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Abstract

I use Bayesian VARs to forecast global temperatures anomalies until the end

of the XXI century by exploiting their cointegration with the Joint Radiative

Forcing (JRF) of the drivers of climate change. Under a ‘no change’ scenario

the land and ocean temperature anomalies are projected to reach nearly 6 and 3

Celsius degrees, respectively, by 2100. Forecasts conditional on alternative paths

for the JRF show that, given the extent of uncertainty, bringing climate change

under control will require to bring the JRF back to the level of the early XXI

century. In recent years the JRF has exhibited a marked acceleration, which by

2023 has not been fully reflected in temperature anomalies yet, thus pointing

towards their corresponding acceleration going forward.
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1 Introduction

For more than a decade global temperatures have been consistently breaking records

nearly every year. Against this background, the scorching summers of 2022 and es-

pecially 2023, characterized by heatwaves, droughts, wildfires and floods of an un-

precedented spread and intensity, have highligthed in the starkest possible way the

severity of the threat posed by climate change.

In this paper I use Bayesian VARs in order to forecast temperature anomalies for

both the land and the ocean, different latitudes, individual continents, and individual

cities until the end of the XXI century, by exploiting their cointegration with the Joint

Radiative Forcing (JRF) of the drivers of climate change. My goal is to provide ten-

tative answers to the following questions: What is the increase in global temperatures

that is already implied by the level of greenhouse gases’ emissions reached in 2023?

How will global temperatures evolve going forward? And what are the reductions in

greenhouse gases’ emissions that will be required in order to bring climate change

under control?

I obtain four main sets of results:

(I) Under a ‘no change’ scenario, median forecasts predict the land and ocean

temperature anomalies to reach nearly 6 and 3 Celsius degrees by 2100, respectively,

with the corresponding 90%-coverage credible sets equal to [4.0; 7.9] and [2.1; 3.9]

degrees. In order to put these numbers into context it is worth recalling that the

lower bound of the estimates for the increase in temperatures associated with the

Paleocene-Eocene Thermal Maximum (PETM), about 55.5 million years ago, is about

5 Celsius degrees. During that period Antarctica was covered with tropical forests,

and Arctic waters pullulated with alligators. Further, and crucially, the period of

sustained carbon increase that led to the PETM is estimated to have lasted between

20 thousand and 50 thousand years. If the land temperature anomaly were to reach

nearly 6 Celsius degrees (or possibly even higher values) within less than eight decades,

the extent to which society could adapt–or whether it could adapt at all–is entirely

open to question. Forecasts for alternative latitudes highlight a dramatic extent of

variation, with median projected increases by the year 2100 ranging from 3.2 Celsius

degrees for the Equator, to 6.0 and 7.4 degrees for the 60 degrees North latitudes

and the Arctic, respectively. Forecasts for individual continents point towards a non-

negligible extent of heterogeneity, with the median projections for 2100 being equal

to about 6 degrees for Europe and Asia, about 5 for North America, and about 4 for

Africa, Oceania and South America.

(II) Since the end of the 1970s the rate of increase of the JRF has exibited a consis-

tent, continuous acceleration. Given the long lags required for temperature anomalies

to reach their new long-run equilibria in response to a permanent increase in the JRF

(which I estimate at several decades) this is consistent with the dramatic worsening

of climate change over the most recent years. Further, consistent with the acceler-

ation of the increase in the JRF in recent years, over the last decade the JRF has
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progressively drifted in the upper tail of the distribution of the forecast conditional

on data up until 2013. On the other hand, over the same period both the land and

the ocean temperature anomalies have been mostly in line with the median projec-

tion conditional on data up to 2013, and in fact in the most recent years both of

them have been below the median forecast. The logical implication is that in recent

years temperature anomalies have not kept up with the rapid acceleration in the rate

of increase in the JRF. In turn, this implies that, to the extent that going forward

the intrinsic dynamics of the system-Earth will re-establish the long-run equilibrium

relationship between the JRF and temperature anomalies, the latter will have to in-

crease faster than they have over the decade 2013-2023, in order to catch up with the

increases in the JRF.

(III) Forecasts conditional on alternative paths for the JRF show that, given

the extent of statistical uncertainty, bringing climate change under control (which

I take it to mean keeping temperatures’ increases below 1.5 Celsius degrees) will

require to bring the JRF back to the levels reached in the early years of the XXI

century. Consistent with this, evidence suggests that, even if we were somehow able

to prevent any increase in the JRF after 2023, still, the intrinsic dynamics of the

system in response to past JRF increases would produce potentially dangerous levels

of warming going forward. This evidence provides clear proof that, once taking into

account of statistical uncertainty, the JRF has already exceeded, in recent years, the

level climate scientists regard as safe.

(IV) From amethodological point of view, evidence suggests that previous cointegration-

based studies of climate change suffer from model mis-specification. There are two

issue involved. First, Stock and Watson’s (1996, 1998) tests applied to the first dif-

ferences of climate change series uniformly and strongly suggest that they contain

a non-negligible random-walk component, so that their levels are in fact I(2). The

vast majority of previous studies, however, have not considered this possibility, and

they have rather assumed that the series are only integrated of order one. Second,

Monte Carlo evidence shows that standard fixed-coefficients I(2) cointegrated VECM

models,1 which have been used in a small number of previous studies, are also at

odds with the data, whose first differences exhibit random-walk time-variation in the

mean. I model this feature of the data via a multivariate random-walk specification

for the means of the first differences of the series, subject to the restrictions imposed

by cointegration between their levels, a feature that is in fact compatible with the

data.

