a firm’s change in revenue, the greater the contribution of creative destruction.

5.3. Application: Size-Dependent Innovation Subsidies

Having established that the model with innovation bursts can match the empirical stylized facts on

firm growth and creative destruction, we next study the normative implications of introducing inno-

vation bursts to Schumpeterian growth models. We consider a size-dependent innovation policy in

the form of a government subsidy covering a share τ(n) of R&D costs associated with product creation,

which can vary as a function of the firm’s product count n. We assume that the government runs a

balanced budget and imposes a lump-sum tax on the household to finance the subsidy.25 To focus

attention on the returns to such a subsidy scheme, we study the degree of cost-effectiveness of such

policies, defined as the rise in aggregate productivity growth generates per dollar of subsidy.

As shown by Lentz and Mortensen (2016) in an environment with heterogeneity in innovation

efficiencies similar to ours, optimal innovation policy should aim to shift R&D toward firms with higher

innovation efficiency. Such firms generate higher externalities when they create new higher quality

products, since part of this higher value will be captured by firms that will replace these products in the

future. We assume that the government can observe and verify firm reports on product dynamics but

not the underlying innovation efficiency type (h). As such, since high-efficiency firms on average also

create more products, product count n might appear like a reasonable proxy for the firm’s innovation

efficiency.

25In our model, the government could equivalently tax worker’s income because labor is supplied inelastically.
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Figure 12. Effect of Innovation Bursts on Firm-Type Distribution and Average Step Size
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Figure 12 illustrates that in the presence of innovation bursts, firm size may not offer a reasonable

proxy for its innovation efficiency. The left-hand figure plots the fraction of firms in our calibration

with the low type of innovation efficiency in the stationary equilibrium. The horizontal axis plots the

tail parameter θ of the Zeta distribution of innovation bursts, which approaches infinity in the bench-

mark model with one product per innovation (as in Klette and Kortum 2004), and which is 3.1 in our

quantified model (as in Table 4). Each line plots the fraction of low-efficiency innovators among firms

of a particular minimum size, which varies from the case where this minimum is 1 and we consider all

firms (the top line) to the case of firms with at least 10 products (the bottom line).

As the figure shows, under the benchmark model without bursts, about 70% of firms are of the

low-innovation-efficiency type in the stationary equilibrium, while they make up 91% of entrants. In

this equilibrium, the share of this type among larger firms rapidly falls as we impose higher minimums

on product count. Among firms producing at least 5 products, 25% have the low-efficiency type, while

for firms with 10 products, the share falls to 6%. The right-hand plot in Figure 12 translates these

percentages to average quality improvements. The figure shows that the average quality improvement

of innovations across firms with any number of products equals 2.6% on average, while the average

quality improvements of innovations by firms with at least 10 products is 8.4% per innovation. The

latter is close to the innovation step size of the high-productivity innovators.

These patterns change in the presence of innovation bursts. As we consider models with lower

values of θ corresponding to more burst-like patterns of innovation, moving toward the left on the

x-axis in Figure 12, the share of low-efficiency innovators among incumbents rises, regardless of the

size minimum imposed. The intuition is simple: if each innovation brings about a single product, a

firm that is large must have had a long history of successful past innovations. If products arrive in

innovation bursts, a small number of innovations suffice to make a firm large. This weakens the link

between firm size and innovation rate, making size-dependent subsidies a poor alternative for targeted

innovation policies.
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Figure 13. Cost Effectiveness of Size-Dependent Innovation Policy by θ
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We quantify the impact of innovation bursts on the cost effectiveness of size-dependent innova-

tion policies more formally as follows. We analyze the effect of an innovation subsidy that only covers

1% of the costs of product creation for all firms with a current product count beyond a certain size cut-

off n (τ(n) = 0.01 for n ≥ n and τ(n) = 0 otherwise). We compare the additional growth generated per

dollar in subsidy paid for such policies at different levels of n, and at different degrees of bursts in inno-

vation. In response to the policy, firms endogenously adjust their innovation investments accounting

for the additional incentives to create new products in order to qualify for the subsidy.

When comparing size-dependent innovation policies we solve the model in general equilibrium,

taking into account that higher rates of innovation bursts affect the rate of innovation on firms’ own

products and their average quality improvements, as well as the entry rate. Appendix A.2 details the

numerical solution to the model with size-dependent taxes.26

Figure 13 presents our measure of the cost-effectiveness of such size-dependent innovation poli-

cies. The figure compares cost-effectiveness as a function of different minimum numbers of products

n at which the subsidy kicks in. Each line represents the predictions of the model under a different

value for the tail parameter of innovation bursts, θ. The top (orange-solid) line is the Klette and Ko-

rtum (2004) calibration where θ → ∞, in which case the size-dependent innovation policy appears

most cost-effective. The green-dotted line is our main calibration where θ = 3.1. The vertical axis plots

the cost effectiveness of the policy, defined as the additional growth that is generated by setting the 1%

subsidy for firms with n ≥ n, divided by total spending on the subsidy. The most cost-effective policy

in the plot serves as an index to ease interpretation.

26As the appendix shows, the value function remains a linear sum of a term capturing the expected net present value of
profits until displacement and the innovation option value that captures the effect of this product in the productivity of the
firm’s investments in product innovation.
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There are two clear results. First, the cost effectiveness of the subsidy increases in n; the greater n,

the larger the fraction of firms subject to the subsidy is made up of high-efficiency innovators. Second,

the size-dependent innovation policy is much less effective when product innovations come in bursts.

