Inflation and Growth Risk: Balancing the Scales with Surveys

Sarah Mouabbi¹ Jean-Paul Renne² Adrien Tschopp²

¹Banque de France

²University of Lausanne

The views expressed are those of the authors and should under no circumstances be interpreted as reflecting those of the Banque the France or the Eurosystem.

Large and volatile macroeconomic fluctuations

- Q2-2020: largest decline in economic activity in a century.
- Q2-2021: fastest recovery in decades.
- Q4-2021: inflation has surged around the globe.

New sources of macro risk that influence monetary policy

"The pandemic and war have underscored the need for the **risk management** framework to take full account of both **upside and downside risks to inflation**, as well as to the possibility that **serious tensions** may arise between the objectives of **price stability** and employment or **growth**." [Gita Gopinath, Jackson Hole Symposium, August 26, 2022]

New sources of macro risk that influence monetary policy

"The pandemic and war have underscored the need for the **risk management** framework to take full account of both **upside and downside risks to inflation**, as well as to the possibility that **serious tensions** may arise between the objectives of **price stability** and employment or **growth**." [Gita Gopinath, Jackson Hole Symposium, August 26, 2022]

- Assess the risks weighing on prices and production with a focus on tail risk
- SPFs are a rich source of information
 - Subjective expectations of informed market participants
 - Often used to nourish monetary policy decisions (minutes/statements)
 - Perception of (extreme) risks without these having to materialize
 - Tails are the first to move when there is uncertainty [Reis, 2021]

High levels of uncertainty and tail risk

Survey-based distribution of US Growth (1Y ahead)

High levels of uncertainty and tail risk

Survey-based distribution of US Growth (1Y ahead)

Overcoming data limitations

Surveys are an imperfect source of information:

- Inflation and GDP surveys are disjoint
- Forecast horizons may change over time

Overcoming data limitations

Surveys are an imperfect source of information:

- Inflation and GDP surveys are disjoint
- Forecast horizons may change over time

We overcome these issues and exploit SPFs by proposing a model that disciplines the data

- Inflation and growth can be affected by the same factors \Rightarrow study their joint dynamics
- Categorize factors to decompose inflation and growth into demand & supply components
- Perform this decomposition not only on actual variables but also on their expectations

Are macro fluctuations attributable to demand or supply?

- COVID-19: multiple large and concurrent demand and supply shocks
- Essential for setting the appropriate policy mix
- Standard identification:

	Inflation	GDP growth
Demand	+	+
Supply	_	+

Contribution

Extend identification beyond central tendencies

- Use probabilistic responses of surveys
- Exploit movements in the entire distribution to capture tail risk expectations

Contribution

Extend identification beyond central tendencies

- Use probabilistic responses of surveys
- Exploit movements in the entire distribution to capture tail risk expectations

Our Approach

Our Approach

- Dynamic factor model featuring time-varying uncertainty, asymmetry and fat tails
- Identify demand and supply factors using expectations of inflation and GDP growth
- Allow for a trend/cycle decomposition

GDP and surveys available quarterly (while inflation is monthly)
 ⇒ For simplicity, model written at quarterly frequency

- GDP and surveys available quarterly (while inflation is monthly)
 ⇒ For simplicity, model written at **quarterly** frequency
- Trend-cycle decomposition for log(P) and log(GDP):

$$p_t = T_t^{(\pi)} + C_t^{(\pi)}$$
 $gdp_t = T_t^{(\Delta y)} + C_t^{(\Delta y)}$

- GDP and surveys available quarterly (while inflation is monthly)
 ⇒ For simplicity, model written at **quarterly** frequency
- Trend-cycle decomposition for log(P) and log(GDP):

$$p_t = T_t^{(\pi)} + C_t^{(\pi)}$$
 $gdp_t = T_t^{(\Delta y)} + C_t^{(\Delta y)}.$

• Quarterly inflation and growth rate are respectively:

$$\pi_{t-1,t} = \Delta T_t^{(\pi)} + C_t^{(\pi)} - C_{t-1}^{(\pi)}$$
$$\Delta y_{t-1,t} = \Delta T_t^{(\Delta y)} + C_t^{(\Delta y)} - C_{t-1}^{(\Delta y)}.$$