In the climate science literature, long-horizon forecasts for global temperatures

are routinely produced via (ensembles of) large-scale models that describe in great

detail, and with a significant extent of granularity, a large array of features of the

dynamics of Earth’s climate. Within the present work, on the other hand, I produce

temperatures forecasts based on comparatively small cointegrated VECMs, featuring

at most four series. The contrast between the two approaches bears some similarities

1See e.g. Juselius (2006).
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with the corresponding contrast, within Economics, between structural VAR (SVAR)

methods and Dynamic Stochastic General Equilibrium (DSGE) models. Broadly

conceptually in line with large-scale climate science models, DSGE models aim to

provide a detailed description of all of the interactions taking place in the economy.

In line with the approach adopted in the present work, on the other hand, SVAR

methods start with a plausible reduced-form time-series representation of the data,

and then impose upon this structure a minimal set of restrictions that allows to

produce meaningful inference.

Although, to the very best of my knowledge, all previous cointegration-based stud-

ies of climate change have been based on Classical methods, there are several reasons

behind my adoption of a Bayesian approach. First and foremost, this approach allows

a researcher to reject models (i.e. draws from the posterior distribution) exhibiting

implausible features. For example, it is well known that on average ocean tempera-

tures have reacted to the increase in the JRF much more slowly than land tempera-

tures. This feature can be easily imposed in estimation by (e.g.) rejecting all models

for which the impulse-response function (IRF) of the ocean temperature anomaly to

a permanent shock to the JRF index converges to the new steady-state faster than

the corresponding IRF of the land anomaly. A Bayesian approach therefore allows

to narrow down the set of plausible models, thus producing in principle compara-

tively more precise inference and forecasts. Further, Bayesian methods provide a

natural way of incorporating information from previous studies. This could pertain

(e.g.) to the long-run equilibrium relationship between the JRF index and global

temperatures (which is related to what in the climate science literature is referred to

as ‘climate sensitivity’). In the present work I do not exploit this possibility since,

as previously pointed out, my evidence suggests that previous cointegration-based

studies of climate change suffer from model mis-specification, which raises doubts

about the reliability of their estimates. In principle, however, this is an important

advantage of a Bayesian approach.

The paper is organized as follows. The next section discusses the data sources;

how I address the issue of linking series based on regular, direct observations (which

are available for the most recent past) with series that have been spline-interpolated

based on irregular observations (which are the only data available for the more distant

past); and the construction of the index of JRF. Section 3 presents statistical evidence

on the stochastic properties of the series under investigation, i.e. the JRF index

and the temperature anomalies. I present evidence from unit root tests; Stock and

Watson’s (1996, 1998) tests of the null hypothesis of time-invariance against the

alternative of random-walk time-variation applied to the first differences of the series;

and Wright’s (2000) tests of the null hypothesis of cointegration between the JRF

index and the temperarture anomalies. Section 4 discusses my econometric approach,

paying particular attention to the issue of modelling the common I(2) component

shared by the series. Section 5 discusses the evidence: impulse-response functions to

a permanent shock to the level of the JRF index; forecasts up to the end of the XXI
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Figure 1  The raw data 



century conditional on data up to 2022 but without imposing any other restriction;

and forecasts over the same time span conditional on alternative possible paths for

the future evolution of the JRF index. Section 6 concludes.

2 The Data

2.1 Data sources

2.1.1 Temperature anomalies

Annual data for the global land and ocean temperature anomalies since 1850 (January-

December averages, in Celsius degrees) are from the website of the National Oceanic

and Atmospheric Administration (NOAA) at: https://www.ncei.noaa.gov/. They

are expressed as deviations from the 1901-2000 average. Since the standard reference

period used first and foremost by the Intergovernmental Panel on Climate Change

(IPCC) is 1850-1900, I adjust the NOAA series by rescaling them accordingly.

By the same token, annual data since 1850 for the temperature anomalies at

three different latitudes (0, and either 30 or 60 degrees North) are from the website

of NOAA. Any of the three series has been computed as the average of the global

temperature anomalies at that specific latitude for a grid of 38 possible longitudes,

from -180 to +180 degrees.2 Since all of the series for the temperature anomalies

pertaining to alternative combinations of latitude and longitude are expressed as

deviations from the 1991-2020 average, I rescale them in such a way that, once again,

they are expressed as deviations from the standard reference period 1850-1900.

Annual data since 1910 for the temperature anomalies for individual continents

(Africa, Asia, Europe, North America, South America, and Oceania, therefore ex-

cluding Antarctica) are also from the website of NOAA.

Finally, annual data since 1850 for the temperature anomalies for individual cities

are from the website of NOAA.3 Again, since all of the series for the temperature

anomalies pertaining to alternative combinations of latitude and longitude are ex-

pressed as deviations from the 1991-2020 average, I rescale them in such a way that,

once again, they are expressed as deviations from the standard reference period 1850-

1900.

2So, to be clear, e.g., the global temperature anomaly for the 30 degrees North latitude has been

computed as the average of the temperature anomalies for 30 degrees North and -180 degrees; 30

degrees North and -170 degrees; ...; 30 degrees North and +170 degrees; and 30 degrees North and

+180 degrees.
3Specifically, NOAA provides temperature anomalies’ data for each combination of latitude and

longitude on the planet since 1850. Based on individual cities’ latitude and longitude their temper-

ature anomalies’ series can then be immediately recovered.

