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Abstract
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setting of the moments of a Normal distribution. Posterior computations are

no more demanding than with existing prior specifications; yet the methodology

provides direct Bayesian shrinkage on impulse responses. Introducing the prior

belief that monetary policy shocks generate temporary but persistent effects

leads to a hump-shaped response of GDP. The trough occurs with twelve and

eighteen months after the shock, depending on how much a-priori persistence

we introduce.
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1 Introduction

Impulse response functions (IRFs) are one of the most popular tools in modern macroe-

conomics and have proved essential in exploring the dynamics induced by structural

shocks. Applications of impulse response analysis include, among many others, study-

ing how the economy responds to policy interventions (Caldara and Kamps, 2017,

Miranda-Agrippino and Ricco, 2021), to financial disruptions (Gilchrist and Zakraǰsek,

2012), and to geopolitical and uncertainty-related risks (Piffer and Podstawski, 2018,

Caldara and Iacoviello, 2022).

Researchers typically hold strong views on what dynamic responses ought to be

considered reasonable. Beliefs could be held on the timing or on the persistence of the

responses, or on their shape. For example, it is generally believed that a contractionary

monetary policy shock should persistently decrease output, even though the effect

may take time to materialize. The long standing debates about the ‘price puzzle’,

the ‘liquidity puzzle’, and the ‘exchange rate puzzle’ provide other leading examples

of beliefs researchers have about the likely path of certain variables in responses to

structural shocks (Ramey, 2016, Gourinchas and Tornell, 2004).

Unfortunately, macroeconomists are severely constrained in their ability to sup-

port the estimation of impulse response functions with meaningful prior beliefs on

their timing, their persistence, or their shape. The computational convenience of

working with Vector Autoregressive (VAR) models has been widely acknowledged in

the literature (Kilian and Lütkepohl, 2017). Yet, the existing practice of specifying

a flat or Minnesota-like prior for VAR parameters does not allow a researcher to in-

troduce, even indirectly, non-dogmatic constraints on features of the impulse response

function. In fact, prior beliefs about the shape and the timing of impulse responses

can only be imposed dogmatically, by rejecting all posterior draws failing to imply the

required pattern of responses (Canova and Pappa, 2011).

Beliefs on the shape of the impulse responses can be naturally introduced when esti-

mating Moving Average (MA) models (Plagborg-Møller, 2019). However, MA models

are computationally demanding to work with, and may require approximation tech-

niques to obtain estimates of their parameters (Barnichon and Matthes, 2018). An

alternative is to work with Local Projections models and impose priors directly on

the coefficients of the relevant shock at all horizons. An unresolved challenge in work-

ing with a Bayesian version of Local Projections is the specification of a meaningful

covariance structure for the residuals (Ferreira et al., 2023).
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The contribution of the paper. In this paper we develop an approach to sharpen

inference about IRFs in structural VAR models, using non-dogmatic beliefs on the

timing, the persistence, or the shape of the impulse responses. Rather than imposing

a full prior distribution directly on the impulse responses, we work with the popular

Normal prior for the reduced form VAR parameters, and use the prior on the impact

effect existing in the literature. Our prior consists of a specification of the first moment

of the Normal VAR prior that differs from those of the Minnesota prior and achieves

two goals. First, the first moments are selected so that the implied distribution of the

IRFs is approximately centered around the dynamics a researcher wants to a-priori

introduce. Second, because the prior has a Normal format, it retains the computational

convenience of using highly tractable posterior sampling. Hence, one can introduce

non-dogmatic beliefs about features of the IRFs by simply replacing the Minnesota-

like specification with our proposed specification, which is obtained, analytically, from

the recursive computation of the IRFs. Our approach nests, as a special cases, the flat

and Minnesota-like priors, as well as the long run prior suggested by Giannone et al.

(2019).

Identification is a crucial ingredient of impulse response analysis. Our prior for

the VAR autoregressive coefficients can be combined with existing contemporaneous

identification strategies, for example, zero, sign or external instrument restrictions,

and it is compatible with both the approaches of Rubio-Ramirez et al. (2010) and of

Baumeister and Hamilton (2015). We stress that our contribution is not to provide a

new approach to achieve the identification of the structural shocks, but to develop a

method to achieve shrinkage via prior beliefs on the dynamics of the impulse responses.

There are three main advantages of our settings. It has been acknowledged that

Bayesian shrinkage is more naturally introduced on endogenous functions of the pa-

rameters of the model (see, for instance, Van Dijk and Kloek, 1980, Harvey et al.,

2007). In the SVAR literature, this type of priors is currently viable only when consid-

ering the unconditional properties of the observables (see Villani, 2009 and Jarociński

and Marcet, 2019). The first advantage of our method is to allow for shrinkage of dy-

namic responses, which are undoubtedly a key endogenous function of SVAR models

(Kilian, 2022). A second advantage is that, contrary to existing approaches, by sug-

gesting the data to produce particular IRF shapes, it can sharpen inference without

requiring additional identifying restrictions (Kilian and Murphy, 2012, Amir-Ahmadi

and Drautzburg, 2021). The third advantage is that the specification is flexible and

allows for a combination of tighter beliefs on some impulse responses and looser beliefs
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on others. Put differently, our approach does not require formulating prior beliefs on

the shape of all structural impulse responses.

We illustrate the properties of our proposed specification using data simulated

from a conventional three-variable New Keynesian model. The model features a very

persistent response of the output gap to a government spending shock. As expected,

in a large sample the prior is irrelevant, and all the specifications we consider lead

to the same dynamic responses. However, in a sample of a realistic size, both a flat

and a Minnesota prior lead to posterior IRFs that largely underestimate the degree

of persistence of the output gap response. By contrast, our prior makes it possible

to introduce the belief that the effect of a government spending shock on the output

gap is relatively persistent in the mean, while allowing for considerable uncertainty

around the mean. As a result, it leads to posterior IRFs that mimic the half-life of

the true responses, provided the prior variance of the autoregressive parameters is not

too large.

We study the classical question of how US output responds to a monetary policy

surprise. The issue of at what horizon the maximum response occurs has received

considerable attention over the last twenty-five years (Christiano et al., 1999, Uhlig,

2005, Antoĺın-Dı́az and Rubio-Ramı́rez, 2018), but both the shape and the timing of

the output responses still remain unsettled. We take a standard six variable VAR

model and identify monetary policy disturbances using impact sign restrictions. A flat

and a Minnesota prior for the VAR coefficients produce output responses where the

strongest effect occurs on impact, and thus no hump is generated. We then introduce

the belief that monetary shocks generate persistent mean output effects, a belief which

is in line with a wide class of current New Keynesian macroeconomic models. We find

that the posterior distribution of output responses displays hump-shaped dynamics,

regardless of the degree of persistence the prior displays. Importantly, the hump

occurs even though our prior does not require the mean responses to be hump-shaped.

