# The EU Miracle: When 75 Million Reach High Income

Basile Grassi<sup>1,2,3</sup>

<sup>1</sup>Bocconi University <sup>2</sup>IGIER & CEPR <sup>3</sup>OFCE

> Banca D'Italia 06/03/2025

#### Introduction

- The European Union was founded in 1957 in order to brought peace and prosperity to a continent that experienced war for at least 11 centuries.
- In 2024, it represents a population of 450 million people and 1/6 of world GDP.
- In 2004, 75 Millions people over 10 countries have joined the EU.
- The GDP per capita of these countries was 18,314 USD in 2004 and 34,753 USD in 2019.

#### The EU in 1995 and the New Member States



**EU2004** (yellow): Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Hungary, Slovenia, Cyprus and Malta.

**EU15** (blue): France, Germany, Netherlands, Belgium, Luxembourg, UK, Ireland, Autria, Danemark, Sweden, Finland, Italy, Spain, Portugal, Greece

#### GDP per Capita of New Member States



#### GDP per Capita relative to EU15



What is the effect of joining the EU?

- **Question:** What is the (causal?) effect of joining the EU on GDP per capita?
- Challenge: No countrol group available.
- Synthetic Control Method: construct a control group as a weighted average of donor countries.
- **Mechanism?** Is there convergence? Role of labor, capital, trade, FDI, regulation, misallocation, technology?

# This paper

- Use Synthetic Control Method (SCM) to evaluate the role of EU on the EU2004's GDP per capita.
- Use SCM to evaluate the role of EU enlargement in the EU15's GDP per capita.
- Counterfactual Growth Accounting.
- Explore the mechanism: consumption, investment, govt spending, regulation, employment, capital, trade, FDI, regulations, misallocation and TFP.
- Run SCM on simulated data from a Neo-Classical Growth Model with distortion

#### Preview of the Results

- The EU2004's GDP per capita is 8,400 USD higher in 2019 thanks to joining the EU ( $\approx$  33% higher).
- No robust evidence of an effect on EU15's GDP per capita.
- The contribution to growth of TFP would have been 3 time smaller.
- Evidence of convergence in  $\frac{C}{Y}$ ,  $\frac{I}{Y}$ ,  $\frac{G}{Y}$ ,  $\frac{N}{L}$ ,  $\frac{Ex}{Y}$ ,  $\frac{Imp}{Y}$ ,  $\frac{FDI}{Y}$ , and regulation while TFP keep growing.
- Misallocation seems to have declined after 2004.
- SCM captures change in distortion in a Neo-Classical Growth Model

- Role of institution for growth: Is the EU a perfect laboratory?
- **Middle-income to high-income:** does the EU has a recipe? A Challenge soon face by China and India.
- Washington consensus: The EU reforms still great for growth!

#### Litterature Review

- Institutions and Growth: Acemoglu, Johnson, Robinson (2001, 2002, 2005) Rodrik, Subramanian, Trebbi (2004), etc...
- European Union Alesina, Tabellini, Trebbi (2017), Head and Mayer (2021), Artis, Banerjee and Marcelino (2006), many work on the monetary union.
- **Brexit:** Sampson (2017), Broadbent, Di Pace, Drechsel, Harrison, Tenreyro (2024), Alabrese, Edenhofer, Fetzer, Wang (2024)
- Washington Consensus vs Industrial Policy: Rodrik (2008), Liu (2019), Juhász, Lane, Rodrik (2023)
- Synthetic Control: Abadie and Gardeazabal (2003), Abadie, Diamond, Hainmueller (2010), Abadie (2021), Funke, Schularick and Trebesch (2023).
- Macro Development: Cheremukhin, Golosov, Guriev, and Tsyvinski (2017), Dauth, Findeisen, Lee, Porzio (2021), Fernández-Villaverde, Ohanian, Yao (2023)

#### The Adhesion Process and Accession Criteria

• Maastricht Treaty, 1 November 1993: Possibility of Enlargement to Former Communist Countries, Cyprus and Malta.

#### • Copenhagen Criteria, 1993-1995:

- Stability of democracy, the rule of law, human rights and respect for and protection of minorities
- Punctioning market economy
- Effectively implement the rules, standards and policies that make up the body of EU law
- Agenda 2000, March 1999: New Financial Framework for the period 2000-2006
- Adhesion, 1 May 2004: Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Hungary, Slovenia, Cyprus and Malta formally joined the EU.