5



2.1.2 Drivers of climate change

Data sources for CO2, CH4, and N2O are as follows. As for CO2, data before 1958

have been spline-interpolated based on the data retrieved from the Scripps CO2

Program (at http://scrippsco2.ucsd.edu ). Since 1958, they are based on direct mea-

surements from the Mauna Loa observatory. As for CH4, until 1997 data are from

Robertson at el. (2001). Since then they are from NOAA. As for N2O, until 2017

data are from https://www.n2olevels.org/. Since then they are from NOAA. The

concentrations of CO2, CH4, and N2O in the atmosphere have been converted into

radiative forcing (expressed in Watts per square meter) based on the formulas found

in Table 1 of Butler and Montzka (2018).

Data on the radiative forcing of chlorofluorocarbons (CFC11 and CFC12) are from

Stern and Kaufmann (2014), and they have been updated based on data from NOAA

and the formulas for radiative forcing found in Stern and Kaufmann (2000, p. 435).

A series for the radiative forcing of anthropogenic sulfur emissions (SOx) is from

Stern and Kaufmann (2014), and it has been updated based on data from the OECD

and the formulas for radiative forcing found in Stern and Kaufmann (2000, p. 435).

The radiative forcing of El Niño and La Niña (El Niño-Southern Oscillation, hence-

forth ENSO) is from Dergiades, Kaufmann, and Panagiotidis (2016) until 2011, and

it has been updated based on data from NOAA.

Data on solar irradiance are from Coddington et al. (2015) and Kopp et al. (2016)

until 2014. Since then they are from the SORCE Total Irradiance Monitor (TIM).4

I convert the resulting index of solar irradiance into radiative forcing based on the

formula found on p. 435 of Stern and Kaufmann (2000), which in turn is based on the

IPCC (see Shine et al. 1991). Since solar irradiance features an 11-years cycle which

is irrelevant for the present purposes, I remove it via the band-pass filter proposed

by Christiano and Fitzgerald (2003).5

2.2 Linking data based on regular measuring with interpo-

lated data based on irregular observations

For three climate change drivers–CO2, NH4, and N2O–I link spline-interpolated

series based on irregular observations with series based on regular direct measuring.

One obvious concern with doing this is that the two types of data that are being linked

are not exactly comparable, and performing econometrics based on the resulting

linked series may therefore produce unreliable results. As it is routinely done in the

climate science literature, for either CO2, NH4, or N2O I therefore address this issue

as follows.

4Details of the TIM design and calibrations are given in Kopp and Lawrence (2005) and Kopp

et al. (2005).
5Specifically, since I am working at the annual frequency, I remove the frequency band associated

with fluctuations between 10 and 12 years.
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To fix ideas, let us focus on CO2 (the logic for NH4 and N2O is the same). The

spline-interpolated series based on data from the Scripps CO2 program is available

until 2018, whereas the series based on direct measurements from the Mauna Loa

observatory is available since 1958. Over the common sample period, 1958-2018, I

estimate an AR(1) process for the difference between the two series. Then, based

on standard resampling methods, I bootstrap (i.e., stochastically simulate) the esti-

mated AR(1) process for a sample equal to the length of the sample for the spline-

interpolated data (i.e. 1880-2018) and I add it to the spline-interpolated series. In

this way I obtain for the 1880-2018 period a series that mimics the stochastic proper-

ties of the series based on direct measurement from Mauna Loa for the period since

1958. (This is what in the climate science literature is labelled as ‘adding red noise ’

to an interpolated series.) Finally, I construct the linked series for the overall period

1880-2023 by linking the thus constructed, partially simulated series (until 1957) and

the Mauna Loa series (since 1958). For NH4 and N2O I proceed in the same way.

By construction, over the first part of the sample period the linked series for

CO2, NH4, and N2O are random, as they depend on the specific realizations of the

bootstrapped red noise processes. In Section 2.5 below I discuss how I address this

issue via Monte Carlo integration, by integrating out the randomness originating from

the bootstrapped red noise processes.

2.3 Construction of the JRF index

Once each driver of climate change has been converted into radiative forcing, I con-

struct the aggregate JRF index as in Kaufmann, Kauppi, and Stock (2006) by sum-

ming up the individual components. The single exception is El Niño and La Niña

(ENSO), which I ignore for the reasons I discuss in Appendix A.1.6 As shown by

Kaufmann, Kauppi, and Stock (2006, see Table II and the discussion on page 261),

it is indeed not possible to reject the null hypothesis that ‘the temperature effect of

a unit of radiative forcing (e.g. W/m2) is equal across forcings’.

2.4 A look at the raw data

Figure 1 shows the radiative forcing of individual climate change drivers; the JRF

index, either including or excluding the radiative forcing of anthropogenic sulfur emis-

sions (SOx); and the global land and ocean temperature anomalies.