Interestingly, depending on how persistent the mean responses are a-priori assumed,

it takes between one and one and a half years for the monetary shock to generate its

largest output effect. Finally, a one standard deviation shock that increases the federal

funds rate by 20 basis points on impact leads to a maximum decrease in real GDP of

0.20%, approximately. Thus, our prior supports the widely-held view that a central

bank may be able to affect real economic activity. However, this occurs with long and

variable lags, and the magnitude of the effect is generally small (Buda et al., 2023).
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The relationship with the literature. There is a considerable amount of litera-

ture dealing with Bayesian VAR models, see Koop and Korobilis (2010) and Miranda-

Agrippino and Ricco (2019) for a detailed discussion. We build on recent advances by

Baumeister and Hamilton (2015, 2018, 2024). Relative to Baumeister and Hamilton

(2015, 2024), we focus on impulse responses rather than on structural elasticities; and

relative to Baumeister and Hamilton (2018), we focus on dynamic responses rather

than the impact effects. The paper is also related to the work of Barnichon and

Matthes (2018), work with functional approximations of IRFs in MA models, and to

an earlier contribution of Kociecki (2010), who works with recursive identification and

considers a joint Normal prior distributions for the impulse responses. Our approach

has the same flavor as the ones of Villani (2009) and Andrle and Benes (2013), who

construct priors for endogenous objects of a model. The need for tools that explicitly

introduce non-dogmatic beliefs on impulse responses was acknowledged early on by

Gordon and Boccanfuso (2001) and Dwyer (1998), who nevertheless do not deliver

usable priors.

Our approach is related to the one of Plagborg-Møller (2019), who estimates im-

pulse responses directly from MA models. Because he works with structural MA

parameters, his method is general with respect to what prior beliefs can be introduced

on impulse responses, including the prior covariance structure across variables, shocks,

and horizons. However, this flexibility comes with a number of costs. First, the iden-

tification of vector MA (VMA) models is complicated and the estimation subject to

well known pile-up problems. Second, likelihood based estimation of VMA models is

more demanding than the estimation of VAR models. Third, because one specifies the

full prior distribution on the impulse responses, the approach requires eliciting explicit

beliefs along many dimensions, and this may be a daunting task. In comparison, our

method simply requires eliciting the prior mean of some impulse responses. Fourth,

since impulse responses are more frequently estimated using SVAR models, the ap-

proach does not allow any direct comparison of the information content of the prior

with existing specifications. In contrast, our prior selection nests popular choices of

prior distributions used in the literature. Finally, the approach needs to take a stand

on how the matrix of impact coefficients is identified. Our method is consistent with

a number of existing identification choices. Since the two approaches take a different

point in the complexity-flexibility frontier they should be considered complementary

rather than substitute of one another.

Nowadays, most of the current Bayesian SVAR literature dealing with sign iden-
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tification restrictions discusses the pros and cons of following a two-step approach to

the estimation and the identification of the VAR (Baumeister and Hamilton, 2015),

whether the failure to update contemporaneous prior beliefs is a problem or not (In-

oue and Kilian, 2020), and whether contemporaneous beliefs implied by a standard

two-step algorithm are informative or not (Arias et al., 2024). Our paper does not

take a stand on these issues. Our approach is consistent with the methodology of

Arias et al. (2018), who provide tools for combining sign and zero restrictions, and

with any approach imposing prior restrictions on contemporaneous elasticities, for in-

stance Baumeister and Hamilton (2015). Finally, while we do not follow the method

of Giacomini and Kitagawa (2021), such an approach can also be used in conjunction

with our prior specification to robustify inference.

The outline of the paper. The rest of the paper is organized as follows. Section 2

discusses in details the prior on VAR parameters we propose. Section 3 illustrates the

properties of our specification using data simulated from a standard DSGE model.

Section 4 studies how monetary policy disturbances are transmitted to real output.

Section 5 concludes. An Online Appendix contains the derivations and the computa-

tional details, and additional figures mentioned in the paper.

2 The empirical methodology

This section explains the specification of our prior. We show how our prior selection

for VAR coefficients can be combined with commonly employed identification strate-

gies to produce structural impulse responses. Furthermore, we demonstrate that it

is straightforward to employ standard posterior algorithms to sample the objects of

interest.

2.1 The model

We write a Structural Vector Autoregressive (SVAR) model as

yt =

p∑
l=1

Πlyt−l + c+Bεt, (1a)

εt ∼ N(0, Ik), (1b)
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where yt is a k×1 vector of observables, Πl is a k×k matrix of autoregressive reduced

form coefficients at horizon l = 1, .., p, c is a k × 1 vector of constants, and B is a

k × k non-singular matrix. The vector εt contains the serially independent structural

shocks, whose covariance matrix is normalized to the identity matrix. The model can

also be written in other ways. A useful alternative is given by:

yt =

p∑
l=1

Πlyt−l + c+ ut, (2a)

ut ∼ N(0,Σ), (2b)

ut = Bεt, (2c)

Σ = BB′, (2d)

B = χ(Σ)Q, (2e)

where χ(.) is a function capturing any square root factorization of Σ, and Q an or-

thonormal matrix. Equations (1a)-(1b) and (2a)-(2e) define the same SVAR, while

equation (2e) highlights the correspondence between reduced form and structural rep-

resentations. The mapping between model (1) and model (2) is discussed at length,

for instance, in Arias et al. (2018). Below, we use notation:

Π = [Π1, ..,Πp], (3)

π = vec(Π), (4)

π̃ = (π′, c′)′. (5)

For the rest of this section we assume, without loss of generality, that the data is

demeaned so that c′ = 0.

Let Ψh denote the impulse response function (IRF) h periods after the shocks, and

let M be the maximum horizon of interest for which impulse responses are computed.

Ψh is of dimensions k × k, with entry i, j = 1, .., k capturing how variable i responds

to shock j after h horizons from the shock. The mapping between SVAR objects

(B,Π1, ..,Πp) and IRF objects (Ψ0,Ψ1, ..,ΨM) can be obtained recursively, and for

M ≥ p it is given by (Kilian and Lütkepohl, 2017):

7



Ψ0 = B, (6a)

Ψ1 = Π1Ψ0, (6b)

Ψ2 = Π1Ψ1 + Π2Ψ0, (6c)

Ψ3 = Π1Ψ2 + Π2Ψ1 + Π3Ψ0, (6d)

· · ·
Ψp = Π1Ψp−1 + Π2Ψp−2 + · · ·+ ΠpΨ0, (6e)

Ψp+1 = Π1Ψp + Π2Ψp−1 + · · ·+ ΠpΨ1, (6f)

· · ·
ΨM = Π1ΨM−1 + Π2ΨM−2 + · · ·+ ΠpΨM−p. (6g)

If B is non-singular, (6) provides a one-to-one mapping between the SVAR parame-

ters and the IRF parameters for any M ≥ p. Thus, any prior beliefs on the SVAR

coefficients imply prior beliefs on the IRFs elements via the system of equations (6).

2.2 Our approach

Our approach is general along several dimensions, including the identification of the

shocks, whether beliefs on the shape of IRFs are held dogmatically or not, and the

specification of the covariance matrix of the prior. To provide intuition, we first

illustrate the key features of our approach in a simplified setting. We then generalize

the approach and we relate it to the existing literature.

2.2.1 Illustration in a simplified environment

For the time being, suppose that:

a) the identification of the shocks is achieved via a recursive identification approach;

b) an inverse-Wishart prior is used for Σ, and B is set equal to the Cholesky de-

composition of Σ;

c) all k structural shocks are identified;

d) the prior for π̃ is Normal independent of Σ,

π̃ ∼ N(µ, V ). (7)
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As is well known, the joint posterior p(π̃,Σ|Y ) in this case can be conveniently explored

with the Gibbs sampler (Koop and Korobilis, 2010).

