Nonlinearities with de-anchored inflation expectations

Stefano Fasani¹ Mirela Miescu² Lorenza Rossi³

¹²³Lancaster University

Seminar Series Bank of Italy

Rome, 8 April 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Do negative shocks to long run

inflation expectations have the same

effects as **positive shocks?**

Fasani, Miescu, Rossi

Nonlinearities and Inflation Expectations

April 8, 2024 1 / 51

What we know

- ► Long-run inflation expectations play a central role for monetary policy → (de)anchored inflation target
- The literature concentrates on explaining microdata surveys.
 - Exogenous changes in inflation expectations do affect fundamental economic decisions by households and businesses - Coibion et al. (2019-2022).
 - Expectations are biased and volatile D'Acunto et al. (2022), Coibion et al. (2019).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What we know

- ► Long-run inflation expectations play a central role for monetary policy → (de)anchored inflation target
- > The literature concentrates on explaining microdata surveys.
 - Exogenous changes in inflation expectations do affect fundamental economic decisions by households and businesses - Coibion et al. (2019-2022).
 - Expectations are biased and volatile D'Acunto et al. (2022), Coibion et al. (2019).
- The 2% target since 2012 is an AVERAGE TARGET: it implies a degree of time-variation, i.e. the central bank may temporarily aim for inflation above or below 2%.
- Shapiro and Wilson (2022 Restud): FOMC Implicit Inflation Target was around 1.5% between 2000 and 2011. It was lower than the announced 2%, even after 2012.

- Shocks to LR inflation expectations: symmetric and not regime dependent: Neri (2023), Lukmanova and Rabitsch (2021), Mumtaz and Theodoridis (2023)
- Sign asymmetry in shock transmission: Barnichon and Matthes (2018), Barnichon, Debortoli, Matthes et al. (2022), Nadav-Ben, Ramey and Zubairy (2023) → using LP analysis
- ► Shock transmission and inflation regimes: Castelnuovo, Pellegrino and Særkjær (2023) → uncertainty shocks
- Shocks to inflation expectations shocks and firm dynamics: Ascari, Fasani, Grazzini and Rossi (2023)

Fasani, Miescu, Rossi

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ● ○○○

The literature has only concentrated

to linear and symmetric effects of

shocks to the inflation target

Fasani, Miescu, Rossi

Nonlinearities and Inflation Expectations

April 8, 2024 4 / 51

We take a macroeconomic perspective by assessing the effects of shocks to the implicit inflation target rate (PTR). A measure estimated by the FED using long-run inflation expectations.

 \rightarrow Long-horizon inflation expectations are mainly driven by shocks to the implicit inflation target in the medium long-run horizon.

We investigate the sign asymmetry of the shocks

OUR CONTRIBUTION:

- (I) We propose a **Threshold VAR** with endogenous inflation regimes and extend Mumtaz and Theodoridies (2023) to the nonlinear case by maximizing **Generalized FEV of PTR**.
- (II) With the Nonlinear VAR we investigate implied **sign asymmetry** of the shock.
- (III) We propose medium-scale DSGE model with firm dynamics to rationalize the results found in the empirical analysis.

A positive shock to LR inflation expectations (i.e. a shock that increases them) is inflationary and expansionary, while a negative shock (i.e. a shock that decreases them) is recessionary and deflationary.

< □ > < □ > < □ > < □ > < □ > < □ >

- A positive shock to LR inflation expectations (i.e. a shock that increases them) is inflationary and expansionary, while a negative shock (i.e. a shock that decreases them) is recessionary and deflationary.
- Positive versus Negative Shocks: Negative shocks have a stronger effect on Y, C, I, Net Entry than positive shocks.