The cost-effectiveness under our calibration of θ = 3.1 is around 30% lower than the cost effectiveness

of the same policy in the Klette and Kortum (2004) when firms with at least 10 products are targeted.

6. Conclusion

This paper contributes to the growing literature on firm-level innovation dynamics and their effects on

aggregate outcomes such as productivity growth, business dynamism, and the firm-size distribution.

Using comprehensive data from the French manufacturing sector, we document a novel fact about

firm-level product innovation: the distribution of new products introduced by firms each year exhibits

a thick, Pareto-like tail. This empirical pattern is difficult to reconcile with standard theories of creative

destruction.

To address this gap, we propose a new model of endogenous growth driven by product innova-

tion that incorporates the concept of innovation bursts. In our framework, innovations can arrive in

clusters, enabling firms to rapidly expand their product portfolios through immediate applications.

This idea of innovation bursts aligns with the novel empirical pattern we document among French

manufacturing firms.

Our proposed model offers a new explanation for the Pareto distribution of firm size commonly

observed in the data, which is a well-known limitation of theories of creative destruction. By showing

that the equilibrium firm-size distribution can be Pareto for a sufficiently thick-tailed distribution of

innovation bursts, we propose the lumpy nature of innovative ideas as the main driver of the concen-

tration of firm-level production.

To illustrate the normative implications of innovation bursts, we show that size-dependent in-

novation policy is less effective when innovations come in bursts. More broadly, innovation bursts

have the potential to affect aggregate productivity growth by affecting the transitional dynamics of the

economy in response to policy shocks, and by changing the composition of firm age, firm size, and

firm types along the balanced growth path equilibrium.
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‘Growth Through Innovation Bursts’

Appendix - For Online Publication Only

Appendix A. Theoretical Appendix

A.1. Benchmark Theories: the Distribution of Product Creation

In this appendix we discuss the firm-size distribution and the distribution of product creation in bench-
mark theories of creative destruction. As Klette and Kortum (2004) show (p. 994), for a firm that at time
t = 0 begins with a single product that creates new products at rate x and loses products at rate τ, the
probability Pn,1(t ) to have n products that after time t is given by

Pn,1(t ) (t ) =

τ
x χ (t ) , n = 0,(
1− τ

x χ (t )
) (

1−χ (t )
)
χ (t )n−1 , n ≥ 1,

(A.1)

where the function χ(t ) is given by

χ (t ) = 1−e−(τ−x)t

τ/x −e−(τ−x)t
. (A.2)

Let us compute the tail distribution function (complementary cumulative distribution function) for
the net product creation of such a firm to be greater than nc :

P {n −1 ≥ nnc ; t } =
∞∑

k=1+nc

Pk,1 (t ) =
(
1− τ

x
χ (t )

) (
1−χ (t )

) ∞∑
k=nc

χ (t )k ,

=
(
1− τ

x
χ (t )

)
χ (t )nc .

This means that the tail index of the distribution grows indefinitely as nc rises

−∂ logP {n −1 ≥ nnc ; t }

∂ lognc
=−nc logχ (t ) , (A.3)

since χ(t ) ∈ (0,1). The tail of this distribution is very thin as a result.
Luttmer (2011) further generalizes this result to characterize the probabilityPn,k (t ) for a firm start-

ing with k products at time 0 to have n products at time t , which is given by

Pn,k (t ) =
min{n,k}∑

m=1

(
k

m

) (
n −1

m −1

) (
1− τ

x
χ (t )

)m ( τ
x
χ (t )

)k−m (
1−χ (t )

)m
χ (t )n−m . (A.4)

To better understand the distribution in Equation (A.4), note that we can find it as follows. Let n(t )
denote the random variable characterized by the distribution in Equation (A.1) for a given firm i with
a single initial product. Let d(t ) denote a Bernoulli random variable that takes value 0 with probabil-
ity τ

xχ (t ) and let nc (t ) denote a random variable characterizing the number of failures until the first
success of another Bernoulli distribution with a probability of failure of χ(t ), which has a geometric
distribution. Then, it is straightforward to see that the number of products of the firm after time t
satisfies n(t ) = d(t ) (nc (t )+1). Now, let Nk (t ) denote the random variable characterized by the distri-
bution in Equation (A.1) for a given firm i with an initial k product, such that N1(t ) = n(t ). Given the
assumptions of the benchmark models, we can write Nk (t ) = ∑k

j=1 n j (t ) where n j (t )’s are k indepen-
dent draws of the random variable n(t ). We can then write this random variable as Nk (t ) = K (t )+S(t )
where K (t ) = ∑k

j=1 d j (t ) is a binomial distribution with k draws and with probability 1− τ
xχ (t ). Con-
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ditional on K (t ) = K , random variable S(t ) = ∑k
j=1 d j (t )nc, j (t ) is distributed according to a negative

binomial distribution characterized with the probability mass function

P {S(t ) = S |K (t ) = K } =
(

S +K −1

K −1

) (
1−χ(t )

)K
χ(t )S .

Then, the distribution of the total sum is given by

P
{

Nk (t ) = N
}= k∑

K=0
P {K (t ) = K } P {S(t ) = S |K (t ) = K } ,

which leads to Equation (A.4) after some algebra.