We are interested in whether the selection of the hyperparameters (µ, V ) can grant

the researcher some flexibility over the implied prior for the IRFs, given that, condi-

tional on B, the prior p(π̃) implies a prior for the IRFs via the system (6). It is

standard in the literature to set (µ, V ) according to:

E((Πh)ij) =

δi, j = i, h = 1

0 otherwise
, V ((Πh)ij) =


λ2

h2
, j = i

η λ
2

h2
σ2
i

σ2
j

otherwise
, (8)

which is typically referred to as Minnesota prior. Note that a flat prior is obtained

by letting λ to be large, while the random walk and the white noise specifications can

be obtained choosing δi to be 1 or 0, respectively (see Canova, 2007, Bańbura et al.,

2010 and Koop and Korobilis, 2010 for popular selections of the remaining hyperpa-

rameters λ, η, σi, σj).
1 While the forecasting properties of a VAR endowed with such

prior restrictions are well-documented, the prior allows for no flexibility in designing

IRFs shapes. One could constrain the implied IRFs by adding to the algorithm an

accept/reject step to ensure that the posterior draws do produce the required shapes

(for example, that the response of economic activity to a monetary shock is larger

in absolute value at horizon two than at horizon one). However, such a way of pro-

ceeding introduces restrictions dogmatically, which might not be the intention of the

researcher. In addition, the computations may be very inefficient when most of the

posterior draws fail to satisfy the candidate restrictions.

Our approach endogenously selects µ in such a way that the mean of the IRFs has

certain a-priori features. Thus, we view our beliefs as a tool to implement posterior

Bayesian shrinkage on impulse responses. Let Ψ̄ = (Ψ̄0, .., Ψ̄H) be an array reflecting

the researcher’s prior mean on the impulse responses, where H is the maximum horizon

up to where beliefs are formulated. Generally, H ≤ M , as one need not have prior

beliefs stretching as far as the horizon of interest. Ψ̄ is a high dimensional object, and

includes k2(H + 1) entries. Assume, for the moment, that H = p (the number of lags

of the SVAR), and set Ψ̄0 to the expected value of B implied by the prior on Σ and the

identification approach used (here, a lower triangular matrix with positive diagonal

entries). The researcher sets the remaining entries (Ψ̄1, .., Ψ̄H) to capture his beliefs

1We will refer to the Minnesota or Minnesota-like prior only with reference to the prior for π,
while remaining intentionally silent about the priors on B or Σ.
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about the dynamics of the IRFs to the structural shocks. Last, substitute Ψ̄ into (6),

eliminate the first equation and invert the next p equations of system (6) to obtain:

Π̄1 = Ψ̄1Ψ̄
−1
0 , (9a)

Π̄2 = [Ψ̄2 − Π̄1Ψ̄1]Ψ̄
−1
0 , (9b)

Π̄3 = [Ψ̄3 − Π̄1Ψ̄2 − Π̄2Ψ̄1]Ψ̄
−1
0 , (9c)

· · ·
Π̄p = [Ψ̄p − Π̄1Ψ̄p−1 − Π̄2Ψ̄p−2 − · · · − Π̄p−1Ψ̄1]Ψ̄

−1
0 . (9d)

Π̄ = [Π̄1, .., Π̄p] are the values of the VAR coefficients associated with the selected Ψ̄.

In this simplified setting, replacing the specification of µ from (8) with

E((Πh)ij) = (Π̄h)ij, h = 1, .., p, (10)

is enough to gain control over the implied prior on the impulse responses. In fact, the

specified prior p(π̃,Σ), the Cholesky identification of B and the equality E(B) = Ψ̄0

jointly imply, via system (6), that p(Ψ0,Ψ1, ...) satisfies

E(Ψh) = Ψ̄h, h = 0, 1, (11a)

lim
V→ 0

E(Ψh) = Ψ̄h, h = 2, .., H, (11b)

where (11a) holds for h = 0 by assumption, while the remaining conclusions are

derived in the Online Appendix. While (11b) is satisfied only in the limit as V → 0,

Section 2.4, Section 3 and Section 4 document that the approximation error E(Ψh)−Ψ̄h

is negligible for values of V used in the literature, for instance see Bańbura et al. (2010).

Put differently, since Ψ̄ is selected by the researcher, replacing a Minnesota choice of

µ with an alternative choice which depends on Ψ̄, gives the researcher control over

the prior expectation of the impulse responses, without imposing that p(Ψ0,Ψ1, ...)

is jointly Normal. Given that our prior on the VAR coefficients is Normal, standard

posterior samplers can be used.

2.2.2 Generalization for H > p

The discussion in subsubsection 2.2.1 focuses on the case in which the researcher

formulates IRFs beliefs up to p horizons, where p is the number of lags in the SVAR.

We will refer to this as Case a. It is useful to generalize the approach to the case
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in which beliefs are expressed up to horizon H > p. Since p is typically selected

by the researcher, one could in principle only work with Case a and increase p up

to the intended horizon H. However, in practice, higher values of p make model

dimensionality an issue, suggesting that it is better to derive the mapping directly for

H > p.

Define Π̄ like in subsubsection 2.2.1 as the value of the SVAR coefficients associated

with the first p + 1 blocks of Ψ̄. It can happen, in principle, that when substituting

Ψ̄ = (Ψ̄0, .., Ψ̄H) and Π̄ = [Π̄1, .., Π̄p] into system (6), all equalities hold despite the

fact that H > p. In this case Ψ̄ = (Ψ̄0, .., Ψ̄H) are functionally constrained in a way

that a SVAR model with p < H lags still generates Ψ̄ via equation (6). We will refer

to this as Case b. As discussed in the Online Appendix, the results (11) hold for Case

b.

When H > p and Ψ̄ are not functionally constrained, which we refer to as Case c,

one could in principle still select µ as in (10), effectively using only the first p+1 entries

of Ψ̄. This produces smaller approximation errors E(Ψh)− Ψ̄h at shorter horizons at

the cost of potentially introducing larger errors at longer horizons. This is inefficient;

thus we consider all horizons H and select µ as discussed next.

Define b = vec(B), Ψ = [Ψ0,ΨF ], ΨF = [Ψ1, ..,ΨH ], ψ = vec(Ψ), ψF = vec(ΨF )

and ψh = vec(Ψh), for h = 0, 1, .., H. Vectorizing the first H + 1 equations of the

system (6) one obtains:

ψ0 = b, (12)

ψF = Rπ, (13)

where

R = RH ⊗ Ik ≡



Ψ′0 0 0 . . . 0

Ψ′1 Ψ′0 0 .. 0

Ψ′2 Ψ′1 Ψ′0 . . . 0
...

...
...

. . .
...

Ψ′p−1 Ψ′p−2 Ψ′p−3 . . . Ψ′0
Ψ′p Ψ′p−1 Ψ′p−2 . . . Ψ′1
...

...
...

. . .
...

Ψ′H−1 Ψ′H−2 Ψ′H−3 . . . Ψ′H−p


︸ ︷︷ ︸

RH

⊗Ik. (14)

The matrix RH is a function of Ψ, it is of dimension Hk × pk, and is of full column
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rank as long as B is non-singular. Let ψ̄h = vec(Ψ̄h), ψ̄ = (ψ̄
′
0, ψ̄

′
F )′ = vec(Ψ̄),

Ψ̄ = [Ψ̄0, Ψ̄F ], Ψ̄F = [Ψ̄1, .., Ψ̄H ]. Define the artificial random variablesWh, h = 1, .., H:

W1 = Π1Ψ̄0 − Ψ̄1, (15a)

W2 = Π1Ψ̄1 + Π2Ψ̄0 − Ψ̄2, (15b)

W3 = Π1Ψ̄2 + Π2Ψ̄1 + Π3Ψ̄0 − Ψ̄3, (15c)

...