- A positive shock to LR inflation expectations (i.e. a shock that increases them) is inflationary and expansionary, while a negative shock (i.e. a shock that decreases them) is recessionary and deflationary.
- Positive versus Negative Shocks: Negative shocks have a stronger effect on Y, C, I, Net Entry than positive shocks.
- Policy Implication: for CB it is fundamental to monitor LR inflation expectations, but especially in response to negative shocks occurring.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

First order effects

- A positive shock to the inflation target is expansionary and inflationary ==> real rate declines, aggregate demand increases
- Investment in capital increases (intensive margin)
- Investment in new firms (Entry) increases (extensive margin)
- A negative shock to the inflation target is recessionary and deflationary ==> The responses are symmetric
- ► This explains the results up to a first order approximation

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Second Order Effect

Uncertainty kicks in with negative effects ==> independently from the sign of the shock

< □ > < □ > < □ > < □ > < □ > < □ >

Second Order Effect

- Uncertainty kicks in with negative effects ==> independently from the sign of the shock
- "wait and see strategy" for investment decisions in new capital (intensive margin) and new firms (extensive margin)

< □ > < □ > < □ > < □ > < □ > < □ >

Second Order Effect

- Uncertainty kicks in with negative effects ==> independently from the sign of the shock
- "wait and see strategy" for investment decisions in new capital (intensive margin) and new firms (extensive margin)
- In response to a negative inflation target shock ==>Uncertainty amplifies the negative responses of the two investment margins
- In response to a positive inflation target shock ==> Uncertainty dampens the positive responses of the two investment margins

Second Order Effect

- Uncertainty kicks in with negative effects ==> independently from the sign of the shock
- "wait and see strategy" for investment decisions in new capital (intensive margin) and new firms (extensive margin)
- In response to a negative inflation target shock ==>Uncertainty amplifies the negative responses of the two investment margins
- In response to a positive inflation target shock ==> Uncertainty dampens the positive responses of the two investment margins
- This explains the sign asymmetries

Empirical Analysis

Fasani, Miescu, Rossi

Nonlinearities and Inflation Expectations

April 8, 2024 10 / 51

3

イロト イヨト イヨト イヨト

Empirical model

A Bayesian Threshold VAR model

$$Y_{t} = \left[c_{1} + \sum_{j=1}^{P} B_{1,j}Y_{t-j} + \Omega_{1}^{1/2}e_{t}\right]S_{t} + \left[c_{2} + \sum_{j=1}^{P} B_{2,j}Y_{t-j} + \Omega_{2}^{1/2}e_{t}\right](1-S_{t})$$
(1)

where S_t is an indicator function such that $S_t = 1 \Leftrightarrow Z_{t-d} \leq Z^*$

- The threshold variable Z_t is the annual growth in CPI. The threshold level Z^{*} is estimated in the model (median of 3.9pp).
- The model identifies two regimes: low inflation regime and high inflation regime.
- The estimation employs Bayesian techniques (MH within Gibbs sampler)

Fasani, Miescu, Rossi

April 8, 2024 11 / 51

(日)

Data

Quarterly model from 1962Q1 to 2019Q4 in 5 variables with 4 lags as in Mumtaz and Theodoridis (2023):

 $Y = \begin{bmatrix} \text{Implicit inflation Target Rate (PTR)} \\ \log(\text{RGDP}) \\ \log(\text{CPI}) \\ 3\text{m T-bill rate} \\ 10\text{y bond yield} \end{bmatrix}$

Adding one at a time to the baseline model the following variables:

[log(Firms' Net Entry)] log(Consumption) log(Investment)]

- PTR: Ten-year inflation expectations from the FRB/US model database (spliced series using SPF from 1991 onward).
- Firms' net entry as in Lewis and Winkler (2017) update.
- Other variables from FRED-QD database.

Fasani, Miescu, Rossi

Nonlinearities and Inflation Expectations

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Shock Identification and Generalized IRFs

Identification of the Target shock:

- We identify this shock as the one that explains the largest proportion of the forecast error of PTR at horizon k=40 quarters as in Mumtaz and Theodoridis (2023) but with max of Generalized FEV.
- Rationale: Over the medium to long-run horizons the role of implicit inflation target inflation shocks dominates fluctuations in long-run inflation expectations.