• The dynamics of the trend and cycle are linear combinations of \mathcal{Y}_t (stationary):

$$\Delta T_t^{(\pi)} = \rho^{(\pi)} + \delta_T^{(\pi)'} \mathcal{Y}_t$$
$$\Delta T_t^{(\Delta y)} = \rho^{(\Delta y)} + \delta_T^{(\Delta y)'} \mathcal{Y}_t$$

and

$$C_t^{(\pi)} = \delta_C^{(\pi)} \mathcal{Y}_t$$
$$C_t^{(\Delta y)} = \delta_C^{(\Delta y)} \mathcal{Y}_t$$

where \mathcal{Y}_t are unobserved latent factors

• The dynamics of the trend and cycle are linear combinations of \mathcal{Y}_t (stationary):

$$\Delta T_t^{(\pi)} = \rho^{(\pi)} + \delta_T^{(\pi)'} \mathcal{Y}_t$$
$$\Delta T_t^{(\Delta y)} = \rho^{(\Delta y)} + \delta_T^{(\Delta y)'} \mathcal{Y}_t$$

and

$$C_t^{(\pi)} = \delta_C^{(\pi)} \mathcal{Y}_t$$
$$C_t^{(\Delta y)} = \delta_C^{(\Delta y)} \mathcal{Y}_t$$

where \mathcal{Y}_t are unobserved latent factors

 \Rightarrow Factors are **common** to GDP and inflation allowing us to analyze the **joint dynamics**

• The joint model for inflation and GDP growth can be specified as:

$$\begin{bmatrix} \pi_{t-1,t} \\ \Delta y_{t-1,t} \end{bmatrix} = \begin{bmatrix} \rho^{(\pi)} \\ \rho^{(\Delta y)} \end{bmatrix} + \begin{bmatrix} \delta^{(\pi_1)\prime} \\ \delta^{(\Delta y_1)\prime} \end{bmatrix} Y_t,$$

• The joint model for inflation and GDP growth can be specified as:

$$\begin{bmatrix} \pi_{t-1,t} \\ \Delta y_{t-1,t} \end{bmatrix} = \begin{bmatrix} \rho^{(\pi)} \\ \rho^{(\Delta y)} \end{bmatrix} + \begin{bmatrix} \delta^{(\pi_1)\prime} \\ \delta^{(\Delta y_1)\prime} \end{bmatrix} Y_t,$$

• Y_t follows:

$$Y_t = \Phi_Y Y_{t-1} + \Theta(z_t - \bar{z}) + \Sigma(z_t) \varepsilon_{Y,t}, \quad \varepsilon_{Y,t} \sim \mathcal{N}(0, I),$$

where z_t is an exogenous vector of factors driving Y_t 's conditional expectation, variance, asymmetry and fat tails

• The joint model for inflation and GDP growth can be specified as:

$$\begin{bmatrix} \pi_{t-1,t} \\ \Delta y_{t-1,t} \end{bmatrix} = \begin{bmatrix} \rho^{(\pi)} \\ \rho^{(\Delta y)} \end{bmatrix} + \begin{bmatrix} \delta^{(\pi_1)'} \\ \delta^{(\Delta y_1)'} \end{bmatrix} Y_t,$$

• Y_t follows:

$$Y_t = \Phi_Y Y_{t-1} + \Theta(z_t - \bar{z}) + \Sigma(z_t) \varepsilon_{Y,t}, \quad \varepsilon_{Y,t} \sim \mathcal{N}(0, I),$$

where z_t is an exogenous vector of factors driving Y_t 's conditional expectation, variance, asymmetry and fat tails

• Y_t features stochastic volatility, asymmetry and fat tails \Rightarrow uncertainty and tail risk

• z_t follows a multivariate auto-regressive gamma process \approx time-discretized CIR process

[Gouriéroux and Jasiak, 2006], [Monfort et al., 2017], [Grishchenko et al., 2017]

• z_t follows a multivariate auto-regressive gamma process \approx time-discretized CIR process

[Gouriéroux and Jasiak, 2006], [Monfort et al., 2017], [Grishchenko et al., 2017]

• VAR representation:

$$z_t = \mu_z + \Phi_z z_{t-1} + \Omega(z_{t-1})\varepsilon_{z,t},$$

where $\varepsilon_{z,t}$ has a conditional zero mean and an *Id* conditional covariance matrix.

