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1 Introduction

We characterize main forces that shape optimal public portfolios of financial assets in a large

class of stochastic economies in which a government uses distortionary taxes to raise revenues

and finance expenditures. We provide formulas for optimal portfolios in terms of a small

number of statistics that are functions of observables. For U.S. data, an optimal portfolio’s

bond shares decrease approximately exponentially with increases in their maturity.

We begin by studying an environment that shares many features with the Ramsey literature

on optimal taxation and debt management. We consider an economy with a representative,

infinitely lived household that derives utility from consumption and leisure. We abstract

from income effects on labor supplies but allow various attitudes about risk, model ambiguity,

and intertemporal substitution. A benevolent government uses distortionary taxes to finance

exogenous public expenditures. Households and the government trade an exogenous set of

financial assets. Our benchmark model is a small open economy in which large foreign investors

trade these financial and assets determine their prices.

We develop a new approach to study optimal government policies that builds on two key

ideas. The first idea, inspired by the “sufficient statistics” approach in public finance, is to

study consequences of perturbing government policies along histories of a competitive equilib-

rium allocation. Welfare impacts of such policies can be isolated using the envelope theorem.

The second idea is to use “small noise” expansions to simplify formulas, making them analyt-

ically tractable and convenient for empirical applications. By combining these two ideas, we

derive explicit formulas that characterize an optimal public portfolio in terms of population

moments with sample counterparts in macro and financial market data.

In our benchmark economy, fluctuations in government spending directly affect primary

surpluses. Fluctuations in future interest rates make costs of rolling over debt obligations

uncertain. Costs of distortionary taxation motivate the government to structure its portfolio

to make the return on the portfolio offset these fluctuations, thereby attenuating variations in

tax rates. Our formulas express an optimal government portfolio as a sum of two terms. One

captures hedging of fluctuations in primary surpluses. Another captures hedging of fluctuations

in risk-free interest rates on zero coupon bonds of various maturities. These terms depend on

determinants with empirical counterparts, such as covariances of excess returns of each security

with excess returns of other securities, government expenditures, and interest rates on bonds

of various maturities. We also show that, up to orders of approximation under consideration

here, these variables are independent of a government’s portfolio choices, so that even if actual

portfolio choices are suboptimal, we can construct these statistics from the data and plug them
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into our formula for optimal public portfolios.

Our formulas bring significant insights. First, our formula for an optimal portfolio includes

no terms that summarize risk premia or risk aversion, thereby indicating a key difference

between classical portfolio theory for private investors (e.g., Samuelson (1970), Merton (1971))

and our prescriptions for public portfolios. This difference casts doubt on the practice of

many treasury departments and finance ministries of exploiting differences in borrowing costs

across bonds of different maturities to reduce debt financing costs. Our model asserts that this

practice is suboptimal because households can exploit those differences themselves without

bearing deadweight losses from taxation.

Although our formulas apply to all securities that a government can trade, they offer

specific additional insights when those securities are bonds of various maturities. The return

on a bond of maturity k co-moves mechanically with a k-period interest rate, implying that

the government can use bonds to hedge interest rate risk perfectly. Such a portfolio embodies

a simple “maturity-matching” principle that prescribes that the quantity of bonds of maturity

k should be proportional to expected primary surpluses k periods ahead.

We apply our approach to determinants of optimal public portfolios. We examine roles

of uncertainty about tax revenues, additional liquidity services that government bonds may

provide, and household heterogeneities that include inabilities of some households to participate

in asset markets. We derive statistics that express influences of these determinants and that

can be estimated from data. We also move beyond a small open economy and consider several

models of asset price determination, including preferred habitat models. Our analysis shows

that when the government faces downward-sloping demand curves for its debt, it tilts its

portfolio to avoid circumstances that call for large rebalancings.

We apply our framework to prescribe an optimal composition of U.S. debt. We use data on

returns of U.S. government, taxes, and primary surpluses to construct each component of an

optimal portfolio. As a starting point, we restrict our attention to bonds with up to 30 years

maturity. We find debt portfolio shares decline approximately geometrically with maturity.

The optimal portfolio has a shape qualitatively similar to the actual U.S. portfolio but with

longer duration.

Interest rate risk contributes most to the shape of the optimal portfolio. Empirically,

covariances of bond returns with government expenditures and revenues are small, implying

small scope for using these bonds to hedge such risks. Scope of trading bonds to hedge other

risks, such as inequality risks, also appears to be small. If the demand for U.S. bonds were

perfectly elastic, an optimal portfolio of bonds would be very similar to one that adheres to the
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maturity matching principle. This portfolio would have a duration of about 9.6 years; much

longer than the duration of the U.S. debt which is about 5 years. Such a portfolio, however,

requires substantial reissuances of 30-year bonds each year, which is costly when demand for

those bonds is downward sloping. Using demand elasticities gathered from the literature, the

optimal portfolio tilts toward shorter maturities but not as much the U.S. portfolio.

Our analysis suggests that issuing bonds with maturities beyond 30 years has several ben-

efits. First, it improves hedging of interest rate risk over longer time horizons. Second, it

reduces the fraction of debt that needs to be reissued each period, mitigating adverse price

impact. We find that the portfolio of bonds with maturities up to 50 years is very close to the

one obtained under the maturity matching principle.

In the final part of the paper, we study connections between our findings and the widely-

cited results in the Ramsey literature on optimal debt management. A striking finding in

that literature highlighted by Buera and Nicolini (2004) is that the optimal portfolio of bonds

in a calibrated neoclassical model is extreme: holdings of bonds with specific maturities can

equal hundreds or thousands times annual GDP, and portfolio shares of bonds with similar

maturities often take opposite signs. Using a calibrated economy similar to Buera and Nicolini’s

(2004), we construct two portfolios: the exact optimal bond portfolio prescribed by formulas of

Angeletos (2002), and the approximate portfolio implied by our formulas. The two portfolios

are very similar; both exhibit the extreme pattern noted by Buera and Nicolini (2004). We

use our formulas to investigate sources of that pattern. We find that simulated data from

the calibrated economy have variances of bond excess returns that are substantially lower,

correlations of bond returns with macroeconomic variables that are substantially higher, and

often of different signs than their empirical counterparts. We show that augmenting this model

with discount factor shocks can bring these statistics closer to their empirical counterparts, at

which point the optimal portfolio becomes similar to the one we constructed via our sufficient

statistics for U.S. data.

Related Literature Our paper is related to an extensive Ramsey literature on the optimal

composition of government debt, such as Lucas and Stokey (1983), Bohn (1990), Zhu (1992),

Chari et al. (1994), Angeletos (2002), Buera and Nicolini (2004), Farhi (2010), Faraglia et al.

(2018), Lustig et al. (2008), Bhandari et al. (2017a). Those authors used closed economy

neoclassical growth models to characterize optimal public portfolios. However, those models

don’t fit empirical relationships among asset prices, asset supplies, and macroeconomic vari-

ables, key objects that determine how well alternative securities hedge risks. We overcome
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that deficiency by assuming more general specifications of preferences and asset demands that

includes multiple forces that can account for the observed asset pricing behavior.

Our paper builds on a literature in finance that focuses on asset price determination, such

as Ai and Bansal (2018), Bansal and Yaron (2004), Albuquerque et al. (2016), Krishnamurthy

and Vissing-Jorgensen (2012), Greenwood and Vayanos (2014). Those authors modified the

standard neoclassical environment in ways designed to make it do a better job of fitting asset

prices. By setting up a framework broad enough to include all of these structures and by

deriving obtaining expressions for optimal portfolios that depend on only a small number of

statistics that are functions of aggregates and asset returns, we sidestep taking a stand on

details of those structures.

We obtain formulas for optimal government portfolio that are related to the formulas for

private portfolios that appear in classic portfolio theory contributions of Samuelson (1970),

Merton (1969, 1971), Campbell and Viceira (1999, 2001), and Viceira (2001). Although in-

dividual investors in that theory and the government in our model both choose portfolios to

hedge their risks, we show that substantially different forces determine portfolio compositions

in the two settings.

Our findings are also related to some recent work by Debortoli et al. (2017, 2022). For

a deterministic version of Lucas and Stokey (1983), they find that issuing a consol aligns

incentives across successive governments and eliminates time inconsistency. We study a timing

protocol in which government commits to a plan but nevertheless find that in a stationary

world the optimal portfolio is well approximated by a (growth-adjusted) consol—a security

that implements the maturity matching principle and eliminates needs to rollover or rebalance

the portfolio.1

In recent papers, Jiang et al. (2019, 2020) document a number of puzzling facts about

market values of total debt and primary surpluses in the U.S. These facts are puzzling when

debt valuation is viewed through the lens of an arbitrage-free and frictionless asset pricing

framework. Our setting departs from such a framework by incorporating market segmentation

as well as a broad notion of liquidity services that U.S debts provide. However, in this paper

we focus on how the market value of government debt is optimally allocated across various

securities, and not on determinants of the level itself.

Methodologically, this paper relates to two strands of literature. We borrow our approach

1Our work is also related to Bigio et al. (2023) who study the optimal composition of government portfolios
of bonds of different maturities. They mostly abstract from the interest rate risk and primary surplus risk that
we emphasize, and focus on understanding how price impacts from debt issuance affect portfolio composition.
Because they impose an exogenous cap on the maturities, the government in their setup wants to rebalance its
portfolio even in the absence of all risks.
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of using a small number of statistics to characterize an optimal government portfolio from a

recent applied public finance literature, notably Saez (2001) and Chetty (2009). That litera-

ture typically focuses on settings in which a government faces no risk. When applied to our

problem, that approach yields no clear and transparent insights. We make progress by deploy-

ing small-noise approximations. Small noise approximations have been used frequently both

in finance (e.g., Samuelson (1970), Devereux and Sutherland (2011)) and computational eco-

nomics (e.g., Guu and Judd (2001), Schmitt-Grohe and Uribe (2004), Bhandari et al. (2021)).

The particular class of expansions that we use does not require us to assume stationarity or

to ignore heteroskedasticity. That makes it particularly suitable to study portfolio problems

in dynamic stochastic economies.

Outline The rest of the paper is organized as follows. To demonstrate our approach and

convey main ideas, Sections 2 and 3 start with our simplest setting (“benchmark economy”).

In Section 4, we consider several extensions of the benchmark economy. In Section 5, we apply

our theory to infer an optimal portfolio for the U.S. and compare it to the observed portfolio.

In Section 6, we contrast our findings to neoclassical settings studied in Angeletos (2002) and

Buera and Nicolini (2004). Section 7 concludes. Proofs of all statements in the main text are

in the online appendix.

2 A benchmark economy

We consider a discrete time infinite horizon economy. Uncertainty is described by a stochastic

process {st}t, where st ⊂ RN for some N ≤ ∞. We use st to denote the history of shocks

(s0, ...., st) and s
t+k ⪰ st to denote histories st+k in which first t+ 1 elements are equal to st.

Pr
(
st+k

)
and Pr

(
st+k|st

)
denote probabilities of st+k conditional on information in periods 0

and st, respectively.

We use zt to denote the vector of all exogenous shocks that affect agents. These shocks are

functions of st, i.e., zt = zt (st), so the stochastic process for st determines zt. For technical

reasons, we assume that zt is bounded. The conditional expectation in history st is denoted

by Est , or Et if the specific history st is clear from the context.

The economy is inhabited by three groups of agents: households, the government, and

foreign investors. All agents trade a given set of securities. A security i is characterized by an

exogenous stochastic stream of dividends {Di
t}t. We use Qit to denote the price of security i

and Rit+1 = (Qit+1 +Di
t+1)/Q

i
t to denote its holding period return from t to t+ 1. A risk-free

bond is a security that pays one unit of dividend next period. Let Qrft be the price of a

5



risk-free bond and Rrft+1 = 1/Qrft be the risk-free interest. The excess return of security i is

rit+1 = Rit+1 −Rrft+1.

In the benchmark economy, there is measure one of identical, infinitely-lived households

who supply effort to earn income Yt, pay proportional taxes τ t, and allocate after-tax income

between consumption Ct and investing into a portfolio of securities. We use
{
bit
}
i
to denote

date t market values of household investments. The household’s problem is

V = max
{Ct,Yt,{bit}i}t

E0

∑
t

βtu (Ct − v (Yt)) (1)

where maximization is subject to

Ct+1 +
∑
i

bit+1 = (1− τ t+1)Yt+1 +
∑
i

Rit+1b
i
t, (2)

given an initial portfolio {bi−1}i and natural borrowing limits. Here β is a discount factor,

functions u and v are strictly increasing, twice differentiable, and u and −v are strictly concave.

The government sets tax rates {τ t}t and trades portfolios of securities to finance exogenous

stochastic expenditures {Gt}t. We use Tt = τ tYt to denote tax revenues. For all dates t ≥ −1,

the period-by-period government budget constraint is

Tt+1 −Gt+1 +
∑
i

Bi
t+1 =

∑
i

Rit+1B
i
t,

where a positive value of Bi
t indicates the market value of government’s liability in security i.

We adopt this sign convention so that positive values indicate values of outstanding liabilities.

Government budget constraints play an important roles in our analysis of optimal public

portfolios. It will be helpful to re-write using portfolio shares. Let Bt :=
∑

iB
i
t be the total

market value of the government portfolio and ωit = Bi
t/Bt be the portfolio share of security

i. We refer to Bt as the government’s debt level, and to vector ωt = {ωit}i ̸=rf as the public

portfolio. The portfolio share of the risk-free bond is ωrft = 1−
∑

i ̸=rf ω
i
t.

Using this notation, the period-by-period government budget constraint is

Tt+1 −Gt+1 +Bt+1 = (Rrft+1 +
∑
i ̸=rf

ωitr
i
t+1)Bt. (3)

Let Rt+1 := (Rrft+1 +
∑

i ̸=rf ω
i
tr
i
t+1) be the realized return on the public portfolio from date t

to t+ 1, and Qt,t+k+1 = (Rt+1 × ...×Rt+k+1)
−1 be the inverse of the accumulated return on

the public portfolio between periods t and t+ k + 1, with convention that Qt,t = 1. Summing
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(3) forward from date t gives2

Et+1

∞∑
k=1

Qt+1,t+k (Tt+k −Gt+k) = (Rrft+1 +
∑
i ̸=rf

ωitr
i
t+1)Bt. (4)

A third group of agents consists of foreign investors. Our benchmark model is a small

open economy, in which the foreign investors are wealthy and that their (exogenous) stochastic

discount factor determines prices of securities. Specifically, we assume that there exists a

strictly positive stochastic process {St}t that prices all assets:

StQ
i
t = EtSt+1

(
Qit+1 +Di

t+1

)
for all i, t. (5)

A government policy is a triple of stochastic processes {Bt, ωt, τ t}t. A competitive equilibrium

consists of a government policy, exogenous stochastic processes {Gt, St}t , and initial conditions{
bi−1, B

i
−1

}
i
such that asset prices satisfy (5), the allocation of goods and labor to consumers

satisfy (1), and the government policy satisfies budget constraints (3).

Our benchmark economy is closely related to a large Ramsey literature that studies optimal

debt management (e.g., Lucas and Stokey (1983), Angeletos (2002), Buera and Nicolini (2004),

Farhi (2010), Faraglia et al. (2018)). Like those papers, we focus on interactions between a

government that uses distortionary taxes to finance exogenous expenditures and households

who supply labor. We make two departures from those papers. First, we temporarily focus

on a small open economy because that allows us to develop many of our results most simply.

We extend our analysis beyond open economies in Section 4.5. Second, we assume that there

are no income effects on labor supplies. This assumption helps us to derive simple formulas

describing optimal government portfolios. We show in Section 6 that these formulas to provide

excellent approximations to optimal public portfolios in a calibrated neoclassical model with

preferences that do have income effects on labor supplies.

3 A class of perturbations

We are interested in characterizing the properties of an optimal portfolio. As a starting

point, we first characterize the optimal Ramsey portfolio, which is a part of government policy

{Bt, ωt, τ t}t that maximize household welfare (1) across all competitive equilibria. We then

discuss a more general notion of an optimal portfolio without restricting government policies

to be Ramsey optimal.

2Throughout the paper, we will be focusing on equilibria in which {Qt+1,t+k}t,k decays sufficiently fast so
that terms such as lims→∞ Et+1Qt+1,t+s∥ (Tt+s −Gt+s) ∥ = 0 for all t.

7



We start with a household’s maximization problem. In a competitive equilibrium, a house-

hold’s first-order necessary conditions for optimality with respect to labor supply are

v′ (Yt) = 1− τ t for all t; (6)

and with respect to asset holding are

1 = Et
βMt+1

Mt
Rrft+1, 0 = Et

βMt+1

Mt
rit+1 for all i, t, (7)

where βtMt is a Lagrange multiplier on date t budget constraint (2).

A standard way to study Ramsey optimal government policies (see, e.g., Lucas and Stokey

(1983), Chari and Kehoe (1999)) expresses Mt in terms of the marginal utility of consumption

of households, substitutes optimality conditions (6) and (7) into the budget constraint (2)

to form the so-called implementability constraints, and then analyze a problem in which the

planner maximizes household utility by choosing allocations subject to those implementability

constraints. This approach can be difficult to use. Apart from a few special cases, it yields

few insights about the forces that determine an optimal public portfolio. So instead papers in

the Ramsey literature often use numerical methods to find optimal allocations and portfolios.

Implementing those numerical methods can be challenging when agents trade even a moderate

number of securities. So authors often simplify their environments either by assuming that

markets are complete (Lucas and Stokey (1983), Angeletos (2002), Buera and Nicolini (2004))

or by allowing only a small numbers of securities (Farhi (2010), Lustig et al. (2008), Faraglia

et al. (2018)).

In this section we develop an alternative approach that is transparent, easy to use, and

does not require simplifying assumptions about securities that agents trade. Take a competitive

equilibrium associated with some, not necessarily optimal, government policy. Next consider

welfare effects of two classes of perturbations of government policies at a given history st.

In the first class of perturbations, we consider the effect of increasing the market value of

government debt Bt(s
t) an infinitesimal amount ε, while keeping portfolios in all histories

and market values of debts in all histories other than st unchanged. In the second class of

perturbations, we increase in Bj
t (s

t) for some security j by ε and reduce Brf
t (st) by the same

amount, keeping the market values of debts in all histories and portfolios in all histories other

than st unchanged. In both types of perturbations, the government adjusts taxes so that its

budget constraint (3) is satisfied at all histories. We refer to these two classes of perturbations

as the debt level and the portfolio perturbations.

To understand welfare consequences of these perturbations, it is helpful to define the tax

revenue elasticity ξt :=
∂ lnTt
∂ ln τ t

. Its inverse 1
ξt

= ∂τ t
∂Tt

Yt captures how much tax rates must change
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if the government wants to increase tax revenues normalized by output by one unit. Using (6),

it is easy to see that ξt equals 1−
v′(Yt)
v′′(Yt)Yt

τ t
1−τ t . Since output Yt is implicitly a function of τ t,

the elasticity ξt is a transformation of τ t that we can write as ξt = ξ (τ t) for some function ξ.

The debt level perturbation decreases tax revenues Tt(s
t) by ε and increases them by

Rt+1(s
t+1)ε in all st+1 ⪰ st, leaving taxes in all other histories unchanged.3 The portfolio per-

turbation increases taxes only in histories st+1 ⪰ st by rjt+1(s
t+1)ε. Using the envelope theorem

and the definition of the tax revenue elasticity, the welfare effects of these two perturbations

are

∂debtV = βt Pr
(
st
) [
Mt(s

t)
1

ξt(s
t)

− EstβMt+1Rt+1
1

ξt+1

]
, (8)

and

∂prfl,jV = −βt Pr
(
st
)
EstMt+1r

j
t+1

1

ξt+1

, (9)

respectively.

So far we have considered perturbations of arbitrary government policies. If government

policies are optimal, there exist no welfare improving perturbations. Therefore, at an optimum

we must have

ξ−1
t = Et

βMt+1

Mt
Rt+1ξ

−1
t+1 for all t, (10)

Et
βMt+1

Mt
rjt+1ξ

−1
t+1 = 0 for all j, t. (11)

Ramsey optimal government policies can be determined by combining government opti-

mality conditions (10) and (11), household optimality (6) and (7), and government budget

constraints (4). As discussed before, it is difficult to “invert” those non-linear stochastic equa-

tions to express optimal policies in terms of primitives. To make progress, we assemble a family

of approximations.

Fix any history st and for all st+k ⪰ st we can write without loss of generality the vector

of exogenous variables as

zt+k(s
t+k) = zt+k(s

t) + ẑt+k(s
t+k),

where zt+k := Etzt+k and ẑt+k := zt+t − Etzt+k. Let σ ≥ 0 be a scalar and consider a richer

family of exogenous stochastic processes {zt (σ)}t, defined by zk
(
sk;σ

)
= zk

(
sk
)
if sk ⪰̸ st

and zk
(
sk;σ

)
= zk

(
st
)
+ σẑk

(
sk
)
if sk ⪰ st. That is, we scale all exogenous shocks arriving

3The assumption of no income effects is being used here. With income effects, households may adjust labor
supplies in other histories, which would require tax adjustments in those histories as well.
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after history st by σ, leaving other shocks unchanged. We refer to the economy with exogenous

shocks {zt (σ)}t as the σ-economy.

Let {yk(σ)}k be the stochastic process for the endogenous variables, namely, government

policies, prices, and household choices in a σ-economy; σ = 1 is the original economy, and

σ = 0 is an economy in which all uncertainty “switches off” after history st. Using Taylor

expansions, we can write

yk ≃ yk + ∂σyk +
1

2
∂σσyk for all k, (12)

where yk = yk (0); ∂σyk, ∂σσyk are first and second derivatives of yk (σ) with respect to σ

evaluated at σ = 0; and ≃ denotes approximation up to the order o
(
{∥ẑt+k∥2}k≥1

)
. We refer

to yk, yk + ∂σyk, and the right hand side of equation (12) as zeroth, first, and second order

approximations of process {yk(σ)}k, respectively.
The following result significantly simplifies our analysis.

Lemma 1. rit+k = 0, Et∂σrit+k = 0, and Et∂σrjt+1∂σr
i
t+k+1 = 0 for all i, j, and k ≥ 1.

Proof. Applying the law of the iterated expectations to equation (5), we get

Et+1St+k+1r
i
t+k+1 = 0 for all t, i, k ≥ 1. (13)

The zeroth order expansion of equation (13) yields rit+k+1 = 0 since St+k+1 > 0. Using this,

the first order expansion yields Et+1∂σr
i
t+k+1 = 0. Multiply (13) by rjt+1 and compute the

expectation at time t to get Etrjt+1St+k+1r
i
t+k+1 = 0. The second order expansion of this

equation, using zeroth and first order implications, implies that Et∂σrjt+1∂σr
i
t+k+1 = 0.

An implication of Lemma 1 is that intertemporal covariances of returns with each other

must be zero to the second order, that is, covt

(
rjt+1, r

i
t+k+1

)
≃ 0 for all i, j, and k ≥ 1. This

leads to important simplifications. The optimal portfolio composition in period t depends,

in general, on all cross-covariances {covt(rjt+1, r
i
t+k+1)}i,j,k. However, only the intratemporal

cross-covariances {covt(rjt+1, r
i
t+1)}i,j are of the second order, while the remaining ones are of

higher orders. Thus, intratemporal covariances play the dominant role in formation of the

optimal portfolio, while the intertemporal ones can be ignored to the second order.

Using Lemma 1 we can derive useful implications of optimality conditions (10) and (11).

Lemma 2. (a) Optimal debt level condition (10) implies that τ t+k = τ t and that Et∂σrjt+1∂στ t+1 =

Et∂σrjt+1∂στ t+k+1 for all j, k ≥ 1.