The main observation from the above discussion is that, as the number of initial product count

k grows, the central limit theorem implies that the distribution of the number of products after time

t converges to a normal distribution Nk (t ) ∼ Normal(k E[n(t )], kV[n(t )]) . The tail index of the nor-

mal distribution for large Nk (t ) also grows indefinitely as a quadratic Nk (t ) as Nk (t ) rises. Thus, the

distribution of new products inherits this quality and has a thin tail.

A.2. Solution to the Value Function

A.2.1. Proof of Proposition 1:

The dynamic optimization problem is given by the HJB equation (10). Guess that the solution takes the

form Vh,t (q̂) = wt
[∑

j∈Ji
vh(q̂i j , si j )+nOh(n)

]
. Substituting for this expression in the HJB equation, we

find

(r − g )

[ ∑
j∈Ji

vh(q̂i j , si j )+n Oh(n)

]
=

max
xb,i ,{xo,i j }



L
ϵ−1

∑
j∈Ji

q̂ϵ−1
i j − g

∑
j∈Ji

q̂i j
∂vh (q̂i j ,si j )

∂q̂i j

−∑
j∈Ji

xd
[
vh(q̂i j , si j )+nOh(n)− (n −1)Oh(n −1)

]
+∑

j∈Ji
xo,i j E

[
vh

(
(1+λβsi j )q̂i j , si j +1

)− vh(q̂i j , si j )
]

+xb,i

(∑∞
k=1

k−θ
ζ(θ)

(
k Eh

[
vh

(
λb,i q̂ ,0

)]+ (n +k)Oh(n +k
)−nOh(n)

)
−ηb xψb,i n−σ(ψ−1)

i −ηo
∑

j∈Ji
xψo,i j co(q̂i j , si j )−F (q̂i )


, (A.5)

Now substitute vh
(
q̂ , s

) ≡ ṽ (s) q̂ϵ−1 and let co
(
q̂ , s

) ≡ c̃o (s) q̂ϵ−1 and F (q̂i ) ≡ ∑
j∈Ji

F̃ (s) q̂ϵ−1 in the

above equation and collect the terms involving ṽ (·) to find

(r − g ) ṽ (s) = max
xo

{
L
ϵ−1 − g (ϵ−1) ṽ (s)−xd ṽ (s)

xo
(
EHo

[
(1+λoβ

s)ϵ−1
]

ṽ (s +1)− ṽ (s)
)−ηo xψo c̃o (s)− F̃ (s)

}
. (A.6)

Collecting the terms involving Oh (·) then yields

(r − g +xd )n Oh(n) = max
xb

{
xb

∑∞
k=1

k−θ
ζ(θ)

(
(n +k)Oh(n +k)−n Oh(n)+k ṽ(0)Eh

[
λϵ−1

])
−ηb xψb n−σ(ψ−1) −xd (n −1)Oh(n −1)

}
. (A.7)
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The first order condition for xo yields

xo (s) =
(

1
ψηo

EHo [(1+λβs )ϵ−1]ṽ(s+1)−ṽ(s)
c̃o (s)

) 1
ψ−1

, (A.8)

while the first order condition for xb gives

xb,h(n) =
(

1
ψηb

(
ζ(θ−1)
ζ(θ) λ

ϵ−1
b,h ṽ (0)+

∞∑
k=1

k−θ
ζ(θ) (n +k)Oh(n +k)−n Oh(n)

)) 1
ψ−1

nσ. (A.9)

Noting ρ = r − g , from Equation (A.6), we find

(
ρ+ (ϵ−1) g +xd

)
ṽ(s) = L

ϵ−1 +
ψ−1
ψ

(
ψηo c̃o(s)

)− 1
ψ−1

(
EHo

[
(1+λβs)ϵ−1] ṽ (s +1)− ṽ (s)

) ψ

ψ−1 − F̃ (s).

Next, we make the following simplifying assumptions

c̃o (s) ≡ EHo

[
(1+λβs)ϵ−1]−1,

F̃ (s) ≡ ψ−1
ψ

(
ψηo

)− 1
ψ−1 c̃o(s)

(
L/(ϵ−1)

ρ+(ϵ−1)g+xd

) ψ

ψ−1 .

Given these assumptions, Equations (A.6) and (A.8) now together imply

ṽ (s) = v∗ ≡ L/(ϵ−1)
ρ+(ϵ−1)g+xd

,

and Equations (A.9) and (13). Substituting these results in Equation (A.7), we find Equation (11).

A.2.2. Equilibrium Definition

The following provides the definition of the equilibrium in our model.

theoremdef:eq The economy is in a balanced growth path equilibrium if for every t the variables{
r, xd , xe , xo ,L,Le ,Lr d , g

}
and functions

{
xb,h , Mh

}
are constant,

{
Y ,C ,Q, w

}
grow at a constant rate g

that satisfies (14), interest rates follow from r = g +ρ, Q is given by Equation (4), Y is given by Y =Q L =
ϵ
ϵ−1 wL, innovation rates xb,h and xo satisfy (12) and (13), the entry rate is given by

xe =
(

v∗+∑
h G(h)Oh (1)
ψηe

)1/(ψ−1)

,

which maximizes the profits of entrants, and together they satisfy Equation (14). The stationary distri-

butions of product types Mh satisfy Equation (8), the rate of creative destruction xd satisfies (7), and

both goods and labor markets are in equilibrium so that Y =C and L = 1−Lr d −Le , with the labor hired

in incumbent R&D and entry sectors given by

Lr d = ηb

∑
n

Mh(n) xb,h(n)ψn−σ(ψ−1) +ηo xψo E
[
co(q̂ , s)

]
,

and Le = ηe xψe .
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A.2.3. Size-Dependent Taxes

The dynamic problem with size-dependent taxes is similar to the dynamic problem in Section 5. The

only changes are that the cost of product innovation in the final line of the HJB equation (10) now

includes the size-dependent subsidy τ(n) and that the innovation-size scalar σ is calibrated to unity.