As I discuss in Section 2.5, the series for CO2, NH4, and N2O are in part stochas-

tically simulated over the first portions of the respective sample periods, by adding to

6In brief, (1) ENSO features virtually no spectral power at frequencies beyond 25 years, and (ii)

it is extraordinarily noisy compared to the other drivers of climate change. The implication is that

including the radiative forcing of ENSO in the JRF index would uniquely add a large amount of

comparatively high-frequency noise, whereas it would bring essentially no information about the

long-horizon developements that are the focus of the present work.
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spline-interpolated data bootstrapped (i.e. stochastically simulated) red noise based

on estimated AR(1)’s. With the exception of solar irradiance and the CFCs, all of

the series shown in the first two panels of Figure 1 pertain therefore to a single sto-

chastic simulation. It is to be stressed, however, that because of the comparatively

small magnitude of the estimated red noise compared to the level of the series, the

difference between individual stochastic simulations is very small (then, for either

CO2, NH4, or N2O the second part of the respective samples, being based on direct

regular measurements, is by definition the same). This means that, in practice, what

is shown in Figure 1 is representative of the entire universe of simulations. Figure

A.2 in the Appendix provides simple evidence on this. The figure shows, for CO2,

NH4, and N2O, the maximum and the minimum among the sorted partially simu-

lated paths out of 100,000 simulations, together with the difference between them.

Evidence is very clear: over the first portions of the sample (until 1960, 1980, and

1980, respectively), the simulated paths had been very close. This had especially

been the case for CH4, and just slighty less so for CO2 and N2O.

Two main findings clearly emerge from Figure 1. First, since 1850 CO2, CH4

and SOx have been by far the dominant drivers of the evolution of the JRF index.

Second, until about the early 1990s SOx had been playing an important moderating

role in the overall increase in the JRF index. Since then, however, its previous

moderating contribution has gone into reverse, as efforts to remove anthropogenic

sulfur emissions from the atmosphere have started to bear fruits. As a result, over

the last three decades the evolution of the SOx radiative forcing has contributed to

the overall increase in the JRF index.

The second panel of Figure 1 illustrates this point in an especially stark way. Nor-

malizing the JRF index to zero in 1850, excluding the impact of SOx the index would

have increased much faster than it has historically been the case. To the extent that

efforts to remove anthropogenic sulfur emissions from the atmosphere will continue

and will be successful, the radiative forcing of SOx shown in the first panel will con-

verge to zero, and the overall JRF index will therefore be more and more dominated

by the remaining drivers.

Finally, the third panel illustrates the well-known lag that the ocean temperature

anomaly has consistently exhibited over the last five decades compared to its land

counterpart. Whereas the two anomalies had been fluctuating pretty much in synch

between the early XX century and the 1970s, since then a sizeable divergence has

developed, with the ocean anomaly consistently lagging behind its land counterpart.

2.5 Integrating out simulated red noise via Monte Carlo in-

tegration

As discussed, over the first part of the sample period the linked series for CO2, NH4,

and N2O are random, as they depend on the specific realizations of the bootstrapped

red noise processes. I therefore address this issue as follows.
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For  = 1, 2, 3, ..., , with  = 1,000, I generate partially simulated7 series for

the concentration of CO2, NH4, and N2O in the atmosphere, I convert them into

radiative forcing, and I sum them to the radiative forcings of the remaining drivers of

climate change, thus obtaining a partially simulated series for the JRF index. Based

on this and on the series for the temperature anomalies (which are based on regular

direct observations over the entire sample period) I then estimate the cointegrated

VECM models I describe in Section 4, and I compute the median, and the 16-84

and 5-95 percentiles for all of the objects if interest (impulse-response functions to a

permanent shock to the level of JRF; unconditional and conditional forecasts; etc.).

Finally, I integrate out the uncertainty deriving from the fact that for CO2, NH4,

and N2O the first part of the sample has been partially simulated by computing the

average (corresponding to the expected value) of the objects of interest across all of

the  simulations. This Monte Carlo integration procedure allows to perform the

empirical analysis by effectively controlling for the fact that three of the radiative

forcing series have been partially stochastically simulated.

3 Preliminary Statistical Analysis

My econometric approach, which is based on Bayesian cointegrated VARs, is predi-

cated on the following two assumptions:

(I) both the JRF index and all of the temperature anomalies series are integrated

processes. In particular, they are all I(2).

(II) The JRF index is cointegrated with any of the temperature anomaly series.

In particular, cointegration pertains to the levels of the series, so that (e.g.) for the

land anomaly in a long-run equilibrium  Land = +  + , where the notation

is obvious and  is an I(0) cointegration residual.

As I discuss in the next four sub-sections, these assumptions are either validated

by, or at the very least clearly compatible with, evidence from unit root tests; Stock

and Watson’s (1996, 1998) tests for the null of time-invariance against the alterna-

tive of random-walk time-variation in the mean of the first differences of the series;

and Wright’s (2000) tests of the null of cointegration. For reasons of space in this

section I only report evidence for the JRF index and the land and ocean temperature

anomalies. The corresponding evidence for the temperature anomalies pertaining to

different latitudes, individual continents, and individual cities is reported in Online

Appendix A.1, and will only be briefly referenced in what follows. That evidence is

near-uniformly in line with the evidence discussed herein. The main exception pertains

to the cointegration tests between the JRF index and the temperature anomalies for

individual continents, which detect cointegration only for Europe. A possible expla-

nation for this result is that the sample period for individual continents’ temperature

7Based on the previous discussion, ‘partially simulated’ refers to the first part of the sample, for

which we only have spline-interpolated data.
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anomalies (112 years) is materially shorter than for either the land and ocean anom-

alies, or the anomalies for different latitudes and individual cities (in either instance,

172 years). Accordingly, in what follows I will proceed under the assumption that

temperature anomalies for individual continents are also cointegrated with the JRF

index.