(b) Optimal portfolio condition (11) implies that Et∂σrjt+1∂στ t+1 = 0 for all j.
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Proof. We shall establish part (b). Because the proof of part (a) is very similar, we put it in

online Appendix A. Take the second order approximation of (11) and use Lemma 1 to rewrite

it as

1

2

βMt+1

Mt

1

ξt+1

Et∂σσrjt+1 +
1

ξt+1

Et∂σrjt+1∂σ
βMt+1

Mt
+
βMt+1

Mt
Et∂σrjt+1∂σ

1

ξt+1

= 0. (14)

A second order expansion of households’ optimality condition (the second equation in (7))

implies
1

2

βMt+1

Mt
Et∂σσrjt+1 + Et∂σrjt+1∂σ

βMt+1

Mt
= 0. (15)

Combine (14) and (15) to obtain Et∂σrjt+1∂σ
1

ξt+1
= 0. But ∂σ

1
ξt+1

= − ξ′(τ t+1)

ξ(τ t+1)
2∂στ t+1, which

establishes part (b).

Part (a) of Lemma 2 is related to some celebrated tax smoothing results. Formula (10)

for optimal debt levels imply that, to the first order, expected tax rates Etτ t+k for any k ≥ 1

should be equal to τ t. This is reminiscent of a version of Barro’s (1979) tax smoothing result.

While optimal tax rates need not follow a random walk in our economy, departures from this

tax smoothing result are of the second order. Part (b) of Lemma 2 implies that the optimal

portfolio in time t sets covt(τ t+1, r
j
t+1) equal to zero to the second order. Thus, the government

chooses portfolios in time t so that fluctuations in excess returns reduce fluctuations in tax

rates. Versions of Part (b) of Lemma 2 also appear in papers on tax smoothing (see Bohn

(1990), Farhi (2010), or Bhandari et al. (2017a))

Lemma 2 is informative about terms that do and don’t appear in our approximate optimal-

ity conditions. For example, a portfolio perturbation has three effects, captured by the three

terms in equation (14). First, in period t+ 1 it earns excess returns ∂σσr
j
t+1 that are rebated

back to households by adjusting tax rates. Second, because these rebates are stochastic, they

may amplify or reduce households’ marginal utility risk. Third, the perturbation amplifies or

reduces fluctuations in tax rates and associated deadweight losses. It is reasonable to antici-

pate that the optimal portfolio should take all three of these effects into account. But equation

(15) reminds us that households already make personal portfolio choices that trade off risk

premia captured by Et∂σσrjt+1 and hedging motives captured by covariances of excess returns

with marginal utilities. Therefore, the government’s portfolio decisions focus solely on risks

that households cannot hedge, namely, on reducing fluctuations in the deadweight losses of

taxation.

To use these results to characterize the optimal Ramsey portfolio, it is helpful to introduce

11



prices of notional bonds.4 Let Qkt be the period t price of a zero coupon bond that matures

in t + k periods. The long interest rate between periods t and t + k is 1/Qkt . Under this

convention, Q1
t = Qrft is the price of a one-period risk-free bond. We call the sequence

{
Qkt
}
k

a date t bond price curve and it captures the relationship between bond maturities and their

prices at a given period t. Lemma 1, implies that prices Qkt+1 and discount rates Qt+1,t+k+1

coincide up to the first order. Also, to the second order we have

covt

(
Qt+1,t+k+1, r

j
t+1

)
≃ covt

(
Qkt+1, r

j
t+1

)
for all j, k ≥ 1.

We now use this observation to derive the optimal portfolio at st. Multiply (4) by rjt+1,

take expectations at history st, and apply the second order expansion using the preceding

observations to get:

Theorem 1. The optimal Ramsey portfolio satisfies, for all t, j

∑
i ̸=rf

ωitEt∂σrit+1∂σr
j
t+1 =

∞∑
k=1

Q
k+1
t Xt+k+1

Q
1
tBt

Et∂σ lnQkt+1∂σr
j
t+1−

∞∑
k=1

Q
k
tGt+k

Q
1
tBt

Et∂σ lnGt+k∂σrjt+1,

(16)

where Xt+k = T t −Gt+k and T t =
Bt+

∑∞
k=1Q

k
tGt+k∑∞

k=1Q
k
t

.

Equation (16) determines optimal public portfolios ωt as functions of debt levels Bt and

exogenous objects (recall that returns and asset prices are pinned down by a representative

foreigner’s stochastic discount factor {Sk}k). Remarkably, future portfolio choices do not

appear in the optimal portfolio formula because effects of those future portfolios are of the

third order. The sequence
{
Xt+k

}
k
is a zeroth order approximation of primary surpluses

Xt+k = Tt+k −Gt+k when debt levels are set optimally to the zeroth order.

It is enlightening to re-write equation (16) in terms of equilibrium objects rather than

their approximating counterparts. For a pair of variables y′t+k, y
′′
t+k, we have the following

relationship

Ety′t+kcovt
(
y′′t+k, r

j
t+1

)
≃ y′t+kEt∂σy′′t+k∂σr

j
t+1. (17)

The left hand side of this equation entails some population moments for a competitive equilib-

rium, while the right hand side is their second-order approximation. Using this equation, we

re-write (16). Let Σt, Σ
Q
t and ΣGt be covariance matrices with elements {covt(rit+1, r

j
t+1)}i,j ,

{covt(lnQkt+1, r
j
t+1)}j,k, and {covt(lnGt+k, rjt+1)}j,k for all j and k ≥ 1, and let sQt and sGt be

4We call this bond ’notional’ because we don’t require it to be traded; we only need to be able to price such
a bond. In particular, notional bond prices are given by StQ

k
t = EtSt+k.

12



vectors with elements {Q
k+1
t EtXt+k+1

Q1
tBt

}k and {−Qk
t EtGt+k

Q1
tBt

}k. Then equation (16) can be written

succinctly as

Σtωt ≃ ΣQt s
Q
t +ΣGt s

G
t . (18)

Equation (18) expresses optimal Ramsey portfolios in terms of objects that have meaningful

interpretations. Here Σt, Σ
Q
t , and ΣGt are covariance matrices of excess returns with other

excess returns, with long interest rates, and with government expenditures at different time

horizons. Vectors sQt and sGt are constructed by computing mathematical expectations of

primary surpluses and expenditures at different horizons, EtXt+k and EtGt+k, converting them

into date t units using the date t bond price curve {Qkt }k≥1, and dividing them by the market

value of the date t outstanding debt level. If there are redundant securities then there are

multiple optimal portfolios, all of which satisfy (18). If matrix Σt is invertible, then an optimal

portfolio is unique and approximately equals to5

ω∗
t := Σ−1

t ΣQt s
Q
t +Σ−1

t ΣGt s
G
t . (19)

Formula (19) expresses two goals sought by an optimal public portfolio: hedging interest

rate risk and hedging expenditure risk. These two hedges are captured by matrices Σ−1
t ΣQt

and Σ−1
t ΣGt . Vectors sQt and sGt provide quasi-weights that determine relative importance of

hedging these two risks.

Formula (19) applies to any set of traded securities. Bonds of various maturities are among

the most common securities that governments trade. Let rkt+1 be the t → t + 1 excess return

of the bond that matures in period t+ k+1. By definition, rkt+1 = Qkt+1/Q
k+1
t , so fluctuations

in the excess return of a k-period bond are proportional to fluctuations in k-period interest

rate. Specifically, Lemma 1 implies that Q1
t covt(r

k
t+1, r

j
t+1) ≃ covt(lnQ

k
t+1, r

j
t+1), so that to the

second order the two covariances are the same up to the price of the risk-free bond Q1
t .

One implication of this observation is as follows. Suppose that the government trades a

full set of bond maturities. In this case, interest rate risk is hedged by a portfolio

Σ−1
t ΣQt s

Q
t ≃

[
Q2
tEtXt+2

Bt
,
Q3
tEtXt+3

Bt
, ...

]T
. (20)

This interest rate hedging portfolio takes a simple form. Let B̃k
t denote the quantity (or

the face value) of the bonds of maturity k. By definition, the relationship between bond

quantities and market values is given by Bk
t = Qkt B̃

k
t . For each maturity k, if the government

5Note that this approximation is in the zeroth order sense, as σ → 0. In the zeroth order economy all
securities are risk-free and the optimal portfolio composition is undetermined, but ω∗

t is the limit of the optimal
portfolios in the stochastic economy as risk shrinks to zero.
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sets quantities of k-period bonds equal to the expected primary surpluses at the time of the

maturity, B̃k
t = EtXt+k, then the portfolio shares automatically satisfy the right hand side

of (20). We refer to the construction of this interest rate hedging portfolio as the maturity

matching principle. Note that this principle implies that any changes in bond prices that

are orthogonal to expected primary surpluses may affect portfolio shares of bonds of different

maturities but not their quantities. The extent to which the government departs from maturity

matching depends on bonds’ abilities to hedge expenditure risks. In Section 5, we show that

covariances of returns with expenditures in the U.S. data are low, implying that optimal

deviations from interest rate hedging are small.

While the optimal Ramsey portfolio in equation (19) depends on covariances that measure

various types of risk, it does not include terms that capture risk premia or risk aversion, even

though those terms play the central role in the classical portfolio theory (e.g., Samuelson (1970),

Merton (1971), Campbell and Viceira (1999), Viceira (2001)). This is because a benevolent

government has the same attitudes towards risks and returns as households. Thus, there is no

motive for the government to chase higher excess returns on securities – households can get

those same excess returns for themselves without bearing deadweight losses from taxation.

This result is at odds with common practices of some Treasury departments to play the

yield curve (see, e.g., Missale (1999)). Since yield curves are usually steeper than the expected

path of short rates, it seems cheaper to borrow using short-term debt and many Treasury

departments tilt their portfolios towards shorter maturities to reduce borrowing costs. In our

benchmark economy, this practice is misguided. Lower yields on short bonds are a compen-

sation for bearing future interest rate risk. A strategy that tilts public portfolios towards

shorter maturities would force households to bear additional and unwanted risk of tax rate

fluctuations.

3.1 Sufficient statistics and government policies

We derived our expressions for the optimal portfolio under the assumption that government

policy {Bt, ωt, τ t}t is Ramsey optimal. We now discuss how our approach can be extended when

we relax this assumption. In what follows, we consider equilibria associated with government

policies {Bt, ωt, τ t}t in which the debt levels are set so that equation (10) holds to the first

order approximation. The latter assumption is helpful in separating two conceptually distinct

issues: the optimal choice of total debt level and the optimal allocation of that debt into
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different securities.6,7

Consider a competitive equilibrium associated with such a policy. Suppose that the gov-

ernment finds itself in some history st with some debt level Bt
(
st
)
. How should it allocate this

debt into a portfolio of different securities? To answer this equation, consider our portfolio

perturbation (9) in that history st. The portfolio ωt(s
t) is optimal if there are no welfare

gains from such perturbations, i.e., equation (11) holds. Households optimality conditions (6)

and (7), asset pricing conditions (5), and government budget constraints (4) must hold in any

equilibrium, irrespective of how government policies are set. Using these equations, together

with the assumption that (10) holds to the first order, it is easy to verify that all arguments

behind proofs of Lemmas 1 and 2 are unchanged and equation (16) in Theorem 1 holds given

history st.

We note a few properties of the optimal portfolio that follow from the extended version of

Theorem 1. First, the optimal portfolio given history st is expressed in terms of only exogenous

variables and the debt level Bt(s
t). Second, equation (17) that expresses the optimal portfolio

using population moments still holds and it implies that the dependence of moments on the

left hand side of (17) on government policies after st is of the third order and can be ignored

in our approximations.

This has several implications. First, equations (19) and (20) continue to describe the

optimal public portfolio even if government policies are not Ramsey optimal. While some of

these statistics, such as sQt , depend on future government policies, this dependence is of the

order that is smaller than our approximation error. From a practical perspective, it means

that one can estimate all the sufficient statistics Σt, Σ
Q
t , Σ

G
t , s

G
t , s

Q
t under the equilibrium

data generating process, and plug them directly into the right hand side of (19) to construct

the optimal portfolio in any history st with debt level Bt
(
st
)
. Second, the same reasoning

implies that we can use these equations to study the direction in which any given portfolio

ωt(s
t) should be adjusted to improve welfare.

Corollary 1. Consider an equilibrium in which the debt level is chosen optimally to the first

order and let ω∗
t be constructed using moments from the equilibrium data-generating process.

6If the debt level is not chosen optimally then portfolio perturbations (9) would try, in addition to the forces
we emphasized, to also compensate for the suboptimal debt levels. While it is possible to characterize such
portfolios, they are hard to interpret. Debt levels is a superior policy instrument for the intertemporal transfer
of resources than the portfolio choice, and those levels should be first order optimized before deciding on the
portfolio allocations.

7This assumption that the debt level is approximately optimal implies that taxes are approximately a random
walk. This is consistent with the behavior of taxes in the U.S. data, see, e.g. Barro (1981), Kingston (1987),
Mankiw (1987), and Marcet and Scott (2009) who document little departures from tax smoothing at business
cycle or higher frequencies.
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Then ∑
i ̸=rf

(
ω∗,i
t − ωit

)
covt

(
rit+1, r

j
t+1

)
≃ constt × ∂prfl,jV for any j, (21)

where constt > 0 provided that Bt > 0, ξ (τ t) > 0, ξ′ (τ t) < 0.

This corollary provides a method to determine how government portfolio ωt can be im-

proved. We focus on the case of Bt > 0 and ξ,−ξ′ < 0, which with a constant elasticity of

labor supply is equivalent to assuming that taxes τ t are to the left of the peak of the Laffer

curve. Recall from our discussion of equation (21) that welfare can be improved by increasing

the portfolio share of security j if ∂prfl,jV > 0 and decreasing it if ∂prfl,jV < 0. The left hand

side of (21) provides a way to compute the sign of ∂prfl,jV .

To understand implications of this expression, first consider an economy in which agents

trade only one risky security. In that case, we immediately get that the sign of ∂prfl,jV is the

same as the sign of ω∗,j
t − ωjt , so welfare is improved by rebalancing portfolio weights closer to

ω∗,j
t . When agents trade multiple securities, the welfare effect of moving ωjt closer to ω

∗,j
t also

depends on how far portfolio shares for other securities i ̸= j are from their optima, as well as

on covariances of returns of those securities with rjt+1. As can be deduced from (21), moving

ωjt closer to ω∗,j
t is welfare improving provided that covariances of returns of other securities

with rjt+1 are sufficiently low relative to the variance of rjt+1, or that portfolio shares of other

securities are sufficiently close to the optimum.

4 Extensions

In this section, we discuss the effects of alternative preference specifications, additional shocks

that affect primary deficits, liquidity services of government bonds, and household hetero-

geneities on compositions of optimal public portfolios. We also relax the assumption that asset

prices are not affected by government policies.

4.1 Role of preferences

In the benchmark economy, households have fixed time-separable preferences. The only prop-

erty of preferences that we used in studying our benchmark economy is the absence of income

effects. Consequently, all our results from Section 3 apply in economies in which households’

preferences are ordered by V0 ({Ct, Yt}t) which is recursively defined by

Vt = ut (Ct − v (Yt)) + βWt (Vt+1) , (22)

16



where utility function ut can depend on exogenous shocks, and Wt is twice continuously differ-

entiable, strictly increasing functional that is increasing in the first- and second-order stochastic

dominance and that has a property that Wt

(
x′t+1

)
= x′t+1 for any time-t measurable random

variable x′t+1.

Preference specification (22) is widely used in asset pricing papers designed to explain

stock and bond risk premia. As shown by Ai and Bansal (2018), it includes preferences with

recursive preferences of Epstein and Zin (1989), variational preferences of Maccheroni et al.

(2006a) and Maccheroni et al. (2006b), multiplier preferences of Hansen and Sargent (2008)

and Strzalecki (2011), second-order expected utility of Ergin and Gul (2009), smooth ambi-

guity preferences of Klibanoff et al. (2005), Klibanoff et al. (2009), disappointment aversion

preference of Gul (1991), and the recursive smooth ambiguity preference of Hayashi and Miao

(2011). The stochastic function ut for period utilities can represent a discount factor shock

used in Albuquerque et al. (2016).

Preferences in equation (22) allow for many differences in how households evaluate risks and

return of different securities. But those do not affect the structure of optimal public portfolios.

This situation extends our Section 3 finding that optimal public portfolios are independent of

households’ attitudes about risks.

4.2 Tax revenue risks

In our benchmark economy, tax revenues Tt depend only on the tax rate τ t. In more general

settings, other variables like exogenous productivity shocks that influence the tax base also

affect tax revenues. In this section, we extend our approach to study the optimal public

portfolio choice in such settings.

We assume that the disuility of effort takes the form vt (Yt) = Θ
−1/γ
t

Y
1+1/γ
t
1+1/γ where Θt

is an exogenous stochastic process and γ > 0 is the elasticity of labor supply. Under this

preference specification, household earnings and tax revenues are given by Yt = Θt (1− τ t)
γ

and Tt = Θtτ t (1− τ t)
γ and they depend both on the tax rate τ t and the exogenous shock Θt.

We consider the same perturbations as in Section 3. The debt level and portfolio optimality

conditions (10) and (11) still hold in this economy. Under constant elasticity preferences, the

relationship between the tax revenue elasticity and the tax rate is given by ξt = 1 − γ τ t
1−τ t ,

which implies that smoothing of tax distortions ξ−1
t is equivalent to smoothing of tax rates

τ t.
8

8This is the sole reason that we assume constant elasticity preferences in this section. Our approach can
be extended to an arbitrary disutility of effort v(Yt/Θt). Under such preferences, distortion smoothing implies
a particular relationship between realizations of Θt+k and τ t+k that should hold in the optimum. One can
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We can decompose fluctuations of tax revenues (see online Appendix B) into policy and

non-policy components as

covt

(
lnTt+k, r

j
t+1

)
≃ covt

(
ln (τ t (1− τ t)

γ) , rjt+1

)
+ covt

(
lnΘt+k, r

j
t+1

)
, (23)

The portfolio optimality condition (11) calls for setting the first covariance on the right hand

side of (23) to zero. This, in turn, implies that portfolios need to be chosen to additionally

hedge Θt+k, captured by the second covariance on the right hand side of (23).

The shock Θt+k is hedged similarly to the government expenditure shock Gt+k. Let Σ
Θ
t be

a matrix with elements {covt(lnΘt+k, r
j
t+1)}j,k and sΘt be a vector with elements {Q

k
t EtT tax

t+k

Q1
tBt

}k,
with T taxt+k = Θt+kτ t (1− τ t)

γ which are the analogues of ΣGt and sGt . If the covariance matrix

Σt is invertible then the optimal portfolio is unique and is approximately equal to

ω∗
t = Σ−1

t ΣQt s
Q
t +Σ−1

t ΣGt s
G
t +Σ−1

t ΣΘ
t s

Θ
t . (24)

As can be seen from this equation, the optimal portfolio is chosen to hedge fluctuations in

interest rates, expenditures and tax revenues shocks, with quasi-weights sQt , s
G
t and sΘt aggre-

gating these risks in the optimal portfolio formula. The rest of the discussion in Section 3,

such as Corollary 1, extends directly as well.

4.3 Liquidity premia on government bonds

A large theoretical and empirical literature that has emphasized that governments appear to

be able to borrow at cheaper rates than private sector because of convenience or liquidity

benefits of government-issued debt.9 In this section, we explore the implication of liquidity

premia enjoyed by government bonds for optimal portfolio formation.

We introduce liquidity premia by assuming that holding of government bonds has direct

utility benefit to households. For concreteness, we assume that government only issues bonds

and trades no other other securities. We use our earlier convention that superscript k refers

to a bond that matures in k periods so Qkt and Rk−1
t+1 are prices and t → t+ 1 holding period

returns of a bond that matures in period t+k. We use notation {}k to denote the collection of

government bonds of available maturities. Our approach applies in the same way to economies

explicitly characterize this relationship and use it to construct optimal portfolios, which take a form similar
to equation (24) but with a slightly different definition of sΘt . We opt for the constant elasticity specification
because the analysis is more transparent and because it is the specification that is most commonly used in the
quantitative Ramsey literature.

9Theoretical contribution that emphasize convenience yields for government debts include Woodford (1990),
Aiyagari and Gertler (1991), Aiyagari (1994), Bansal and Coleman (1996), Holmstrom and Tirole (1998),
and Lagos (2010). Empirical papers that measure convenience yields for the U.S. include Longstaff (2004),
Krishnamurthy and Vissing-Jorgensen (2012), and Jiang et al. (2019).
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in which the government can issue the full set of bond maturities and to economies in which

maturities are capped or restricted in some other way. Let {bkt }k be households’ holdings of

government bonds. We assume that these holdings give household pecuniary utility wt({bkt }k),
where wt is a function that is strictly increasing and differentiable in each bkt , with derivatives

denoted by wt,k. We allow wt to be subject to exogenous shocks. Households’ intratemporal

utility is assumed to be

u
(
Ct − v (Yt) + wt

({
bkt

}
k

))
,

with the rest of the economy as in Section 2.10

The welfare effects of debt level and portfolio perturbations that we considered in Section 3

remain unchanged in this economy, and equations (10) and (11) still hold. The main difference

from the benchmark economy is that household optimality conditions for government bonds

are given by

1− wt,1 =
1

Q1
t

Et
βMt+1

Mt
, wt,k − wt,1 = −Et

βMt+1

Mt
rk−1
t+1 . (25)

These equations show that the price of a one period government bond Q1
t depends both on

households’ rate of discount Et βMt+1

Mt
and the liquidity premium wt,1 that this bond offers.

Similarly, the excess return of the government bond that matures in period t+k is depends on

the excess liquidity premium of that bond, wt,k −wt,1, i.e., on the difference between liquidity

premia of a k- and a one-period bond.

Before taking approximations of these conditions, it is useful to think about their empirical

counterparts. Let Q1,pr
t be the price of a notional privately-issued one-period risk-free bond,

i.e., the price of a bond at which domestic households are willing to borrow and lend from each

other. This price satisfies 1 = 1

Q1,pr
t

Et βMt+1

Mt
. Combine it with (25) to find that the liquidity

premium of the one-period bond can be written as

1− Q1,pr
t

Q1
t

= wt,1. (26)

Thus, the liquidity premium can be obtained by comparing yields of government- and privately-

issued bonds.

This observation is not surprising: the empirical finance literature typically uses a similar

logic to estimate the liquidity premia (see for instance Longstaff (2004) or Krishnamurthy and

Vissing-Jorgensen (2012)). But equation (26) contains lessons about good ways to approximate

10When government bonds provides additional liquidity services, one may also want to include the non-
negativity constraints bi,t ≥ 0 on government bonds. For simplicity, we ignore these constraints in our analysis,
but most of the discussion in this section can be extended by explicitly incorporating these constraints and
adding their corresponding Lagrange multipliers into the definition of liquidity premium.
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this economy. It is easy to obtain empirical analogues of prices Q1
t and Q

1,pr
t and use equation

(26) to construct the liquidity premium wt,1. In the data this liquidity premium is of the same

order of magnitude, if not smaller, than risk premia of bonds of different maturities, Etrkt+1.
11

If we were naively to apply small noise approximation only to the exogenous disturbances,

zt+k(σ) = zt+k + σẑt+k, we would be scaling all risk premia with σ2 while keeping liquidity

premia intact. This approach would implicitly approximate around an economy in which the

liquidity premia is infinitely large relative to risk premia, which is unrealistic. A much better

approach is to the use a small-noise expansion that scales wt with σ2 in the same way that

it scales {ẑt+k}k with σ. This approach ensures that relative magnitudes of liquidity and risk

premia remain unchanged at all σ > 0.

This observation has several immediate implications. Suppose that government bonds of

different maturities are perfect substitutes for households, so that wt({bkt }k) = wt(
∑

k b
k
t ).

In this case, all bonds have the same liquidity premium and portfolio optimality conditions

are the same as in the benchmark economy. The optimal dynamics of the debt level, which

is characterized by combining equation (10) and the first equation in (25), is affected by

the liquidity premium but this effect is of the second order. Since we only used first order

approximations of equations governing debt level dynamics to prove Theorem 1, the conclusions

of that theorem and the rest of the discussion in Section 3 remain unchanged.