Thus, that term, and the corresponding term in Equation (A.5), are now given by (1−τ(ni ))ηb xψb,i n−(ψ−1)
i .

Accordingly, the optimal arrival rate of innovation bursts is now given by:

xb,h(n) =
(

1
ψ(1−τ(n))ηb

(
ζ(θ−1)
ζ(θ) λ

ϵ−1
b,h ṽ (0)+

∞∑
k=1

k−θ
ζ(θ) (n +k)Oh(n +k)−n Oh(n)

)) 1
ψ−1

nσ (A.10)

A.2.4. Computation

To solve the model with size-dependent taxes we deploy the following algorithm. In an outer loop,

we guess a growth rate of aggregate productivity g and a rate of creative destruction xd . With these

guesses, we then calculate the expected net present value of future profits for each of innovation effi-

ciency type h.

We then calculate the sequence of innovation option values for Oh(n) in an inner loop. First, we

use the fact that limn→∞Oh(n) =Oh , where Oh is the root of

(ρ+xd )Oh = (ψ−1)/ψ

((1−τ)ψηb)
1

ψ−1

(
ζ(θ−1)
ζ(θ)

(
λ
ϵ−1
b,h v∗+Oh

)) ψ
ψ−1 .

where τ is the innovation subsidy for firms with a size n ≥ n.27 To find the remainder of the option
values, we then guess the sequence Oh(n) for all n from 0 to some large N (which we set to 100),
using Oh(1) = 0 and Oh(n) =Oh , iterating the following update rule until the results are consistent with
model-implied sequence for Oh(n) along:

Oh (n) =
xd (n −1)Oh (n −1)+ xb,h (n)

n

(
ζ(θ−1)
ζ(θ) λ

ϵ−1
b,h v∗+∑∞

k=1
k−θ
ζ(θ) (n +k)Oh (n +k)

)
− (1−τ(n))ηb

(
xb,h (n)

n

)ψ
ρ+nxd +xb,h (n)

,

where innovation rates xb,h(n) are given by (A.10).

We then use these innovation rates to calculate the equilibrium firm-size and firm-type distribu-

tions, and calculate the optimal entry and process innovation rates in response to the guessed growth

and creative destruction rates. From the endogenous objects, we then calculate new guesses for the

growth and creative destruction rates, and iterate until the guesses converge.

Appendix B. Data Appendix

In this section, we describe the data sources used in our analysis and the procedure we use to merge

them and clean the resulting dataset of outliers.

27For the standard calibration where ψ = 2, this equation has two positive roots. The root that is closest to 0 is well-
behaved, in the sense that the option value of R&D increases in taxes and in the optimal rate of R&D. This is the root we use
in this step of the algorithm.
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B.1. EAP

The data are based on an annual survey of firms’ production activities, called the Enquête Annuelle

de Production (EAP), which is administered by the Institut National de la Statistique et des Études

Économiques (INSEE). In accordance with EU regulation, the survey must encompass at least 90 per

cent of the annual production of each 4-digit industry. The data contain comprehensive information

on sales and the volume of goods. The volume is recorded in units of measurement (number of items,

kilograms, litres) that are product-specific, while the value is recorded in current euros. The survey

provides information at the 10-digit product level, classified according to the PRODFRA system—-the

official French product classification published by INSEE, which includes approximately 4,400 product

codes (see Section B.1.2). The survey covers the entire manufacturing sector (NACE rev. 2 section C),

except for the agri-food industries (section 10, 11 and 12) and the manufacture of wood (16). While

also including the extractive industry; electricity, gas, steam and air-conditioning supply; water supply,

sewerage, waste management and remediation; we exclude these specific industries.

B.1.1. Sampling Framework

The survey contains an exhaustive sample of firms with at least 20 employees or revenues higher than

5 million Euros. The sample size varies over time but it is usually around 25,000 firms. To ensure a good

level of coverage the survey must cover at least 90 per cent of the total production value of each 4-digit

industry (NACE rev. 2). If this threshold is not reached more enterprises are surveyed. Additionally, the

survey contains a random sample of firms with less than 20 employees. Its size varies year by year and

it is usually around 8/9000 firms. Because this sample does not allow us to observe product creation

or loss, we drop this second set of smaller firms from our analysis.

B.1.2. Product Classification

As for the level of product aggregation, the survey classifies products following the PRODFRA system—

the official French product classification published by INSEE, which includes roughly 4,500 10-digit

product codes. The first eight positions of PRODFRA represent the European PRODCOM classification,

where the last two positions are used to refine the nomenclature.28 Table B.1 presents examples of

products in the PRODFRA classification. A few special products, which account for around 5% of the

total number of product categories, are identified by a letter (H, N, S, Y) instead of a number in the

9th position of PRODFRA. These product categories are dropped when working with the PRODCOM

classification. The PRODCOM classification can be directly linked to the classification of industrial

activities in the EU (NACE Rev. 2), as the first four digits of the PC code identify a 4-digit NACE industry.