• z_t follows a multivariate auto-regressive gamma process \approx time-discretized CIR process

[Gouriéroux and Jasiak, 2006], [Monfort et al., 2017], [Grishchenko et al., 2017]

• VAR representation:

$$z_t = \mu_z + \Phi_z z_{t-1} + \Omega(z_{t-1})\varepsilon_{z,t},$$

where $\varepsilon_{z,t}$ has a conditional zero mean and an *Id* conditional covariance matrix.

- z_t is an **affine process** (conditional log-Laplace transform is affine)
 - \Rightarrow Tractability of the model

Summary of model factors

	Vol.	Skew.	Kurt.	$Z_{p,t}^{s}$	$Z_{n,t}^s$	$z_{p,t}^d$	$z_{n,t}^d$	$Z_{v,t}$	$C^{(\pi)}$	$C^{(\Delta y)}$	$T^{(\pi)}$	$T^{(\Delta y)}$
$\mathcal{Y}_{1,t}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				—	+	0	0
$\mathcal{Y}_{2,t}$	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		+	+	0	0
$\mathcal{Y}_{3,t}$	\checkmark		\checkmark					\checkmark	?	+	?	+
$\mathcal{Y}_{4,t}$	\checkmark		\checkmark					\checkmark	?	+	?	+

State-space representation

• The state vector X_t follows a VAR process with stochastic volatility and asymmetry:

$$X_t = \begin{bmatrix} Y_t \\ z_t \end{bmatrix} = \mu_X + \Phi_X \begin{bmatrix} Y_{t-1} \\ z_{t-1} \end{bmatrix} + \Sigma_X(z_{t-1})\varepsilon_{X,t},$$

where $\varepsilon_{X,t}$ is a unit-variance martingale difference sequence $[\Sigma_X(z_{t-1})$ varies through time, and the distribution of $\varepsilon_{X,t}$ is not Gaussian]

State-space representation

• The state vector X_t follows a VAR process with stochastic volatility and asymmetry:

$$X_t = \begin{bmatrix} Y_t \\ z_t \end{bmatrix} = \mu_X + \Phi_X \begin{bmatrix} Y_{t-1} \\ z_{t-1} \end{bmatrix} + \Sigma_X(z_{t-1})\varepsilon_{X,t},$$

where $\varepsilon_{X,t}$ is a unit-variance martingale difference sequence $[\Sigma_X(z_{t-1})$ varies through time, and the distribution of $\varepsilon_{X,t}$ is not Gaussian]

• Denote by S_t the vector of observations, which is affine in X_t :

$$S_t = A + B'X_t + diag(\sigma^S)\eta_t^S$$

where $S_t = [\pi_t, \Delta y_t, ESPF_t, VSPF_t, SSPF_t, KSPF_t]'$ and $\mathbb{V}ar(\eta_t^S) = Id$

Estimation

Key property: X_t is an **affine process**

- Cond. moments of \forall linear combination of future X_t are affine & available in closed-form
- The model admits a **linear state-space** representation (The conditional cumulants of any future linear combination of X_t is affine in X_t.)
- The model is estimated by quasi-maximum likelihood, using the Kalman filter:
 - simultaneously estimate the model parameters and the latent factors X_t
 - handle missing observations

Estimation

Key property: X_t is an **affine process**

- Cond. moments of \forall linear combination of future X_t are affine & available in closed-form
- The model admits a **linear state-space** representation (The conditional cumulants of any future linear combination of X_t is affine in X_t.)
- The model is estimated by quasi-maximum likelihood, using the Kalman filter:
 - simultaneously estimate the model parameters and the latent factors X_t
 - handle missing observations

Empirical application: United States, 1981Q3-2024Q1

Survey Data

Horizon	Description	Index	Rate Definition	Frequency	Sample				
Panel A:	Panel A: US SPF for inflation								
$ar{\pi}_{t,t+4}$	Density	GDP deflator	Annual average/annual average	Q	1981Q3-2024Q1				
$\bar{\pi}_{t,t+5}$	Density	GDP deflator	Annual average/annual average	Q	1981Q3-2024Q1				
$ar{\pi}_{t,t+6}$	Density	GDP deflator	Annual average/annual average	Q	1981Q3-2024Q1				
$\bar{\pi}_{t,t+7}$	Density	GDP deflator	Annual average/annual average	Q	1981Q3-2024Q1				
$ar{\pi}_{t,t+8}$	Density	GDP deflator	Annual average/annual average	Q	1981Q3-2024Q1				
Panel B: US SPF for GDP growth									
$\widetilde{ ho}_{t,t+4}$	Density	GDP growth	Annual average/annual average	Q	1981Q3-2024Q1				
$\widetilde{ ho}_{t,t+5}$	Density	GDP growth	Annual average/annual average	Q	1981Q3-2024Q1				
$\widetilde{p}_{t,t+6}$	Density	GDP growth	Annual average/annual average	Q	1981Q3-2024Q1				
$\widetilde{p}_{t,t+7}$	Density	GDP growth	Annual average/annual average	Q	1981Q3-2024Q1				
$ ilde{p}_{t,t+8}$	Density	GDP growth	Annual average/annual average	Q	1981Q3-2024Q1				