If government bonds are imperfect substitutes then the optimal portfolio also depends on

the excess liquidity premium wt,k−wt,1. Let µt be the vector {wt,k−wt,1}k>1. This vector can

be constructed from notional prices of government-issued and privately-issued pure discount

bonds using the relationship

lnQkt − lnQk,prt ≃ wt,k + Etwt+1,k−1 + ...+ Etwt+k−1,1. (27)

Assuming that Σt is invertible, the optimal portfolio in the economy with liquidity premia is

given by

ω∗
t = Σ−1

t ΣQt s
Q
t +Σ−1

t ΣGt s
G
t + atΣ

−1
t µt, (28)

where at =
Yt

∑∞
k=1Q

k
t

(Q1
t )

2
Bt

ξ2(τ t)
−ξ′(τ t) . Comparing this equation to equation (19), we see that portfolio

weights increase (decrease) relative to the benchmark economy if the covariance adjusted vector

of excess liquidity premia Σ−1
t µt is positive (negative).

Equation (28) was derived under the assumption that government policies are Ramsey

optimal. This assumptions can be relaxed along the same lines that we discussed in Section

11For instance, Krishnamurthy and Vissing-Jorgensen document a liquidity premium of about 73 basis points
per year for long maturity bonds. This is lower than the average excess returns on long bonds that are in the
range of 100 to 150 basis points per year.
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3.1. In particular, if government debt is set approximately optimally then equation (28) still

holds and all the terms on the right hand side other than µt depend only on debt level Bt and

exogenous shocks to the order of approximation we consider. The vector of excess liquidity

premia µt is an implicit function of portfolio ω∗
t . In order to use (28) to construct optimal

portfolios using empirical data, one would need to estimate the dependence of µt on ωt and

then use equation (28) to compute ω∗
t .

4.4 Household heterogeneity

We now include heterogeneous households who differ in their skills and their access to asset

markets and consider its consequences for the composition of an optimal portfolio.

Suppose that household h has household-specific productivity θh,t and disutility of labor

takes the same form as in Section 4.2. Also suppose that households can be partitioned into

two sets: T, a set of households who can trade securities, and N, a set of households who

cannot trade securities. The government objective is a Pareto-weighted sum across households

with weights {ϖh}h. We maintain all other assumptions from our benchmark economy.

We then consider our Section 3 perturbations. The welfare effects are given by

∂debtV = βt Pr
(
st
)∑

h

ϖh

[
Mh,t(s

t)
1

ξt(s
t)

Yh,t(s
t)

Yt(st)
− EstβMh,t+1Rt+1

1

ξt+1

Yh,t+1

Yt+1

]
, (29)

and

∂prfl,jV = −βt Pr
(
st
)∑

h

ϖh

[
EstMh,t+1r

j
t+1

1

ξt+1

Yh,t+1

Yt+1

]
, (30)

where Mh,t is the Lagrange multiplier on the date t budget constraint of household with

productivity θh,t and Yh,t is that households date t pre-tax income and ξt+1 is the elasticity of

aggregate tax revenues with respect to tax rates.

Comparing equation (29) and (30) to its representative agent counterparts (8) and (9),

there are two new terms highlighting the new forces that are present in heterogeneous agent

settings. The first is that the inverse tax revenue elasticities are weighted by
Yh,t
Yt

, which is the

share of household type h’s income. To the extent these shares fluctuate, there is a motive for

the government to use the returns on its portfolio to hedge those fluctuations. The second is

the presence of the Lagrange multipliers {Mh,t} on budget constraints for all households. In

the representative agent counterpart, we used household optimality in security markets, that

is, equation (7) to “net out” the implications on government optimality. With heterogeneous

agents, the counterpart of equation (7) holds only for h ∈ T. Thus, fluctuations in the wedge

between the Lagrange multipliers on budget constraints of the traders and non-traders (a
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measure of deviation from perfect risk-sharing) capture a planners’ desire to trade on behalf

of agents who have trouble trading.

These two forces are summarized by two new statistics. Movements in inequality are sum-

marized by a measure
∑

h µh,k ln
(
s−1
h,t+k

)
, where sh,t = Yh,t/Yt and

{
µh,k

}
h,k

is a deterministic

sequence of weights (see online Appendix B for formulas) that add up to one for all t and de-

pend on both relative productivities and Pareto weights. It is easy to check that this measure is

increasing in the dispersion of incomes. Next, define ln (MT,t+k) and ln (MN,t+k) as an average

of the Lagrange multipliers on budget constraints of traders and non traders, respectively, e.g.,

ln (MT,t+k) ≡
∑

h∈T µh,k ln (Mh,t+k)

/∑
h∈T µh,k. The imperfect risk sharing force is captured

by ln (MT,t+k)− ln (MN,t+k).
12

Following steps resembling our derivation of equation (19), we can define covariances

Σineqt [j, k] = covt

(∑
h µh,k ln

(
s−1
h,t+k

)
, rjt+1

)
, ΣMt [k, j] = covt

(
µN,k [ln (MT,t+k)− ln (MN,t+k)] , r

j
t+1

)
and weights sineqt [k] =

Qk
t EtYt+kξ

2(τ t+k)

−Q1
tBtξ

′(τ t+k)
. The optimal portfolio with heterogeneity satisfies

Σtωt ≃ Σtω
∗
t +

(
Σineqt sineqt +ΣMt s

ineq
t

)
. (31)

The concerns for inequality fluctuations manifest in the sign and the magnitude of Σineqt . If

excess returns and inequality are countercyclical, then we would expect Σineqt to be positive and

larger in magnitude for longer bonds. Equation (31) then implies that concerns for fluctuating

income shares should push the government to issue additional debts at longer maturities.

Besides fluctuations in income inequality, equation (31) shows that heterogeneity adds a

term that depends on how ratios of the average Lagrange multipliers across agents covary with

returns. When non-traders have more volatile consumption (presumably because they have

fewer avenues to smooth) than the traders, the government can use its debt portfolio to shift

some risk from non-traders to traders and improve average welfare. A strategy in which the

government borrows more in risky securities (security whose returns are low when marginal

values of wealth are high) and invests more in (or lowers issuance of) the risk-free asset makes

the overall public portfolio less risky. On the margin, this generates a welfare gain because it

allows the government to lower the volatility of the non-traders after-tax incomes. When such

risky securities are of longer duration (which is generally the case with long duration bonds),

such a strategy would also increase the duration of the optimal portfolio.

12The formulation of government optimality using aggregated Lagrange multipliers of various groups is closely
related to “multiplier approach” of Chien et al. (2011) who show that equilibria of a large class of heterogeneous
agent, incomplete markets environments can be characterized and efficiently computed using a multipliers
representation.
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4.5 Responses of prices to government policies

We now relax the assumption that government policies have no effect on asset prices. There

are two broad classes of models of price determination that are commonly used in the liter-

ature: closed economy models in which all asset prices are determined by the demand of the

representative household (e.g., Lucas and Stokey (1983), Angeletos (2002), Debortoli et al.

(2017), Faraglia et al. (2018)) and various models of segmented markets or preferred habitat in

which prices of government bonds of different maturities are determined by demands of specific

investor clienteles (e.g., Greenwood and Vayanos (2014), Koijen and Yogo (2019), Vayanos and

Vila (2021), Bigio et al. (2023)).

In this section, we examine the simplest version of the preferred habitat model. This model

is transparent enough to highlight the main effects of price adjustments on optimal portfolios,

while also flexible enough to align its predictions with empirical evidence of price responses to

government portfolio rebalancing. In online Appendix E, we consider a closed economy and

show that it has the channels emphasized by our preferred habitat model, but implies signs of

price responses that are inconsistent with the available empirical evidence.

In the spirit of the preferred habitat investors in Vayanos and Vila (2021), we assume that

the government faces downward-sloping demand curves for issuances its debt maturities in

period t as

lnQkt = αk,t − φk,t(B̃
k
t ), (32)

where {αk,t}k are random variables, and {φk,t(·)}k are differentiable functions, and B̃k
t de-

notes the quantity of bonds of maturity k issued by the government. This specification of

price processes includes, as a special case, our benchmark economy, in which φk,t(·) = 0 and

{αk,t}k are as implied by equation (5). To abstract from liquidity premium, we assume that

parameters are such that domestic households purchase positive quantities of government debt.

To streamline exposition, we assume that demand for the one-period bond is perfectly elastic,

φ1,t(·) = 0, but derive all the results in online Appendix B without this restriction.

As in previous section, we restrict our attention to the problem of allocating debts of

different maturities. Since debt prices respond to quantity issuances, it will be more convenient

to write the government budget constraint in terms of quantities as

Tt −Gt +
∑
k

Qkt B̃
k
t =

∑
k

(
Qkt +Dk

t

)
B̃k+1
t−1 . (33)

We define the debt level and portfolio perturbations in this economy as follows. The debt

level perturbation increases quantity of each maturity k by ωkt ε/Q
k
t , the portfolio perturbation
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changes quantities of a k period bond and a risk-free bond by ε/Qkt and −ε/Q1
t , respectively.

Taxes are adjusted in all periods to satisfy government budget constraints. Note that these

perturbations coincide with the ones we considered in Section 3 in the absence of price re-

sponses.

Price responses introduce two changes in our welfare analysis that will be convenient to de-

scribe using inverse price semi-elasticities φ′
k,t(B̃

k
t ) = −∂ lnQkt /∂B̃k. First, when a government

issues a price-inelastic bond, its price falls and additional taxes need to be raised to satisfy its

budget constraint. If a government issues ε/Qkt more units of debt of maturity k taxes need

to be adjusted in period t by ε
[
−1 + φ′

k,t(B̃
k
t )(B̃

k
t − B̃k+1

t−1 )
]
to satisfy the budget constraint.

The second term reflects the fact that issuing more debt affects bond prices and revalues both

the incoming portfolio inherited from date t − 1 and the outgoing portfolio chosen at date

t. Thus, the direct fiscal impact of price responses depends both on the strength of the price

response φ′
k,t(B̃

k
t ) and on the quantity of re-balancing of bond k, ∆k

t = B̃k
t − B̃k+1

t−1 .

The second change is that price responses affect welfare of households directly. This effect

is captured, up to βt Pr(st), by Mtφ
′
k,t(B̃

k
t )δ

k
t , where δ

k
t = b̃kt − b̃k+1

t−1 are portfolio re-balancing

of households. The intuition for this term is similar to that of the government, but it has the

opposite sign. While ∆k
t > 0 implies that price response “hurts” the government by requiring

it raise taxes to compensate the revenue shortfall, δkt > 0 implies that households benefit from

lower bond prices. If households buy a bond from the government, lower bond prices transfer

resources from the government to households.

We now derive optimality conditions implied by the debt level and portfolio perturbations.

For simplicity, we assume that δkt is small relative to ∆k
t . Using the envelope theorem, we

obtain generalizations of equations (10) and (11),

1

ξt
− 1

ξt

∑
k

ωktφ
′
k,t(B̃

k
t )∆

k
t = Et

βMt+1

Mt

1

ξt+1

Rt+1 for all t, (34)

− 1

ξt
φ′
k,t(B̃

k
t )∆

k
t = Et

βMt+1

Mt

1

ξt+1

rkt+1 for all k, t. (35)

If we compare these equations to their analogues in the small open economy, (10) and (11),

we see that price responses affect both the debt level dynamics and portfolio composition in

proportion to the costs of portfolio re-balancing, {φ′
k,t(B̃

k
t )∆

k
t }k.

To derive portfolio implications of these equations we take the small noise expansion as

in Section 3. Similarly to our study of the liquidity premium in Section 4.3, we consider

small noise expansions that scale price effect functions {φk,t(·)}k,t with σ2. The motivation

for this approximation is two-fold. Empirically, price responses appear to be comparable to
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risk premia.13 Moreover, many microfounded models of price responses, such such as Vayanos

and Vila (2021) or the closed economy as in online Appendix E, have the property that price

responses are pinned down by the second order moments because they represent compensation

for holding duration risk. Proceeding as in Section 4.3, one can show that part (a) of Lemma

2 still holds in this economy but part (b) can now be stated as

covt

(
rkt+1, ∂τ t+1

)
≃ − ξ (τ t)

−ξ′ (τ t)Q1
t

∆k
tφ

′
k,t(B̃

k
t ). (36)

This equation shows the optimal portfolio equalizes covariance of taxes and excess returns of

a bond of maturity k to the costs of rebalancing the bond.

Using this optimality condition it is easy to adapt arguments of Section 3 to derive the

optimal portfolio. To state the result using intuitive terms, define ω+
t−1 be the vector of

{Qkt B̃k+1
t−1 /Bt}k ̸=1. Vector ω+

t−1 has a simple economic interpretation. These are shares com-

puted by evaluating holdings of securities purchased in t− 1 at period t prices and normalized

by the market value of total debt in period t. The difference ωt − ω+
t−1 captures portfolio

re-balancing.

Let Dt be a diagonal matrix with elements
∑∞

k=1Q
k
t

(Q1
t )

2
ξ2(τ t)
−ξ′(τ t)

Yt
Qk

t
and Λt be a diagonal matrix

with of semi-elasticities {φ′
k,t(B̃

k
t )}k ̸=1. The optimal portfolio satisfies, to the second order,

Σtωt ≃ ΣQt s
Q
t +ΣGt s

G
t −DtΛt

(
ωt − ω+

t−1

)
, (37)

which is a generalization of equation (18) to the case when prices of government bonds respond

to their supplies. When matrix Σt is invertible, it can be written as

ωt ≈ ω∗
t − Σ−1

t DtΛt
(
ωt − ω+

t−1

)
, (38)

where ω∗
t is given by (19). This equation has a simple interpretation. In the absence of price

responses, the planner ought to choose portfolio ω∗
t characterized in previous sections. When

prices respond to portfolio re-balancing, the optimal portfolio depends both on ω∗
t and the

portfolio chosen in the previous period, ω+
t−1. The relative importance of these two portfolios

on ωt is determined by the covariance-adjusted matrix of price responses, Σ−1
t DtΛt.

Similarly to our discussion in Section 3.1, as long as debt levels are chosen optimally to

the first order, the dependence of matrices Σt, Σ
Q
t , Σ

G
t , Dt and weights sQt , s

G
t on portfolio

choice ωt and future government policies are all of the third order in equation (37) and thus

13For instance, Greenwood and Vayanos (2014) document that a one standard deviation change in their
preferred measure of bond supply affects bond yields by a 10 basis points at the short end and up to 40 basis
points for longer maturities. These responses are similar in order to risk premia on those bonds that range
typically between 50 to 150 basis points at the annual frequency.
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drop out from equation (37). Matrix Λt depends on ωt to the second order and so, in order

to explicitly obtain optimal portfolio using (38), one needs to estimate this dependency and

solve for a fixed point. One tractable case is when price semi-elasticities are constant, i.e.,

{φk,t(·)}k can be written as φk,t(B̃
k
t ) = λkB̃

k
t . In this case, Λt is simply a diagonal matrix of

semi-elasticities {λk}k and (38) is a linear equation that is easy to invert.

In the discussion above, we assumed that the demand for the one period bond is perfectly

elastic. This assumption is easy to relax. In online Appendix B, we derive the counterpart of

expression (38) when demand for one-period bonds is imperfectly elastic. The optimal portfolio

formula now features extra terms that account for adjustments of the risk-free bond holding

but preserve all the insights of equation (38).

5 Quantitative application

In Sections 3 and 4, we obtained formulas for optimal public portfolios in various settings in

which key objects have empirical counterparts. In this section, we use U.S. data to quantify

those objects, derive implied optimal public portfolios, and compare them with observed U.S.

debt portfolios.

Since bonds are the securities governments trade most often in order to respond to business

cycle shocks, we focus on optimal portfolio of bonds.14 We start with terms in the expression for

ω∗
t from equation (24) as they are more straightforward to take to data and those terms continue

to show up in more general settings. We call ω∗
t as the target portfolio. After quantifying the

target portfolio, we discuss additional terms that arise from incorporating price impacts and

household heterogeneity.

5.1 Data

We use the U.S. national income and product accounts to measure output, tax revenues, and

government spending. We use data on average marginal tax rates from Barro and Redlick

(2011) extended to 2017. To measure returns on government debts of different maturities, we

use the Fama Maturity Portfolios published by CRSP. There are 11 such portfolios, of which

ten portfolios correspond to maturities of 6 to 60 months in 6 months intervals, and a final

portfolio for maturities between 60 and 120 months. We add a twelfth portfolio that consists

of the nominal 3-Month Treasury Bill, published by the Federal Reserve Board of Governors.

We use data from Gurkaynak et al. (2007) to estimate the yield curves. All data are quarterly,

14Since most U.S. public debt is in the form nominal bonds, we use the nominal versions of the optimal
portfolios. See online Appendix C for details.
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nominal, and extend from 1952 to 2017. More details about data sources and data construction

are in online Appendix C.

In Table 1, we present summary statistics of contemporaneous covariances, means, and au-

tocorrelations. For convenience, all variables are multiplied by 100 and reported in quarterly

percentage points. Several patterns that emerge from this table will play an important role

in shaping an optimal portfolio. Covariances of excess returns of government bonds of differ-

ent maturities are several orders of magnitude larger than covariances of excess returns with

primary surpluses and tax rates. Furthermore, covariances of excess returns with primary sur-

pluses have a negative sign. This reflects that the primary government surplus is procyclical,

but that bond excess returns are countercyclical.

Table 1: COVARIANCE MATRIX

Excess returns rjt for various maturities j Surplus

to

GDP

Tax

rate

6m 12m 18m 24m 30m 36m 42m 48m 54m 60m 120m Xt/Yt τt

6m 0.092 0.2 0.29 0.36 0.43 0.48 0.5 0.53 0.56 0.61 0.69 -0.01 0.017

12m 0.49 0.73 0.91 1.1 1.2 1.3 1.4 1.5 1.6 1.8 -0.10 -0.021

18m 1.1 1.4 1.7 1.9 2.1 2.2 2.4 2.6 3 -0.17 -0.027

24m 1.8 2.2 2.5 2.7 3 3.1 3.5 3.9 -0.26 -0.068

30m 2.8 3.2 3.5 3.7 3.9 4.4 5 -0.31 -0.091

36m 3.6 4 4.3 4.5 5.1 5.8 -0.40 -0.081

42m 4.4 4.8 5.1 5.6 6.5 -0.45 -0.140

48m 5.4 5.6 6.2 7.2 -0.50 -0.180

54m 6.1 6.7 7.7 -0.56 -0.190

60m 7.8 8.6 -0.62 -0.170

120m 10 -0.75 -0.290

Xt/Yt 4.30 0.940

τ t 1.900

Mean 0.076 0.14 0.2 0.23 0.26 0.3 0.33 0.33 0.36 0.29 0.44 2.5 30

Autocorr -0.11 -0.08 -0.09 -0.08 -0.09 -0.07 -0.05 -0.03 -0.04 -0.07 -0.03 0.96 0.92

Notes: Excess returns 6m, 12m, ... are the nominal excess returns in Fama maturity portfolios corresponding to

6-12 months, 12-18 months, ... maturity bins, respectively. Surplus is measured as federal tax receipts (including

contributions to social insurance) less federal government consumption expenditure (including transfer payments

to persons) from the BEA. The tax rates series is detrended average marginal tax rate on income computed by

Barro and Redlick (2011) and extended to 2017. All data are quarterly and in percentage points. All series are

for 1952-2017.

27



5.2 Target portfolio

Equation (24) indicates that to compute the target portfolio ω∗
t , one needs to specify a market

structure, a labor supply function v (·), and measure two sets of objects: (i) covariances Σt,

ΣQt , Σ
G
t , Σ

Θ
t and (ii) weights sQt , s

G
t , s

Θ
t . For market structure, we assume that the government

can invest in pure discount bonds from maturity 1 quarter to N quarters. For labor supply, we

assume vt (Yt) = Θ
−1/γ
t

Y
1+1/γ
t
1+1/γ as in Section 4.2 and use the expression Θt =

Yt
(1−τ t)γ , to back

out lnΘt from data on output and tax rates.

We set the labor supply elasticity parameter γ = 1
2 . We set Θt to normalize Yt = 1 and

Bt = 4 to get a debt to annual GDP of 100%. We set
(
Gt,
{
Qkt
}
k

)
at their sample averages.

In particular, Gt = 15% and the values for {Qkt }k are reported in panel (b) of Figure 1. We

compute T taxt+k using the optimal tax rates that satisfy the zeroth order budget constraint given

Bt and Gt. For our calibrated parameters and functional forms, these tax rates are constant

across periods and equal 18.7%.

Measuring the weights and covariances is more challenging. While in Table 1 we reported

sample counterparts of ergodic covariances, our theory requires us to measure the covariances

and weights conditional on date t information set. Second, our formulas require an inverse

of the covariance matrix of returns, Σ−1
t . It is known that simply calculating an in-sample

covariance matrix and then taking its inverse can lead to large sampling errors.15 Third, we

need to measure not only covariances of returns with contemporary realizations of various

macroeconomic variables but also their realizations at all future horizons. Finally, the weights{
sQt , s

G
t , s

Θ
t

}
t
require estimating conditional means of future spending and TFP.

We overcome these challenges by adopting a parsimonious dynamic factor structure rep-

resentation.16 We start with a particularly simple representation. This simple representation

transparently maps the estimated coefficients to the theoretical objects in the optimal portfolio

formulas. Additionally, it enables us to emphasize the key quantitative insights that remain

relevant in the more advanced factor models discussed later in this section.

Let zt be a stacked vector that consists of excess returns
{
rjt

}
j
for the 11 portfolios of

different maturities j, a measure of lnΘt and expenditures lnGt. We use zιt to denote the ιth

element of this vector, with ι ∈ {G,Θ} corresponding to series for lnGt and lnΘt, and ι = j

15See, for example, early work by Jobson and Korkie (1980), Merton (1980), Michaud (1989) and later work
by Jagannathan and Ma (2003) and DeMiguel et al. (2007).

16Factor representations are popular in finance for estimating Σ−1
T (see, e.g., MacKinlay and Pastor (2000),

Chan et al. (1999), Senneret et al. (2016)). We superimpose a VAR structure on the factor model to obtain
covariance estimates at all leads and lags. This extension is similar in spirit to the Factor Augmented Vector
Auto Regressions (FAVAR) literature (see, e.g. Bernanke et al. (2005) and Bai et al. (2016)).
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corresponding to the returns on the jth maturity. We posit the following stochastic process

zιt = α+ zιt−1 + κιft + ειt for ι ∈ {G,Θ},

zjt = αj + ρjz
j
t−1 + κjft + εjt for all j, (39)

where ft is a factor, which we take to be here the first principal component extracted from

observed excess returns, primary surplus, output, and the risk-free rate, and ειt are residuals

with variances σ2ι . For our baseline specification we assume that ft = αf + εft , where ε
f
t are

homoskedastic innovations with variance σ2f .

This specification implies a very simple and transparent structure on conditional covariances

and means. The expected growth rate of aggregate variables lnGt and lnΘt is constant and

equal to α. Each variable ι moves because of common shocks, captured here parsimoniously

by the factor ft, and idiosyncratic disturbances. Factor loading κι captures how much each

variable responds to the common shock. The date t conditional variance of any variable

zιt+1 is vart(z
ι
t+1) = κ2ισ

2
f + σ2ι , and equal to the sum of a common and the idiosyncratic

component. The conditional covariances satisfy covt(z
ι
t+1, z

j
t+1) = κικjσ

2
f for all ι, j ̸= ι, and

covt(z
ι
t+k+1, z

j
t+1) = κικjσ

2
f for ι ∈ {G,Θ}, and all j, and k.17

Table 2 reports the estimates of the simple factor model. The factor captures about 90%

of the variation in the returns and panel (a) of Figure 1 reports the time-series for the common

factor. The return loadings are all statistically significant and are monotonically increasing in

maturities. The factor loadings of lnG and lnΘ are statistically significant and have the same

signs. This means that spending and tax revenues co-move with returns and partly offset each

other when we consider movements in primary surpluses.