B.1.3. Product Concordance

A feature of PRODFRA is that it changes over time (from 3 to 5% of the product categories change each

year). The use of these product codes in longitudinal studies requires harmonizing the product clas-

28For additional information see https://www.insee.fr/en/metadonnees/definition/c1097.
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Table B.1: Examples of products in the PRODFRA classification

1812125000 Advertising and similar printed matter (excluding commercial catalogues)
1812199010 Administrative or commercial printed matter, at or continuous, customised

or not, and directories
2042194510 Lotions for pre-shaving, shaving, or after-shaving
2042194520 Pre-shaving, shaving, and after-shaving foams and gels
2511235040 Industrial boiler products: not including tanks, boilers, nuclear equipment
3102100010 Wooden kitchen furniture: by mounted elements, including custom
310912502B Dining and living room furniture other than tables: buffets, credenzas and

livings, bookcases, cabinets by element.

sification system over time. To do so, we use the algorithm developed by Behrens and Martin (2015),

called “connected components concordance", or C3 for short. C3 uses the graph theory to identify

stable and comparable groups of products over time while minimizing the size of each group. The

identified groups of products are then assigned to a single, time-consistent code. The vast majority of

products (almost 90%) are not affected by this concordance procedure, and a marginal fraction of the

new product groups include more than three PRODFRA10 codes.

B.2. FARE

The Fichier approché des résultats d’Esane (FARE) contains a coherent set of statistics on the universe of

French private companies. It combines administrative data obtained from annual profit declarations

made by companies to the tax authorities and from annual social data which provide information on

employees and data obtained from a sample of companies surveyed by a specific questionnaire to

produce structural business statistics (ESA).

B.3. DADS

We obtain the number of establishments from Déclaration Annuelle de Données Sociales (DADS), which

is a matched employer-employee dataset that covers the whole population of private sector workers in

France. From the various versions provided by INSEE, we utilize DADS Poste (Fichiers Régionaux des

Postes), which offers data at the individual job spell level. Each worker in the dataset is associated with

an establishment identifier, and if the same employee works in two different establishments during

the same year, only the main job is included in our analysis.

B.4. LiFi

Finally, we determine the ownership status of firms (whether independent or part of a group) using the

Liaisons Financières entre Sociétés (LiFi) data. This dataset collects information on the financial links

between enterprises incorporated in France as well as their foreign owners and affiliates. LiFi serves

as the French directory of corporate groups and is based on the most comprehensive knowledge of

capital ownership links between companies (or financial connections). It is constructed using multiple

sources: data from the Banque de France collected as part of corporate credit ratings, tax data (DGFIP),

commercial data (ORBIS-BvD), and information available in activity reports published by corporate
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groups. We define independent firms as those not listed in the LiFi dataset, either as head of the group

or as affiliates.
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Appendix C. Additional Figures

Figure C.1. Size Distribution - Revenue and Employment
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(b) Distribution: Revenue - Tail
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Notes: The figures plot the relationship between a firm’s size (horizontal axes) and the firm’s rank (vertical axes). Size is measured through

either revenue (in 2015 euros) or employment (in full-time equivalence). The (rescaled) rank is measured as the ratio of firms’ rank starting

from the largest firm, divided by the total number of observations in the data. Plots are based on the FARE-EAP sample for 2019. Slopes by

figure: (a) Slope: -1.1. Standard error: .01. R2: 0.98; (b) Slope: -1.30. Standard error: .02. R2: 0.98; (c) Slope: -1.2. Standard error: .01. R2:

0.97; (d) Slope: -1.5. Standard error: .01. R2: 0.99.
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Figure C.2. Distribution of Number of Products: Different Years
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(f) 2019

Notes: The figures plot the relationship between a firm’s number of products (horizontal axes) and the firm’s rank (vertical axes). The

(rescaled) rank is measured as the ratio of firms’ rank starting from the largest firm, divided by the total number of observations in the data.

The figures replicate Figure 1(a) for different years. Slopes of figures (a)-(f) are respectively -2.2, -2.2, -2.2, -2.1, -2.0, -1.9, all significant at

1% level.
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Figure C.3. Average Revenue Per New Product: Different Sizes
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(a) Firms with Nt−1 = 5
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(b) Firms with Nt−1 = 10

Notes: The figures plot the ratio of total revenue earned on new products divided by the total number of new products on the vertical axis,

against the number of new products on the horizontal axis. The line represents a kernel-weighted local polynomial smoothing of degree 5,

together with its 95% confidence band.

Figure C.4. Distribution of Number of New Products by Level of Aggregation: Different Sizes
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Notes: The figures plot the relationship between a firm’s number of new products (horizontal axes) and the firm’s rank (vertical axes). The

figure provides overlapping plots of the log rank against the log number of products added at the 10c-digit concorded product level (blue

circles), 10-digit PRODFRA level (brown squares), 8-digit (red diamonds) and 6-digit level (green triangles). The (rescaled) rank is measured

as the ratio of firms’ rank starting from the largest firm, divided by the total number of observations in the data.
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Figure C.5. Distribution of Number of New Products by Proxies of Fixed Firm Boundary (All Firms)
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Notes: The figures plot the relationship between a firm’s number of new products (horizontal axes) and the firm’s rank (vertical axes). The
(rescaled) rank is measured as the ratio of firms’ rank starting from the largest firm, divided by the total number of observations in the data.
The two panels plot the baseline Figure 2(a) against the distribution of new products of firms that do not belong to a business group (left
panel) and of firms that do not add new plants over the period (right panel). Note that independent firms are, on average, smaller than
firms that are part of a business group.