# Table of Contents





- EU 2004
- EU 15
- 3 Robustness
- Growth Accounting

#### 5 Mechanism



# Table of Contents



- 2 Synthetic Controls Method
  EU 2004
  EU 15
- 3 Robustness
- Growth Accounting
- 5 Mechanism
- 6 Neo-Classical Growth Model with Frictions

#### Data

- **Cross-country data:** Penn World Table 10.0 for all aggregate GDP, Population, Comsumption, Investment, etc..
- FDI: UN Trade and Development (UNCTAD)
- **Regulation:** Product Market regulation (PMR) from OECD measure the regulatory barriers to firm entry and competition.
- **Misallocation:** CompNet which gives moments of firm-level distribution for some countries.

# Table of Contents

#### 1 Data

- 2 Synthetic Controls Method
  - EU 2004
  - EU 15
- 3 Robustness
- 4 Growth Accounting
- 5 Mechanism
- 6 Neo-Classical Growth Model with Frictions

#### Synthetic Control Method

- Let us call *Y*<sub>1*t*</sub> for all *t*, the variables of interest (ex: GDP per capita) of the treated unit (EU2004 or EU-15).
- Let us call  $Y_{ct}$  for  $c \ge 2$  for all t, the variables of interest of the untreated donor pool.
- $Y_{ct}$  can take two value  $Y_{ct}(0)$  if untreated and  $Y_{ct}(1)$  if treated.
- I observe these for  $T_0 + T_1$  years. Country c = 1 is treated from  $T_0 + 1$ , the other country are never treated.
- $Y_{1t}(0)$  is the counterfactual untreated values of the variables of interest.
- With some weights *w<sub>c</sub>*, we can construct the synthetic control estimator of the untreated unit for all periods:

$$\forall t, \quad \widehat{Y}_{1t}(0) \equiv \sum_{i=2}^{N+1} w_c Y_{ct}(0).$$

### Synthetic Control Method

- *Y* a vector of covariates for the treated country (ex: GDP per capita in the pre-treatment period).
- *X* the matrix of covariates for the countries in the donor pool.
- The synthetic control method is choosing a vector of weigts *W* which minimizes

$$(Y - X'W)'V(Y - X'W)$$

subject to  $w_c \ge 0$  and  $\sum_{c=2}^{N+1} w_c = 1$ .

Where the positive semi-definitive symetric matrix V are chosen in a data-driven way.

• Abadie, Diamond and Hainmuelle (2010) shows that this estimator is unbiased when  $Y_{1t}(0)$  is a VAR, and, provide a bias bound for a linear factor model.

#### **Baseline Specification**

- Match on GDP per capita from 1991 to 2003.
- Donor pool: OECD countries that never joined the EU

Australia, Canada, Chile, Colombia, Costa Rica, Iceland, Israel, Japan, Mexico, New Zealand, Norway, Republic of Korea, Switzerland, Turkey, and, United States

- Explore alternative specification (with investment rate, trade share, GDP growth, etc..)
- Standard-Errors (Cattaneo et al. 2021, 2022) constructed from in-sample and out-of-sample uncertainty. (MonteCarlo 200 reps)

#### Results: EU2004 More



# Results: EU2004

#### Synthetic control results:

| Covariate         | v      | Treated    | Synthetic Control | Bias   | Average Donor | Bias    |
|-------------------|--------|------------|-------------------|--------|---------------|---------|
| GDP per Capita in |        |            |                   |        |               |         |
| 1991              | 0.0612 | 11533.0596 | 11082.0146        | -3.91% | 23190.9247    | 101.08% |
| 1992              | 0.0596 | 11388.6465 | 11716.4494        | 2.88%  | 23535.6076    | 106.66% |
| 1993              | 0.0596 | 11764.3584 | 12341.1939        | 4.90%  | 24119.9876    | 105.03% |
| 1994              | 0.0620 | 12359.5957 | 12891.0506        | 4.30%  | 24790.4758    | 100.58% |
| 1995              | 0.0630 | 13118.0664 | 13490.8219        | 2.84%  | 25587.6576    | 95.06%  |
| 1996              | 0.0667 | 13707.8486 | 13843.0256        | 0.99%  | 26439.0512    | 92.88%  |
| 1997              | 0.0734 | 14164.7422 | 14343.6993        | 1.26%  | 27442.9589    | 93.74%  |
| 1998              | 0.0798 | 14558.5430 | 14457.0190        | -0.70% | 27862.2649    | 91.38%  |
| 1999              | 0.0884 | 14995.0449 | 15012.2190        | 0.11%  | 28796.9457    | 92.04%  |
| 2000              | 0.0966 | 15541.6777 | 15803.9351        | 1.69%  | 29908.6620    | 92.44%  |
| 2001              | 0.0972 | 16264.1855 | 16081.9852        | -1.12% | 30101.6537    | 85.08%  |
| 2002              | 0.0957 | 16849.3047 | 16321.7311        | -3.13% | 30181.2751    | 79.12%  |
| 2003              | 0.0967 | 17419.2266 | 16698.5434        | -4.14% | 30449.7200    | 74.81%  |