17In online Appendix C, we show how the covariances implied by the factor model compare to the raw
covariances measured in the data for all versions of the factor model that we use in our analysis.
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Table 2: FACTOR MODEL ESTIMATION (BASELINE)

Excess returns r
j
t for various maturities j

6m 12m 18m 24m 30m 36m 42m 48m 54m 60m 120m lnGt lnΘt ft

αk 0.086 0.155 0.220 0.245 0.284 0.315 0.346 0.344 0.372 0.304 0.444 0.005 0.005 0.024
(0.014) (0.025) (0.033) (0.035) (0.039) (0.039) (0.038) (0.037) (0.037) (0.043) (0.030) (nan) (nan) (0.501)

ρk -0.107 -0.057 -0.041 -0.043 -0.042 -0.025 -0.022 -0.008 -0.022 -0.027 0.003 1.000 1.000 0.000
(0.043) (0.035) (0.030) (0.025) (0.023) (0.020) (0.018) (0.016) (0.015) (0.015) (0.009) (nan) (nan) (nan)

κk 0.028 0.074 0.118 0.157 0.199 0.230 0.257 0.285 0.306 0.345 0.404 -0.032 -0.047 0.000
(0.002) (0.003) (0.004) (0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.004) (0.016) (0.008) (nan)

σ2
k 0.044 0.154 0.267 0.300 0.378 0.384 0.356 0.345 0.341 0.460 0.222 4.231 1.147 63.753

(0.004) (0.014) (0.024) (0.027) (0.034) (0.034) (0.031) (0.031) (0.030) (0.041) (0.020) (0.375) (0.102) (5.637)

R2 0.536 0.698 0.771 0.840 0.870 0.898 0.922 0.938 0.946 0.943 0.979 0.015 0.109 0.000

Notes: This table records the OLS estimates of the factor model (39). Standards errors are in parenthesis. The sample

for excess returns and primary surpluses normalized by outputs is 1952-2017. The time period is a quarter.

Figure 1: INPUTS FOR TARGET PORTFOLIO
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Notes: The left panel plots the time series for the common factor. The common factor is extracted as the first principal

component from observed returns, the government surplus, output, and the risk-free rate. The right panel plots the bond

price curve. We use data from Gurkaynak et al. for the period 1952-2017 to compute average yields for maturities spaced

4 quarters apart and then interpolate the yields.

We use this factor model to construct the target portfolio using formula (24). Since that

formula requires interest rates and returns for horizons beyond the twelve CRSP maturities,

we extrapolate factor loadings and volatilities of missing maturities using exponential curves

of the form e0 − e0 exp
(
−e1j

)
, where the coefficient e1 captures the slope and the coefficient

e0 bounds the range of values between
[
0, e0

]
. We provide additional details about the fit and

discussion of robustness in online Appendix C.
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To implement formula (24), covariances Σt, Σ
G
t , Σ

Θ
t can be directly constructed using our

observations above. We construct ΣQt using the relationship covt(lnQ
k
t+1, r

j
t+1) ≃ covt(r

k
t+1, r

j
t+1)/Q

1
t .

Weights sGt [k], s
Θ
t [k], and s

Q
t [k] can be constructed from our estimates since to the appropriate

order of approximation they satisfy
Qk

t Γ
kGt

Q1
tBt

,
Qk

t Γ
kTt

Q1
tBt

, and
Qk+1

t Γk+1

Q1
t

∑∞
k=1Q

k
t Γ

k where Γ := exp(α) and

α is the growth rate of log G as well as lnΘ. The terms {Qkt Γk}k will play an important role

in the expressions for the optimal portfolios. Recall that Qkt is the period-t price of a bond

with maturity k (see Figure 1 (b)) so Qkt Γ
k is the price of that bond adjusted by the expected

growth rate Γk that occurs by the time this bond matures. We use β̂t := 1 − 1∑∞
k=1Q

k
t Γ

k to

denote the “discount factor” implied by this growth-adjusted price curve.

Using these observations, we can construct the target portfolio ω∗
t for any arbitrary set of

bond maturities. We denote the set of available maturities as G. For most of our discussion,

we take G to consist of all maturities up to 30 years, which in our quarterly data specification

means G = {1, 2, ..., 120}. This choice is in line with issuance practices of the U.S. government.

We also discuss implications of choosing other sets G.
We present the target portfolio as a sum of two portfolios, ω∗

t = ωXt + ωQt where ωXt , ω
Q
t

have elements

ωXt [j] =

(
1

1− β̂t

)(
κΘTt − κGGt

Q1
tBt

)(
κj
σ2j
χ2

)
, (40)

ωQt [j] =
(
1− β̂t

)∑
ℓ/∈G

Qℓ+1
t Γℓ+1κℓ

(κj
σ2j
χ2

)
+
(
1− β̂t

)
Qj+1
t Γj+1, (41)

and the constant χ−2 := σ−2
f +

∑
i∈G κ

2
iσ

−2
i . Portfolios ωXt , ω

Q
t have natural economic in-

terpretation. Portfolio ωXt equals Σ−1
t ΣGt s

G
t + Σ−1

t ΣΘ
t s

Θ
t and is the portfolio that hedges the

primary surplus risk {Tt+k −Gt+k}k. Portfolio ωQt = Σ−1
t ΣQt s

Q
t hedges the interest rate risk.

Formulas (40) and (41) contain several observations about how these risks are hedged.

Equation (40) shows how shocks to primary surpluses are hedged. This expression shows that

maturities with higher values of
κj
σ2
j
have a bigger weight in the portfolio that hedges primary

surpluses. This ratio has a following interpretation. Loading κj captures how much the returns

of bonds of maturity j co-move with a common factor, and σ2j captures the volatility of the

component of returns that is orthogonal to the common factor. Thus,
κj
σ2
j
is a measure of how

good maturity j is at hedging macroeconomic shocks. The other parameters in (40) are scaling

terms: κΘTt−κGGt

Q1
tBt

is the hedgeable part of primary surpluses in period t in the market value of

debt, and (1 − β̂t)
−1 converts that statistic into the present value, which under our balanced

growth path factor structure takes a particularly simple form.

31



Equation (41) shows that the portfolio that hedges interest rate risk has a related but

distinct structure. This portfolio consists of two terms. The first term on the right hand side

of (41) has a similar structure to the right hand side of (40), that is, portfolio weights depends

on the ratio
κj
σ2
j
and scaling terms. Importantly, the scaling terms depend only on the interest

rates of the maturities not included in G, that is, {ℓ /∈ G}. So that if G has maturities for the

first 30 years, this term captures fluctuations in long interest rates beyond the 30 year horizon.

The second term in (41) has a very simple structure in which holdings of maturity j is

proportional to Qj+1
t Γj+1. To understand the reason for this structure, and why it is different

from (40), recall the maturity matching principle from the discussion of equation (20). When

all maturities are available, the maturity matching principle said that a good way to hedge

interest rate risks was to align the quantity of debt to the path of expected primary surpluses.

With our balanced growth specification, expected deficits grow at rate Γ, and this principle

will imply portfolio shares that are proportional to Qj+1
t Γj+1.

This discussion highlights several take-aways. First, the target portfolio must have a com-

ponent driven by maturity matching. In the context of a market structure with a cap of

the maximum maturity, we denote the component driven by maturity matching as ωmmt [j] ≡
(1− β̂t)× {Qj+1

t Γj+1}j for all available maturities j ∈ G. The deviations of ω∗
t from ωmmt are

determined by quantitative strength of two forces: the ability of available bonds hedge primary

surpluses and very long interest rates. Second, if we increase the number of maturities in G,
the relative importance of the second force declines.

We now use our estimation to construct the target portfolio ω∗
t . We choose G to consist

of first 30 year maturities and plot implies ω∗
t in Figure 2 (a). For comparison, we also plot

the actual U.S. portfolio of government bonds in 2017. Both graphs show that portfolio shares

decline in maturities, roughly geometrically, but the U.S. portfolio overweights short maturities

and underweights long maturities. Thus, the duration of the target portfolio is longer. The

Macaulay duration, which measures the weighted average time to maturity of cash flows, is

approximately 5 years for the U.S. portfolio and 9.6 years for the target portfolio.

Panel (b) of Figure 2 sheds light on what determines quantitative properties of ω∗
t . Here

we plot component portfolios ωQt , ω
X
t , and ω

mm
t . This panel shows that ω∗

t is extremely similar

to ωmmt . This result comes from the interaction of two forces. The interest rate risk hedging

portfolio ωQt has a bit longer duration than ωmmt , since longer maturities are better at hedging

interest rate risk beyond the 30 year horizon. At the same time ωXt has negative weights,

reflecting the fact that primary surpluses co-move negatively with returns in the data, and so
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negative holdings of those bonds hedge risk.18 These two effects approximately cancel out so

that ω∗
t resembles portfolio ωmmt .

Another observation from Figure 2 is that bonds offer modest ability for the government for

hedging of the primary surpluses. The ratio
κj
σ2
j
peaks for medium-duration maturities but even

then the role of these bonds in hedging primary surpluses is fairly small. One way to quantify

the importance of hedging of interest rate risk vs primary surplus risk is to compute shares
∥ωQ

t ∥1

∥ωQ
t ∥1

+∥ωX
t ∥1

and
∥ωX

t ∥1

∥ωQ
t ∥1

+∥ωX
t ∥1

, where ∥·∥1 denotes the l1 norm (i.e., the sum of absolute

values). Using this metric, the importance of hedging of interest rate risk is approximately

85% in the target portfolio, and the importance of hedging of the primary surplus risk is 15%.

The poor ability of bonds to hedge primary surplus risk should not be surprising given the

observations in Table 1. As we highlighted in that table, covariances of returns on bonds with

macroeconomic variables are fairly low, especially compared to the volatility of those returns.

Figure 2: TARGET PORTFOLIO, COMPONENTS, AND U.S. PORTFOLIO
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Notes: Portfolio shares of securities with maturities from 2 quarters to 120 quarters. In panel (a) we plot the target

portfolio and compare it to the 2017 U.S. debt portfolio. In panel (b) we plot the maturity matching portfolio ωmm
t and

the two components of the target portfolio that hedge interest rate risk ωQ
t , and primary surplus risk ωX

t , respectively.

We next discuss the role of certain assumptions made in the baseline calculations.

Multifactor models Our baseline empirical specification (39) assumes that there is one

factor ft. The bond pricing literature going back to the seminal work of Litterman and

18For instance, consider states when tax revenues are low. The negative covariance between long maturity
rates and primary surplus means that long interest rates will be high in those states. Thus, issuing fewer long
duration bonds is helpful because it offsets the loss in tax revenues with lower debt service costs without raising
distortionary taxes. The negative (or long) positions in ωX

t capture this tradeoff.
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Scheinkman (1991) showed that a small number of factors explains vast fraction of volatil-

ity of bond returns but typically uses more than one factor.19 We now discuss a multi-factor

extension of our factor model (39).

Our general multifactor specification replaces κιft with
∑

m κm,ιf
m
t wherem is the index for

factors. In this section, we present the result for a two-factor model where factors correspond

to the first two principal components of the observed bond returns, the government surplus,

output, and the risk-free rate. This two-factor specification explains over 98% of bond excess

returns.20

We relegate most of the details about the estimation to online Appendix Cand briefly

summarize the main takeaways here. The second factor is less volatile as compared to the

first factor. The factor loadings on both factors are statistically significant for all the returns

but have different shapes as a function of maturity. The loadings on the first factor are

monotonically increasing in maturity, while those on the second factor are hump shaped.

This corresponds to the level and curvature factors in the Litterman and Scheinkman (1991)

terminology. Finally, only the first factor has statistically significant loadings for lnGt and

lnΘt. Overall, while the two factors are necessary for a more accurate description of returns,

the second factor matters little for spending and tax revenue risk.

The multi-factor specification preserves the tractability of our one-factor model. One can

still derive the analogue of expressions (40) and (41) and those expressions capture the same

economic forces that we emphasized in our baseline specification. We plot the target port-

folio ω∗
t implied by the two-factor model in Figure 3(a).21 For comparison, we also plot the

U.S. portfolio and the growth-adjusted price curve ωmmt that are the same as in Figure 3(a).

The two-factor specification slightly shifts portfolio towards shorter maturities but the overall

difference from the baseline specification is small, with second factor reducing the Macaulay

duration from 9.6 to 9.5 years.

In our empirical specification, we built on the work of Litterman and Scheinkman (1991)

and others (for instance, Campbell et al. (1998), Cochrane and Piazzesi (2005), and Ludvigson

and Ng (2009)) who express bond returns as being driven by factors common to all maturities

and the residuals that are maturity specific. A particularly convenient feature of this approach

is that the covariance matrix is easily invertible. There exists another tradition in finance, the

19For example, Litterman and Scheinkman used a 3 factor model for bond excess returns. They show that the
first three principal components of bond returns explained more than 96% of variation in their sample. Based
on the shape of the factor loadings, they interpreted the factors as level, slope, and curvature.

20We experimented with adding more factors and did not find any meaningful changes in the results.
21Here and in the rest of the section, we follow a convention of setting statistically insignificant regression

coefficients to zero when we implement our formulas.
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so-called affine term structure literature, that assumes that it is the stochastic discount factor

process that is driven by a small number of factors, and then uses that process to derive prices

and returns of bonds of various maturities (see, e.g., Dai and Singleton, 2000, Piazzesi, 2010).

This approach uses no maturity specific shock εjt , so the covariance matrix Σt is not invertible,

which implies that there are multiple optimal portfolios. We assess the role of idiosyncratic

shocks εjt in our setting, by sending the estimated σ2j → 0 for each j and kept the factor

loadings {κm,ι}m,ι at their estimated values. We report our findings in panel (b) of Figure

3. This figure shows that the limiting target portfolio is quite similar to the target portfolio

computed using the estimated {σ2j}j . This is not surprising given that the orthogonal variation

captures less than 2% of the variation in returns.

Figure 3: ROLE OF MULTIPLE FACTORS
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Notes: Portfolio shares of securities with maturities from 2 quarters to 120 quarters. In panel (a) we compare the maturity

matching portfolio ωmm
t to the target portfolio with multiple factors and the U.S. debt portfolio. In panel (b) we compare

the target portfolio with multiple factors to the limiting target portfolio as send the loadings on idiosyncratic components

σ2
j → 0.

Departures from stationarity The baseline factor model assumed stationarity implying

that expected deficits and output grow at a constant rate and covariances are constant. In

online Appendix C, we discuss several departures from stationarity. Here we summarize the

main results.

First, we turn on the autoregressive components in dynamic factor model. The optimal

portfolio is largely same with these changes. This is because the excess returns are not very

autocorrelated so the estimated ρf is close to zero.
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Next we investigate predictability in drivers of primary deficits. First, we estimate the top

equation of (39) with a more flexible autoregressive structure. We cannot reject that spending

and TFP are unit roots. However, economies sometimes experience transitory increases in

spending levels. For instance, the public spending during the COVID-19 pandemic represents

such a case. Our expressions for the target portfolio provide guidance on how the optimal

portfolio should respond to these temporary shocks. In online Appendix C, we consider several

experiments with unexpected transitory increases in spending at date t parameterized by the

size of the initial impulse and the speed of mean reversion.

The general pattern is that after a transitory increase in spending, the target portfolio

“tilts” with lower holdings of short maturity debt and higher holdings of long maturity debt.

For a given debt level, high transitory spending leads to lower primary surpluses in the short-

run and higher primary surpluses in the long run. The maturity matching motive implicit in

the inter-temporal weights on the interest rate hedging component calls for down-weighting

maturities when expected surpluses are low and shift the portfolio towards longer maturities

when primary surpluses are high.

We also allow for time-varying covariances which we estimate using a Generalized Autore-

gressive Conditional Heteroskedasticity (GARCH) structure. With heteroskedastic shocks,

there is in-sample variation of the covariances and this would generate variation in portfolios

even if we kept
(
Gt,
{
Qkt
}
k

)
unchanged. However, we find that the portfolios are quite sta-

ble. The is because the time-varying volatility of the common factor shows up in both the

covariances in returns with spending, tax revenues and the covariances of returns with each

other. Since the optimal portfolio depends on the ratio of these two covariances, the effect of

time-varying risk is muted in how it affects the target portfolio.

5.3 Price effects

In our previous discussion, we used equation (24) that implicitly assume that prices of gov-

ernment bonds do not depend on bond supplies. A large empirical finance literature (see

Krishnamurthy and Vissing-Jorgensen (2012), Greenwood and Vayanos (2014) and more re-

cently Mian et al. (2022)) has documented that changes in supply of bonds affect their prices.

In this section, we use empirical estimates of price responses to evaluate optimal portfolio

formation with price effects. For quantitative evaluation, we will use the generalization of the

setup from Section 4.5 that allows for price effects for bonds of all maturities.22

To compute the optimal portfolio with price effects, we need to estimate equation (32)

22See online Appendix B for the exact formulas and more details.
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which includes nonlinear functions
{
φk,t

(
B̃k
t

)}
k
. Following the discussion from Section 4.5,

we assume that
{
φk,t

}
k
are affine functions of the face value of outstanding debts and thus

semi-elasticities
{
φ′
k,t

}
k
are constants. We then leverage estimates from existing literature to

recover these constants.

There is a growing empirical finance literature that estimates semi-elasticities
{

∂ ln yieldskt
∂Bond supplyt

}
k
,

which capture the effect of changes in bond supply on bond yields of different maturities.

These elasticities are obtained using various instrumental variable designs that capture exoge-

nous supply-shifters. A common finding is that these elasticities are positive and increasing

in maturities. To incorporate price effects, in principle, we need estimates of semi-elasticities{
∂ ln yieldskt

∂B̃k
t

}
k
for all k, but typically the literature provides such estimates only measures of

total supply such as in total debt in Krishnamurthy and Vissing-Jorgensen (2012) or maturity-

weighted debt in Greenwood and Vayanos (2014). Under the assumption that the portfolio

shares are constant when total debt changes, we can back out semi-elasticities we need to

construct price effects. In online Appendix C, we use this assumption and estimates from

Greenwood and Vayanos (2014) to construct the matrix Λt.

We can now describe the optimal portfolio of public debts with price effects. We use a

version of formula (38) that relaxes the assumption that demand for risk-free bond is perfectly

elastic.23 Formula (38) and its generalizations prescribes a non-trivial dependence of portfolio

ωt on portfolio ωt−1. To facilitate comparisons with the target portfolio ω∗
t we focus on ωss =

limt→∞ ωt, or the the long run portfolio when the transition dynamics have settled down.24

Optimal Portfolio Figure 4 panel (a) reports the optimal steady state portfolio ωss in our

preferred habitat model and compares it to the target portfolio in the Section 5. We see that

the optimal portfolio with price effects sits in between the optimal portfolio without price

effects and the observed U.S. portfolio.

With price effects, the government faces an additional trade-off when issuing longer maturi-

ties relative to hedging motives. As discussed in Section 5, issuing long maturities helps hedge

interest rate risk, but it requires constant rebalancing due to a cap on the maximum maturity.

For instance, the optimal portfolio without price effects that we computed in Section 5 uses

all available maturities. Since the maximum maturity is 30 years, to maintain that portfolio,

every period the government has to issue new 30 year bonds. Our estimates of price effects

23See equation (60) in online Appendix B.
24For computing the long run portfolio, we need specify how matrices Dt and Λt evolve with t. Under the

assumption that
{
Qk

t

}
are set to sample averages and implication of government optimality that Etτ t+ℓ = τ t, we

have Dt+ℓ = ΓℓDt where Γ is the growth rate of output along the balanced growth path. Under our assumption
that the semi-elasticities φ′

k,t are constants, and we have Λt+ℓ = Λt.
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suggest that long bonds are expensive to reissue. Thus, to economize the cost of issuances,

the optimal portfolio with price effects tilts towards shorter maturities and away from longer

maturities. For our calibration, the Macaulay duration of the optimal portfolio is 6.15 years.

This duration is still higher than the U.S. debt portfolio which is about 5 years but lower than

the duration of the optimal portfolio ignoring the price effects which was 9.6 years.

This discussion also suggests that the tradeoff between costly reissuances and hedging

depends on the cap on the maximum maturity. The ability to issue longer maturities mechan-

ically reduces the amount of debt that needs to be rebalanced, and has an additional benefit

of better hedging of interest rate risk as highlighted by the discussion of equation (41) in the

previous section. Thus, one should expect the optimal portfolio with and without price effects

to come closer as we expand the set of available maturities. We verify this in panel (b) of

Figure 4 where we plot the optimal portfolios assuming N = 200 or 50 years. The difference

in Macaulay durations of the optimal portfolio with and without price effects with N = 200 is

only 6 months.

Figure 4: OPTIMAL PORTFOLIO WITH PRICE EFFECTS
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Notes: Portfolio shares of securities with maturities from 2 quarters to N quarters. In panel (a) we set N = 120 and

plot the optimal portfolio with price effects and compare it to the maturity matching portfolio ωmm
t and the U.S. debt

portfolio. In panel (b) we repeat the exercise with N = 200 quarters. The price effects are calibrated using Greenwood

and Vayanos (2014).

5.4 Household heterogeneity

To get a sense of the magnitude of the inequality-hedging portfolio in the optimal portfolio

(31), we use the following back-of-the-envelope calculation. Assume that a household type
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h = L represents a group of individuals who are in the left-tail (or bottom L percentile) of the

income distribution, and that the planner sets µL,t = 1. Then Σineqt [j, k] depends on how the

income share of the bottom L percentile covaries with returns. We can use our factor model

in equation (39) with an additional equation

ln
Yt
yL,t

= αineq + ρineq ln
Yt−1

yL,t−1
+ κineqft + σineqϵ

ineq
t ,

to parameterize Σ−1
t Σineqt with two new objects: κineq, a loading of inequality on the common

factor, and ρineq, the first-order autocorrelation in a measure of inequality.

We set L = 25% and use income share data from Guvenen et al. (2014) to obtain κineq =

0.002 and ρineq = 0.92.25 Our estimates suggest that the adjustment to the target portfolio is

very small, and this comes from a weak correlation of bond returns with movements in income

inequality.

To get a sense of what heterogeneous trading frictions mean for the duration of an optimal

portfolio, we capture the differences in consumption risk using a parsimonious formulation that

sets ln (MN,t+k) = (1 + ψ) ln (MT,t+k); the scalar parameter ψ is intended to measure strength

of trading frictions. When non-traders face more risk, so that multiplier ln (MN,T+t) is more

volatile than ln (MT,t+k), the parameter ψ > 0. Substituting into the definition of ΣMt and

using the counterpart of the traders’ Euler equation we get

ΣMt [k, j] = ψµN,k

[
Etrjt+1 − covt

(
lnQk−1

t+1 , r
j
t+1

)]
,

where all the terms in the square bracket on the right-hand side can be measured from return

data that we used in Section 5. In online Appendix C, we use estimates from factor model

(39) to quantify those terms for a special case in which the government trades a risk-free and a

growth-adjusted consol and verify that imperfect risk sharing lengthens the optimal maturity.

6 Debt portfolios in neoclassical models

Several papers including Lucas and Stokey (1983), Zhu (1992) and Chari et al. (1994), study

optimal public portfolios in “neoclassical” models with complete markets and a representa-

tive agent who has time separable expected utility preferences over consumption and leisure.

Angeletos (2002) showed that it is both feasible and optimal for a government with access to

a sufficiently big set of zero coupon bonds to implement a complete market allocation. He

25Guvenen et al. (2014) use SSA data and provide means as well as quantiles of labor earnings at an an-
nual frequency from 1978-2011. We first detrend the raw measure of inequality and then project it onto the
unemployment rate to obtain a quarterly inequality series. We estimated κineq and ρineq by using OLS.
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derived explicit expressions for the required portfolio. Buera and Nicolini (2004) and Farhi

(2010)) found that plausible calibrations of the neoclassical model requires an optimal port-

folio with huge long and short positions.26 Those portfolios differ markedly from the simple

portfolio that we obtained in Section 5.