Figure C.6. Distribution of Number of New Products with Fixed Intangible Capital
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Notes: The figures plot the relationship between a firm’s number of new products and its rank. The (rescaled) rank is measured as the

ratio of firms’ rank starting from the largest firm, divided by the total number of observations in the data. The two panels plot the baseline

Figure 2(a) (left panel) and Figure 2(b) (right panel) against the distribution of new products of firms that do not change intangible capital

from one period to the next.
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Figure C.7. Distribution of Number of New Products by Age
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Notes: The figures plot the relationship between a firm’s number of new products (horizontal axes) and the firm’s rank (vertical axes). The

(rescaled) rank is measured as the ratio of firms’ rank starting from the largest firm, divided by the total number of observations in the data.

The four panels replicate Figure 2 by splitting firms into two groups by age (young if age ≤ 10 years).

Table C.2: Persistence in Revenue per Product of New products

(1) (2)
Persistence of product-level revenue on new products 0.39 -0.13

(0.03) (0.05)

Product (10-digit) fixed effects Yes Yes
Firm fixed effects No Yes

R-squared 0.58 0.75

Notes: The table plots the linear regression coefficient from a regression where the dependent variable is the revenue that a firm earns on a

newly added product, while the explanatory variable is the average revenue that the firm earned on its new product in its previous episode

of product creation. Standard errors in parentheses. Both regressions include 10-digit fixed effects.
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Figure C.8. Distribution of Number of New Products by Innovation History
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Notes: The figures plot the relationship between a firm’s number of new products (horizontal axes) and the firm’s rank (vertical axes). The

(rescaled) rank is measured as the ratio of firms’ rank starting from the largest firm, divided by the total number of observations in the data.

The four panels replicate Figure 2 by splitting firms into two groups by innovative status (innovative firms if they introduced new products

at t −1).

Table C.3: Cannibalization: Effect of New Products on Probability of Product Exit

(1) (2) (3) (4) (5) (6)
β 0.084 0.084 0.079 0.107 0.109 0.071

(0.044) (0.044) (0.041) (0.045) (0.045) (0.032)

R-squared 0.019 0.045 0.085 0.218 0.221 0.346
Controls
Product count FE No Yes Yes Yes Yes No
Product FE No No Yes Yes Yes No
Firm FE No No No Yes Yes Yes
Additional controls No No No No Yes Yes
Firm-product FE No No No No No Yes

Notes: The table presents regression coefficients for the linear regression along Iexi t
i j t =β

(
nc

i t
Ni t−1

)
+γ′Xi j t +νi j t , where Iexi t

i j t−1 is the indicator

function that equals 1 for a product that has excited; i is the firm index; t denotes time; Ni t is the number of products that the firm

produces; nc
i t is the number of products the firm adds. A coefficient β = 1 implies full cannibalization, β = 0 implies no cannibalization.

347,000 observations.
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Figure C.9. Distribution of Number of New Products and Product Category (Mode)
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(b) Firms with Nt−1 = 1

Notes: The figures plot the relationship between a firm’s number of new products (horizontal axes) and the firm’s rank (vertical axes). The

(rescaled) rank is measured as the ratio of firms’ rank starting from the largest firm, divided by the total number of observations in the data.

The two panels replicate Figure 2(a) (left panel) and Figure 2(b) (right panel), assigning to each bin of new products n the most frequent

1-digit code from the Broad Economic Categories (BEC) classification. The mode is computed across all new products produced by firms

of a given size (’All Sizes’, left panel; Nt−1 = 1, right panel) experiencing an innovation burst of n new products.

Figure C.10. Distribution of Number of New Products and Product Category (Relative Frequency)
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(b) Firms with Nt−1 = 1

Notes: The figures plot the relationship between a firm’s number of new products (horizontal axes) and the firm’s rank (vertical axes). The

(rescaled) rank is measured as the ratio of firms’ rank starting from the largest firm, divided by the total number of observations in the data.

The two panels replicate Figure 2(a) (left panel) and Figure 2(b) (right panel), assigning to each bin of new products n the most frequent

1-digit code from the Broad Economic Categories (BEC) classification, measured relative to the full population of innovators. The relative

frequency is determined by comparing the distribution of BEC codes among all products produced by firms of a given size (’All Sizes’,

left panel; Nt−1 = 1, right panel) experiencing an innovation burst of n new products, against the distribution of BEC codes for any new

product introduced by any firm.
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Table C.4: Cannibalization: Effect of New Products on Continuing Products

(1) (2) (3) (4) (5) (6)
β -0.093 -0.095 -0.095 -0.083 -0.085 -0.083

(0.007) (0.006) (0.006) (0.006) (0.006) (0.006)

R-squared 0.001 0.007 0.020 0.086 0.088 0.171

Controls
Product count FE No Yes Yes Yes Yes No
Product FE No No Yes Yes Yes No
Firm FE No No No Yes Yes Yes
Additional controls No No No No Yes Yes
Firm-product FE No No No No No Yes

Notes: The table presents regression coefficients for the linear regression along

R−
i j t −R+

i j t−1

0.5(R−
i j t +R+

i j t−1)
=β

(
RN

i t /n−
i t−1

0.5(R+
i j t +R−

i j t−1)

)
+γ′Xi j t +νi j t ,

where RN
i t denotes total revenue from new products and R−

i j t denotes revenue for kept product j while R+
i j t−1 denotes the revenue that the

firm earned on that product at t −1; i is the firm index; t denotes time; n−
i t denotes the number of products that firm i produces and keeps

producing. A coefficient β= 1 implies full cannibalization, β= 0 implies no cannibalization. 347,000 observations.