#### The synthetic EU2004 composition:

.

| Country           | Weights |
|-------------------|---------|
| Costa Rica        | 0.772   |
| Republic of Korea | 0.126   |
| Norway            | 0.102   |





### Results: EU15

| Covariate         | v      | Treated    | Synthetic Control | Bias   | Average Donor | Bias    |
|-------------------|--------|------------|-------------------|--------|---------------|---------|
| GDP per Capita in |        |            |                   |        | 1             |         |
| 1991              | 0.0611 | 26282.3945 | 26282.4317        | 0.00%  | 23190.9247    | -11.76% |
| 1992              | 0.0591 | 26759.1191 | 26440.9700        | -1.19% | 23535.6076    | -12.05% |
| 1993              | 0.0589 | 26707.2695 | 26852.8946        | 0.55%  | 24119.9876    | -9.69%  |
| 1994              | 0.0613 | 27439.8594 | 27565.7262        | 0.46%  | 24790.4758    | -9.66%  |
| 1995              | 0.0624 | 28554.9199 | 28353.2997        | -0.71% | 25587.6576    | -10.39% |
| 1996              | 0.0660 | 29064.7246 | 29218.9952        | 0.53%  | 26439.0512    | -9.03%  |
| 1997              | 0.0729 | 30660.3262 | 30906.4337        | 0.80%  | 27442.9589    | -10.49% |
| 1998              | 0.0799 | 32254.3242 | 32263.6002        | 0.03%  | 27862.2649    | -13.62% |
| 1999              | 0.0886 | 33572.7422 | 33681.2250        | 0.32%  | 28796.9457    | -14.23% |
| 2000              | 0.0969 | 34788.8750 | 34759.5526        | -0.08% | 29908.6620    | -14.03% |
| 2001              | 0.0980 | 35331.0000 | 35357.4331        | 0.07%  | 30101.6537    | -14.80% |
| 2002              | 0.0968 | 35494.7734 | 35299.8881        | -0.55% | 30181.2751    | -14.97% |
| 2003              | 0.0981 | 35473.7422 | 35404.1858        | -0.20% | 30449.7200    | -14.16% |

#### Synthetic control results:

#### The synthetic EU15 composition

| Country    | Weights |  |  |
|------------|---------|--|--|
| Australia  | 0.290   |  |  |
| Iceland    | 0.247   |  |  |
| Israel     | 0.215   |  |  |
| Costa Rica | 0.146   |  |  |
| Norway     | 0.072   |  |  |
| Canada     | 0.030   |  |  |

#### EU Effect in 2019 More



# Table of Contents

1 Data

Synthetic Controls Method
 EU 2004
 EU 15

• EU 15

#### 3 Robustness

Growth Accounting

#### 5 Mechanism

6 Neo-Classical Growth Model with Frictions

#### Robustness

- Leave-One-Out: Remove iteratively countries with non-negative weights from the donor pool. More
- In-Country Placebo: Compare treatment effect for untreated countries and treated country. More
- In-Time Placebo: Change the treatment date. More
- Alternative Donor Pool: Geographical Europe, Above Median GDP per capita, ex-communist countries/non-EU G20

# Table of Contents

1 Data

- 2 Synthetic Controls Method• EU 2004
  - EU 15
- 3 Robustness
- Growth Accounting
  - 5 Mechanism
- 6 Neo-Classical Growth Model with Frictions

#### Growth Accounting

Following, Solow (1957) and Baqaee and Farhi (2018):

$$g_Y = g_R + \frac{\overline{rK}}{\overline{Y}}_{04-19}g_K + \frac{\overline{wl}}{\overline{Y}}_{04-19}g_L$$

Using a synthetic control for each variables, we get

|                  | gy<br>GDP | g <sub>R</sub><br>Residual | $\begin{array}{c} \overline{\frac{rK}{Y}}_{04-19}g_K\\ \text{Capital} \end{array}$ | $\frac{\overline{wl}}{Y_{04-19}g_L}$ Labor |
|------------------|-----------|----------------------------|------------------------------------------------------------------------------------|--------------------------------------------|
| EU2004           | 3.98      | 2.53                       | 1.62                                                                               | 0.49                                       |
| Synthetic EU2004 | 2.04      | 0.88                       | 1.05                                                                               | 0.30                                       |

Note: The variables used in PWT 10.0 are K = cn, L = emp, rK = irr\*cn and  $\frac{wL}{Y} = \text{labsh}$ .