In this section, we want to understand sources of those differences. We also want to see how

well our simple statistical rules for forming an optimal portfolio perform in environments where

some of the assumptions used to derive our rules are violated, e.g., absence of income and price

effects.27 We follow Buera and Nicolini (2004) and assume that households are identical, and

that they maximize E0
∑∞

t=0 β
t

[
C

1−1/IES
t

1−1/IES − Y
1+1/γ
t
1+1/γ

]
. The economy is closed, households and

the government trade securities that are in in zero net supply, and the government chooses

issuances and taxes, bond sales and purchases to finance an exogenous stochastic government

expenditure process. This economy satisfies all of the conditions that underly our benchmark

economy except that it is closed and that income effects are present.

We first construct an optimal bond portfolio using standard numerical methods. We call

this the theoretical optimal portfolio. We follow Buera and Nicolini (2004) and set IES = 1/2

and γ = 1. We assume that lnGt follows an AR(1) process and calibrate the mean, variance,

and first-order autocorrelation of this process to match the primary surplus to GDP ratio in

the U.S. data. We discretize this AR(1) process by confining possible realizations to be on a

grid with 20 points. We set the initial level of debt to be four times (quarterly) output in a

corresponding complete market economy.28

Since the Markov state st can take 20 possible values, results of Angeletos (2002) imply

that an optimal allocation can be achieved using only the bonds with the first 20 maturities.

We use formulas that Angeletos derived in Corollary to his Theorem 1 to compute that optimal

portfolio and report it in the green line in Figure 5.29 By construction, the ratio of the total

market value debt to annual GDP is close to 1, but this conceals large variations in market

values of positions at specific maturities. Consistent with findings of Buera and Nicolini, our

optimal portfolio exhibits huge long-short positions and variations in them across Markov

states. Market values of bonds of a given maturity can range several thousand times annual

26Lustig et al. (2008) study a nominal version of the neoclassical model and impose short-selling as well as
maximum maturity restrictions on the government portfolio. They find that these restrictions are binding and
that an optimal portfolio issues debt almost exclusively in the maximal maturity bond.

27In online Appendix E, we extend our methods to study the target portfolio in a closed economy.
28See online Appendix D for detail on how we compute the complete market allocation and the theoretical

portfolio.
29Actually, there are 20 different portfolios, one for each possible value of G. Here we plot portfolio for one of

the middle values (s = 10) of realizations of G for concreteness, but it is representative of the portfolio shapes
in all other states.
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Figure 5: COMPARISON TO NEOCLASSICAL PORTFOLIOS

Notes: Government portfolio shares ωi of 20 pure discount bonds of maturities i ∈ {1, . . . , 20} quarters. The green line

is the portfolio implementing the complete market allocation following Angeletos (2002). The dark line is the portfolio

defined by problem (42) taken for the average state, that is s = 10 in the ergodic distribution of G. The tolerance is

ϵ = 10−8.

GDP.

What would our statistical summary approach to approximating an optimal portfolio tell

us for this economy? Returns on different bonds are highly correlated in the neoclassical

economy, which makes the matrix of returns Σ nearly singular. For that reason, we focus on

formula (18), which does not require inverting Σ. To make formula (24) operational, we fix a

tolerance level ϵ > 0 and let st = s10, study portfolios ω∗
t that satisfy∥∥∥Σtω∗

t −
[
ΣQt s

Q
t +ΣGt s

G
t +ΣΘ

t s
Θ
t

] ∥∥∥ ≤ ϵ, (42)

where ∥·∥ is the L1 norm. For sufficiently small tolerance levels that we have studied, we found

that a portfolio that satisfies (42) is very close to the theoretical optimal portfolio computed

above. The red line in Figure 5 presents this portfolio for ϵ = 10−8. Thus, in the Angeletos

environment, ignoring income and price effects in deriving equation (24) does not impair its

ability to approximate an optimal portfolio well.

Since our statistical formulas are reliable guides for constructing an optimal portfolios in

the neoclassical model, we can use them to understand what drives differences between our

prescribed optimal government portfolio and the one that emerges from the standard growth

model. In Table 3, we produce version of Table 1 but now estimated from simulations of a

neoclassical growth model instead of U.S. data. We scale the moments simulated from the
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neoclassical model by 100 for ease of comparison. We find that simulations of the neoclas-

sical model generate counterfactual statistics for volatilities of bond prices and also for their

co-movements with macroeconomic aggregates. For instance, for long maturities the variance

of returns is 300 times smaller than their counterparts in U.S. data. The covariances of re-

turns with primary government surpluses are only 10-20 times smaller, indicating much higher

correlations. Furthermore, returns and surpluses are positively correlated and of opposite sign

from those in U.S. data.

Table 3: DATA vs NEOCLASSICAL MODEL

Neoclassical Model Data

Mat 100 x Var(r) 100 x Cov( r, X/Y) Var(r) Cov( r, X/Y)

6m 0.02 0.29 0.09 -0.01

12m 0.12 0.83 0.49 -0.10

18m 0.30 1.30 1.10 -0.17

24m 0.54 1.80 1.80 -0.26

30m 0.82 2.20 2.80 -0.31

36m 1.10 2.50 3.60 -0.40

42m 1.40 2.90 4.40 -0.45

48m 1.70 3.20 5.40 -0.50

54m 2.00 3.40 6.10 -0.56

60m 2.30 3.70 7.80 -0.62

120m 3.60 4.60 10.00 -0.75

Notes: We simulate the neoclassical model for 265 quarters that correspond to the sample period 1952-2017.

The values in the columns for the Neoclassical model are multiplied by 100. Excess returns 6m, 12m, ... are the

nominal excess returns in Fama maturity portfolios corresponding to 6-12 months, 12-18 months, ... maturity

bins, respectively. The values in the data column are quarterly and in percentage points.

6.1 Reconciling the neoclassical portfolio

Since the matrix Σt in the neoclassical setup is nearly singular, other portfolios also approxi-

mately satisfy equation (24) and attain levels of welfare that are close to welfare attainable by

trading a complete set of Arrow securities. To ensure that our results are not driven by lack

of invertibility of Σt, we consider a special case in which the underlying Markov state st takes

two values and the exogenous spending process Gt is calibrated to the same moments as above.

The advantage of the two state setup is that we can implement the complete market allocation

with a one-period bond and a consol that pays one unit of consumption in perpetuity. In this

case ω∗ is a scalar and represents the share in the consol.

First, we use the formula from Angeletos (2002), and then we implement formula (19)

using objects constructed from the model-simulated economy. In this portfolio, it is optimal
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for the government to issue debt of 7 to 8 times annual GDP in the consol. This finding is

consistent with findings from a similar exercise in Angeletos (2002) and confirms that in the

neoclassical growth model, long maturity debt is an excellent hedge against primary surplus

risk. As before, from the lens of our formula, we can trace the source of this large position to

the values of the covariance of returns and spending, and the volatility of the returns on the

consol. In the calibrated model, the ergodic averages of covt
(
Xt+1, r

consol
t+1

)
/vart(r

consol
t+1 ) = 1.48

and vart
(
rconsolt+1

)
= (0.18%)2 as compared to −0.061 and (3.5%)2 in the data30 implying an

hedging spending risk component that is positive, large and equals 7.82 times GDP in line

with shares obtain from using the formula from Angeletos (2002).

Our analysis calls for sources of variation in bond returns that are orthogonal to fiscal risks.

Bhandari et al. (2017b) described extensions of a neoclassical growth model with discount factor

shocks in the spirit of Albuquerque et al. (2016) and shows that the model can produce less

extreme portfolios. We can modify the two state risk-free bond and consol setup in a similar

fashion to illustrate the main insight of how introducing discount factor shocks can help realign

theoretical results with statistics summarized in Tables 1 and thereby imply an optimal public

portfolio closer to those prescribed in Section 5.

To that end, we introduce a state-dependent discount factor, δ(st)βt and calibrate δ(st)

so that its mean is one and we additionally match the sign and the magnitude of the ratio

covt
(
Xt+1, r

consol
t+1

)
/vart(r

consol
t+1 ) in the ergodic distribution to its data counterpart. The cali-

brated model produces volatile returns with variance of quarterly returns equal (4%)2 which

is roughly in line with variance of long bonds in the U.S. Applying either Angeletos (2002)

formula or our expression (24), we find that matching these asset pricing moments lowers the

consol share of total debt by an order of magnitude to 70% of GDP and the rest 30% in the

risk-free bond. These holdings are much more similar to ones we found in Section 5. We

conclude that neoclassical settings that misrepresents the asset return movements are an in-

appropriate tool for studying optimal public portfolios whose composition depend critically on

the properties of co-movements between returns and macroeconomic variables.

7 Concluding remarks

We have studied determinants of optimal public portfolios in a broad class of dynamic stochas-

tic equilibrium models that encompass various specifications of attitudes towards risk, hetero-

geneities among households, limits on market participations, and sources of liquidity. We use

small noise expansions to summarize determinants of optimal public portfolios in terms of a

30We approximate the return on the consol by constructing an weighted average of the 11 CRSP portfolios.
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small number of statistics that are functions only of asset prices and macroeconomic variables.

For recent U.S. data, we find that an optimal portfolio is simple, stable over time, and has

bond shares that decay approximately exponentially with bond maturity. We show that differ-

ences between our paper’s optimal public portfolio and those prescribed by earlier neoclassical

models come from features of those earlier models that lead them to misrepresent observed

covariances of asset returns with macroeconomic aggregates.

This paper focuses exclusively on timing protocols in which a government commits to a

fiscal plan and cannot default. Natural next steps would explore alternative timing protocols

by proceeding along lines advocated by Arellano and Ramanarayanan (2012), Aguiar et al.

(2019), Bocola and Dovis (2019), and others.
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Online Appendix

A Additional details for Section 3

A.1 Proof of Lemma 2(a)

Rt+k = R
rf
t+k by Lemma 1, so that the zeroth order approximation of equation (10) implies

ξ
−1
t+k =

βMt+k+1

Mt+k
ξ
−1
t+k+1R

rf
t+k+1 for all k ≥ 0. The zeroth order approximation of the households’

optimality condition (7) gives us 1 =
βMt+k+1

Mt+k
R
rf
t+k+1 for all k ≥ 0. Combine these two equations

to show that ξt = ξt+k and, therefore, τ t = τ t+k for all k ≥ 1.

Multiply equation (10) for period t+ k by rjt+1 and take the expectation in period t to get

Et
1

ξt+k
rjt+1 = Et

βMt+k+1

Mt+k

1

ξt+k+1

Rt+k+1r
j
t+1. (43)

Lemma 1 implies that Et∂σRt+k+1∂σr
i
t+1=Et∂σRrft+k+1∂σr

i
t+1, so that the second order approx-

imation of (43) is

Et∂σ
1

ξt+k
∂σr

j
t+1 +

1

2

1

ξt+k
Et∂σσrjt+1

=
βMt+k+1

Mt+k

1

ξt+k+1

Et∂σRrft+k+1∂σr
j
t+1 +

βMt+k+1

Mt+k
R
rf
t+k+1Et∂σ

1

ξt+k+1

∂σr
j
t+1

+
R
rf
t+k+1

ξt+k+1

Et∂σ
βMt+k+1

Mt+k
∂σr

j
t+1 +

1

2

βMt+k+1

Mt+k

R
rf
t+k+1

ξt+k+1

Et∂σσrjt+1.

From the results obtained in the previous paragraph, we know that ξt+k = ξt and ∂σ
1

ξt+k
=

−∂στ t+k

ξ′(τ t)
and that

βMt+k+1

Mt+k
R
rf
t+k+1 = 1, so that this equation further simplifies to

−ξ
′ (τ t)

ξ (τ t)
Et∂στ t+k∂σrjt+1 +

1

2
Et∂σσrjt+1 = Et∂σ lnRrft+k+1∂σr

j
t+1 − Et∂στ t+k+1∂σr

j
t+1

+ Et∂σ ln
βMt+k+1

Mt+k
∂σr

j
t+1 +

1

2
Et∂σσrjt+1.

Similarly, the household optimality condition (7) implies that Etrjt+1 = Et βMt+k+1

Mt+k
Rrft+k+1r

j
t+1,

which to the second order of approximation gives

1

2
Et∂σσrjt+1 =Et∂σ lnRrft+k+1∂σr

j
t+1 + Et∂σ ln

βMt+k+1

Mt+k
∂σr

j
t+1 +

1

2
Et∂σσrjt+1.

Combine these two equations to show that Et∂στ t+k∂σrjt+1 = Et∂στ t+k+1∂σr
j
t+1 for all k, j.
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A.2 Proof of Theorem 1

We first consider the zeroth order economy. Using the definition of zero coupon bond prices,

we have

Q
k
t =

St+1

St
× St+2

St+1

× ...× St+k

St+k−1

= Q
1
t ×Q

1
t+1 × ...×Q

1
t+k−1 = Q

1
tQ

k−1
t+1 .

Furthermore, Lemma 1 implies that excess returns are zero to the zeroth order and Qt+1,t+k =

Q
k−1
t+1 . Thus, the budget constraint (4) gives us

Bt/Q
1
t =

∞∑
k=1

Q
k−1
t+1Xt+k =⇒ Bt =

∞∑
k=1

Q
k
tXt+k, (44)

where we used a convention that Q
0
t = 1. We have Xt+k = T t+k −Gt+k and Lemma 2 implies

that in the optimum T t+k = T t for all k. This allows us to solve for the optimal level of tax

revenues, T t = (Bt +
∑∞

k=1Q
k
tGt+k)/

∑∞
k=1Q

k
t .

Multiply (4) by rjt+1 and take period t expectations to write it as

Etrjt+1

∞∑
k=1

Qt+1,t+kXt+k = Etrjt+1

Rrft+1 +
∑
i ̸=rf

ωitr
i
t+1

Bt.

The second order approximations of the right hand side and the left hand side of this equation,

due to Lemma 1, are

RHS ≃ 1

2

Bt

Q
1
t

Et∂σσrjt+1 +Bt

∑
i ̸=rf

ωitEt∂σr
j
t+1∂σr

i
t+1

and

LHS ≃ 1

2

( ∞∑
k=1

Q
k−1
t+1Xt+k

)
Et∂σσrjt+1 +

∞∑
k=1

Q
k−1
t+1Et∂σr

j
t+1∂σXt+k +

∞∑
k=1

Q
k−1
t+1Xt+kEt∂σrjt+1∂σ lnQt+1,t+k.

We want to make several observations about these equations. First, the first terms on the

right hand sides of these two equations are equal, due to (44). Second, Et∂σrjt+1∂σ lnQt+1,t+1 =

0 since Qt+1,t+1 = 1, and Et∂σrjt+1∂σ lnQt+1,t+k = Et∂σrjt+1∂σ lnQ
k−1
t+1 for k > 1 due to Lemma

1. Therefore, combining these equations and multiplying both sides by Q
1
t we have

Q
1
tBt

∑
i ̸=rf

ωitEt∂σr
j
t+1∂σr

i
t+1 =

∞∑
k=1

Q
k+1
t Xt+k+1Et∂σrjt+1∂σ lnQ

k
t+1 (45)

+

∞∑
k=1

Q
k
tGt+kEt∂σr

j
t+1∂σ lnGt+k +

∞∑
k=1

Q
k
tEt∂σr

j
t+1∂σTt+k.
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Note that Tt+k is only a function of tax rate τ t+k, so we can write Tt+k = T (τ t+k) and

∂σTt+k = T ′ (τ t+k) ∂στ t+k. But then we have

Et∂σrjt+1∂σTt+k = T ′ (τ t+k)Et∂σrjt+1∂στ t+k = T ′ (τ t)Et∂σrjt+1∂στ t+1 (46)

where the second equality follows from Lemma 2(a). Finally, observe that the last equation in

(46) must be equal to zero by Lemma 2(b), which establishes (16).

A.3 Proof of Corollary 1

Observe that in the proof of Theorem 1 upto equation (46) we only used first order properties

of the debt level optimality condition31 (10), and did not use portfolio optimality condition

(11) at all. Without invoking this optimality condition, the government budget constraint is

Q
1
tBt

∑
i ̸=rf

ωitEt∂σr
j
t+1∂σr

i
t+1 =

∞∑
k=1

Q
k+1
t Xt+k+1Et∂σrjt+1∂σ lnQ

k
t+1

+
∞∑
k=1

Q
k
tGt+kEt∂σr

j
t+1∂σ lnGt+k + T ′ (τ t)

( ∞∑
k=1

Q
k
t

)
Et∂σrjt+1∂στ t+1.

Using definition of ω∗
t , this implies that

∑
i ̸=rf

(
ωit − ω∗,i

t

)
Et∂σrjt+1∂σr

i
t+1 =

T ′ (τ t)
(∑∞

k=1Q
k
t

)
Q

1
tBt

Et∂σrjt+1∂στ t+1.

Taking the second order approximation of (9), we obtain

∂σσ∂prfl,jV = βt Pr
(
st
)
M t+1

ξ′ (τ t+1)

ξ (τ t+1)
2Et∂στ t+1∂σr

j
t+1.

Combining these two expressions, and using zeroth order tax smoothing τ t = τ t+1, we get

∑
i ̸=rf

(
ω∗,i
t − ωit

)
Et∂σrjt+1∂σr

i
t+1 =

T ′ (τ t) ξ (τ t)
2

−ξ′ (τ t)Bt

∑∞
k=1Q

k
t /Q

1
t

βt Pr (st)M t+1︸ ︷︷ ︸
constt

∂σσ∂prfl,jV,

which is the expression stated in Corollary 1. Note that constt > 0 if Bt > 0, −ξ′ (τ t) > 0,

and T ′ (τ t) = ξ (τ t)Y t > 0. If v is constant elasticity γ then ξ (τ) = 1− γ τ
1−τ and the peak of

the Laffer curve τ∗ satisfies τ∗

1−τ∗ = 1
γ . This implies that if τ < τ∗ then ξ (τ) ,−ξ′ (τ) > 0.

31This follows since we always pre-multiplied it by rjt+1 prior to taking second order expansions, and rjt+1 = 0
by Lemma 1.
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B Additional details for Section 4

B.1 Additional details for Section 4.2

First of all, observe that since ξt is the transformation of τ t the proof of Lemma 2 re-

mains unchanged. This implies that τ t+k = τ t for all t and τ t is the solution to Bt =∑∞
k=1Q

k
t (Θt+k (τ t (1− τ t)) − Gt+k) which is the generalization of equation (44). Let T

tax
t+k =

Θt+kτ t (1− τ t). We have

Et∂σrjt+1∂σTt+k = Et∂σrjt+1∂σT
tax
t+k = T t+kEt∂σrjt+1∂σ lnΘt+k +Θt+k Et∂σrjt+1∂στ t (1− τ t)︸ ︷︷ ︸

=0

,

where the last term is zero following the same steps as in (46). Substitute this equation into

(45) to obtain the expression for the optimal portfolio ωt. If Σt matrix is invertible, it can be

written as (24).

B.2 Additional details for Section 4.3

In the economy with liquidity premia, the second order approximation of portfolio optimality

condition, equation (14), holds but the analogue of equation (15) becomes

1

2

βMt+1

Mt
Et∂σσrjt+1 + Et∂σrjt+1∂σ

βMt+1

Mt
= −1

2
∂σσ (wt,k − wt,1) .

Combining this equation with (14) we obtain

1

2
∂σσ (wt,k − wt,1) =

βMt+1

Mt
Et∂σrjt+1∂σ

1

ξt+1

=
−ξ′ (τ t+1)

ξ (τ t+1)

βMt+1

Mt
Et∂σrjt+1∂στ t+1.

Since to the first order the liquidity premium is zero, conclusions of Lemma 2(a) extend to this

economy, which allows us to write the above equation as

Et∂σrjt+1∂στ t+1 =
ξ (τ t)

−ξ′ (τ t)Q
1
t

1

2
∂σσ (wt,k − wt,1) . (47)

Equation (46) still holds but when we combine it with the portfolio optimality condition (47)

we obtain

Et∂σrjt+1∂σTt+k = T ′ (τ t)
ξ (τ t)

2

−ξ′ (τ t)Q
1
t

1

2
∂σσ (wt,k − wt,1) =

Y tξ (τ t)
2

−ξ′ (τ t)Q
1
t

1

2
∂σσ (wt,k − wt,1) .

Substitute this equation into (45) to get

Q
1
tBt

∑
i ̸=rf

ωitEt∂σr
j
t+1∂σr

i
t+1 =

∞∑
k=1

Q
k+1
t Xt+k+1Et∂σrjt+1∂σ lnQ

k
t+1 (48)

+

∞∑
k=1

Q
k
tGt+kEt∂σr

j
t+1∂σ lnGt+k +

Y tξ (τ t)
2∑∞

k=1Q
k
t

−ξ′ (τ t)Q
1
t

1

2
∂σσ (wt,k − wt,1) .
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This is equation (28) when Σt is invertible.

To derive (27), it will be useful to write household optimality conditions (25) in a slightly

different form. Consider a perturbation in which households change the quantity of holding a

k period bond by an infinitesimal amount until maturity of that bond. The implied optimality

condition for that perturbation is

MtQ
k
t = EtβkMt+k +MtQ

k
twt,k + EtMt+1Q

k−1
t+1wt+1,k−1 + ...+ EtMt+k−1Q

1
t+k−1wt+k−1,1.

The optimality condition for the notional private k period bond isMtQ
k,pr
t = EtβkMt+k, which

implies

0 =

(
1

Qkt
− 1

Qk,prt

)
Et
βkMt+k

Mt
+wt,k+Et

βMt+1

Mt

Qk−1
t+1

Qkt
wt+1,k−1+...+Et

βk−1Mt+k−1

Mt

Q1
t+k−1

Qkt
wt+k−1,1.

Take the second order approximation of this equation and use the fact that to the first order

liquidity premia is zero to obtain

0 = ∂σσ

(
1

Qkt
− 1

Qk,prt

)
Qkt + ∂σσwt,k + Et∂σσwt+1,k−1 + ...+ Et∂σσwt+k−1,1.

Finally, observe that ∂σσ

(
1
Qk

t
− 1

Qk,pr
t

)
Qkt = −∂σσ

(
lnQkt − lnQk,prt

)
, which implies equation

(27).

B.3 Additional details for Section 4.4

Suppose household h has household specific productivity θh,t and we partition the households

into two groups: T represent the set of households who can trade bonds and N represent the

set of households who cannot trade bonds. Other than that, we focus on the baseline economy.

Individual budget sets are given by

ch,t+1 + ιh∈T
∑
i

bit+1 = (1− τ t+1)Yh,t+1 + ιh∈T
∑
i

Rit+1b
i
t.

and optimality implies

Yh,t = θ1+γh,t (1− τ t)
γ

We can define total output as Yt =
∑

h Yh,t. Assuming a linear tax function, we have

∂Tt
∂τ t

= Yt + τ t
∑
h

∂Yh,t
∂τ t

= Yt − γ
τ t

1− τ t

∑
h

Yh,t = Yt

(
1− γ

τ t
1− τ t

)
︸ ︷︷ ︸

ξt

,

so tax revenue elasticity is the same as before.
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To compute the welfare effects of the debt and portfolio perturbations, we apply the enve-

lope theorem to each agent h. Changing tax revenues by ϵ will affect household h’s budget by

Yh,t+1
∂τ t+1

∂T tax
t+1

. Following the same steps as the representative agent, welfare gain for agent h is

given by

∂debtVh = βt Pr
(
st
) [
Mh,t(s

t)
1

ξt(s
t)

Yh,t(s
t)

Yt(st)
− EstβMt+1Rt+1

1

ξt+1

Yh,t+1

Yt+1

]

∂σσ∂prfl,jVh = βt Pr
(
st
)
EtMh,t+1r

j
t+1

1

ξt+1

Yh,t+1

Yt+1
.