3.1 Unit root tests

Tables 1-1 show bootstrapped -values for Elliot, Rothenberg, and Stock’s (1996)

unit root tests for both the levels and the first differences of the JRF index and the

land and ocean temperature anomalies. For the temperature anomalies series, for

which we have raw data for the entire sample since 1850, I perform the tests in the

standard way, bootstrapping them as in Diebold and Chen (1996) based on the first

difference of the series that is being tested (i.e., either the level or the first difference

of either of the two anomalies). I consider five possible lag orders, from 1 to 5 years.

Table 1a Bootstrapped p-values for Elliot, Rothenberg, and Stock’s

(1996) unit root tests for the land and ocean temperature anomalies

=1 =2 =3 =4 =5

Land

In levels, without time trend 0.6824 0.9052 0.9750 0.9904 0.9940

In levels, with time trend 0.1526 0.3048 0.7162 0.7180 0.7308

In first differences, without time trend 0.0000 0.0000 0.0000 0.0000 0.0000

Ocean

In levels, without time trend 0.4682 0.7256 0.9120 0.9296 0.9588

In levels, with time trend 0.1278 0.4878 0.5440 0.5558 0.6766

In first differences, without time trend 0.0000 0.0000 0.0000 0.0000 0.0000

For the JRF index, on the other hand, I generate 10,000 partially simulated se-

ries as previously described (i.e., by adding bootstrapped red noise to the spline-

interpolated data for the first part of the sample), and based on each of them I

perform the same unit root tests I perform for the temperature anomalies. Table 1

reports the means and the medians of the Monte Carlo distributions of the boot-

strapped -values across the 10,000 simulations, together with the fraction of Monte

Carlo replications for which the -values are smaller than 10%.

For any of the three series the null of a unit root cannot be rejected in levels, either

including or not including a time trend, and based on any of the five lag orders. In

differences evidence is mixed: for all of the temperature anomalies a unit root is

strongly rejected, whereas for the JRF index it is rejected at the 10 per cent level

only for lag orders smaller than or equal to 3.

Tables A.1.1, A.2.1 and A.3.1 in the Online Appendix report the corresponding

evidence for the temperature anomalies for different latitudes, individual continents,
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and individual cities respectively. This evidence is near-uniformly in line with that in

Tables 1-1, with only three exceptions. For both the latitude 0, and South America

and Oceania, the null of a unit root can be rejected based on models featuring a

time trend. Since, arguably, the most meaningful tests are those not including a

time trend,8 in what follows I will ignore these results, and I will proceed under the

assumption that these three series all feature a unit root.

Table 1b Bootstrapped p-values for Elliot, Rothenberg, and Stock’s

(1996) unit root tests for the JRF index

=1 =2 =3 =4 =5

Mean of Monte Carlo

distribution of -values

In levels, without a time trend 1.0000 1.0000 1.0000 1.0000 1.0000

In levels, with a time trend 0.9995 0.9994 0.9992 0.9997 0.9999

In first differences, without time trend 0.0001 0.0032 0.0379 0.1313 0.3018

Median of Monte Carlo

distribution of -values

In levels, without a time trend 1.0000 1.0000 1.0000 1.0000 1.0000

In levels, with a time trend 0.9995 0.9995 0.9995 1.0000 1.0000

In first differences, without time trend 0.0000 0.0030 0.0375 0.1305 0.3010

Fraction of Monte Carlo distribution

of -values smaller than 10 per cent

In levels, without a time trend 0.0000 0.0000 0.0000 0.0000 0.0000

In levels, with a time trend 0.0000 0.0000 0.0000 0.0000 0.0000

In first differences, without time trend 1.0000 1.0000 1.0000 0.0425 0.0000
 Based on10,000 Monte Carlo simulations of joint radiative forcing.

Based on the evidence in Tables 1-1 and A.1.1-A.3.1 a reasonable characteriza-

tion of the data, which has in fact been adopted by the vast majority of cointegration-

based studies on climate change, is that all of the series are I(1). As the evidence in

the next sub-section shows, this conclusion would however most likely be incorrect,

since Stock and Watson’s (1996, 1998) tests applied to the first differences of the

series clearly suggest that they all contain a random-walk component.

3.2 Searching for random-walk time-variation in the first dif-

ferences of the series

Figure 2 shows rolling averages of the first differences of the JRF index and of the

land and ocean temperature anomalies for 50-years samples. The evidence is unmis-

takeable: the average level of all of the three series has exhibited a broad upward trend

8The reason is that in terms of both physics and basic logic it is not clear why temperature

anomalies should feature a deterministic time trend.
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Figure 2  Fifty-years rolling averages of the first differences of the series 
 

 
 



over the sample period. For both the JRF index and the land temperature anomaly

this is especially apparent since the end of the 1970s, when the contribution of SOx

to the JRF index turned from negative to positive (see Section 2.4). As for the ocean

anomaly the range of variation is significantly smaller than for the land anomaly, but

the overall pattern of increase is more regular. This is what we would expect from

the fact that, once appropriately scaled, the ocean anomaly behaves essentially as a

low-frequency component of the land anomaly. Evidence for the temperature anom-

alies pertaining to different latitudes, individual continents and individual cities is

qualitatively the same, and it is available upon request.

This evidence questions the notion that the first differences of the series are in

fact I(0), and therefore that the series themselves are I(1). Indeed, from I(0) series

one would not expect such a consistent pattern of progressive increase at the very low

frequencies over such a long period of time. Rather, the evidence in Figure 2 naturally

suggests that the first differences of the series feature an I(1) component which is too

small to be detected by standard unit root tests, but it is in fact sufficiently sizeable

to induce a progressive increase in the average level of the series’ first differences.