The EU2004 versus the Synthetic Control:

- Almost 2pp GDP growth difference.
- Growth of the Residual almost 3 times larger.
- Around 60% larger contribution of capital and labor.

# Table of Contents

1 Data

- Synthetic Controls Method
   EU 2004
   EU 15
  - EU 15
- 3 Robustness
- Growth Accounting

#### 5 Mechanism

6 Neo-Classical Growth Model with Frictions

### Demand Component



# **Employment Rate**



# FDI Share



### Total Factor Productivity



# Regulation: Product Market Regulation OECD



# Misallocation Measurement

CompNet

For each 2-digits industry, CompNet gives firm-level distribution on MRPK, TFPR, Solow Residual, Labor Producvity.

- In each industry\*country, normalized standard-deviation by the mean.
- Aggregate at the country-level by weighted average of sector-level variance.
- For EU-2004, weighted average of country-level variance.
- Measure of standard-deviation of MRPK/TFPR/... relative to its industry average.

# Misallocation

CompNet


### Table of Contents

1 Data

- Synthetic Controls Method
  EU 2004
  - EU 15
- 3 Robustness
- Growth Accounting

#### 5 Mechanism



#### Neo-Classical Growth Model

• Households: consume and save.

$$\max_{\{C_t, K_{t+1}\}} \sum_{t=0}^{\infty} \beta^t \frac{C_t^{1-\gamma}}{1-\gamma}$$
  
subject to:  $C_t + K_{t+1} = w_t N_t + r_t K_t + (1-\delta)K_t + T_t$ 

• **Firms:** hire labor and rent capital subject to frictions  $\tau_{y}$  and  $\tau_{k}$ 

$$\max_{\{K_t,N_t\}} (1-\tau_y) K_t^{\alpha} (A_t N_t)^{1-\alpha} - w_t N_t - (1+\tau_k) r_t K_t$$

• Market clears and capital depreciate:

$$K_{t+1} = I_t + (1 - \delta)K_t$$
$$A_t K_t^{\alpha} N_t^{1-\alpha} = C_t + I_t$$

• **TFP** grows from  $A_0$ :  $A_{t+1} = (1+g)A_t$ 

#### **First-Order-Conditions**

• Households: Euler equation

$$\beta \left(\frac{C_{t+1}}{C_t}\right)^{-\gamma} (1 + r_{t+1} - \delta) = 1$$

• Firms: marginal revenue product = rates

$$\alpha(1-\tau_y)A_t^{1-\alpha}K_t^{\alpha-1}N_t^{1-\alpha} = r_t(1+\tau_k)$$
$$(1-\alpha)(1-\tau_y)A_t^{1-\alpha}K_t^{\alpha}N_t^{-\alpha} = w_t$$

• LoM of capital:

$$K_{t+1} = K_t^{\alpha} (A_t N_t)^{1-\alpha} - C_t + (1-\delta) K_t$$

• **TFP** grows from 
$$A_0: A_{t+1} = (1+g)A_t$$

#### Stationary Equilibrium with $N_t = 1$ and $\tilde{X}_t = X_t/A_t$

• Households: Euler equation

$$\beta\left(\frac{\widetilde{C}_{t+1}}{\widetilde{C}_t}\right)^{-\gamma}(1+r_{t+1}-\delta)(1+g)^{-\gamma}=1$$

• Firms:

$$\alpha(1-\tau_y)\widetilde{K}_t^{\alpha-1} = r_t(1+\tau_k)$$
$$(1-\alpha)(1-\tau_y)\widetilde{K}_t^{\alpha} = \widetilde{w}_t$$

• LoM of capital:

$$\widetilde{K}_{t+1}(1+g) = \widetilde{K}_t^{\alpha} - \widetilde{C}_t + (1-\delta)\widetilde{K}_t$$

• **TFP** grows from  $A_0: A_{t+1} = (1+g)A_t$ 

# Balance Growth Path with $\forall t, \widetilde{X}_t = \widetilde{X}$

• Households: rental rate

$$r = \frac{(1+g)^{\gamma}}{\beta} + \delta - 1$$

• Firms: capital and wage rate

$$\widetilde{K} = \left(\frac{r(1+\tau_k)}{\alpha(1-\tau_y)}\right)^{\frac{1}{\alpha-1}}$$
$$\widetilde{w} = (1-\alpha)(1-\tau_y)\widetilde{K}^{\alpha}$$