Combing these for all agents, an optimality condition for the government at st = sTwill be

Et
∑
h

ϖhMh,t+k

(
Qt−1
t+1

)−1
rjt+1

Yh,t+k
Yt+k

1

ξt+k
= 0, (49)

where ϖh are Pareto weights for household h and Qt,k ≡ 1
Rt+1

× ... × 1
Rt+k

is the inverse

cumulative return on the government portfolio between periods t and t+k. Take second order

expansion of (49) to get

0 = Et
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(
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)
∂σr

j
t+1

[
Yh,t+k
Yt+k

1

ξt+k

]}
.

Canceling out the terms that do not depend on h and dividing out by the coefficient on

Et∂σσrjt+1 yields an approximation to the optimality condition (49)

0 =Et

[
1

2
∂σσr

j
t+1 +

∑
h

µh,t+k∂σ ln (Mh,t+k) ∂σr
j
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(
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∂σr
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]
(50)

where µh,t+k ≡ ϖh

[
Mh,t+k

]
sh,t+k

/(∑
hϖh

[
Mh,t+k

]
sh,t+k

)
are a deterministic sequence of

weights that sum to one with sh,t+k ≡
Yh,t+k

Yt+k
.
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As government bonds are perfect substitutes, for all h ∈ T we must have

EtMh,t+k

(
Qt−1
t+1

)−1
rjt+1 = 0.

Expanding this equation yields

0 =
1

2

[
Mh,t+k

] (
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)−1
∂σσr

j
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j
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)−1
∂σ ln (Mh,t+k) ∂σr
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for all h ∈ T. This simplifies to
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(
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)
∂σr

j
t+1 − ∂σ ln (Mh,t+k) ∂σr

j
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]
(51)

As this holds for all h ∈ T we can average over all traders, using weights µh,t+k, to obtain

1

2
Et∂σσrjt+1 = Et

[
∂σ ln (Qt+1,t−1) ∂σr

j
t+1 − ∂σ ln (MT ,t+k) ∂σr

j
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]
(52)

where ln (MT,t+k) is the average SDF of all traders:

ln (MT,t+k) ≡
∑
h∈T

µh,t+k ln (Mh,t+k)

/∑
h∈T

µh,t+k.

The same equation does not hold for the non-traders but we do have that for all h ∈ N
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j
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+ (∂σ ln (Mh,t+k)− ∂σ ln (MT ,t+k)) ∂σr
j
t+1

]
. (53)

We can now use equations (51) and (53) substitute for 1
2∂σσr

j
t+1 in (50) to get
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t+1 =Et
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.

We can further simplify this expression by defining

ln (MN,t+k) ≡
∑
h∈N

µh,t+k ln (Mh,t+k)

/(∑
h∈N

µh,t+k

)
as the “average” SDF of the non-traders, then
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(
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where µN,t+k ≡
(∑

h∈N µh,t+k
)
is the “share” of non-traders. Equation (54) adds two additional

terms to optimality equation in Lemma (2) in main text that capture the effect of heterogene-

ity on the planners desire to smooth taxes. The first term, covt

(∑
h µh,t+k ln

(
1

sh,t+k

)
, rjt+1

)
,

captures the planners desire to raise taxes in states of the world where inequality is high. The

second term, µN,t+kcovt

(
ln (MT,t+k)− ln (MN,t+k) , ∂σr

j
t+1

)
, captures the fact that the planner

is trading on behalf of agents without access to asset markets and therefore will want to raise

taxes in states of which the non-traders place less weight on relative to those agents with access

to asset markets. This effect is scaled by the relative size of the non-traders. Following the steps

of Theorem 1 we get (31) where Σineqt [t, k] = covk

(∑
h µh,t+k ln

(
1

sh,t+k

)
, rjt+1

)
is covariance

matrix of returns with inequality and ΣMt [t, k] = µN,t+kcovt
(
ln (MT,t+k)− ln (MN,t+k) , r

k
t+1

)
is

the covariance of returns with the relative stochastic discount factors of traders and non-traders

with individual weights µN,t+k defined above and temporal weights sineqt = {Q
k
t EtYt+kγ

−1(1−(1+γ)τ t+k)
2

Q1
tBt

}k.

B.4 Additional details for Section 4.5

B.4.1 Perturbations

We now derive equations (34) and (35) under the assumption that price responses satisfy (32).

As the first step, consider a perturbation that increases issuance of maturity k by εk in period

t. Using (33), the responses ∂εk to such perturbation of taxes are given by

∂εkTt = −Qkt −∆k
t ∂εkQ

k
t , ∂εkTt+1 = Qk−1

t+1 +Dk−1
t+1 , (55)

where Dk−1
t+1 is equal to 1 if k = 1 and zero otherwise. Household budget constraint written in

the quantity form is

Ct +
∑
k

Qkt b̃
i
t = (1− τ t)Yt +

∑
k

(
Qkt +Dk

t

)
b̃kt−1.

Using the envelope theorem, the welfare impact of this perturbation, up to βt Pr
(
st
)
, is given

by

∂εkV ∝ −Mt

ξt
∂εkTt − Et+1

βMt+1
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∂εkTt+1 −Mtδ
k
t ∂εkQ

k
t . (56)

Combine (55) and (56), using the fact that (32) implies that
∂εkQ

k
t

Qk
t

= ∂εk lnQ
k
t = −φ′

k,t(B̃
k
t )

and set ∂εkV = 0 to obtain

1
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ξt
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)
= Et+1
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Mt

1

ξt+1
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t+1 ,

where R0
t+1 is the risk-free interest rate.
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Using this observations we can construct both the debt level and the portfolio perturbation.

The debt level perturbation is equivalent to setting εk = ωkt ε/Q
k
t for all maturities k, which

implies, due to the previous equation, that

1

ξt
−
∑
k

ωktφ
′
k,t

(
1

ξt
∆k
t − δkt

)
= Et+1

βMt+1

Mt

1

ξt+1
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The portfolio perturbation is setting εk = ε/Qkt for some maturity k and ε1 = −ε/Q1
t to obtain,

using our assumption φ1,t(·) = 0,

−ωktφ′
k,t

(
1

ξt
∆k
t − δkt

)
= Et+1

βMt+1

Mt

1

ξt+1

rkt+1.

If δkt /∆
k
t = 0 these two equations reduce to (34) and (35).

Since price effects are zero to the first order, the result of Lemma 2(a) is then unchanged.

Lemma 2(b) is obtained by twice differentiating (35) to get

Et∂σrjt+1∂στ t+1 = − ξ (τ t)

−ξ′ (τ t)Q
1
t

∆
k
tφ

′
k,t(B̃

k
t ). (57)

This is equation (36) written in terms of observables.

B.4.2 Approximation of optimal portfolios

Note that equation (57) has a very similar structure to (47). For this reason, arguments

analogous to the proof of equation (48) gives

Q
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∆
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(58)

Finally, observe that ∆k
t can be written as

∆k
t =

Bt

Qkt

(
Qkt B̃

k
t

Bt
−
Qkt B̃

k+1
t−1

Bt

)
=
Bt

Qkt

(
ωkt − ωk,+t−1

)
,

where we applied definition of ω+
t−1 given in text. Substitute this into (58) and to obtain

expression for the optimal portfolio. If Σt is invertible, it can be stated as (38), where ω∗
t is

given in (19).
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B.4.3 Optimal portfolio without perfectly elastic demand risk-free bond

Optimal portfolio with price effects on all maturities We now extend the analysis to

allow for non zero price effects of all maturities including the risk-free bond. The steps are

similar to before. The portfolio perturbation now will yield

− 1
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k
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1
t

)
= Et
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We still have

∆k
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k
t
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−
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)
=
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)
,

so the counterpart of formula (38) is

ωt = ω∗
t − Σ−1

t Dt

{
Λt
(
ωt − ω+

t−1

)
− h1t

}
, (59)

where h1t is a vector (same dimension as ω) with elements

h1t [i] =
Ytφ

′
1,t

Q1
t

(
ω1
t − ω01+

t−1

)
for all i, ω1

t = 1− 1⊺ωt.

Under the assumption that φ′
k,t are constants denoted by λk, we can simplify the expressions

further and express the law of motion of ωt as a linear system.

Define L+
t and L1,+
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.
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Using this, we can rewrite equation (59) by substituting out h1t as
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t − Σ−1
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C Additional details for Section 5

C.1 Nominal Economy

We now describe a nominal version of the benchmark economy. Let Pt be the price level and

suppose all securities are nominal. The risk-free bond now refers to a nominal one-period bond

that pays one dollar next period. The household and government budget constraint in the

nominal economy are

PtCt +
∑
i

bit = (1− τ t)PtYt +
∑
i

Ritb
i
t−1

and

Pt (Tt −Gt) +
∑
i

Bi
t =

∑
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RitB
i
t−1,

respectively, where
{
bit, B

i
t

}
are market values in dollars of private and public sector holdings

of security i and Rit =
PtDt+Qi

t

Qi
t

with Qit being the price of security i in dollars is the nominal

holding period return on security i. The definition of competitive equilibrium and optimum

competitive equilibrium remain unchanged except in nominal economy they are defined for

{Gt, Pt, St}.
It is easy to see that the debt perturbation we considered in Section 3 require tax adjust-

ments ε
Pt(st)

in st and
Rt+1(st+1)ε
Pt+1(st+1)

in all st+1 ⪰ st so that equation (8) remains unchanged

with the interpretation that Rt+1

(
st+1

)
is the nominal return on the government portfolio. A

similar argument shows that the portfolio perturbation requires
rjt+1(st+1)ε
Pt+1(st+1)

as the tax adjust-

ment and equation (9) remains unchanged too. This means that the proof of Lemma 2 can be

extended to the nominal economy with the only change that rjt+1 is the excess nominal return

on security i.

We can rewrite equation (4) for the nominal economy as

Et+1

∞∑
k=1

Qt+1,t+k (Pt+kTt+k − Pt+kGt+k) = (Rrft+1 +
∑
i ̸=rf

ωitr
i
t+1)Bt,

62



and applying the same steps as in the proof of Theorem 1, we get that the optimal portfolio

satisfies

∑
i ̸=rf

ωitEt∂σrit+1∂σr
j
t+1 =

∞∑
k=1

Q
k+1
t X

$
t+k+1

Q
1
tBt

Et∂σ lnQkt+1∂σr
j
t+1−

∞∑
k=1

Q
k
tG

$
t+k

Q
1
tBt

Et∂σ lnG$
t+k∂σr

j
t+1,

(61)

where G
$
t+k = Pt+kGt+k, X

$
t+k = T

$
t − G

$
t+k and T

$
t =

Bt+
∑∞

k=1Q
k
tG

$
t+k∑∞

k=1Q
k
t

with {Bt} is market

value of public portfolio in dollars, Qkt+1is the nominal price of a hypothetical k period zero

coupon bond in dollars, and
{
rjt+1

}
are nominal excess returns on security j. Thus the

formula is same as long as we use the appropriate nominal versions of the objects. We drop

the $ superscripts in the main text.

C.2 Data

Output, expenditures, tax revenues

We use the U.S. national income and product accounts to measure output, tax revenues. For

our measure of output Yt we use U.S. GDP. We measure nominal tax revenues Tt as Federal

Total Current Tax Receipts + Federal Contribution To Social Insurance and public expendi-

tures Gt as Federal Consumption Expenditures + Federal Transfer Payments To Persons from

BEA. All series are nominal and de-trended with constant time trends.

Tax rates

As a measure of tax rates τ t we use the measure of the average marginal federal tax rate from

Barro and Redlick (2011). Their series end in 2012 but we follow their steps and extrapolate

this series for the years 2013-2017 using the Statistics of Income publicly available data from

the Taxstats website. The series for the raw tax rates are plotted in Figure 6(e). It is clear

from the series that there is a structural break in taxes around 1975. In our analysis we use

want to focus on movements in taxes around business cycle frequencies and therefore we want

to remove this break. We pursue two ways of doing that. First, we follow the business cycle

literature and apply a Hodrick-Prescott (HP) filter with the penalty parameter set to 1,600.

The resulting series is shown as the teal-blue line in the right panel Figure 6(f). While this

procedure eliminates the low frequency movements in taxes, it also makes the resulting series

“too smooth” post 1975. As an alternative, we adjust the penalty parameter until we achieve

both goals: remove low frequency movements around 1975 and preserve the volatility of tax

rates after and before 1975. The resulting series is show in the red line (at a penalty parameter
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Figure 6: Summary of macroeconomic time series. Panel (a) plots detrended log nominal GDP, panel (b)
plots the nominal government expenditure measured as Federal Consumption Expenditures + Federal Trans-
fer Payments To Persons divided by nominal GDP, panel (c) plots nominal revenues divided by nominal GDP,
panel (d) plots the average marginal tax rate on income and two ways of detrending the series.
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of 100,000) in the right panel. We use the red line as a baseline measure of tax rates, but all

our results are virtually unchanged if we use the teal line instead.

Asset returns and government portfolio of bonds

We use the Fama Maturity Portfolios published by CRSP. There are 11 such portfolios, out

of which ten portfolios correspond to maturities of 2 to 20 quarter in 2 quarter intervals, and

a final portfolio for maturities between 30 and 40 quarters. We use the convention that the

upper cut-off for each maturity corresponds to j in the mapping of data to the theory. That

is, we use returns on portfolio of bonds of maturities between 2 to 4 quarter to measure rjt to

j = 4, between 4 to 6 quarters to measure rjt for j = 6, etc. With this convention j = 40 is the

largest maturity. We aggregate monthly log-returns by summing them across months within

each quarter.

To compute the price curve we use yield data from Gurkaynak et al. (2007). The raw data

has daily yields for zero coupon bonds of maturities 4, 8, . . . 120 quarters. We interpolate the

daily yields using a cubic spline to infer yields for all quarters less than 120. The price curve

is computed by using the expression Qn = exp {−n× y}

Maturity structure of the U.S. government debt

We use the CRSP Treasuries Monthly Series to get the amount outstanding Bi
t for all (including

TIPS and other inflation-protected bonds) federally issued (marketable) debt between 1952 and

2017, normalized by its face value. Each bond is uniquely identified by its cusips number n.

CRSP also supplies us the Macaulay duration i for the outstanding amount, and the nominal

market price Qn,it of each bond outstanding. For a few bonds where duration is absent, we set

the duration equal to maturity date − current date.

We follow Jiang et al. (2019), and construct at each date t, the market value QitB
i
t held by

the US government in bonds of Macaulay duration i, by summing across cusips n, such that

QitB
i
t =

∑
nQ

n,i
t Bn,i

t . We then sum across all Macaulay duration i to get the market value

of the government debt portfolio Bt ≡
∑

i∈Gt
QitB

i
t at each date t. We finally compute the

portfolio weight in the US government debt portfolio for each maturity i using that ωit =
Qi

tB
i
t

Bt
.

C.3 Derivations for the baseline factor model

In this section we derive expressions (40) and (41).

From Theorem 1, and discussion of equation (24), the covariances Σt, Σ
Q
t and ΣGt have ele-

ments {covt(rit+1, r
j
t+1)}i,j , {covt(lnQkt+1, r

j
t+1)}j,k, {covt(lnGt+k, r

j
t+1)}j,k, {covt(lnΘt+k, r

j
t+1)}j,kfor
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all j and k ≥ 1, and weights sQt and sGt , sΘt are vectors with elements {Q
k+1
t EtXt+k+1

Q1
tBt

}k and

{−Qk
t EtGt+k

Q1
tBt

}k, {
−Qk

t EtT tax
t+k

Q1
tBt

}k. In the baseline case, our factor structure boils down to

rkt = κkft + σkε
k
t

lnGt = tΓ + +κGft + σGε
G
t

lnΘt = tΓ + +κΘft + σΘε
Θ
t

Under this factor structure, we can calculate
(
Σt,Σ

Q
t ,Σ

G
t

)
and

(
sQt , s

G
t , s

Θ
t

)
explicitly. The

elements of Σt satisfy

Σt[j, k] = covt(r
i
t+1, r

k
t+1) forj, k ∈ G

= κjκkσ
2
f + ι{j=k}σ

2
j for j, k ∈ G

Lemma 1 implies that Q1
t covt(r

k
t+1, r

j
t+1) ≃ covt(lnQ

k
t+1, r

j
t+1) and we get

ΣQt [j, k] = Q1
t

(
κjκkσ

2
f + ι{j=k}σ

2
j

)
forj ∈ G, k ∈ N

The steps to compute the covariances of spending and tax revenues wit returns next period

are similar, so we show the derivation for just one of them. The elements of ΣGt and ΣΘ
t for

forj ∈ G, k ∈ N

ΣGt [j, k] = covt(lnGt+k, r
j
t+1)

= κGκjσ
2
f

ΣΘ
t [j, k] = κΘκjσ

2
f

ΣT = ∆+ κ∆fκ
⊺

Using the Woodbury matrix identity, Σ−1
t can be explicitly computed as

Σ−1
t [j, k] = ι{k=j}

1

σ2j
− κjκk

χ2

σ2jσ
2
k

forj, k ∈ G

where the constant χ−2 = σ−2
f +

∑
k∈G κ

2
kσ

−2
k .

We next derive the weights
(
sQt , s

G
t , s

Θ
t

)
. The weights on interest rate risk are given by

sQt [k] =
Qk+1
t EtXt+k+1

Q1
tBt

=
Qk+1
t Γk+1

Q1
t

∑∞
k=1Q

k
t Γ

k

and the sGt , s
Θ
t are

sGt [k] =
−QktEtGt+k

Q1
tBt

=
−QktGtΓk

Q1
tBt

, sΘt [k] =
QktEtT taxt+k

Q1
tBt

=
Qkt TtΓ

k

Q1
tBt
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Now let us derive the expressions for each of the terms in the portfolio. We start with Σ−1
t ΣGt s

G
t

which is the portfolio that hedges the spending risk.

ΣGt s
G
t [j] = −

∞∑
k=1

κGκjσ
2
f

(
QktGtΓ

k

Q1
tBt

)

− κGκjσ
2
f

Gt
Q1
tBt

∞∑
k=1

Qkt Γ
k

Now we multiply with Σ−1
t to get

Σ−1
t ΣGt s

G
t = −κG

Gt
Q1
tBt

∑
k

Qkt Γ
k



χ2κ1
σ2
1

χ2κ2
σ2
2
...


The same steps apply to the portfolio that hedges the tax revenue risk. So

Σ−1
t ΣΘ

t s
Θ
t = κΘκj

Tt
Q1
tBt

∑
k

Qkt Γ
k



χ2κ1
σ2
1

χ2κ2
σ2
2
...


.

The final portfolio we derive is the one that hedges the interest rate risk. The first step to get

ΣQt s
Q
t

ΣQt s
Q
t [j]

Q1
t

=
∞∑
k=1

(
κjκkσ

2
f + ι{j=k}σ

2
j

)
sQt [k]

=
∞∑
k=1

ι{j=k}σ
2
js
Q
t [k] + κjσ

2
f

∞∑
k=1

κks
Q
t [k]

= σ2js
Q
t [j] + κjσ

2
f

∞∑
k=1

κks
Q
t [k]

and then we multiply with Σ−1
t to get(

Σ−1ΣQsQT

)
[j] =

1∑∞
k=1Q

k
t Γ

k

(
Qj+1
t Γj+1 + χ2κjσ

−2
j

[ ∞∑
k=1

κkQ
k+1
t Γk+1 −

∑
k∈G

κkQ
k+1
t Γk+1

])
.

So finally we get

ωXt [j] = Σ−1
t ΣΘ

t s
Θ
t [j] + Σ−1

t ΣGt s
G
t [j] =

(
1

1− β̂t

)(
κΘTt − κGGt

Q1
tBt

)(
κj
σ2j
χ2

)
,
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Figure 7: Fit for extrapolation of the factor model estimates of
(
κj , σ

2
j

)
using f(j) = e0 − e0 exp(−e1 × j) for

factor model (39). The dotted points are the point estimates and the bold line is the interpolation.

Figure 8

ωQt [j] =
(
Σ−1ΣQsQT

)
[j] =

(
1− β̂t

)(Qj+1
t Γj+1

)
+

∑
ℓ/∈G

Qℓ+1
t Γℓ+1κℓ

(κj
σ2j
χ2

) .
C.4 Estimations and extrapolations

We estimate model our factor model (39) using OLS. In the main text (Table 2), we report the

estimates for the baseline specification in which we restricted ρG = ρΘ = 1 and ρf = 0. This

estimation procedure produces estimates of
(
αj , ρj , κj , σ

2
j

)
for eleven j, with the highest being

j = 40. For constructing our target portfolios, we need to extrapolate
(
ρj , κj

)
for all j > 1. In

the baseline extrapolation, we estimate δj and σ2j by fitting the closest exponential function:

f(j) = e0 − e0 exp(−e1 × j) for f (j) ∈
{
δj , σ

2
j

}
. We fit the parameters e0 and e1 to minimize

sum of squares between fitted and actual values of δj and σ
2
j . The fit is reported in Figure 8

Fit of covariances In the text we mention that a test for the factor model is how well it

captures contemporaneous covariances. To implement this test we compute cov(rj , G) and

cov(rj ,Θ) using the estimated factor model and plot it against the ones computed using the

raw data for the 11 portfolios that we use. In Figure 9, we see the fit is good.

Components of the target portfolio In Figure 10, we breakup the target portfolio into

the portfolio that hedges government spending ωGt , tax revenue risk ωΘ
t , and interest rate risk

ωQt .
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Figure 9: Fit for contemporaneous covariances. The blue lines is computed using the estimates of the factor
model and the orange line is computed using the data for the sample period 1952-2017.
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Figure 10: Components of the target portfolio.
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Figure 11: Target portfolio using the common factor extracted from bond excess returns.

C.5 Robustness

Factor-mimicking portfolios In the main text, we extract the common factor using return

and macro data. In Figure 11, we report results using the common factor using only bond

return data.

Multifactor We extend the factor model to have multiple factors. Let zt be a stacked vector

that consists of excess returns
{
rjt

}
j
for the 11 portfolios of different maturities j, a measure

of lnΘt and expenditures lnGt. We use zkt to denote the kth element of this vector. We posit

the following stochastic process

zkt = αk + ρkz
k
t−1 +

∑
m

κm,kf
m
t + εkt for all k,

fnt = αnf +
∑
m

κm,ff
m
t + εf,nt for all j = 1 . . . n, (62)

where {fnt } n are a set of factors and
{
εkt , ε

f,n
t

}
k,t

are residuals. We use the subscripts k ∈
{Θ, G} to denote the variables lnΘt, lnGt, and k = j to denote returns on bonds of maturity

j. In this section, we report the estimates of the factor model and other details skipped in the

main text.

With multiple factors the covariance of returns with each other is given by Σt = ∆ +

κ∆fκ
⊺ where ∆ = diag

{
σ2j

}
,κ = [κ1 κ2 . . .] is the matrix of factor loadings on returns
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Figure 12: Time series for the first two principal components

Table 4: FACTOR LOADINGS (MULTIFACTOR)

Excess returns r
j
t for various maturities j

6m 12m 18m 24m 30m 36m 42m 48m 54m 60m 120m lnGt lnΘt

κ1,k 0.028 0.075 0.119 0.157 0.200 0.231 0.257 0.286 0.306 0.345 0.404 -0.032 -0.047

s.e 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.004 0.004 0.016 0.008

κ2,k -0.053 -0.126 -0.183 -0.208 -0.244 -0.248 -0.248 -0.218 -0.198 -0.184 -0.066 -0.031 0.024

s.e 0.005 0.008 0.009 0.008 0.008 0.008 0.006 0.009 0.011 0.015 0.013 0.058 0.030

σ2
k 0.030 0.074 0.098 0.083 0.082 0.077 0.048 0.107 0.145 0.292 0.200 4.227 1.143

s.e 0.003 0.007 0.009 0.007 0.007 0.007 0.004 0.009 0.013 0.026 0.018 0.374 0.101

R2 0.536 0.698 0.771 0.840 0.870 0.898 0.922 0.938 0.946 0.943 0.979 0.016 0.111

Notes: This table records the OLS factor loadings for the two factor version of the model (39). Standards errors are in

parenthesis.The row titled “R2” are values of R-squared for each equation in the system (39). The sample for excess

returns and primary surpluses normalized by outputs is 1952-2017, and the sample for the one-period liquidity premium

is 1984-2017. The time period is a quarter.

and inverse Σ−1
t can be obtained using Woodbury matrix identity. As before, we use Lemma

1 to compute ΣQt using Σt. The covariances with spending and tax revenue risk are given

by ΣGt [j] =
∑

n κn,jκn,Gσ
2
fn and ΣΘ

t [j] =
∑

n κn,jκn,Θσ
2
fn . The weights

{
sQt , s

G
t , s

Θ
t

}
t
are

unchanged.