Shock Identification and Generalized IRFs

Identification of the Target shock:

- We identify this shock as the one that explains the largest proportion of the forecast error of PTR at horizon k=40 quarters as in Mumtaz and Theodoridis (2023) but with max of Generalized FEV.
- Rationale: Over the medium to long-run horizons the role of implicit inflation target inflation shocks dominates fluctuations in long-run inflation expectations.
- To detect sign and regime asymmetry we compute Generalized Impulse Responses Functions (Koop et al. (1996))

$$GIRF_t^S = E(Y_{t+k} \setminus \Psi_t, Y_{t-1}^S, \mu) - E(Y_{t+k} \setminus \Psi_t, Y_{t-1}^S)$$
(2)

where Ψ_t denotes all the parameters of the model, k = 40 is the forecasting horizon under consideration, S = 0, 1 denotes the regime and μ is the shock.

Fasani, Miescu, Rossi

April 8, 2024 13 / 51

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Evidence - Sign Asymmetries

Inflation regimes sign further variables irfs by regimes sign by regimes fevd by regimes

Fasani, Miescu, Rossi

Nonlinearities and Inflation Expectations

April 8, 2024 14 / 51

Fasani, Miescu, Rossi

Nonlinearities and Inflation Expectations

April 8, 2024 15 / 51

= 990

イロト イヨト イヨト イヨト

Model Selection Test: DIC (Deviance Information Criteria) prefers

- the TVAR with inflation regimes (-9131) wrt. the Linear VAR (-6934);
- the TVAR with inflation regime (-9131) wrt. TVAR with boom and bust regimes (-8799):
- the TVAR with inflation regime (-9131) wrt. MS with exogenous regimes (-1325).

E Sac

< 回 > < 回 > < 回 >

Model Selection Test: DIC (Deviance Information Criteria) prefers

- the TVAR with inflation regimes (-9131) wrt. the Linear VAR (-6934);
- the TVAR with inflation regime (-9131) wrt. TVAR with boom and bust regimes (-8799):
- the TVAR with inflation regime (-9131) wrt. MS with exogenous regimes (-1325).

Correlations with other shocks: not correlated with oil shocks, TFP, News, Monetary, Fiscal shocks. figure

Model Selection Test: DIC (Deviance Information Criteria) prefers

- the TVAR with inflation regimes (-9131) wrt. the Linear VAR (-6934);
- the TVAR with inflation regime (-9131) wrt. TVAR with boom and bust regimes (-8799):
- the TVAR with inflation regime (-9131) wrt. MS with exogenous regimes (-1325).

Correlations with other shocks: not correlated with oil shocks, TFP, News, Monetary, Fiscal shocks. figure

Robust wrt. LP with linear and squared target shocks. ==> Advantage of our TVAR: it allows us to account for nonlinearities both at estimation and identification stage. figure

Fasani, Miescu, Rossi

Nonlinearities and Inflation Expectations

April 8, 2024 16 / 51

Robustness Analysis

Fasani, Miescu, Rossi

Nonlinearities and Inflation Expectations

April 8, 2024 17 / 51

2

イロト イヨト イヨト イヨト

Robustness checks

Testing over different model specifications:

- sample period
 - Restricted: up to 2007q4 to avoid the GR and ZLB
 - Extended: up to 2022q4 to include Covid19 period figure

・ 何 ト ・ ヨ ト ・ ヨ ト

Robustness checks

Testing over different model specifications:

- sample period
 - Restricted: up to 2007q4 to avoid the GR and ZLB
 - Extended: up to 2022q4 to include Covid19 period figure
- regime threshold
 - Assuming dogmatic prior at 6% for inflation regime threshold
 - Assuming dogmatic prior at 3% for inflation regime threshold ==> Particularly helpful to show that the asymmetry does not come from the great moderation sample. figure