Wp = Π1Ψ̄p−1 + Π2Ψ̄p−2 + · · ·+ ΠpΨ̄0 − Ψ̄p, (15d)

Wp+1 = Π1Ψ̄p + Π2Ψ̄p−1 + · · ·+ ΠpΨ̄1 − Ψ̄p+1, (15e)

...

WH = Π1Ψ̄H−1 + Π2Ψ̄H−2 + · · ·+ ΠpΨ̄H−p − Ψ̄H . (15f)

The system of equations (15) is closely related to the system (6) except that it drops the

equation at horizon 0, replaces the matrices Ψh with the matrices of hyperparameters

Ψ̄h, and drops the last M −H equations. The system (15) can be vectorized as

w = R̄π − ψ̄F , (16)

where w = vec([W1, ..,WH ]) and R̄ is defined in equation (14) after replacing Ψ with

Ψ̄. If Ψ̄0 is non-singular, the matrix R̄ has full column rank. Premultiplying both

sides of (16) by R̄′ and rearranging the terms gives:

π =
(
R̄′R̄

)−1
R̄′w +

(
R̄′R̄

)−1
R̄′ψ̄F . (17)

Note that in the system of equations (16) π is of lower dimension than w for H > p.

In other words, given (R̄, ψ̄F ), whether a solution for π exists depends on w.

From (17), we select µ as

µ =
(
R̄′R̄

)−1
R̄′ψ̄F . (18)

To summarize, the three cases of interest are:

1) When H = p (Case a), a SVAR with p lags replicates exactly the pattern of

Ψ̄, making the system (16) consistent for w = 0. This means that (18) is the
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unique solution at w = 0, R̄ is square and invertible, and E(π) simplifies to

µ = R̄−1ψ̄F , which coincides with vec(Π̄) defined in equation (9).

2) When H > p but Ψ̄ is selected such that it can be replicated by a VAR with p

lags (Case b), then the system (16) is still consistent for w = 0, (18) is still its

unique solution, and µ from (18) still coincides with vec(Π̄) defined in equation

(9) despite R̄ not being square and invertible.

3) Lastly, when H > p but no parametrization of a VAR with p lags exists that

replicates Ψ̄ (Case c), then w = 0 makes the system (16) inconsistent. Yet,

E(π) from (18) is still the unique solution if w = [R̄
(
R̄′R̄

)−1
R̄′ − I]ψ̄F . In

the Online Appendix we show that (11) do not necessarily hold under Case c.

However, the approximation error E(Ψh)− Ψ̄h can still be small, and its size can

be checked numerically, see Section 2.4 and Section 4. Indeed, in all the exercises

we run corresponding to Case c, the approximation error was small, making the

methodology suitable even for H > p.

2.3 Discussion

The previous section has derived our prior for the VAR coefficients under the assump-

tion that identification is achieved via the recursive approach. The assumption is

not needed for our methodology to work. All that is needed is that E(B) = Ψ̄0, an

assumption that is not restrictive, given that Ψ̄0 is a hyperparameter in our setup.

Sign restrictions can be used, formulating prior beliefs on A = B−1 (as advocated by

Baumeister and Hamilton, 2015, Baumeister and Hamilton, 2024), on B (as suggested

by Bruns and Piffer, 2023) or on a combination of A and B (see Baumeister and

Hamilton, 2018). One can also combine sign with zero restrictions (Binning, 2013,

Arias et al., 2018). Identification via external instruments can also be used by adding

the instrument to the list of variables in a block recursive SVAR, as in Plagborg-Møller

and Wolf (2021), and the specification can be extended to the VARX setting used by

Paul (2020). While formulation of the prior for the relevant instantaneous objects is

an active field of research, our method does not take a stand on the issue.2

2In principle, our approach can be used to introduce non-dogmatic beliefs on the shape of the re-
duced form impulse responses. Since our method only requires specifying Ψ̄ and ensuring Ψ̄0 = E(B),
it works irrespectively of whether p(B) features sign restrictions or other identifying restrictions, see
Figure 1 and Figure 2 below. Of course, without identifying restrictions the implied impulse responses
would have no economic interpretation.
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In applied work researchers might want to introduce sign or shape restrictions at

horizons greater than the contemporaneous. This, however, can be computationally

costly if the joint posterior distribution has a large mass on the part of the parameter

space that violates the restrictions. Our approach can help, because it can induce

impulse response shapes which are in line with the intended restrictions, hence reduc-

ing the number of draws required to obtain a desired number of draws satisfying the

additional restrictions. As we show in Section 4, in an application with sign restric-

tions on longer impulse response horizons, our approach can significantly reduce the

computational burden to draw from the restricted posterior distributions. See also

Kilian and Murphy (2012) and Amir-Ahmadi and Drautzburg (2021) for alternative

ways of obtaining shrinkage via restrictions.

Our prior for π is Normal. For this reason, posterior sampling is not in any way

more challenging than with existing methodologies. If an inverse-Wishart-Uniform

prior on (Σ, Q) is employed, the joint posterior can be explored with standard methods:

a Gibbs sampler when we specify the prior as in (7), or direct sampling, if the prior

(7) is replaced with

π̃|Σ ∼ N(µ, Vs ⊗ Σ). (19)

Our method also works under this latter specification. When an inverse-Wishart-

Uniform prior for (Σ, Q) is not assumed, posterior sampling requires a more involved

method for computing the marginal posterior p(B|Y ), for example the Metropolis-

Hastings algorithm as in Baumeister and Hamilton (2015), the two-step algorithm as

in Bruns and Piffer (2023), or the methods discussed in Canova and Pérez Forero

(2015) and Waggoner et al. (2016).

It is common in the literature to study the dynamics induced only by a subset

of the structural shocks. The prior on π affects the joint posterior of the impulse

responses of all shocks. Hence identification of a subset of shocks is hard to achieve

simply changing the prior on π. One solution is to adjust the specification for p(B),

since B affects the entire profile of the impulse responses. For instance, if only a subset

of the shocks is identified and identification is achieved using sign restrictions on the

impact effect of the shocks, then one can specify p(B) to feature a wide variance for

the columns associated with the unidentified shocks, and a smaller variance for the

columns associated with the identified shocks. In Section 2.4 we show an illustration

of this principle, and we refer to Section 3 in the Online Appendix for further details

on how this can be done.

A key advantage of our approach is that it does not require deriving and integrat-
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ing the joint prior distribution of Ψ, a procedure that entails complex computation

techniques. Our analysis only requires working with the expectation operator of a

multivariate system of equations, see Section 1 of the Online Appendix. This is a con-

siderable advantage relative to the contributions that work with the transformation

between the SVAR and the impulse response parametrization (Kociecki, 2010, Arias

et al., 2018).

Because of the way our prior is designed, a Minnesota-like prior selection of µ

emerges as a special case. In fact, the random walk prior, corresponding to δi = 1 in

equation (8), can be obtained by setting Ψ̄h = Ψ̄0, h = 1, .., H, H = p. The white noise

prior, i.e. δi = 0, can be obtained by setting Ψ̄h = 0, h = 1, .., H, H = p. Thus, when

V is sufficiently small, the Minnesota-like selection given in (8) is consistent with the

belief that the responses to the structural shocks are either very persistent (the random

walk prior) or not persistent at all (the white noise prior). In contrast, our prior offers

more flexibility, as intermediate persistence cases are possible and shape beliefs of any

form can also be formulated. Note also that our approach allows for patterns in the

mean of the IRFs that are consistent with both invertibility and non-invertibility of

the VAR. Thus, it is flexible also along this dimension.