Model fit and stylised facts

Model fit:

- Preliminary step: use Gaussian mixture to obtain moments from raw data
- Our model matches the term structure of all moments (up to 4th order) for inflation and output growth (some trade-offs across forecasting horizons)
- Higher-order moments are crucial to fit distributions of expectations ($\pi \& \Delta y$)

Model fit and stylised facts

Model fit:

- Preliminary step: use Gaussian mixture to obtain moments from raw data
- Our model matches the term structure of all moments (up to 4th order) for inflation and output growth (some trade-offs across forecasting horizons)
- Higher-order moments are <u>crucial</u> to fit distributions of expectations ($\pi \& \Delta y$)

Stylised facts for US SPF expectations:

- Asymmetry on either side and excess kurtosis (leptokurtotic distributions)
 - Inflation: 80s and in 2008
 - GDP: 80s and since COVID

Cyclical and trend component of GDP and Prices

Decomposition of cyclical components

Decomposition of US inflation

Decomposition of US growth

Supply-driven outputs are in line with supply indicators

 \checkmark

 \checkmark

1

 \checkmark

 \checkmark

Regressions of supply-driven outputs on:

- Commodity Factors/Indices
- Oil Supply Shocks
- Oil Price Expectation Surprises
- Crude Oil (WTI) and Gas Prices
- Global Supply Chain Pressure Index

Correlation between π and Δy

Conclusion

Propose a framework to assess the risks on inflation and growth with a focus on tail risk

- Inflation and growth can be affected by the same factors \Rightarrow study their joint dynamics
- Categorize factors to decompose inflation and growth into demand & supply components
- Perform this decomposition not only on realized variables but also on their expectations

Conclusion

Propose a framework to assess the risks on inflation and growth with a focus on tail risk

- Inflation and growth can be affected by the same factors \Rightarrow study their joint dynamics
- Categorize factors to decompose inflation and growth into demand & supply components
- Perform this decomposition not only on realized variables but also on their expectations

Findings in the US suggest that:

- Great Recession and COVID are demand driven
- Supply factors are very important until the Great Recession and since COVID
- The post-COVID period is characterised by a mix of demand and supply drivers

References I

 Gouriéroux, C. and Jasiak, J. (2006).
 Autoregressive gamma processes. Journal of Forecasting, 25:129–152.
 Grishchenko, O. V., Mouabbi, S., and Renne, J.-P. (2017). Measuring Inflation Anchoring and Uncertainty : A US and Euro Area Comparison. Finance and Economics Discussion Series 2017-102, Board of Governors of the Federal Reserve System (U.S.).
 Monfort, A., Pegoraro, F., Renne, J.-P., and Roussellet, G. (2017). Staying at Zero with Affine Processes: An Application to Term-Structure Modelling.

Journal of Econometrics, 201(2):348-366.

Reis, R. (2021).

Losing the Inflation Anchors. Brookings Papers on Economic Activity, 52(2 (Fall)):307–379.

— Appendix —

Uncertainty

- Uncertainty: the variance of the aggregate probability distribution function
- $\sigma^2_{agg,th}$: conditional variance of the aggregate distribution; σ^2_{ith} : individual variances
- Then, the proxy for uncertainty is given by:

$$\sigma_{agg,th}^2 = \frac{1}{N} \sum_{i=1}^{N} (f_{ith} - f_{.th})^2 + \frac{1}{N} \sum_{i=1}^{N} \sigma_{ith}^2$$

where N is the number of forecasters, f_{ith} is the forecast at time t, for horizon h of individual i and f_{th} is the consensus forecast.

• The conditional variance of the aggregate distribution is equal to the sum of disagreement and of the average of individual variances (law of total variance).