Figure C.11. Life Cycle of Revenue Growth with 10c-digit Concorded Products
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Notes: The vertical axis plots the average growth of product revenue among all firm-products in the sample relative to growth at tenure 1 and

after absorbing firm fixed effects. The horizontal axis plots the number of years that have passed since the firm first started producing the

product. Confidence bounds are at the 90% level and based on clustered standard errors. Products are defined at the 10c-digit concorded

level.
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Figure C.12. Life Cycle of Revenue Growth with No Product Innovation
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Notes: The vertical axis plots the average growth of product revenue among all firm-products in the sample relative to growth at tenure 1

and after absorbing firm fixed effects. The horizontal axis plots the number of years that have passed since the firm first started producing

the product. Confidence bounds are at the 90% level and based on clustered standard errors. The line for ‘No Product Innovation’ excludes

firms that introduce any new product within the same CPA product category (6-digit) over the life cycle of any product.

Figure C.13. Life Cycle of Revenue Growth by Product Count
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Notes: The vertical axis plots the average growth of product revenue among all firm-products in the sample relative to growth at tenure 1

and after absorbing firm fixed effects. The horizontal axis plots the number of years that have passed since the firm first started producing

the product. Confidence bounds are at the 90% level and based on clustered standard errors. Firms are binned into three equisized bins

based on the number of products that they are producing.
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Figure C.14. Life Cycle of Revenue Growth by Age
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Notes: The vertical axis plots the average growth of product revenue among all firm-products in the sample relative to growth at tenure 1

and after absorbing firm fixed effects. The horizontal axis plots the number of years that have passed since the firm first started producing

the product. Confidence bounds are at the 90% level and based on clustered standard errors. Firms are binned into three equisized bins

based on their age.

Figure C.15. Life Cycle of Revenue Growth by Sector
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Notes: The vertical axis plots the average growth of product revenue among all firm-products in the sample relative to growth at tenure 1

and after absorbing firm fixed effects. The horizontal axis plots the number of years that have passed since the firm first started producing

the product. Confidence bounds are at the 90% level and based on clustered standard errors.
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Figure C.16. Untargeted Moments: Creative Destruction and Aggregate Revenue Growth
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Notes: The horizontal axis measures firm growth through the symmetric growth rate, defined as the change in revenue be-

tween t and t−1 divided by average revenue in t and t−1. Growth rates are separated into 20 negative bins and 20 positive bins.

The top figure presents the contribution of changes in revenue across firms in a particular growth bin as a percentage of total

revenue creation (the sum of increases in revenue across growing firms) for positive bins or as a percentage of total revenue

destruction (the sum of decreases in revenue across shrinking firms) for negative bins. The bottom panel decomposes a bin’s

overall revenue change into changes coming from continuing products and the net of product innovation and destruction –

creative destruction.
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Table D.5: Concentration of Firm Growth

1 Year 5 Year
-3 σ -2 σ +2 σ +3 σ -3 σ -2 σ +2 σ +3 σ

Product Count
Data 0.98 1.08 1.09 1.00 0.90 0.93 0.99 0.96
Normal Dist. 0.13 2.28 2.28 0.13 0.13 2.28 2.28 0.13
Ratio 7.3 0.5 0.5 7.4 6.7 0.4 0.4 7.1

Revenue
Data 0.47 0.97 0.84 0.42 0.13 0.34 0.55 0.34
Normal Dist. 0.13 2.28 2.28 0.13 0.13 2.28 2.28 0.13
Ratio 3.5 0.4 0.4 3.1 1.0 0.2 0.2 2.5

Employment
Data 0.77 1.51 0.95 0.38 0.27 0.75 0.65 0.19
Normal Dist. 0.13 2.28 2.28 0.13 0.13 2.28 2.28 0.13
Ratio 5.7 0.7 0.4 2.8 2.0 0.3 0.3 1.4

Notes: The table presents the percentage of observations in the tail of the data and the percentage of observations in the tail under the

normal distribution. Colomn headers indicate tail in terms of standard deviations from the mean.

Appendix D. Distribution of firm growth

In this section, we show that the distribution of firm growth in our data is fat tailed. As with size,

we measure firm growth through changes in the number of 10-digit products that it sells, changes

in revenue and changes in employment. We analyze either year-on-year or five-year changes in the

natural logarithm of each of these variables: ln yi t − ln yi t−h , where h = 1,5. By focusing on log changes

we are able to study the entire distribution of firm growth. The main alternative measure of firm growth

is the symmetric growth proposed by Davis et al. (2006), which is bounded by [−2,2] regardless of the

underlying distribution of firm size. This makes it impractical for studying the tail of the firm-growth

distribution.