Our method enjoys the strengths and the limitations of all Bayesian analyses. It

gives a new dimension along which to introduce shrinkage, namely the impulse re-

sponses, which are key in structural analyses. It goes without saying that if the

researcher introduces tight beliefs that are inconsistent with the data, then the poste-

rior may be driven away from the region where the most likely IRFs are present. As

we stressed, our calibration of V is in line with other works in the literature, including

Bańbura et al. (2010). Hence our approach is not introducing prior beliefs that are

necessarily tighter than those in standard applications. In addition, prior sensitivity

can help to assess if the results are driven by the prior. For instance, one can evaluate

whether the posterior variance is driven by posterior uncertainty in B or in π̃, see

Section 4.

It is common in the literature to assess the “goodness” of a prior specification using

the forecasting performance of the posterior. We warn against using such an exercise

when the scope is structural analysis for at least two important reasons. First, fore-

casting and structural performance are not two sides of the same coin. For example,

suppose there are two shocks in the data, one that explains 90 percent and one that

explains 10 percent of the variance of inflation. Suppose that one is interested in

the dynamics induced by the latter shock. Good forecasting performance for inflation

15



requires proper identification of the former shock and capturing well the dynamics

it induces. But a prior that is tailored to that purpose will not tell us much about

the dynamics in response to the second shock. In other words, a good forecasting

performance is neither a necessary nor a sufficient condition for good structural infer-

ence. By the same token, a prior that flexibly accommodates prior beliefs on certain

impulse responses need not have a good forecasting performance, but this should not

be considered a defect of the specification.

Second, SVARs often suffer from deformation problems, see Canova and Ferroni

(2022). Because systems tend to be small, structural shocks may be confounded,

making structural analysis typically biased. Still, deformed systems may have good

forecasting performance as long as enough lags are used. Thus, one may be able to pro-

duce decent forecasts even when the structural model is misspecified and the dynamics

in response to the shocks distorted. For these two reasons, we find it inappropriate to

judge a prior specification, which is specifically designed for structural objects, using

the forecasting performance of the implied posterior model. If anything, introducing

prior beliefs consistent with the true response of structural shocks in a deformed sys-

tem increases the ability of the posterior distribution to reflect some true features of

the shock, despite the misspecification present in the model.

It is worth emphasizing that while we work with a Normal prior distribution for the

VAR coefficients, the combination of this prior, the prior on the impact effect of the

shocks and the system of equations (6) implies, in general, a non-Normal joint prior

on Ψ. Thus our approach is consistent with the idea that a-priori the distribution of

impulse responses may be skewed and leptokurtic and we show in Section 3 that this

is indeed the case.

It is also useful to draw a short comparison with the approaches of Villani (2009),

Baumeister and Hamilton (2024) and Andrle and Benes (2013). Villani (2009) writes

the VAR in deviation from the steady states and designs priors for the steady states,

which are endogenous functions of the VAR coefficients. These priors imply, given a

prior for the constant, a prior specification for the VAR coefficients. Our approach

works the other way around: we formulate prior beliefs on the VAR coefficients that

represents certain prior beliefs on the IRFs. Baumeister and Hamilton (2024) also

impose priors on a number of functions of the SVAR coefficients but they do this

working directly with the structural version of the model. Andrle and Benes (2013)

provide priors for endogenous objects of a structural (DSGE) model, such as the

sacrifice ratio. These priors imply, in turn, priors on the structural parameters that
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enter the functions of interest. The main difference here is that a DSGE model rather

than a VAR model is used in the exercise.

Our prior is also related to Jarociński and Marcet (2019), who propose to formulate

a prior directly on observable variables instead of the parameters of the VAR. They

rightly point out that it is usually hard to come up with genuine prior for VAR param-

eters, and standard priors for the VAR parameters may imply priors for observables

that are hard to defend, for example, huge future yearly output growth. To address

this problem, they provide a framework for translating subjective prior beliefs for ob-

servables into a prior for VAR coefficients. Similarly, our approach starts from the

premise that researchers are more comfortable with specifying prior beliefs on IRFs

rather than VAR coefficients. Hence, our method can be seen as complementary to

theirs and useful in different contexts.

Giannone et al. (2019) have suggested a prior that effectively describes beliefs on

the long run properties of the data. It turns out that our setup can recover their

prior specification. To see this consider equation (17). The prior for the long run is

simply a prior on the sum of the VAR coefficients. Thus, by appropriately choosing

the elements of ψ̄F one can either a-priori impose stationarity or unit roots in the

data. Note that while the prior of Giannone et al. (2019) is silent about the shape

or the persistence of the implied IRFs, our version of the long run prior has built-in

particular IRFs structures. We refer to Section 5 of the Online Appendix for a further

discussion.

2.4 The specification of (Ψ̄, V ) and an illustration of our prior

To make our approach operational, one needs to specify Ψ̄. This can be a daunting

task, due to the dimensionality of the matrix. To reduce the complexity, we found it

convenient to model Ψ̄ using the Gaussian basis functions:

ψ̄ij,h = aij · e
−
(

(h−bij)
2

c2
ij

)
+

b2ij

c2
ij . (20)

For each variable i and each shock j, this specification allows us to span H+1 dynamic

responses with as few as three scalar parameters (aij, bij, cij). Here aij captures the

impact effect of shock j on variable i, and thus regulates the (i, j) entry of Ψ̄0; bij is an

integer, which pins down the horizon at which the peak effect is reached, and equals 0

if no hump-shaped response is desired; cij controls for the persistence of the response.
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Equation (20) re-parametrizes the function used in Barnichon and Matthes (2018) to

ensure that the impact effect of shocks is a free parameter, as this is needed to match

Ψ̄0 with E(B).3

Figure 1: Illustration of our prior
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Note: The black dotted line corresponds to the indented prior mean Ψ̄, which was specified over
H = 36 horizons. The pointwise mean (green line) and 68%/90% credible sets (shaded areas)
correspond to our prior in a SVAR with p = 12 lags (Case c). The figure corresponds to the case
in which the prior p(B) is relatively informative on both shocks.

As explained, our approach provides an alternative specification for the prior mean

of the VAR coefficients consistent with a-priori beliefs on the mean of the IRFs. It

is, however, silent about how to set the covariance matrix of the VAR coefficients

V (and thus silent on the prior uncertainty around the selected IRFs means). We

found it convenient to specify V directly, rather than deriving V to imply a desired

covariance structure on the IRFs. Selecting V directly ensures that we can achieve

an amount of shrinkage comparable to the Minnesota-like prior, benefiting from the

3If a prior is specified directly on B, Ψ̄0 can be treated as a free parameter and aij can be selected
by the researcher. If a prior is specified on A or (Σ, Q), Ψ̄0 should be set equal to E(B), which can be
evaluated numerically. In this latter case, the researcher does not have a direct control on aij . As for

cij , if bij = 0, we compute cij = hhl,ij/
√
−ln(2) with hhl,ij being the horizon at which the IRF reaches

its half-life relative to the impact effect, i.e. aij/2. If bij > 0, we compute cij = bij/(
√

ln(ãij/aij)),
with ãij capturing the maximum value of the response at horizon h = bij , with sign(aij) = sign(ãij).
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Figure 2: Illustration of our prior: informative prior only on shock one
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Note: The black dotted line corresponds to the indented prior mean Ψ̄, which was specified over
H = 36 horizons. The pointwise mean (green line) and 68%/90% credible sets (shaded areas)
correspond to our prior in a SVAR with p = 12 lags (Case c). The prior p(B) is relatively
informative on the first shock, and uninformative of the second shock.

same dimensionality reduction with a handful of hyperparameters, see equation (8).