E Sac

< ロ > < 同 > < 回 > < 回 > < 回 > <

Robustness checks

Testing over different model specifications:

- sample period
 - Restricted: up to 2007q4 to avoid the GR and ZLB
 - Extended: up to 2022q4 to include Covid19 period figure
- regime threshold
 - Assuming dogmatic prior at 6% for inflation regime threshold
 - Assuming dogmatic prior at 3% for inflation regime threshold ==> Particularly helpful to show that the asymmetry does not come from the great moderation sample. figure

variance-covariance matrix

Different TVAR specification: regime-independent Ω figure

• • = • • = •

April 8, 2024

18 / 51

Fasani, Miescu, Rossi

Theoretical Analysis

Fasani, Miescu, Rossi

Nonlinearities and Inflation Expectations

April 8, 2024 19 / 51

3

イロト イヨト イヨト イヨト

Baseline model as in Fasani, Mumtaz, and Rossi (2022). Four agents: households, firms, a monetary and fiscal authority. The main ingredients are:

- those of a medium-scale as in Christiano et al. (2005):
 - sticky nominal wages and prices as in Rotemberg (1982);
 - external habits in consumption;
 - investments in physical capital(intensive margin) with convex investments adjustment costs and variable capacity utilization for capital;
- investments in new firms (extensive margin)

==> Intensive and Extensive margin of firm investments decisions ==> Key to get amplification and asymmetric effect. (details)

Fasani, Miescu, Rossi

April 8, 2024 20 / 51

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Theoretical Model

Agents Estimate the Inflation Target. firms estimate the inflation target $\hat{\pi}_t^*$ in setting their price under Rotemberg (1982) pricing.

Price adjustment cost is
$$\Gamma_{i,t} = \frac{\theta_{\rho}}{2} \left\{ \frac{P_{i,t}}{(\widehat{\pi}_t^*)^{\alpha} P_{i,t-1}} - 1 \right\}^2 Y_t.$$

The estimated target evolves according to (in log-dev from ss) - Gürkaynak et al. (2005), Neri (2023): $\widehat{\pi}_t^* = \rho_{\pi^*} \widehat{\pi}_{t-1}^* + \mu \left(\frac{1}{4} \sum_{i=1}^4 \widehat{\pi}_{t-i-1} - \widehat{\pi}_{t-1}^* \right) + \varepsilon_{\pi^*,t}, \text{ where } \widehat{\pi}_t \text{ is inflation, } \rho_{\pi^*} \in (0,1) \text{ and } \varepsilon_{\pi^*,t} \sim N\left(0,\sigma_{\pi^*}^2\right).$

- **The shock** $\varepsilon_{\pi^*,t}$ captures exogenous changes in firms' estimate of the target.
- The parameter μ is the gain. It measures the strength with which firms revise their estimate of the target based on the deviations of past inflation from the previous period estimate.

Fasani, Miescu, Rossi

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theoretical Model

Taylor-type rule and Inflation Target:

$$\begin{split} &\ln\left(\frac{1+i_t}{1+i}\right) = \phi_R \ln\left(\frac{1+i_{t-1}}{1+i}\right) + \\ &+ (1-\phi_R) \left(\phi_\pi \log\left(\frac{\pi_t}{\bar{\pi}_t}\right) + \phi_y \log\left(\frac{y_t}{y}\right) + \phi_{dy} \log\left(\frac{y_t}{y_{t-1}}\right)\right) \end{split}$$

The Inflation Target is time varying: Ireland (2007), Cogley, Primiceri and Sargent (2010):

$$\ln(\frac{\bar{\pi}_{t+1}}{\bar{\pi}}) = \rho_{\pi} \ln(\frac{\bar{\pi}_{t}}{\bar{\pi}}) + \sigma_{\pi} u_{\varepsilon,t+1}$$