To show that the distribution of firm growth is fat tailed, we compare the distribution of log-change

to the log-normal distribution. Log-normal is a natural starting point as, motivated by Gibrat (1931),

firm dynamics models with random shocks to productivity typically assume shocks (and thus firm

growth) are log normal (see, e.g., Hopenhayn 2014).29

Quantile-Quantile plots We plot the distribution of firm growth in Figure D.17. Each sub-figure

contains a Quantile-Quantile (QQ) plot comparing the distribution of a measure of firm growth to a

log-normal distribution with the same mean and standard deviation. To produce these figures, we sort

firm-years by growth and calculate ranks. The plot than compares a particular quantile’s growth rate

on the y-axis to what that quantile’s growth rate would be under the log-normal distribution. If growth

rates are log-normally distributed, the scatters should be positioned on the diagonal reference lines. If

29Our results echo recent findings in the literature on income dynamics which shows that individual income growth is
also better described by a fat-tailed distributions such as the Pareto distribution (see, e.g., Guvenen et al. (2021). Gabaix et al.
(2016) discuss the importance of the income growth process to explain stationary distributions of income and wealth.
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Figure D.17. Distribution of Growth Rates

(a) Product Count Growth (b) Product Count Growth (5 year)

(c) Revenue Growth (d) Revenue Growth (5 year)

(e) Employment Growth (f) Employment Growth (5 year)

Notes: The figures plot Quantile-Quantile plots comparing the empirical distribution of log change in product count, revenue and employ-

ment against the log-normal distribution. Dashed light-blue lines present the reference log-normal distribution.

growth is fat tailed, scatters of the left are below the reference line; scatters on the right are above the

reference line.

Figure D.17 shows that firm growth is fat tailed in the data. The upper, middle, and lower fig-

ures respectively plot the distribution product count, revenue, and employment. For each measure,

both the 1-year (left-hand) and the 5-year growth rate show that large positive and negative growth

occurs more often than a log-normal distribution predicts. The deviation is particularly clear for the
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Figure D.18. Symmetric Shapley-Owen Decomposition of Revenue Growth by Age and Size
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Notes: The figures decompose total revenue growth into revenue loss from product loss, revenue gain from product gain, and changes in

revenue on products that the firm is continuing to produce.

largest changes. For employment, for example, the deviation becomes graphically clear around ± 0.5

log change, which translate to -45% and +65%.

Tail mass Table D.5 quantifies how much the tails of firm growth deviates from the log-normal distri-

bution. It compares the percentage of observations to the left (right) of minus (plus) 2 and 3 standard

deviations from the mean for each variable and horizon. For product count, the data shows a close

alignment with the normal distribution at the +2 standard deviations and +3 standard deviations lev-

els in the 1-year period, with ratios of 0.5 and 7.4 respectively, indicating that extreme changes in a

firm’s product count are relatively common. Revenue data again displays a marked deviation from

the normal distribution, with changes in annual revenue growth outside the ±3 standard deviations

occurring more than three times as often. Results for employment growth are similar.

Log-rank versus log-size Having established that extreme firm growth is much more common than

under the log-normal distribution, we next explore what distribution fits better. As growth can be

both positive and negative, the standard Pareto or Zeta distribution are poor fits. Instead, we explore

whether a two-sided version of these distribution can explain both the tails of firm growth. To see if

this is the case, we separately calculate the rank of firm growth firms among the firms with negative

growth (yi t < yi t−h) and positive growth (yi t > yi t−h) and plot the log of the inverse rank against the

log of firm growth (yi t /yi t−h). This relationship is linear at either side of zero if firm growth is indeed

two-sided Pareto.

Figure D.19 plots the results. The subfigures have the same order as in Figure D.17. The horizontal

axis range is fixed at -4 to 4 in all plots. The figure shows that the two-sided Pareto distribution fits

the empirical firm growth well. For product count, the linear reference lines are a near perfect fit for

positive growth in both the 1-year and 5-year growth plots, although negative product growth seems

somewhat less thick-tailed than the Pareto distribution at the 5-year horizon. For revenue growth and

employment growth the tails appear to be even fatter than the two-sided Pareto distribution. This
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is particularly visible for the right tail of the distribution: as the scatter plot is mostly above linear

reference lines, extreme growth is more common in the data than in a Pareto distribution.

Conditioning on age or size We next assess how the tails of the firm growth distribution change with

age and size. Figure D.20 presents the QQ plots for all measures of 1-year growth, dividing the sample

into three equally large age groups on the left-hand figures. Blue-round scatters plot the distributions

for the youngest third of firms, while red-square and green-diamond scatters respectively belong to

the middle and oldest age group. (describe result: tails decline with size, stronger result than by age).

Figure D.18 presents the symmetric Shapley-Owen decomposition separately for firms of different

age deciles (left-hand) and initial sizes (right-hand), grouping entry and exit into churn. Size is mea-

sured through the number of products that firms produced in the previous year.30 The figure shows

that the contribution of churn is similar for firms of different ages and sizes. The only outlier is entrants,

which inherently see their entire growth attributed to churn as they have no continuing products.

30Results are similar when measuring size through revenue and employment.
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Figure D.19. Two-Sided Pareto Distribution of Firm Growth

(a) Product Count Growth (b) Product Count Growth (5 year)

(c) Revenue Growth (d) Revenue Growth (5 year)

(e) Employment Growth (f) Employment Growth (5 year)

Notes: The figures plot the relationship between the log of a firm’s inverse rank for growth and the log of growth. Growth is defined as

yi t /yi t−h . Rank is calculated separately for firms with negative growth and firms with positive growth. Blue-dashed lines are illustrative

linear reference lines to asses whether
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Figure D.20. Distribution of Growth Rates by Age and Initial Size

(a) Product Count Growth - by Age (b) Product Count Growth - by Size

(c) Revenue Growth - by Age (d) Revenue Growth - by Size

(e) Employment Growth - by Age (f) Employment Growth - by Size

Notes: The figures plot Quantile-Quantile plots comparing the empirical distribution of log change in product count, revenue and employ-

ment against the log-normal distribution. Dashed light-blue lines present the reference log-normal distribution.
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