In Figure 12, we plot the first two principal components extracted from excess returns, the

risk-free rate, GDP (detrended), deficits/GDP. We see that the second factor is less volatile

relative to the first factor. We next report the factor loadings for the two factor model in Table

4.

Fit of covariances Figure 13 plots the counterpart of Figure 9 for the multifactor model.

We see that the fit is similar and slightly better than the single factor model.
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Figure 13: Fit for contemporaneous covariances. The blue lines is computed using the estimates of the multi-
factor version of the factor model and the orange line is computed using the data for the sample period 1952-
2017.

Extrapolation of loadings In Figure 14, we plot the fit for the factor loadings for the

multifactor model. We use the same form for the first factor as the baseline in the text. The

second factor is non-monotonic and has a hump shape for intermediate maturities. To capture

that hump, we use the functional form e0 + e1exp(−(j − e2)2/e3). We see in Figure 14 that

the interpolated lines fit well the point estimates.

Limiting Portfolio with One Factor In the main text, we compared the limiting portfolio

as we send the estimated σ2j → 0 for each j and keep the factor loadings {κn,j}n,j for the

multifactor setting. In Figure (15), we plot the corresponding figure for the baseline target

portfolio with one factor.

AR(1) factor structure We consider the general estimation of (39) without any a-priori

restrictions on parameters. Table 5 presents estimation results. We see from the table that we

cannot reject ρG = ρΘ = 1 and ρf = 0.

Transitory Shock We assume that the spending is given by Gt = GptG
tr
t with Gpt following

the same structure as the baseline (39) and Gtrt = ρtrG
tr
t−1. We then simulate the target

portfolio for alternative values of the transitory
{
Gtrt , ρtr

}
.

Such a shock affects the path of spending, the optimal tax rate, and through the optimal

tax rate the expected path of tax revenues. The tax revenue risk weights are unchanged but

the weights on spending risk sGt [k] =
−Qk

t (Γ)
kGt(Gtr

t )
1−ρktr

Q1
tBt

and the weights on interest rate risk
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Figure 14: Fit for extrapolation of multifactor model estimates of (κ1,j , κ2,j). For the first factor, we use
the functional form f(j) = e0 − e0 exp(−e1 × j) and for the second factor we use the functional form (e0 +
e1exp(−(j − e2)2/e3)). The dotted points are the point estimates and the bold line is the interpolation.
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Figure 15: Comparison of the baseline target portfolio to the limiting portfolio in which we set σ2
j → 0 for

each j.
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Table 5: FACTOR MODEL ESTIMATION RESULTS (AR(1) FACTOR STRUCTURE)

Excess returns r
j
t for various maturities j

6m 12m 18m 24m 30m 36m 42m 48m 54m 60m 120m lnGt lnΘt ft

αk 0.086 0.155 0.220 0.245 0.284 0.315 0.346 0.344 0.372 0.304 0.444 -0.177 -0.319 0.026
(0.014) (0.025) (0.033) (0.035) (0.039) (0.039) (0.038) (0.037) (0.037) (0.043) (0.030) (0.016) (0.008) (0.502)

ρk -0.107 -0.057 -0.041 -0.043 -0.042 -0.025 -0.022 -0.008 -0.022 -0.027 0.003 1.001 1.009 -0.035
(0.043) (0.035) (0.030) (0.025) (0.023) (0.020) (0.018) (0.016) (0.015) (0.015) (0.009) (0.008) (0.004) (0.063)

κk 0.028 0.074 0.118 0.157 0.199 0.230 0.257 0.285 0.306 0.345 0.404 -0.032 -0.048 0.000
(0.002) (0.003) (0.004) (0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.004) (0.016) (0.008) (nan)

σ2
k 0.044 0.154 0.267 0.300 0.378 0.384 0.356 0.345 0.341 0.460 0.222 4.231 1.125 63.676

(0.004) (0.014) (0.024) (0.027) (0.034) (0.034) (0.031) (0.031) (0.030) (0.041) (0.020) (0.375) (0.100) (5.65)

R2 0.536 0.698 0.771 0.840 0.870 0.898 0.922 0.938 0.946 0.943 0.979 0.985 0.996 0.001

Notes: This table records the OLS estimates of the factor model (39) without imposing ρf = 0, ρΘ = ρG = 1. Standards

errors are in parenthesis. The sample for excess returns and primary surpluses normalized by outputs is 1952-2017. The

time period is a quarter.

sQt [k] =
Qk+1

t (Γ)k+1

(
T tax
t −Gt(Gtr

T )
1−ρk+1

tr

)
Q1

t

∑
Qk+1

t (Γ)k+1

(
T tax
t −Gt(Gtr

t )
1−ρk+1

tr

) where T taxt are the tax revenues computed at the

optimal tax rate that is constant and balances the inter temporal budget at the zeroth order

given the path of spending.

In left panel Figure 16, we show the target portfolio setting for a 10% and 20% increase

in the share of spending to GDP with ρtr = 0.75 so that the increase lasts for about 5 years.

In right panel, we plot the target portfolios for the same values of Gtrt but a higher value of

ρtr = .95.

Heteroskedastic shocks In the main text, we assumed that the shocks εt were homoskedas-

tic, that is, we imposed that {σk} for k ∈{j, Y,G,A, f} are constant through time. We relax

that assumption and augment the baseline factor model 39 with the following univariate GARH

processes {σk}

σ2k,t = σ2k +

p∑
j=1

ρGARCHkp ε2zt−p +

q∑
j=1

ϱGARCHkq σ2εz,t−q

and impose that all ε are standard Gaussian and independent of each other. We now estimate

the system using maximum likelihood and assuming p = 2 and q = 1.

The consequence of heteroskedastic shocks is that structure of the expressions for ΣT and

Σ−1
T as well as ΣkT for k ∈ {X,A,Q} remains the same but they have time-varying parameters

σf,t and σj,t for each return maturities j.32 We use the same extrapolation scheme as the

32The time-variation in
{
σ2
G, σ

2
Y , σ2

A

}
drops out because the covariances of hedging terms are driven by the

common component captured in the factor
{
σ2
f,t

}
.
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Figure 16: Comparison of optimal portfolios with a transitory increase in spending. In left panel we show the
target portfolio for lnGtr

t ∈ {10%, 20%} with ρtr = 0.75 and i n right panel, we plot the target portfolios for
for lnGtr

t ∈ {10%, 20%} with ρtr = 0.95 .

baseline to obtain (σj , κj) for other maturities. And finally, as an implication, the optimal

target portfolio and its components also inherit that time-variation.33

In Figure 17, we plot the time-series for elements in {σj,t} and σf,t. The volatilities for

returns (including the factor) and macro aggregates are high in the early 80s and the great

recession of 2008-2010 and quite stable in the intervening periods.

Keeping everything else the same, periods when the factor is more volatile increases the

covariance of returns with each other as well as the covariance of returns with surpluses and

liquidity risk. Thus, a priori the effect on the optimal portfolio is ambiguous. To gauge how

much the portfolio moves overtime, we start by plotting in Figure 18), the 90-10 interval by

maturity, that is, for each maturity we construct the 90th and 10th percentile across dates. We

see that for lower maturities the portfolio shares varies a few basis points and the fluctuations

are much smaller for larger maturities.

Alternative, time aggregation, calculation of returns We also experimented with al-

ternative ways to calculate returns with different time frequencies. In the baseline, we used

quarterly measures of returns, surpluses and taxes to ensure the largest sample such that we

could measure asset prices and macro data in a consistent way. To verify if our results are

driven by our choice of the frequency, we use returns and other macro variables at biannual

frequencies. The shortest maturity available is now of 6 months, which we take as our measure

33In principle, the fiscal risk and liquidity risk portfolio could vary because quasi-weights πX
T and πA

T or β⃗ vary
with time. To focus on the impact of heteroskedastic shocks, we keep them constant and equal to the values
that we used in the main text and only allow the target portfolio to vary due to time-varying covariances.
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Figure 17: Conditional volatilities of returns, factor, using the estimated GARCH model

Figure 18: 90-10 interval of portfolio shares (maturities from 2 quarters to 120 quarters) with heteroskedastic
shocks.
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Figure 19: Bi-annual frequency

of the one-period government bond Rrft . As before, we construct the biannual holding period

return by summing monthly returns for each portfolio which are separated by 6 month inter-

vals. For other macro variables, we aggregate two consecutive quarters to obtain the biannual

series. Using this data, we apply the same procedure as the baseline (extracting the factor,

estimating the factor model, constructing the conditional covariances) and obtain the optimal

portfolio. We show the implied unrestricted target portfolios in Figure 19. In order to compare

it to our baseline results which have portfolios by quarterly bins, we aggregate the baseline

portfolio weights to biannual weights using ωbiannual [i] ≡ ω [2i− 1]+ω [2i],where i indexes the

6 month intervals and the right hand size is the baseline target portfolio. We find that that

the two biannual portfolios are similar.

C.6 Additional details for Section 5.3

In this appendix, we document how we estimate Λt using estimates from Greenwood and

Vayanos (2014).

Greenwood and Vayanos report estimates of semi-elasticities
{
Yt

∂ ln yieldskt
∂Bond Supplyt

}
k
by bond

maturity for a subset of maturities using maturity-weighted debt
∑
kB̃k

t as a measure of bond

supply. We assume that weights ω̃kt =
B̃k

t∑
k B̃

k
t

remain constant when
∑
kB̃k

t changes. Under

this assumption, a unit change in
∑
kB̃k

t leads to a 1
ω̃k
t
variation in supply of bond of maturity

k. Using the definition of Λt from the text, and converting the estimate of yields to prices, we
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Figure 20: Fit for price effect semi-elaticities. We use 5 year bins with the last bin 15+ years to measure
Λ. The red dots indicated estimates of the right hand side of equation 63 for the bins. The blue solid line is
interpolated values that we use to measure all elements of Λt.

get

DtΛt[j, k] = ι{k=j}

(∑∞
k=1Q

k
t(

Q1
t

)2 ξ2 (τ t)

−ξ′ (τ t)Qkt

)k ×
{
Yt

∂ ln yieldskt
∂Bond Supplyt

}
k

ωUS,kt

(∑ kB̃US,k
t

Bt

)
(63)

where all the terms on the right-hand side are measurable.34

The first term in (63) is obtained directly from estimates of the price curve
{
Qkt
}
and the

tax rate τ t and we set them to the same values we use in Section 5. To get the second term

in (63), we bin maturities in 5 year bins with the last bin for maturities greater than 15 years.

The red dots in Figure 20 are the implied values of


k×

{
Yt

∂ ln yieldskt
∂Bond Supplyt

}
k

ωUS,k
t

(∑
kB̃US,k

t
Bt

)
k

.

For intermediate maturities, we interpolate using the nearest value. The bold line in Figure

20 is the interpolated curve that we use in our implementation.

34Greenwood and Vayanos report elasticities
{
Yt

∂ ln yieldskt
∂Bond Supplyt

}
k
for a subset of maturities. For an arbitrary

maturity n, we assume that the elasticity satisfies a0−a0 exp
{
−a1n

2
}
where parameters a0 capture the long run

level and parameter a1 captures the speed of convergence. We fit (a0, a1)to match the long maturity elasticity of
0.003 and the short maturity (1 years) elasticity of 0.001 from Table 3 in Greenwood and Vayanos (2014). Since
the Greenwood and Vayanos estimates are relatively flat over the maturities, the exact interpolation scheme is

not critical of the results. We set
(∑

kB̃k
t

Bt

)
to 7.3 using the values reported in Panel A of Table 1 in Greenwood

and Vayanos (2014).
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We then set Λt constant across dates at the estimated values and use equation (60) to

compute the steady state portfolio.

C.7 Additional details for Section 5.4

We can get a feel for how trading frictions affect the optimal portfolio by studying a special

case. We assume stationarity and set Qkt = βk, and further specialize to a simpler market

structure in which the government trades only a risk-free security and a growth-adjusted consol.

Let
−→
β be a geometrically declining series βk, βk−1, . . . and excess return on the consol be

denoted by r∞t . Finally, we impose that the stochastic discount factor of the non-traders is

scaled version of the stochastic discount factor of the traders: ln (MN,t+k) = (1+ψ) ln (MT,t+k) .

This introduces a new parameter, ψ, that captures the severity of trading frictions as ψ > 0

implies that the SDF of the non-traders is more volatile of those of the traders.

Under this last assumption the covariance of the relative stochastic discount factors sim-

plifies to

covt

(
ln (MT,t+k)− ln (MN,t+k) , r

j
t+1

)
= −ψcovt

(
ln (MT,t+k) , r

j
t+1

)
.

As the traders trade the consol, we can use the traders’ Euler equation, equation (52), to

substitute out for this covariance and obtain

−covt

(
ln (MT,t+k) , r

j
t+1

)
≃ Etrjt+1 − covt

(
lnQt+1,t−1, r

j
t+1

)
.

Under our stationarity assumptions we have µN ,t+k = µN ,t and can therefore express ΣMt as

the sum of three terms

ΣMt = µN,tψ
(
Rt −Q

1
tΣ

Q
t

)
where Rt[j, k] = Q1

tEtr
j
k+1.

The effect of non-traders on the optimal portfolio is given by Σ−1
t ΣMt s

ineq
t . This simplifies

under this market structure of a growth adjusted consol and a risk free bond as Σt is now a

single number representing the conditional covariance of the growth adjusted consol. We can

also make progress on the components of ΣMt
−→
β , starting with Rt

−→
β =

Etr
j
t+1

1−β . Next we note
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that

ΣQt
−→
β =

∞∑
k=1

βtcovt

(
1

Q1
t

lnQt+1,k, r
∞
t+1

)
≃ Γ

β

∞∑
k=1

βtEt∂σ lnQt+1,k∂σr
∞
t+1

≃ Γ

β
Et

∞∑
k=1

Γt∂σQt+1,k∂σr
∞
t+1

≃ Γ

β
Et∂σQ∞

t+1∂σr
∞
t+1

≃ Γ

1− β
covt(r

∞
t+1, r

∞
t+1) =

Γ

1− β
Σt.

All put together we have that

Σ−1
t ΣMt

−→
β ≈

µN,tψ

1− β

(
Etr∞t+1

vart(r∞t+1)
− β

)
.

So the presence of non-traders will lengthen the maturity as long as
Etr∞t+1

vart(r∞t+1)
> β. We can

construct estimates for both Etr∞t+1 and vart(r
∞
t+1) using the fact that the growth adjusted

consol is the infinite sum of zero coupon bonds of all maturities weighted by βj . To check

the inequality, we use the estimates of the factor model and find that the
Etr∞t+1

vart(r∞t+1)
is indeed

significantly larger that one and hence any reasonable estimate of β.

D Additional details for Section 6

To simulate the neoclassical model, we solve a complete markets Ramsey allocation as in

Lucas and Stokey (1983) by posing the following maximization problem. Given some t = 0

state s0 ∈ S and household savings b0
(
s0
)
, the Ramsey problem can be expressed as

max
ct(st),yt(st)

E0

∞∑
t=0

u

(
Ct,

Yt
θt

)
(64)

subject to

Yt
(
st
)
= Ct

(
st
)
+G (st) , (65)

b0
(
s0
)
uc
(
s0
)
=

∞∑
t=0

∑
st

βtπt
(
st
) [
uc
(
st
)
Ct
(
st
)
+ uy

(
st
)
Yt
(
st
)]
, (66)

where the implementability constraints, equation (66) is derived by taking the time-0 budget

constraint and replacing after-tax wages as well as bond prices.

We assume that the state space S is discrete (described below) and non-linearly solve

the optimal allocation using the first-order conditions of the Ramsey planning problem. The
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resulting optimal allocation is represented using two sets of vectors of dimension 2|S|, one set

for consumption and labor choices at t = 0 and another set for all st ∈ S for t ≥ 1. Using the

Ramsey allocation {ct, yt}, we can back out other related objects such tax rates τ t = 1−
(

Yt
θt

)γ

c−σ
t

; primary surplus Xt = τ tYt −Gt; and zero-coupon bond prices Qnt = Et
C−σ

t+n

C−σ
t

.

We follow Buera and Nicolini (2004) and assume that the preferences of households are

isoelastic U
(
Ct,

Yt
θt

)
=

C1−σ
t
1−σ −

(
Yt
θt

)1+γ

1+γ with parameters σ = 2 and γ = 1. The economy is

closed, so the demand of assets from foreign investors is zero and there are liquidity services

provided by government bonds. The only source of uncertainty comes from the exogenous

stochastic process of government expenditures Gt, which follows an AR(1) process

lnGt = αG + ρG lnGt−1 + σGϵt

We set (αG, ρG, σG) to obtain a mean G/Y of 15%, auto correlation of 0.95 and a standard

deviation 1.2
15 which are in line with the U.S. data that we use in Section 5.1. We discretize the

lnGt process with |S| = 20 grid points. For our calculations, we set the level of initial debt B0

so that the annualized initial level of government liabilities to GDP is 100%.

We use this parameterization to construct several versions of the optimal portfolio. First,

for a given s ∈ S, we apply Corollary to Theorem 1 in Angeletos (2002) and obtain the

optimal portfolio ωCM,n
T

(
sT
)
= ωCM,n (sT = s) for n = 1, . . . 20 maturities that implements

the complete markets allocation. We use the bond prices and present value of primary surpluses

all of which can be backed out given the objects from the Ramsey allocation. In Figure 5, red

color line, we plot
{
ωCM,n

}20
n=1

for sT = s10 which is the modal state.

Details for Figure 5 To obtain the target portfolio ωt given some history st, we need to

solve for a vector of portfolio shares that satisfies

Σtωt =
[
ΣQt s

Q
t +ΣGt s

G
t

]
.

Before explaining how we get ωt, we make two observations. First, given the properties of

the Ramsey allocations, Σt,Σ
Q
t s

Q
t , s

G
t ,Σ

G
t only depend on state st, which we set to s10 and

as before can be computed in closed form using the complete market allocation that we have

already solved. Second, as mentioned in the main text the returns of different bonds are highly

correlated in the neoclassical economy, which makes the matrix of returns Σt to be effectively

non-invertible and there are a range of portfolios that satisfy inequality (42) for a given ϵ. To

obtain the target portfolio that is plotted in Figure 5 blue color, we set ϵ = 1e − 8 and pose
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the following minimization problem

min
ω̃

∥∥ω̃ − ωABNt

∥∥
such that ∥∥∥Σtω̃n − [ΣQt sQt +ΣGt s

G
t

]∥∥∥ ≤ 1⊺ϵ.

where || · ∥ we mean the sup norm . This formulation conveniently delivers an objective that is

quadratic while the constraint set is linear and convex; and we use a standard methods (OSQP

library) to solve the minimization problem.

E Closed Economy

In this appendix, we study a closed neoclassical version of our benchmark economy. Unlike

the benchmark open economy specification in Section 2, a change in the governments port-

folio will necessarily change the price of assets in economy; and, compared to the segmented

markets version of the benchmark economy presented in Section 4.5, a change in the portfolio

composition at date t will also affect the price of securities in all other periods.

In what follows, we show how to to adjust our variational approach to incorporate such

effects on prices. Our main result is to characterize the price effects and using that we show

that the closed economy neoclassical setting implies price responses that are counterfactual

relative to the evidence reviewed in Section 4.5. Besides the different structure on price effects,

the rest of the analysis of a closed economy including the steps to obtain the expression for the

optimal portfolio are similar to Section 3. In Section E.1, we formally describe the neoclassical

closed economy environment that we study, then introduce the perturbation and analyze the

welfare effects and optimality of the government. The proofs of the main results are in Section

E.2.

E.1 Analysis

In addition to the assumptions of the benchmark economy we assume that:

1. Household preferences are time separable

Vt = ut

(
Ct −

(Yt/θt)
1+1/γ

1 + 1/γ

)
+ βEtVt+1.

2. Government expenditures {Gt} are exogenous.
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3. All assets are in zero net supply.35

4. The set of available securities can replicate a consol. We will let Q∞
t denote the price of

the consol at date t.

Under these assumptions asset market clearing implies that

bit = Bi
t

and

ct +Gt = Yt.

Absence of trading frictions and non-pecuniary benefits of government securities the household

optimality conditions imply

EtMt+1R
i
t+1 =Mt or MtQ

i
t = Et

[
Mt+1

(
dit+1 +Qit+1

)]
(67)

Perturbation Following Section 3, we use a perturbational approach to isolate the optimal

public portfolio. The perturbations in this section are slightly different and adapted to get

tractability in the closed economy environment.

We consider any competitive equilibrium and introduce a perturbation at a particular

history st by assuming that the government purchases ϵ

Qj
t (s

t)
units of security j which is funded

by selling ϵ
Q1

t (s
t)

of the risk free bond. This asset swap produces an additional rjt+1(s
t+1)ϵ of

excess returns at all histories st+1 following st. We assume that the government uses those

resources to purchase an additional
rjt+1(s

t)ϵ

1+Q∞
t+1(s

t+1)
of the consol while keeping its holdings of all

other assets constant. Due to its nature of swapping a longer security for a risk-free bond we

will refer to this as a Quantitative Easing (or QE) perturbation and formally define it by

∂QEB
i
t(s̃

ℓ) =



ϵ
Q1

t (s
t)

if i = rf and s̃ℓ = st,

− ϵ

Qj
t (s

t)
if i = j and s̃ℓ = st,

− 1
1+Q∞

t+1(s
t)

(
rjt+1

(
st+1

))
ϵ if i = ∞ and s̃ℓ ≻ st,ℓ > t,

0 otherwise.

The change in portfolio composition necessarily requires a change in taxes to balance the

governments budget constraint,

Gt +
∑
i

(Qit + dit)B
i
t−1 = τ tYt +

∑
i

QitB
i
t.

35That all assets are in zero net supply is for notational simplicity. Assuming positive net supply simply adds
another term to the resource constraint equivalent to changing exogenous government expenditures.
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Differentiating with respect to ϵ in the direction of the QE perturbation yields the following

response of tax revenues

−∂QE (τ ℓYℓ) =
rjt+1

(
st+1

)
1 +Q∞

t+1 (s
t+1)

(
I{sℓ≻st}

)
+
∑

∂ϵQ
i
ℓ(s

ℓ)
(
Bi
ℓ(s

ℓ−1)−Bi
ℓ−1(s

ℓ)
)

(68)

where I{sℓ≻st} is an indicator returning 1 if history sℓ follows from st and zero otherwise.

Intuitively the effect of the perturbation on tax revenues is a combination of two effects.

The first,
rjt+1(st+1)

1+Q∞
t+1(s

t+1)

(
I{sℓ≻st}

)
, are the direct effects that are a result of the excess returns

generated by the asset swap. The second,
∑
∂QEQ

i
ℓ(s

ℓ)
(
Bi
ℓ(s

ℓ−1)−Bi
ℓ−1(s

ℓ)
)
, is the indirect

effect that arises because the asset swap in period t changes prices not only in all future periods

but also in all past periods starting from the initial date 0.