Section 4 in the Online Appendix discusses one way of selecting λ adaptively.4

We conclude this section with an illustration of our prior. We consider an IRF

specified for 2 variables and 2 shocks up to 36 horizons after the shock (k = 2, H = 36).

Ψ̄ contains k2(H + 1) = 148 entries. With Gaussian basis functions the selection of

148 separate parameters is replaced by the selection of 3k2 = 12 hyperparameters.

The black dotted line in Figure 1 gives an illustration of Ψ̄ selected using Gaussian

Basis Function as in equation (20). As an example, the top left plot shows the case

of a hump-shaped response that takes value 0.5 on impact. It then reaches the peak

effect four horizons after the shock at a value that is twice as high as the impact effect,

before progressively declining to zero. The top-right plot, instead, shows the case of a

response that equals 0.5 on impact, features no hump-shaped response, and has half

of the impact effect reached 9 horizons after the shock.

4With equation (19) at hand, one can also use hierarchical or Empirical Bayes approaches for
setting the elements of Vs, as in Giannone et al. (2015). We do not follow a hierarchical approach
here, because updating is generally driven by the forecasting performance of the model, which we
view as conceptually separate from computing structural impulse analysis.
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The rest of Figure 1 shows how our prior can capture Ψ̄ in a SVAR with p lags. We

add no constant to the SVAR and set p = 12, which is only one third of the number of

horizons of Ψ̄ (Case c). We use p(B,π) = p(B) · p(π), vec(B) ∼ N(vec(Ψ̄0), 0.02 · Ik2)
and π ∼ N(µ, V ), with µ set as (18) given Ψ̄, and V = (0.01)2 ·diag(1−2, 2−2, .., p−2)⊗
Ik2 . We draw 5,000 times from the prior on (B,π) and compute the corresponding

impulse responses. The figure reports the implied prior on the IRFs by showing the

pointwise mean, as well as the 68% and 90% credible sets. The implied expected

value of the IRFs (shown in the green solid lines) tracks Ψ̄ very well (black dotted

line). This confirms that our prior can introduce shrinkage on the timing and shape

of the impulse responses. Figure 2 modifies Figure 1 by increasing the prior variance

of the second column on B to 50, while leaving the specification for the first column

unchanged. The figure confirms that our prior can be used on a subset of shocks and

impulse responses.

3 The features of our prior with simulated data

We illustrate the properties of our prior specification using data simulated from a

stylized small-scale DSGE model. We build on the three-variable New Keynesian

model of An and Schorfheide (2007). The model has three endogenous variables: the

output gap, inflation, and the nominal interest rate, and their dynamics are driven

by three structural shocks: a TFP shock, a monetary policy shock and a government

spending shock. We fix the DSGE parameters using the posterior mean estimates

obtained in An and Schorfheide (2007). The shocks are stationary and the model is

solved in log deviation from the steady state. Thus, simulations are started from the

steady state. We generate two datasets with 250 and 1,150 data points, we discard

the first 100 observations, and use the next 50 as a training sample. This means that

we have samples of T=1,000 or T=100 for inference.

We estimate four SVAR models, which are identical except for the prior specifica-

tion for π. We identify the shocks of the model using sign restrictions on the impact.

We restrict the impact impulse responses to feature the same sign as in the data

generating process (DGP); hence no misspecification in the identification of shocks is

present. If the true impulse responses feature a zero impact effect of the shock (as is

the case for two variables in response to the government spending shock), we leave the

corresponding entry of B unrestricted, rather than introduce a zero restriction. We

use an inverse-Wishart-Uniform prior for (Σ, Q). All models feature a constant with
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flat prior centered at zero and include 4 lags. While adding p > 1 lags introduces mis-

specification relative to the DGP, it helps the visual illustration of our prior, without

affecting the results we present.

Figure 3: Posterior distribution, T=1,000

0 6 12 18
0

0.01

0.02

0 6 12 18

0

0.01

0.02

0.03

0 6 12 18
-0.02

-0.01

0

0.01

0 6 12 18

0
0.02
0.04
0.06
0.08

0 6 12 18

-0.08
-0.06
-0.04
-0.02

0
0.02

0 6 12 18

0
0.02
0.04
0.06
0.08

0 6 12 18
0

2

4

6

8
10-3

0 6 12 18

-8
-6
-4
-2
0

10-3

0 6 12 18

-5

0

5
10-3

Note: Pointwise 68% credible sets corresponding to the flat prior (solid lines), to the white noise
Minnesota prior (dashed lines), to the random walk Minnesota prior (dotted lines), and to our
prior (blue shaded area). The dataset has T = 1, 000 observations. The responses correspond to
a one standard deviation shock.

The four models differ in the specification of (π, V ). The first model uses a flat

prior, V −1 = 0. The second and third models use a Minnesota-like prior for π, setting

δ to produce a white noise or a random walk. In both cases the covariance matrix V

is set according to equation (8), choosing the hyperparameters as in Canova (2007),

which implies a relatively uninformative specification. In the fourth model we use our

prior. We consider responses up to M = 18 horizons, and specify the prior mean Ψ̄

up to H = 4 horizons. Because H = p, the setup coincides with Case a discussed in

Section 2.2. We choose Ψ̄ using the Gaussian basis functions as in equation (20), and

set the parameters {(aij, bij, cij)}i=1,2,3; j=1,2,3 to ensure that Ψ̄ approximates the true

shape of the impulse responses in the DGP. We specify the variance V as in equation
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(8), and set λ adaptively, building on the work by Bruns and Piffer (2023). We refer

to Section 4 in the Online Appendix for a detailed discussion of the specification.

Figure 4: Posterior distribution, T=100
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Note: Pointwise 68% credible sets corresponding to the flat prior (solid lines), to the white noise
Minnesota prior (dashed lines), to the random walk Minnesota prior (dotted lines), and to our
prior (blue shaded area). The dataset has T = 100 observations. The responses correspond to a
one standard deviation shock.

Figure 3 reports the pointwise 68% credible sets of the posterior IRFs associated

with the four priors when T=1,000. The dotted line displays the true impulse re-

sponses. We focus the discussion on the response of the output gap to a government

spending shock (i.e. the entry (2,3) of the figure), which is particularly persistent in

the model. The posterior distribution p(Ψ0|Y ) is similar across prior specifications,

and the true value of the instantaneous response of the output gap to the government

spending shock lies in the right tail of the distribution. Thus, all four prior selec-

tions lead to posterior distributions that tend to underestimate the impact effect of

the government spending shock to the output gap. At longer horizons, no material

differences emerge, and all four specifications correctly capture the strongly persistent

nature of the true response. This result is driven by the fact that, in large samples, π is
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identified from the data. Hence, differences in prior beliefs will vanish asymptotically.

Figure 5: Prior beliefs
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Note: Pointwise 68% credible sets associated with the white noise Minnesota prior (continuous
lines) and our prior (shaded area). The red diamonds show Ψ̄ used as our prior, setting H = p = 4.