Fasani, Miescu, Rossi

3

< □ > < □ > < □ > < □ > < □ > < □ >

Model solution: simulation and estimation

 Model solution: Second-order approximation of the non-linear DSGE Models

Impulse response functions

- benchmark: in deviation from the stochastic steady state in the absence of shocks (IRF)
- robustness: in deviation from the ergodic mean (GIRF)
- Model estimation: estimation of the key model parameters via IRFs matching (empirical vs theoretical ones)

Model IRFs: Sign Asymmetries Positive vs. Negative shock with initial guess

Figure: Model dynamics: FO vs SO Approximation

Fasani, Miescu, Rossi

Nonlinearities and Inflation Expectations

April 8, 2024 24 / 51

∃ →

Model IRFs: Sign Asymmetries Inspecting the channels

Figure: Model dynamics: *IRF*⁻ minus *IRF*⁺

Fasani, Miescu, Rossi

Nonlinearities and Inflation Expectations

э April 8, 2024 25 / 51

★ ∃ ► < ∃ ►</p>

< A 1

Simulating the Model to different innovations

Inflation Target Shock ranging $\pm 4\%$

Figure: Impact response: FO vs SO Approximation

Fasani, Miescu, Rossi

Nonlinearities and Inflation Expectations

April 8, 2024 26 / 51

Image: A Image: A

Simulating the Model with TVAR and VAR shocks Uncertainty and downside risk

Fasani, Miescu, Rossi

Nonlinearities and Inflation Expectations

April 8, 2024 27 / 51

Simulating the Model with TVAR and VAR shocks Uncertainty and downside risk

Fasani, Miescu, Rossi

IRF Matching Estimation

Fasani, Miescu, Rossi

Nonlinearities and Inflation Expectations

April 8, 2024 29 / 51

3

A D N A B N A B N A B N

Estimated Parameters

Parameter	Description	Estimate
γ_p	Rotemberg adjustment cost - Price	42.94
γ_w	Rotemberg adjustment cost - Wage	68.60
γ_i	Capital adjustment cost	4.98
σ_{π}	Standard deviation of inflation target shock	0.0061
$ ho_{\pi}$	Persistence inflation target shock	0.88
ϕ_{π}	Inflation feedback coefficient	2.86
ϕ_y	Output feedback coefficient	0.01
ϕ_{dy}	Output growth feedback coefficient	0.04
ϕ_R	Interest rate smoothing	0.0002
γ_2	Capital utilization coefficient	1.02
Se	Entry congestion coefficient	2.15
$\varsigma_{\mathbf{x}}$	Exit congestion coefficient	1.13
σ_{C}	Inverse elasticity of substitution	1.13
σ_L	Labor supply elasticity	2.15
h	Consumption habit coefficient	0.34
μ	Gain in inflation expectations	0.014

Fasani, Miescu, Rossi

April 8, 2024 30 / 51

イロト イヨト イヨト イヨト

Model IRFs, Negative shock IRFs with Estimated Parameters

Figure: Model Dynamics with estimated parameters

Fasani, Miescu, Rossi

Nonlinearities and Inflation Expectations

э April 8, 2024 31 / 51

→ ∃ →

Conclusions

- Shocks that increase (decrease) LR inflation expectations are expansionary and inflationary (recessionary and deflationary). They affect output, consumption, investment, inflation, firm entry
- Sign Asymmetries: shocks that decrease LR inflation expectations have stronger effects than shocks that increase LR inflation expectations
- Investments (Intensive and Extensive margins): are key to get the non-linear and asymmetric effects
- Policy implication: be aware of negative shocks to LR inflation expectations.
- Next Steps: Tvar with simulated data