Table 2 Simulated p-values for Stock and Watson’s tests for

the null of time-invariance against the alternative of random-

walk time-variation in the mean of the first differences of the

series

JRF index Temperature

Fraction anomalies

HAC correction: Mean Median below 10% Land Ocean

Trimming: 0.15

Newey and West (1987) 0.0448 0.0148 0.8590 0.000 0.049

Andrews (1991) 0.0531 0.0209 0.8590 0.000 0.112

Trimming: 0.25

Newey and West (1987) 0.0409 0.0120 0.8480 0.001 0.041

Andrews (1991) 0.0480 0.0171 0.8480 0.000 0.088

Trimming: 0.33

Newey and West (1987) 0.0754 0.0488 0.7740 0.003 0.044

Andrews (1991) 0.0864 0.0591 0.7700 0.001 0.094
 Mean and median of the Monte Carlo distribution of -values, and

fraction of -values smaller than 10%.

In order to explore this issue, Table 2 reports evidence from Stock and Watson’s

(1996, 1998) tests of the null hypothesis of no time-variation in the mean of the first

difference of any of the series, against the alternative of random-walk time variation.

Tables A.1.2, A.2.2 and A.3.2 in the Online Appendix report the corresponding ev-

idence for the temperature anomalies for different latitudes, individual continents,

and individual cities respectively. In implementing Stock and Watson’s approach I

closely follow Stock and Watson (1996, 1998). The methodology is described in detail
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in Appendix B, and it is exactly the same I used in Benati (2007). I consider three al-

ternative values of ‘trimming’, i.e. the standard 15% and, in order to give more power

to the tests, either 25% or 33%. I control for the possible autocorrelation and/or

heteroskedasticity of the residuals via either Newey and West’s (1987) or Andrews’

(1991) covariance matrix estimator. For any of the temperature anomalies, for which

we have raw data for the entire sample since 1850, I simply report the simulated

-values produced by Stock and Watson’s methodology. For the JRF index, which as

discussed is partially stochastically simulated, I report the mean and the median of

the Monte Carlo distribution of the simulated -values, together with the fraction of

the -values smaller than 10% across all of the 10,000 Monte Carlo simulations.

Overall, I detect strong evidence of random-walk time-variation for all series.9

This suggests that although the I(1) component is too small to be detected based on

standard unit root tests, in fact it is sufficiently large to be detected based on the

approach proposed by Stock and Watson (1996, 1998).

Table 3 Monte Carlo evidence on the plausibility that a fixed-coef-

ficients I(2) cointegrated VECM model may have produced the re-

sults in Table 2: mean and median of the Monte Carlo distribution

of the simulated p-values for Stock and Watson’s tests, and fraction

of replications for which the p-values are smaller than 10%

HAC correction: Newey and West (1987) Andrews (1991)

JRF Land Ocean JRF Land Ocean

index anomaly anomaly index anomaly anomaly

Trimming: 0.15

Mean 0.5884 0.0490 0.1705 0.8228 0.0388 0.2027

Median 0.5750 0.0140 0.1130 0.8950 0.0080 0.1280

Fraction below 10% 0.0050 0.8659 0.4615 0.0270 0.9049 0.4324

Trimming: 0.25

Mean 0.6845 0.0897 0.2463 0.6399 0.0713 0.3094

Median 0.6720 0.0250 0.1580 0.8040 0.0140 0.2300

Fraction below 10% 0.0010 0.7417 0.3604 0.2072 0.8078 0.3003

Trimming: 0.33

Mean 0.6765 0.1059 0.2628 0.6483 0.0862 0.3270

Median 0.6620 0.0290 0.1800 0.7960 0.0170 0.2530

Fraction below 10% 0.000 0.7177 0.3433 0.1872 0.7708 0.2853

9The only exception is the temperature anomaly for the latitude 0, for which the simulated -

values are consistently greater than 10 per cent. The most plausible explanation is that the impact

of climate change is greater the higher the latitude, and it is therefore maximum at the Poles

and minimum at the Equator. As a consequence, for the latitude 0 the extent of random-walk

time-variation is likely too small to be detected by Stock and Watson’s tests. In what follows I

will therefore proceed under the assumption that the temperature anomaly for the Equator, too,

features random-walk time-variation in the mean.
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3.3 Interpreting the results from Stock and Watson’s (1996,

1998) tests

The natural interpretation of the evidence in Figure 2 and especially Tables 2, and

A.1.2-A.3.2 in the Online Appendix, is that the equilibrium levels of the first differ-

ences of the series follow a multivariate random-walk process driven by the progressive

increase in the first difference of the JRF index. In principle, however, an alternative

possible interpretation of this evidence might be that the data-generation process

(DGP) is a time-invariant I(2) VAR. As I now show via Monte Carlo, however, this

clearly seems not to be the case.

Tables 3, and A.1.3-A.3.3 in the Online Appendix, report results from the following

exercise. I generate, as previously described, 1,000 partially simulated series for the

JRF index. Based on any of them and the temperature anomalies’ series I then

estimate a standard fixed-coefficients I(2) cointegrated VECM model10 via Bayesian

methods as described in Appendix C, by combining the likelihood of the data with

a minimal set of priors designed in order to impose a meaningful structure upon the

VECM.11 For each of the 1,000 samples this produces 1,000 draws from the posterior

distribution, thus resulting in a total of 1 million models. I then stochastically simulate

each of these models for samples of length equal to the length of the actual sample

I am working with (1910-2022 for continents’ anomalies, and 1850-2022 for all other

anomalies), and based on each of them I perform the same Stock and Watson’s (1996,

1998) tests I performed based on the actual data.