The results differ when a smaller number of observations is used. Figure 4 shows

that when T = 100, there are differences in the posterior IRFs associated with the flat

prior and the Minnesota priors on the one hand, and our prior on the other. The first

three specifications strongly underestimate the persistence of the output gap responses

to the government spending shock. In particular, the mean half-life of the response

associated with these three prior specifications is about 2-3 horizons while the true

half-life is 15 horizons. By contrast, because the selection of Ψ̄ is informed by the

data generating process, our prior leads to posterior IRFs that are more persistent

and mimic the true ones.

Figure 5 provides further information by exploring the prior distributions underly-

ing Figure 4. The red diamonds show the values of Ψ̄, which were specified up to H = 4

periods. The credible sets shown in the shaded area are obtained by drawing from our

joint prior distribution p(π, B) and computing the associated impulse responses up
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to horizon 18. The red dashed line shows the expected value of the impulse response

for the horizons in which Ψ̄ was specified. The figure confirms that it is possible to

work with a Normal prior for π and to select its moments to imply a prior on the

impulse responses centered around the desired trajectory. Note that the red line and

red diamonds effectively coincide. Thus, the approximation error due to V > 0, equa-

tion (11b), is negligible. The grey dashed lines in Figure 5 show that the white noise

Minnesota prior indirectly encourages no persistence in the responses. Assessing what

the flat prior introduces on impulse responses is not possible under V −1 = 0. The

results associated with the random walk Minnesota prior are not reported because the

random walk prior implies nonstationarity, which in turn leads to off-scale credible

bands.

The similarity documented by Figure 4 in the posterior distributions associated

with the flat prior and two specifications of the Minnesota prior indicate that these

priors are relatively uninformative, leading to the posterior distributions being strongly

dependent on the sample estimate. Since the latter underestimates the true persistence

of the output gap to the government spending shock by roughly 30%, mistakes emerge

in the measurement of the true persistence of the response. Importantly, this is true

regardless of whether a unit root or a white noise Minnesota prior are used as long as

the priors are left sufficiently non-informative.

Figure 6: Increase in prior variance
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the true impulse response. The prior is represented by the dashed line, the posterior by the
shaded area.

It is typically suggested that a relatively wide prior variance on the objects of
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interest should be used “to let the data speak”. We find that this is not necessarily

the case when performing structural analyses. As λ increases, the prior becomes less

informative, but it also loses its informational shape content - approaching the other

three priors. Thus, it becomes less useful when the persistence of a response is of

interest. Figure 6 provides an illustration. When λ increases, the posterior IRFs

obtained with our prior approach gets closer to the posterior associated with the

Minnesota and the flat priors. As a consequence, the posterior now fails to capture

the true persistence effect when T=100.

The top panel of Figure 1 in the Online Appendix reports the marginal distribution

of the prior on the impulse responses 2, 4 and 8 periods after the shock implied by

our selection. As clear from the figure, the marginal prior distribution on the impulse

responses is not Normal, as it can be strongly skewed. As discussed in Section 2.3,

our method provides control over the first moment of the impulse response without

constraining the prior distribution on the impulse responses to be jointly Normal.

The analysis so far has used a single dataset. We replicate the analysis over 100

datasets, holding the data generating process constant and exploring the posterior

distribution under our prior and under the white noise Minnesota prior. As shown

in Figure 2 in the Online Appendix, our approach consistently produces output gap

responses to the spending shock that are more persistent than with the Minnesota

prior, thanks to the explicit information built in the prior distribution.

4 The output effects of monetary policy shocks

There is an extensive literature quantifying the effects of monetary policy shocks on

the real economy (see Christiano et al., 1999, Antoĺın-Dı́az and Rubio-Ramı́rez, 2018

and Miranda-Agrippino and Ricco, 2021 among many others). One key question often

discussed in the literature is whether monetary policy surprises generate their strongest

effects on impact, or whether long and variable lags imply that the largest response is

delayed (Buda et al., 2023). The question is relevant in the policy debate, given that it

directly informs central bankers about their ability to quickly stimulate/contract the

real economy if needed.

We use our prior to study how long it takes for a US monetary policy surprise

to affect US real economic activity. We consider a SVAR model with six variables:

real GDP, the GDP deflator, the commodity price index, total reserves, nonborrowed

reserves, and the federal funds rate. All variables enter in log except for the federal
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funds rate. The data is monthly, and real GDP and the GDP deflator are interpolated

using either industrial production data or the consumer price and the producer price

indexes. The list of variables is common and is consistent with the work of, e.g.,

Bernanke and Mihov (1998), Uhlig (2005) and Arias et al. (2019). Following Arias

et al. (2019), we use the sample 1965M1 through 2007M6, and estimate a VAR with

12 lags and a constant.

We identify the monetary policy shock via sign restrictions. We assume that an

increase in the policy rate decreases all the other variables on impact. Thus, in par-

ticular, real GDP falls on impact in response to a contractionary monetary policy

surprise. The key question is whether the effect is largest on impact or whether real

GDP further decreases, displaying a hump. For the remaining shocks no restrictions

are imposed, except the normalization that the diagonal entries of B are positive. We

use an inverse-Wishart-Uniform distribution for (Σ, Q), estimating its parameters in

the training sample (the first 20% of the observations), as suggested by Kadiyala and

Karlsson (1997). Given that the contribution of our paper is the prior specification of

π rather than the one of (Σ, Q) or B, we do not further explore alternative prior distri-

butions on the impact effect of the shocks (see Inoue and Kilian, 2020 for a discussion

on the importance of the prior distributions on these objects in structural analyses).

Figure 7 shows the posterior impulse responses to a one standard deviation shock

when using the Minnesota-like prior for π. We use a conjugate specification, setting

δ = 1 and the variance Vs as in Kadiyala and Karlsson (1997). We report the pointwise

median response together with the 68% and the 90% credible sets for illustration - the

pattern of responses obtained using the single posterior draw closest to the median

response is very similar. The figure shows that when prior beliefs are represented by

the Minnesota prior, the largest (in absolute value) posterior real GDP response is on

impact. Furthermore, the IRFs revert back to zero within less than a year and display

no hump. Figure 3 in the Online Appendix documents that results are unchanged if

a flat prior is used.

Do the conclusions change if one introduces prior beliefs on the impulse responses

directly? We express the prior view that monetary policy shocks generate persistent

but temporary effects, in the sense that responses are expected to revert to zero in

the medium term. This view is consistent with a large amount of empirical evidence.

We stress two important facts: first the beliefs are not imposed dogmatically; that is,

they can be updated by the data if it wants to do so. Second, we do not assume that

the response of any variable is humped-shaped to avoid, even indirectly, to lead the
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Figure 7: Posterior IRFs for the Minnesota prior
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Note: Pointwise median and 68% and 90% credible sets. The responses correspond to a one
standard deviation shock.

conclusions in this direction. Finally, as with the other two specifications, we use a

flat prior for the constant, centered at zero.

Our prior beliefs are made operational as follows. For all variables, we specify Ψ̄

using (20), setting H = 36. We choose bij = 0, ∀ i, j. In the baseline specification

we set cij so that it takes 8 months for the effects of the monetary shock to reach

half of the impact response. As for the covariance matrix, we choose V as in equation

(19). Vs is set as with the Minnesota prior, and we select λ adaptively. We start

the algorithm at λ = 0.005 and increase it until between 5% and 10% of the joint

prior distribution associated with the monetary policy shock is outside of ±2 ·
√

Σ̂ii

for the first H = 36 horizons, where
√

Σ̂ii is estimated in the training sample (see

the discussion in Section 4 in the Online Appendix). The search produces a value of

λ = 0.0331, which is comparable to the value used for the Minnesota prior (Bańbura

et al., 2010).