医静脉 医原体 医原体 医胆管

PTR and inflation regimes

Fasani, Miescu, Rossi

PTR and inflation regimes

Fasani, Miescu, Rossi

Sign Asymmetries: further variables

Fasani, Miescu, Rossi

Nonlinearities and Inflation Expectations

April 8, 2024 35 / 51

High and Low Inflation Regimes

Fasani, Miescu, Rossi

Nonlinearities and Inflation Expectations

April 8, 2024 36 / 51

Sign Asymmetries in High Inflation regime

Fasani, Miescu, Rossi

Nonlinearities and Inflation Expectations

April 8, 2024 37 / 51

Sign Asymmetries in Low Inflation regime

Fasani, Miescu, Rossi

Nonlinearities and Inflation Expectations

April 8, 2024 38 / 51

Forecast Error Variance Decomposition

Fasani, Miescu, Rossi

Structural shocks Shocks and inflation regimes back

Fasani, Miescu, Rossi

Nonlinearities and Inflation Expectations

April 8, 2024 40 / 51

Date	Shock	Declarations and empirics	Source
1968:Q3	1.97	"Inflationary psychology were prevalent and pervasive. "	FOMC meeting
1972:Q4	2.94	(Newspaper) "headlines significantly contributed to inflationary psychology."	FOMC meeting
1986:Q1	-3.43	"Public confident of reduction in trend inflation rate."	Richmond Fed
1987:Q1	2.24	"Expected inflation rates contributed to the sharp steepening of the yield curve."	Kansas Fed
1997:Q4	-2.48	"Survey of inflation expectations were "impressive " for the sizable drop in long-term expectations. "	FOMC meeting
2008:Q4	-3.47	"More explicit indication of their views on what longer run rate of inflation would forestall the development of expectations that inflation would decline below desired levels."	FOMC meeting

April 8, 2024 41 /

イロト イヨト イヨト イヨト

Structural shocks Shocks in TVAR and VAR - 5 variables back

Fasani, Miescu, Rossi

April 8, 2024 42 / 51

Structural shocks correlations

590

Fasani, Miescu, Rossi

TVAR vs Local Projections

Fasani, Miescu, Rossi

Nonlinearities and Inflation Expectations

April 8, 2024 44 / 51

Significance: Negative minus Positive

Positive values indicate higher impact for negative shocks back

Fasani, Miescu, Rossi

Significance: Negative minus Positive

Positive values indicate higher impact for negative shocks back

Fasani, Miescu, Rossi

PTR and inflation regimes

Dogmatic threshold prior 3%

Fasani, Miescu, Rossi

Significance: Negative minus Positive

Positive values indicate higher impact for negative shocks back

Entry Condition: At the beginning of the period, households invest in new firms until the following entry condition is satisfied:

$$v_t(\tilde{z}) = FEX_t, \tag{3}$$

that is until the average firm's value equals the entry costs.

The value of the firm facing the average productivity corresponds to the stock price of the economy:

$$v_{t}(\tilde{z}_{t}) = \beta E_{t} \left[\frac{\lambda_{t+1}}{\lambda_{t}} \left((1 - \eta_{t+1}) \left(v_{t+1}(\tilde{z}_{t+1}) + j_{t+1}(\tilde{z}_{t+1}) \right) + \eta_{t+1} / v_{t+1} \right) \right],$$
(4)

Fasani, Miescu, Rossi

April 8, 2024 49 / 51

Exit Condition: Both new entrants and incumbent firms decide to produce as long as $z_{\iota,t} \ge \overline{z}_t$, which is above the **cutoff level of productivity** that makes the sum of current and discounted future profits equal to the liquidation value, lv_t . Thus the exit condition is:

$$v_t(\bar{z}_t) = lv_t,\tag{5}$$

where the value of the firm with a productivity level equal to the marginal value \overline{z}_t is:

$$v_t(\bar{z}_t) = j_t(\bar{z}_t) + \beta E_t \left[\frac{\lambda_{t+1}}{\lambda_t} (1 - \eta_{t+1}) v_{t+1}(\bar{z}_{t+1}) \right].$$
(6)

back

Fasani, Miescu, Rossi

Model IRFs: Different shocks

Target vs. Estimated Target shock

Fasani, Miescu, Rossi