• LoM of capital: consumption

$$\widetilde{C} = \widetilde{K}^{\alpha} - (g + \delta)\widetilde{K}$$

• **TFP** grows from  $A_0: A_{t+1} = (1+g)A_t$ 

#### Balance Growth Path and Distortion $\tau_k$



Calibration:  $\delta$ , g,  $\beta$ ,  $\alpha = 0.2, 0.03, 0.96, 0.4$ 

#### Transition After Unexpected Reform

Start at BGP with  $\tau_k = 0.5$  then  $\tau_k = 0$  at time 13



Calibration:  $\delta$ , g,  $\beta$ ,  $\alpha = 0.2, 0.03, 0.96, 0.4$ 

### Transition After Expected Reform

Start at BGP with  $\tau_k = 0.5$ , annoucement at t = 9 of change to  $\tau_k = 0$  at time t = 13



Calibration:  $\delta$ , g,  $\beta$ ,  $\alpha = 0.2, 0.03, 0.96, 0.4$ 

### Synthetic Control on Simulated Data

- Simulate output for 1 treated country and 15 untreated countries as in the baseline specs.
- **Treated country**: starts at BGP with  $\tau_k = 0.5$  until  $T_0$  and transit to a new BGP with  $\tau_k = 0$ .
- Untreated countries: along their BGP with *g* and *A*<sub>0</sub> random.
- Run the synthetic control on the simulated data.

### Synthetic Control on Simulated Data

#### Unexpected treatment



#### Synthetic Control on Simulated Data

Expected treatment: annoucement 4-periods ahead



#### Conclusion

- Large gain of joining the EU: 32% higher GDP/capita in 2019.
- About half of the 2004-2019 increase.
- Large positive effect of new membership to the EU without cost to previous members.
- Main aggregate have converge, while TFP is still catching up.
- Mechanism? Evidence of better allocation of factors.
- In 2024, nine countries are currently candidates to join the EU including Ukraine.

## Appendix

### Table of Contents

#### 7 Robustness

- Leave-One-Out
- In-Country Placebo
- In-Time Placebo
- Alternative Donor Pool





- Remove iteratively countries with non-negative weights from the donor pool.
- Re-compute weights estimation without the country.
- Plot the resulting synthetic control estimator.

#### Leave-One-Out: EU2004 (Back)



#### Leave-One-Out: EU15 (Back)





- Counterfactually assign the treatment to countries in the donor pool.
- Plot the resulting treatment effect  $Y_{t1}(1) \hat{Y}_{t1}(0)$ .
- Evaluate the treatment vis-à-vis the distribution of placebo treatment.

#### In-Country Placebo: **Back**





- Assign a counterfactual treatment date: 2000 instead of 2004.
- Assess if the results holds with this new dates.

#### In-Time Placebo: EU2004 🔤



#### In-Time Placebo: EU15 (Back)





- Choose an alternative donor countries pool.
- Baseline: OECD countries that never joined the EU

#### • Alternatives:

- Geographical Europe that never joined the EU (robust to Norway),
- Above median GDP per capita over the period 1991-2019,
- Section 2018 Ex-Communist countries/non-EU G20 countries

#### Alternative Donor Pool: EU2004 **Book**



#### Alternative Donor Pool: EU15 (Back)



### Alternative Donor Pool: EU2004 🔤

Geographical Europe that never ioined the EU w/t Norway



### Alternative Donor Pool: EU15 (Back)

Geographical Europe that never ioined the EU (w/t Norway)



#### Alternative Donor Pool: EU2004 🔤

Above median GDP per capita



#### Alternative Donor Pool: EU15 (Back)

#### Above median GDP per capita



### Alternative Donor Pool: EU2004 🔤

#### **Ex-Communist Countries**



#### Alternative Donor Pool: EU15 (Back)

#### Non-EU G20 countries



### Alternative Donor Pool: EU2004

Geographical Europe (without Norway)



### Alternative Donor Pool: EU15

Geographical Europe (without Norwav)



#### **Brexit Effect**



### Table of Contents

#### Robustness

- Leave-One-Out
- In-Country Placebo
- In-Time Placebo
- Alternative Donor Pool



#### Individual Countries: EU-2004 (Back EU-2004 (Back EU-2004)


#### Individual Countries: EU-2004 Cont. (Back EU-2004) (Back



# Individual Countries: EU-15 (Back EU-15) (Back



### Individual Countries: EU-15 Cont. (Back EU-15) (Back











## Individual Countries: Sweden Back EU-15 Back



#### EU Effect in 2019 (Back)