Since we do not introduce functional restrictions on Ψ̄, a VAR with p = 12 lags need

not replicate the dynamics of Ψ̄ up to H = 36 horizons (this is Case c in Section 2.2).

Figure 8 helps to assess to what extent a VAR with p < 36 lags can match a set of prior

impulse responses specified up to horizon 36. For p = 2, 6, 12, it shows the impulse
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Figure 8: Our approach: Ψ̄ and approximation via a VAR(p) with p < H
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Note: The thick blue line reports Ψ̄. The black dashed and dotted lines show the value of the
impulse responses associated with a VAR model parametrized as implied from equation (9) using
up to l = 2, 6, 12 lags of Ψ̄.

responses associated with Π̄ = [Π1, ..,Πp], which are computed via equation (9) using

up to entry Ψ̄p of Ψ̄. Clearly, a VAR with 6 lags does a good job in approximating Ψ̄,

and p = 12 implies negligible approximation errors.

The top panel of Figure 9 shows the prior impulse responses to a one standard

deviation shock associated with our prior specification. The dotted lines is Ψ̄. The

shaded areas report the 68% and the 90% credible sets associated with the prior for

π. Indeed the prior distribution is well centered around Ψ̄ and does not induce any

hump-shaped dynamics. The solid black lines report the 68% and 90% credible sets

obtained when setting λ = 0. This dogmatic specification of the prior on π helps

to assess how informative our choice of λ is, and to assess the relative role of prior

uncertainty in (B,π) for determining prior uncertainty on the impulse responses. As

expected, prior uncertainty at short horizons is largely driven by prior uncertainty

from p(B), while the prior variance of π becomes important at longer horizons.

The bottom panel of Figure 9 reports the posterior IRFs. A one standard deviation
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Figure 9: Our approach: prior (top panel) and posterior (bottom panel) IRFs
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Note: The top panel reports Ψ̄ (dotted line), the pointwise 68% and 90% prior credible sets
(shaded areas), and the same sets when only prior uncertainty in B is present, i.e. when λ = 0
(solid lines). The bottom panel shows the pointwise median as well as the pointwise 68% and
90% credible sets. The responses correspond to a one standard deviation shock.
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Figure 10: Response of real GDP (robustness)
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and the posterior.

monetary contraction leads to an impact median increase in the federal funds rate

close to 20 basis points. The monetary contraction generates an impact decrease in

the commodity price index of about 1 percent and an impact decrease in output by

0.12 percent. Over time, the interest rate reverts back within a year, while real GDP

and the commodity price index further decrease displaying a hump-shaped response.

The strongest effect on real GDP is of about 0.2 percent, which materializes one year

after the shock. Thus, contrary to what we obtained in Figure 7, real GDP does
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not display the largest response on impact. We nevertheless stress that posterior

uncertainty remains high, in a way that is quantitatively similar to the one obtained

using the Minnesota or the flat priors.

Next, we assess the sensitivity of the results to alternative prior specifications on

the timing of the impulse responses. The baseline specification sets the half-life of

the responses equal to 8 months. Figure 10 shows that the results are robust to

alternative selections of Ψ̄ that imply a half-life of the effects equal to 4, 6, 10 or 12

months. All prior beliefs lead to the conclusion that real GDP responds with a hump.

The maximum effect occurs between a year and a year and a half, but never before

one year or after one year and a half. This result thus supports the widely-held view

that it takes time for the central bank to affect the real economy and that long and

variable lags constrain its ability to affect domestic output.

One may wonder why the posterior median responses have wiggles with the Min-

nesota and the flat prior while this is not the case with our prior. It turns out that

while the former two specifications allow for complex posterior AR roots, this is less

of a case with our prior. Thus, the hump more clearly emerges.

Table 1: Computational burden as restrictions are introduced on higher horizons

up to horizon Minnesota Our prior
0 2,030,062 21m03s 1,868,909 22m18s
1 3,173,015 32m45s 2,171,074 26m53s
2 6,638,708 1h6m51s 2,438,543 30m44s
3 12,969,568 2h14m33s 2,686,903 37m15s
4 26,533,676 4h34m33s 2,912,228 40m30s

Note: The table reports how many posterior draws were needed to store 100,000 that satisfy the
sign restrictions, which are progressively introduced up to horizon h = 0, .., 4 and the computation
times. All codes are run on Matlab on a computer with an Intel i7-7700K 4.2GHz Quad Core
processor and 64 GB RAM.

In the context of this application, we have also explored what are the computa-

tional cost of introducing identifying restrictions not only on the impact effect of the

shocks (as in the baseline analysis shown above), but also at future horizons. Table 1

reports how many posterior draws are needed to store 100,000 draws that satisfied

sign restrictions progressively introduced at horizon 0 (baseline analysis), at horizons

0 and 1, and so on up to horizon 4. The sign restrictions introduced at future horizons

are the same as the ones introduced on impact. When identifying sign restrictions

are imposed only on impact, the computational cost is approximately the same with

the Minnesota and with our priors. When sign restrictions are also introduced at

higher horizons it becomes computationally more demanding to impose IRFs restric-
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tions with the Minnesota prior. By contrast, the computational cost under our prior

barely changes. Thus, our prior choice can significantly reduce the burden of imposing

meaningful IRFs restrictions.

5 Conclusions

Bayesian VAR models are frequently used to estimate impulse response functions to

structural shocks. This paper develops a tractable prior distribution for VAR coef-

ficients that achieves two goals. First, it allows for an explicit introduction of prior

beliefs on the shape or the persistence of the impulse responses. Second, it does so by

working with a Normal prior distribution which ensures tractable posterior sampling.

We show that our approach can be used to represent prior beliefs on the responses to

only some of the shocks, that it can combined with a variety of structural identification

schemes, and that it nests popular approaches existing in the literature. It also nests

the prior for the long run recently proposed by Giannone et al. (2019).

We illustrate the properties of the methodology using simulated data from a small

scale DSGE model and use the simulation exercise to show how the key hyperpa-

rameters of the prior can be specified. We demonstrate the flexibility of our prior

specification and its properties relative to Minnesota-style and flat prior choices.

We then use the prior we suggest to investigate how long it takes for a monetary

policy shock to generate its largest effect on real GDP. We show that the popular flat

and Minnesota priors lead to posterior IRFs that feature no hump-shaped response for

real GDP. By contrast, our prior, which is set to mimic the belief that monetary policy

shocks generate persistent yet temporary effects on the economy, leads to a posterior

that features a hump-shaped response of real GDP. We estimate that it takes between

one year and a year and a half to obtain the maximum effect on output depending

on the prior persistence we assume. We show that our prior specification has also a

substantial computational advantage over existing specifications when sign restrictions

are imposed at horizons larger than the impact.

Our work can be extended in many ways. For example, one can think about using

a similar approach to deal with prior beliefs in multicountry VARs of the type studied

by Canova and Ciccarelli (2009) or in local projection exercises. It is also possible to

impose prior restrictions on partial and cumulative multipliers or on the contribution

of certain shocks to the variance of the endogenous variables. We leave all these

extensions to future work.
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