Assuming that the equilibrium manifold is sufficiently smooth, we can apply the envelope

theorem to the household’s maximization problem to obtain the welfare impact of this pertur-

bation as ϵ→ 0. The welfare effect of this perturbation comes from its effect on both tax rates

and security prices and is given by

∂QEV0 = E0

∑
ℓ≥0

Mℓ

−
∂QE (τ ℓYℓ)

ξℓ
+
∑
i≥0

∂QEQ
i
ℓ

(
biℓ−1 − biℓ

)
= E0

∑
ℓ≥0

Mℓ

−
∂QE (τ ℓYℓ)

ξℓ
+
∑
i≥0

∂QEQ
i
ℓ

(
Bi
ℓ−1 −Bi

ℓ

)
= E0

∑
ℓ≥0

Mℓ

∑
i≥0

∂QEQ
i
ℓ

(
ξℓB

i
ℓ−1 −Bi

ℓ−1

ξℓ
−
ξℓB

i
ℓ −Bi

ℓ

ξℓ

)
+
∑

ℓ≥T+1

(
Mℓ

ξℓ

)(
I{s̃ℓ≻sT }

)( rjT+1

1 +Q∞
T+1

)
= E0

∑
ℓ≥0

Mℓ

(
ξℓ − 1

ξℓ

)∑
i≥0

∂QEQ
i
ℓ

(
Bi
ℓ−1 −Bi

ℓ

)
+
∑
ℓ≥t+1

(
Mℓ

ξℓ

)(
I{s̃ℓ≻st}

)( rjt+1

1 +Q∞
t+1

)
= Pr0

(
st
)
Mt

(
st
)PE + Et

∑
k≥1

(
Mt+k

Mt

)(
rjt+1

1 +Q∞
t+1

)
1

ξt+k

 (69)

wiℓh

PE =
1

Pr0 (st)MT (st)
E0

∑
ℓ≥0

Mℓ

(
ξℓ − 1

ξℓ

)∑
i≥0

∂QEQ
i
ℓ

(
Bi
ℓ−1 −Bi

ℓ

) .
The term Et

∑
k≥1

(
Mt+k

Mt

)(
rjt+1

1+Q∞
t+1

)
1

ξt+k
parallels the effect of the same perturbation in the

open economy benchmark model, and can be analyzed in a similar manner. Now, in addition

to that term, we also have PE that captures the effect on asset prices for all histories starting

from time 0 onward. In the next section we will show how our second order expansions can

allow us express that term using covariances that can be measured in the data.
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Characterizing the Price Effects The perturbation affects asset prices through its effect

on the stochastic discount factor of the household. This can be seen by differentiating the

household Euler equation (67) with respect to ϵ in the direction of the perturbation to get

(∂QEMℓ)Q
i
ℓ +Mℓ

(
∂QEQ

i
ℓ

)
= Eℓ

[
∂QEMℓ+1

(
diℓ+1 +Qiℓ+1

)
+Mℓ+1

(
∂QEQ

i
ℓ+1

)]
.

As the perturbation affects the stochastic discount factor through changes in tax rates we

define ξM,ℓ ≡
∂ logMℓ
∂(τℓyℓ)

as the semi-elasticity of logMt with respect to the tax revenues which

implies ∂QEMℓ =MℓξM,ℓ∂QE (τ ℓyℓ) . Under our assumptions, this semi-elasticity is given by

ξM,ℓ = −ψℓ ×
1

Yℓ −Gℓ − θℓv (Yℓ)
×
(
ξℓ − 1

ξℓ

)
where ψℓ ≡

−[cℓ−vℓ(Yℓ)]U
′′
(cℓ−vℓ(Yℓ))

U ′ (cℓ−vℓ(Yℓ))
is the coefficient of relative risk aversion.

To get a better understanding of how these terms contribute the price effects in the closed

economy we’ll focus on a stationary version of the economy

Definition 1. An optimal competitive equilibrium is stationary from time t if there exists a

constant Rt such that for all ℓ > t (i) EtGℓ ≈ Gt (iii) EtRiℓ ≈ Rt for all i and (iv) Etcℓ ≈ ct.

This definition of stationary differs from the stationarity of the main text in that we assume

a growth rate of Γ = 1. All of our results extend to a positive growth rate assuming that the

utility function is CRRA.36 Our first set of results concern the asset pricing implications of the

QE perturbation. We will leave the proof of both propositions to the end of the section.

Proposition 1. For a neoclassical model which is stationary from time t

1. The QE perturbation keeps asset prices zero to the first-order

∂σ∂QEQ
i
ℓ = 0 ∀ i, ℓ ≥ 0

2. The QE perturbation only affects risk-premia at t

Eℓ∂σσ∂QEriℓ+1 = 0 ∀ ℓ ̸= t

and at date ℓ

Eℓ∂σσ∂QEriℓ+1 =
2ψt

Yt −Gt − θtv (Yt)
×
(
1− ξt
ξt

)(
1

1 +Q
∞
t+1

)
Eℓ∂σrjℓ+1∂σr

i
ℓ+1 > 0,

where ψt is coefficient of relative risk aversion.

36The main difference is that we will require that the government smooth excess returns using a growth-
adjusted consol rather than a pure consol.

85



This proposition states that the QE perturbation does not effect prices to zeroth or first

order. This is inline with our modeling of price effects in Section 4.5 where we assume that

the effect prices is at second order. Intuitively, to zeroth and first-order all assets have the

same expected return so the QE perturbation only changes the risk profile of the household’s

stochastic discount factor which, in turn, will only effect prices to second order. Moreover,

the proposition states that the effect on asset prices in the closed economy are counterfactual

to what has been documented in the data. Estimates by Greenwood and Vayanos (2014) and

others find that find that ΛQE [rf, j] ≈ 0 and ΛQE [i, j] > 0 for i > rf which implies that

expected excess returns should decrease with the QE perturbation rather than increase:

Et∂σσ∂QErit+1 = −
Q
i
t+1

Q
i
t

∂σσ∂QEQ
i
t

Q
i
t

< 0.

When governments buy back long term debt by issuing short term debt, short term rates

appear to be unchanged so expected excess returns are driven by the fall in the term premia

as the increased demand drives up prices. In contrast, in the closed economy, the government

returns the excess returns from the QE swap via taxes which results in making states of the

world where excess returns are high (low) better (worse) for the household by lowering (raising)

tax rates in those states. As a result, the value of the asset decreases which raises the risk-

premia. As noted, this is in inconsistent with the segmented market literature which finds that

the excess returns on long maturity debt are lower after QE. Finally, we are able to use our

expansions to characterize the price effects

Proposition 2. For a neoclassical economy which is stationary from time 0, if all initial debt{
Bi

−1

}
i
was risk-free then PE ≃

(
ξ

ξ−1

)−1
Ψt
(
st
)
where

Ψt
(
st
)
=

−2BξM (Q
1 − 1)(

1−B(Q
1 − 1)ξM

) ∞∑
ℓ=t+1


(
Q

1
t

)ℓ−t
1 +Q

∞
t+1

 covt

(
∂σ lnMℓ, ∂σr

j
t+1

)

− 2ξMB(
1−B(Q

1 − 1)ξM

) ∑
ℓ=t+1


(
Q

1
t

)
−t

1 +Q
∞
t+1

 covt

(
∂σr

j
t+1, ∂σ lnQ

1
ℓ

)

− 2ξM(
1−B(Q

1 − 1)ξM

)∑
j≥1

Q
1
t

1 +Q
∞
t+1 (ℓ

t+1)
covt

(
∂σr

j
t+1, ∂σr

j
t+1

)

− 2B(
1−B(Q

1 − 1)ξM

) ∞∑
ℓ=t


(
Q

1
ℓ

)ℓ−t
1 +Q

∞
t+1

covt

(
∂σξM,ℓ − ∂σξM,ℓ+1, ∂σr

j
t+1

)
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As we have noted without any assumptions price effects are given by

PE =
1

Pr0 (st)MT (st)
E0

∑
ℓ≥0

Mℓ

(
ξℓ − 1

ξℓ

)∑
i≥0

∂QEQ
i
ℓ

(
Bi
ℓ−1 −Bi

ℓ

)
where a swap of securities at a particular history can affect asset prices at all other histories—

past and future—due to general equilibrium effects on the stochastic discount factor that now

directly depends on the tax rates. Proposition 2 allows us to characterize these price effects

with a closed form expression using entirely time t covariances that are measurable in the data.

E.2 Proofs for Propositions 1 and 2

E.2.1 Proof of Proposition 1

We begin by noting that at the zeroth order, we get ξ
j
M,ℓ = − ψℓ

Y ℓ−Gℓ−θℓv(Y ℓ)
×
(
ξℓ−1

ξℓ

)
= ξM,t,

is independent of time and the details of the perturbation. We proceed by proving a series of

lemmas documenting the results of Proposition 1

Lemma 3. Expected excess returns are zero to the zeroth and the first order

Proof. The zeroth of (67) gives us

riℓ+1 = 0

Take first order expansion to get

Eℓ∂σriℓ+1Mℓ+1 + Eℓriℓ+1∂σMℓ+1 = 0

and thus

Eℓ∂σriℓ+1 = 0.

Lemma 4. To the first order, price effects are zero, that is, for all i, ℓ: ∂σ∂QEQ
i
ℓ = 0

Proof. Start from the definition of Qiℓ

Qiℓ

(
sℓ
)
= Esℓ

∑
k≥1

Mℓ+k

Mℓ
Di
ℓ+k.

∂σ∂QEQ
i
ℓ = Eℓ

∑
k≥1

(∂QE∂σ logMℓ+k − ∂QE∂σ logMℓ)

(
Mℓ+k

M t‘

)
Di
ℓ+k.

A necessary and sufficient condition for price effects to be zero at the first order is that k ≥ 1

Eℓ (∂QE∂σ logMℓ+k − ∂QE∂σ logMℓ) = 0 (70)
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Use the definition of ξM
(
sℓ
)
to get ∂QE logMℓ

(
sℓ
)
= ∂QE

(
τ ℓ
(
sℓ
)
Yℓ
(
sℓ
))

× ξM
(
sℓ
)
. To first

order

∂σ∂QE logMℓ = ∂σ∂QE (τ ℓYℓ)× ξM,ℓ

Then (70) is equivalently expressed as

Eℓ (∂σ∂QE logMℓ+k − ∂σ∂QE logMℓ) = ξM,ℓ (Eℓ∂σ∂QE (τ ℓ+kYℓ+k)− ∂σ∂QE (τ ℓYℓ))

We check condition (70) by guess and verify.

Suppose ∂σ∂QEQ
i
ℓ = 0 for ℓ ≥ 0, then for all ℓ ≥ 0 and from equations (68)

−∂σ∂QE (τ ℓYℓ) = ∂σ

(
rjt+1

(
st+1

)
1 +Q∞

t+1 (s
t+1)

)
I{sℓ≻st+1} =

∂σr
j
t+1

(
st+1

)
1 +Q

∞
t+1

I{st≻st+1}

When ℓ ≥ t+ 1

Eℓ (∂σ∂QE logMt+1+k − ∂σ∂QE logMt+1) = ξM,t+1

(
∂σr

j
t+1

(
st+1

)
1 +Q

∞
t+1

−
∂σr

j
t+1

(
st+1

)
1 +Q

∞
t+1

)
I{sℓ≻st+1} = 0

When ℓ ≤ t, we can use the fact that to the first order, expected excess returns are zero from

Lemma (4) to establish that (70) holds.

Lemma 5. In the closed economy the effect of the perturbation on expected excess returns is

Eℓ∂σσ∂QEriℓ+1 = 0 ∀ ℓ ̸= t

and at date t

Et∂σσ∂QErit+1 =
2ψt

Yt −Gt − θtv (Yt)
×
(
1− ξt
ξt

)(
1

1 +Q
∞
t+1

)
Eℓ∂σrjℓ+1∂σr

i
ℓ+1 > 0

Proof. The first order expansion ∂QEMℓ after using Lemma 4 gives us

∂σ∂QEMℓ+1 = −ξM,ℓM ℓ+1

{
∂σ

(
rjt+1

1 +Q∞
t+1

)
I{sℓ≻st+1}

}

Use this along with the second order expansion of households optimality condition (67) to

obtain

0 = Eℓ∂σriℓ+1

(
−ξM,ℓM ℓ+1

{
∂σ

(
rjt+1

1 + q∞t+1

)
I{sℓ≻st+1}

})
+ Eℓ∂σσ∂QEriℓ+1M ℓ+1

For ℓ < t, I{sℓ≻st+1} = 0 and thus Eℓ∂σσ∂QEriℓ+1 = 0.
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For sℓ ≻ st+1, use Law of iterated expectations to get

0 = Et+1+k∂σr
i
t+1+k

−ξM,t+1+kM t+1+k Et+1

{
∂σ

(
rjt+1

1 +Q∞
t+1

)}
︸ ︷︷ ︸

=0

+Et+1+k∂σσ∂QEr
i
t+k+2M t+2+k

and use Lemma (4) to get Eℓ∂σσ∂QEriℓ+1 = 0 for sℓ ≻ st+1.

Finally for ℓ = t

0 = Et∂σrit+1

(
−ξM,tM t+1

{
∂σ

(
rjt+1

1 + q∞t+1

)})
+ Eℓ∂σσ∂QEriℓ+1M t+1.

Substitute for ξM,t and simplify to to get

Et∂σσ∂QErit+1 ≃
2ψt

Yt −Gt − θtv (Yt)
×
(
1− ξt
ξt

)(
1

1 +Q
∞
t+1

)
Eℓ∂σrjt+1∂σr

i
ℓ+1.

Since ξt = 1 − γ τ t
1−τ t < 1, Yt − Gt − θtv (Yt) > 0 from Inada conditions, and ψt > 0, we get

that Et∂σσ∂QErjt+1 > 0.

E.2.2 Proof of Proposition 2

The second order expansion of the price effects

∂σσ
(
Pr0

(
st
)
Mt

(
st
)
PEj,t,ϵ

)
= E0

∑
ℓ≥0

(
ξℓ − 1

ξℓ

)
Mℓ

∑
i≥0

∂σσ∂QEQ
i
ℓ

(
B
i
ℓ−1 −B

i
ℓ

) (71)

which equals

(
ξ0 − 1

ξ0

)
M0

∑
i≥0

∂σσ∂QEQ
i
0B

i
−1+

(
ξ0 − 1

ξ0

)
E0

∑
t≥0

∑
i≥0

B
i
t

(
M t+1∂σσ∂QEQ

i
t+1 −M t∂σσ∂QEQ

i
t

) .
(72)

Its easy to see that
(
ξ0−1

ξ0

)
M0

∑
i≥0 ∂σσ∂QEQ

i
0B

i
−1 =

(
ξ0−1

ξ0

)
M0

∑
i ̸=1 ∂σσ∂QEQ

i
0B

i
−1 = 0

under the assumption that initial debt was risk-free.

the household pricing equation implies

MℓQ
i
ℓ = Eℓ

[
Mℓ+1

(
Qiℓ+1 +Di

ℓ+1

)]
(73)

Differentiating by ∂QE gives

(∂QEMℓ)Q
i
ℓ +Mℓ∂QEQ

i
ℓ = Eℓ

[
(∂QEMℓ+1)

(
Qiℓ+1 +Di

ℓ+1

)
+Mℓ+1∂QEQ

i
ℓ+1

]
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Let’s start by looking at ℓ < t , We know that ∂σ∂QEMℓ+1 = 0 so taking the second derivative

with respect to σ yields

Eℓ
[
M ℓ+1∂σσ∂QEQ

i
ℓ+1 −M ℓ∂σσ∂QEQ

i
ℓ

]
= Q

i
ℓEℓ
[
(∂σσ∂QEMℓ)− (∂σσ∂QEMℓ+1)R

rf
ℓ+1

]
.

For ℓ > t and sℓ ≻ st we have
∂QEMℓ

Mℓ
= ξjM,ℓ∂QE (τ ℓYℓ) and hence ∂σ∂QEMℓ =M ℓξM,ℓ

∂σr
j
t+1

1+Q
∞
t+1
.

The second order expansion of equation (73) is

2∂σ∂QEMℓ∂σQ
i
ℓ + (∂σσ∂QEMℓ)Q

i
ℓ +M ℓ∂σσ∂QEQ

i
ℓ = Eℓ

[
2∂σ∂QEMℓ+1∂σ

(
Qiℓ+1 +Di

ℓ+1

)]
+ (∂σσ∂QEMℓ+1)

(
Q
i
ℓ+1 +Di

ℓ+1

)
+M ℓ+1∂σσ∂QEQ

i
ℓ+1

We know thatt

Eℓ
[
∂σ∂QEMℓ+1∂σ

(
Qiℓ+1 +Di

ℓ+1

)]
= ξM,t+1

∂σr
j
t+1

1 +Q
∞
t+1

Eℓ
[
M ℓ+1∂σ

(
Qiℓ+1 +Di

ℓ+1

)]
so we get

Eℓ
[
∂σ∂QEMℓ+1∂σ

(
Qiℓ+1 +Di

ℓ+1

)]
− ∂σ∂QEMℓ∂σQ

i
ℓ

=
∂σr

j
t+1

1 +Q
∞
t+1

ξM,t+1

(
Eℓ
[
M ℓ+1∂σ

(
Qiℓ+1 +Di

ℓ+1

)]
−M ℓ∂σQ

i
ℓ

)
=

∂σr
j
t+1

1 +Q
∞
t+1

ξM,t+1Q
i
ℓ

(
∂σMℓ − ∂σMℓ+1R

rf
ℓ+1

)
with the last equality coming from

∂σMℓQ
i
ℓ +M ℓ∂σQ

i
ℓ = Eℓ

[
∂σMℓ+1

(
Q
i
ℓ+1 +D

i
ℓ+1

)
+M ℓ+1∂σ

(
Qiℓ+1 +Di

ℓ+1

)]
.

Noℓe that this only depends on i through Q
i
thus for ℓ > t

Eℓ
[
M ℓ+1∂σσ∂QEQ

i
ℓ+1 −M ℓ∂σσ∂QEQ

i
ℓ

]
= Q

i
ℓEℓ

[
(∂σσ∂QEMℓ)− (∂σσ∂QEMℓ+1)R

rf
ℓ+1 − ξM,t+1M ℓ

∂σr
j
t+1

1 +Q
∞
t+1

∂σQ
1
ℓ

Q
1
ℓ

]

where the last term is simplified by noting that M ℓ
∂σQ1

ℓ

Q
1
ℓ

= Eℓ
[

1

Q
1
ℓ

∂σMℓ+1 − ∂σMℓ

]
.

Finally, we have the ℓ = t and sℓ = st term which gives

Et
[
M t+1∂σσ∂QEQ

i
t+1 −M t∂σσ∂QEQ

i
t

]
= Q

i
tEℓ

[
(∂σσ∂QEMt)− (∂σσ∂QEMt+1)R

rf
t+1 −

ξM,t+1M t+1

1 +Q
∞
t+1 (s

t+1)
∂σr

j
t+1∂σr

i
t+1

]
.
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Now we note that all the terms M ℓ+1∂σσ∂QEQ
i
ℓ+1−M ℓ∂σσ∂QEQ

i
ℓ in the price effect sum have

a component Q
i
ℓ

(
(∂σσ∂QEMℓ)− (∂σσ∂QEMℓ+1)R

rf
ℓ+1

)
in them. We gain some tractability by

substituting ∂σσ∂QEMℓ =M ℓξM∂σσ∂QE (τ ℓYℓ) + 2M ℓ∂σξM,ℓ∂σ∂QE (τ ℓYℓ) and doing so makes

E0

∑
ℓ≥0

∑
i≥0

B
i
ℓ

(
M ℓ+1∂σσ∂QEQ

i
ℓ+1 −M ℓ∂σσ∂QEQ

i
ℓ

)
= E0

[ ∞∑
ℓ=0

BℓM ℓξM,ℓ (∂σσ∂QE (τ ℓYℓ)− ∂σσ∂QE (τ ℓ+1Yℓ+1))

]

− 2Pr(st)ξM,t+1Et

[ ∑
ℓ=t+1

BℓM ℓ

∂σr
j
t+1

1 +Q
∞
t+1

∂σQ
1
ℓ

Q
1
ℓ

]
(74)

− 2Pr(st)ξM,t+1Et

∑
j≥1

M t+1

1 +Q
∞
t+1 (s

t+1)
∂σr

j
t+1∂σr

i
t+1


+ 2Pr(st)Et

[ ∞∑
ℓ=t

BℓMℓ

(
∂σξM,ℓ∂σ∂QE (τ ℓYℓ)− ∂σξM,ℓ+1∂σ∂QE (τ ℓ+1Yℓ+1)

)]
(75)

Most of these objects we can easily put some structure on except for

E0

[ ∞∑
ℓ=0

BℓM ℓξM,ℓ (∂σσ∂QE (τ ℓYℓ)− ∂σσ∂QE (τ ℓ+1Yℓ+1))

]
,

there we have note that Bℓ = B0 = B, M ℓ =
(
Q1
)ℓ
M0 and ξM,ℓ = ξM,0 = ξM . Put together

we have

E0

[ ∞∑
ℓ=0

BℓM ℓξM,ℓ (∂σσ∂QE (τ ℓYℓ)− ∂σσ∂QE (τ ℓ+1Yℓ+1))

]

= BξM,E0

[ ∞∑
ℓ=0

(
Q1
)ℓ
(∂σσ∂QE (τ ℓYℓ)− ∂σσ∂QE (τ ℓ+1Yℓ+1))

]
M0

= BξM,E0

[ ∞∑
ℓ=0

(
Q1
)ℓ
(Q1 − 1)∂σσ∂QE (τ ℓYℓ)

]
M0
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we can then plug into ∂σσ∂QE (τ ℓYℓ) to get

E0

[ ∞∑
ℓ=0

BℓM ℓξM,ℓ (∂σσ∂QE (τ ℓYℓ)− ∂σσ∂QE (τ ℓ+1Yℓ+1))

]

= B(Q1 − 1)ξMM0E0

 ∞∑
ℓ=0

(
Q1
)ℓ∑

i≥0

∂σσ∂QEQ
i
ℓ

(
B
i
ℓ−1 −B

i
ℓ

)
+BξMM0(Q

1 − 1)Pr(st)Et

[ ∞∑
ℓ=ℓ+1

(
Q1
)ℓ
∂σσ

(
rjt+1

(
st+1

)
1 +Q

∞
t+1

)]

=B(Q1 − 1)ξM
ξ

ξ − 1
∂σσ

(
Pr0

(
st
)
Mt

(
st
)
PEj0

(
st
))

(76)

+BξMM0(Q
1 − 1)Pr(st)Et

[ ∞∑
ℓ=ℓ+1

(
Q1
)ℓ
∂σσ

(
rjt+1

(
st+1

)
1 +Q

∞
t+1

)]

Going back to the HH version of this perturbation we get

Et

[ ∞∑
ℓ=t+1

Mℓ

rjt+1

1 +Q
∞
t+1

]
= 0

As second order expansion of this gives

M0Et

[ ∞∑
ℓ=t+1

(
Q1
)ℓ
∂σσ

(
rjt+1

(
st+1

)
1 +Q

∞
t+1

)]
= −2Et

[ ∞∑
ℓ=t+1

∂σMℓ

∂σr
j
t+1

(
st+1

)
1 +Q

∞
t+1

]
(77)

Putting all together we get (combining equations (71),(74),(76), and (77) )(
ξ

ξ − 1

)
∂σσPEj,t,ϵ =

−2ξM(
1−B0(Q1 − 1)

)
(Q1)t

Et

[ ∑
ℓ=t+1

Bℓ

∂σr
j
t+1

1 +Q
∞
t+1

∂σQ
1
t

Q
1
t

]

− 2BξM (Q1 − 1)(
1−B(Q1 − 1)

)Et [ ∞∑
t=t+1

(
Q1
)t−t

∂σ lnMt
∂σr

j
t+1

(
st+1

)
1 +Q

∞
t+1

]

−2ξM(
1−B(Q1 − 1)

)
(Q1)t

Et

∑
j≥1

Q1

1 +Q
∞
t+1 (s

t+1)
∂σr

j
t+1∂σr

i
t+1


− 2B(

1−B(Q1 − 1)
)Et [ ∞∑

t=t

(
Q1
)t−t ∂σrjt+1

(
st+1

)
1 +Q

∞
t+1

(
∂σξM,t − ∂σξM,t+1

)]

as desired.
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