Table 3 reports, for the JRF index and the land and ocean anomalies, the means

and the medians of the Monte Carlo distributions of the simulated -values, together

with the fractions of simulations for which the -values have been below 10%, out of

the 1 million Monte Carlo simulations. Tables A.1.3-A.3.3 in the Online Appendix

report the corresponding evidence for the different latitudes, individual continents,

and individual cities respectively. The evidence in the four tables is very clear: if

the true DGP had been a standard fixed-coefficients I(2) cointegrated VECM model,

obtaining the results reported in Tables 2 and A.1.2-A.3.2 would have been extremely

unlikely. For the sake of the argument, let us focus in Table 3 on the results based

on 25% trimming and Newey and West’s (1987) HAC correction. For two series out

of three (the JRF index and the ocean anomaly) both the mean and the median of

the Monte Carlo distributions of the -values are materially beyond 10%, and the

fractions of Monte Carlo simulations for which the -values are below 10% are equal

to 0.0010 for the JRF index, and to 0.3604 for the ocean anomaly. Only for the

land anomaly the evidence in Table 3 is compatible with the notion that the DGP

is a standard I(2) cointegrated VECM model. The evidence in Tables A.1.2-A.3.2 is

10The model is discussed e.g. in Juselius (2006).
11As I discuss below, the main restriction I impose is that the reaction of the ocean anomaly to

increases in the JRF is slower than the corresponding reaction of the land anomaly, which I express

in terms of their normalized impulse-response functions to a permanent JRF shock.
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qualitatively the same.

Evidence based on non-cointegrated I(2) VAR models is qualitatively the same,

and it is available upon request. My preference for the evidence based on I(2) cointe-

grated VECMmodels originates from the fact that, as I show in the next sub-section,

the data quite clearly point towards cointegration between the JRF index and tem-

perature anomalies, so that non-cointegrated I(2) VAR models are significantly less

empirically plausible.

I now turn to testing for cointegration between the JRF index and either temper-

ature anomaly.

3.4 Evidence from Wright’s (2000) cointegration tests

Based on the climate science literature, the relevant null hypothesis to be tested is that

the level of the JRF index is cointegrated with the levels of any of the temperature

anomalies, so that even if the series are I(2), the residual from the cointegrating

regressions

 = +  +  (1)

where  is one of the temperature anomaly series, is I(0). I therefore proceed as

follows.

To fix ideas, let us focus on the land temperature anomaly. I start by generating,

as previously described, 1,000 partially simulated series for the JRF index, 

 ,

with  = 1, 2, ..., 1,000. Then,

(1) based on each pair {

 , 

Land
 },  = 1, 2, ..., 1,000, I perform a Wright

(2000) test for the null hypothesis of cointegration between 

 and  Land .

(2) Based on each triplet {

 , 

Land
 , Ocean },  = 1, 2, ..., 1,000, I estimate

the cointegrated VECM model discussed in the next section, featuring a multivariate

random-walk specification for the time-varying equilibrium levels of the first differ-

ences of the three series. For each sample  = 1, 2, ..., 1,000, this produces  = 1, 2,

..., 1,000 draws from the posterior distribution.

(3) For each  = 1, 2, ..., 1,000, I then stochastically simulate each of the 1,000 

models (i.e. draws from the posterior), thus obtaining a Monte Carlo distribution of

Wright’s (2000) test under the null hypothesis that (i) the three series are I(2) and

(ii) they are cointegrated in levels. Based on this, I compute as in Wright (2000) the

90%-coverage confidence intervals for the cointegration coefficient.

For either the land or the ocean temperature anomalyWright’s (2000) tests cannot

reject the null hypothesis of cointegration for any  = 1, 2, ..., 1,000. Finally, as

discussed in Section 2.5 I integrate out the randomness associated with the simulated

red noise I have added to the JRF index over the first part of the sample period by

computing the average, across all ’s, of the confidence intervals for the cointegration

coefficient.

The average across the 1,000 simulations of the 90%-coverage confidence interval

for the cointegration coefficient for the land anomaly is [-0.9521 -0.6000], whereas
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the corresponding object for the ocean anomaly it is [-2.2411 -1.4546], reflecting the

significantly slower rate of warming of the oceans over the sample period. It is

to be noticed that the confidence intervals for the land and ocean anomalies are

not overlapping. Taken at face value this would imply that the land and ocean

anomalies, although both cointegrated with the JRF index, exhibit different long-run

equilibrium relationships with it. Another possible interpretation is that, in response

to a permanent increase in the JRF index, the two temperature anomalies ultimately

increase by exactly the same amount, so that they share the same cointegration vector

with the JRF, but that the sample period since 1850 is simply too short to capture

this. As I will discuss in the next section, climate science suggests that the former

interpretation is significantly more plausible, and that in a long-run equilibrium the

land and the ocean exhibit different responses to a permanent increase in the JRF.

Evidence for the systems featuring the JRF index and temperature anomalies ei-

ther for different latitudes, or pertaining to individual continents or cities, discussed

in Online Appendices A.1.1-A.1.3, is qualitatively the same. In particular, the av-

erages across the 1,000 simulations of the 90%-coverage confidence intervals for the

cointegration coefficients for the latitudes 0, 30 degrees North, and 60 degrees North

are equal to [-3.9105 -0.6002], [-3.0715 -0.5049], and [-1.7727 -0.3265] respectively, re-

flecting the fact that the higher the latitude, the greater the increase in temperatures.