Autoregressive Gamma Processes

- The vector z_t follows a multivariate $\mathsf{ARG}_{\nu}(\varphi, \mu)$ process.
- Conditionally on $z_{t-1} = \{z_{t-1}, z_{t-2}, ...\}$, the different components of z_t , denoted by $z_{i,t}$, are independent and drawn from non-centered Gamma distributions:

$$z_{i,t}|\underline{z_{t-1}} \sim \gamma_{\nu_i}(\varphi_i' z_{t-1}, \mu_i),$$

where ν , μ , φ_1 , ..., φ_{q-1} and φ_q are q-dimensional vectors.

• Recall that W is drawn from a non-centered Gamma distribution $\gamma_{\nu}(\varphi, \mu)$, iif there exists an exogenous $\mathcal{P}(\varphi)$ -distributed variable Z such that $W|Z \sim \gamma(\nu + Z, \mu)$ where $\nu + Z$ and μ are, respectively, the shape and scale parameters of the gamma distribution.

• The joint model (inflation and GDP growth) can be specified as:

$$\begin{bmatrix} \pi_{t-1,t} \\ \Delta y_{t-1,t} \end{bmatrix} = \begin{bmatrix} \rho^{(\pi)} \\ \rho^{(\Delta y)} \end{bmatrix} + \begin{bmatrix} \delta^{(\pi_1)'} \\ \delta^{(\Delta y_1)'} \end{bmatrix} Y_t,$$

with,

• We consider 4 factors \mathcal{Y}_t and 5 factors z_t . The equations for \mathcal{Y}_t are the following:

$$\begin{aligned} \mathcal{Y}_{1,t} &= \phi_{1,1} \mathcal{Y}_{1,t-1} + \theta^{s} (z_{p,t}^{s} - z_{n,t}^{s}) + \sqrt{\Gamma_{1,\mathcal{Y},0}} \epsilon_{1,\mathcal{Y},t}, \\ \mathcal{Y}_{2,t} &= \phi_{2,2} \mathcal{Y}_{2,t-1} + \theta^{d} (z_{p,t}^{d} - z_{n,t}^{d}) + \sqrt{\Gamma_{2,\mathcal{Y},0}} \epsilon_{2,\mathcal{Y},t}, \\ \mathcal{Y}_{3,t} &= \phi_{3,3} \mathcal{Y}_{3,t-1} + \sqrt{\Gamma_{3,\mathcal{Y},0} + \Gamma_{[3,5],\mathcal{Y},1} z_{\nu,t}} \epsilon_{3,\mathcal{Y},t}, \\ \mathcal{Y}_{4,t} &= \phi_{4,4} \mathcal{Y}_{4,t-1} + \sqrt{\Gamma_{4,\mathcal{Y},0} + \Gamma_{[4,5],\mathcal{Y},1} z_{\nu,t}} \epsilon_{4,\mathcal{Y},t}, \end{aligned}$$

where θ^s and θ^d have positive signs, and $\phi_{i,i} \in (0, 0.99)$.

• For the z_t , we consider five different factors:

$$z_t = (z_{p,t}^s, z_{n,t}^s, z_{p,t}^d, z_{n,t}^d, z_{v,t})',$$

where $z_{p,t}^s$ and $z_{n,t}^s$ are equivalent processes as well as $z_{p,t}^d$ and $z_{n,t}^d$. A fifth factor $z_{v,t}$ is introduced to model time-varying variances and fat tails.

• For the sake of identification, different elements of δ are set to 1.

$$\delta_{T}^{\pi} = \begin{bmatrix} 0\\ 0\\ \delta_{3,T}^{(\pi)}\\ \delta_{4,T}^{(\pi)} \end{bmatrix}, \quad \delta_{T}^{\Delta y} = \begin{bmatrix} 0\\ 0\\ \delta_{3,T}^{(\Delta y)}\\ \delta_{4,T}^{(\Delta y)} \end{bmatrix}, \quad \delta_{C}^{\pi} = \begin{bmatrix} -\delta_{1,C}^{(\pi)}\\ +\delta_{2,C}^{(\pi)}\\ \delta_{3,C}^{(\pi)}\\ \delta_{4,C}^{(\pi)} \end{bmatrix}, \quad \delta_{C}^{\Delta y} = \begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix},$$

• The elements of δ^{π} with positive signs identify demand factors, while those with negative signs identify supply factors.

Latent Factors: Y_t

Latent Factors: z_t

34

Fit of price and output gap