I now turn to discussing my econometric approach.

4 The Econometric Approach

I start by discussing the standard cointegrated VECM model for I(1) series detailed

(e.g.) in Hamilton (1994), and I then turn to the modification I propose in order to

take into account of the fact that, as previously shown, the first differences of the

series feature random-walk time-variation in their means.

4.1 The I(1) cointegrated VECM model

Let the standard cointegrated VECM representation for a (N×1) vector of I(1) series
 be

∆ = 0 +1∆−1 + +∆− + 0−1 +  (2)

where  is the matrix of the cointegration vectors,  is the matrix of the loading

coefficients, [0] = Σ, and the rest of the notation is standard. By defining as 

the time-invariant unconditional mean of ∆, with 0 = [ −1− −] , this

expression can be rewritten as

∆ − = 1(∆−1 −) + +(∆− −) + 0−1 +  (3)

As shown in Section 3.2, evidence from Stock andWatson’s (1996, 1998) tests suggests

that within the present context features random-walk time-variation, which implies
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that (2) does not provide a meaningful description of the DGP.12 The next sub-section

describes how I address this issue.

4.2 An I(2) cointegrated VECM model with random-walk

time-variation in the means of the series’ first differences

The natural way of modelling random-walk time-variation in  is to postulate that

it evolves according to a multivariate random walk specification, subject to the re-

strictions imposed by cointegration between the levels of the series. To fix ideas, let

us focus on the trivariate system featuring the JRF index and the land and ocean

temperature anomalies, so that  = [, 
Land
 , Ocean ]0. For systems featuring al-

ternative temperature anomalies indices the logic is exactly the same. As previously

shown, the levels of both temperature anomalies are cointegrated with the level of

the JRF index. This implies that the system features a single I(2) stochastic trend,

originating from the progressive increase of the JRF, and two cointegration vectors.

Within the present context, the natural rotation of the cointegration space is obtained

by defining the matrix of the cointegration vectors as

 =

⎡⎣ 1 1

−Land 0

0 −Ocean

⎤⎦  (4)

which implements the previously discussed restrictions.

As discussed e.g. in Kleibergen and van Dijk (1994) and Bauwens and Lubrano

(1996), for the  cointegration vectors to be uniquely identified, each of the  columns

of  ought to feature at least  restrictions. Within the present context this is indeed

the case, as each of the two columns features two restrictions, and in fact either of

them depends on a single cointegration coefficient.

Finally, the fact that the three series are cointegrated, with the matrix of cointe-

gration vectors given by (4), imposes the following restrictions on :

 =

⎡⎣ 1
1

Land
1

Ocean

⎤⎦ (5)

 = −1 +  (6)

where  is a scalar random-walk process capturing the common stochastic trend

driving the frequency-zero dynamics of ∆, with  ∼ (0, 2). Since, in equation

12In fact, attempts to estimate the I(1) cointegrated VECM (2) were uniformly fruitless. On

the one hand, Johansen’s estimator consistently produced estimated models featuring explosive

eigenvalues. On the other hand, direct MLE estimation based on numerical methods, along the

lines of the discussion in Section 5.3 below, consistently proved to be highly problematic, with the

problem boiling down once again to the difficulty of obtaining non-explosive estimates. In line with

the previous discussion, the natural interpretation of all this is that the data are in fact I(2).
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(5),  has been normalized on the JRF index, in fact it captures the I(1) stochas-

tic trend in the first difference of , i.e. the sources of anthropogenic climate

change. When jointly considered, (4), (5) and (6) imply that the JRF index and the

temperature anomalies maintain a long-run equilibrium relationship in response to

permanent shocks to both the level of the JRF index, and its first difference.

4.3 Estimation

I estimate all models via Bayesian methods, by combining the log-likelihood of the

data with a minimal set of inequality restrictions (discussed in the next sub-section)

on the impulse-response functions (IRFs) of the series to a permanent shock to the

JRF index. In practice, this means that I perform MLE estimation subject to the

restriction that I reject models (i.e. draws) that do not satisfy the restrictions on the

IRFs. So, although I adopt a Bayesian approach, which allows me to reject draws

that do not satisfy these restrictions, in fact I do not specify a single prior for any

parameter.

I numerically maximize the restricted log-likelihood of the data (where by ‘re-

stricted’ I mean that it is subject to the just-mentioned restrictions on the IRFs)

via simulated annealing exactly as in Benati (2008). Following Goffe, Ferrier, and

Rogers (1994) I implement simulated annealing via the algorithm proposed by Corana,

Marchesi, Martini and Ridella (1987).13 I then stochastically map the restricted log-

likelihood based on Random Walk Metropolis (RWM). In implementing the RWM

algorithm I exactly follow An and Schorfheide (2007, Section 4.1), with the only dif-

ference that the jump to the new position in the Markov chain is accepted or rejected

based on a rule which does not involve any Bayesian priors on the model’s coefficients,

as it uniquely involves the restricted likelihood of the data.14 I calibrate the covari-

ance matrix’s scale factor for RWM based on the methodology proposed by Benati

13I set the key parameters to 0 =100,000,  = 0.9,  = 5,  = 20,  = 10−6, and  = 4,

where 0 is the initial temperature,  is the temperature reduction factor,  is the number of

times the algorithm goes through the  loops before the temperature starts being reduced,  is

the number of times the algorithm goes through the function before adjusting the step size, is the

convergence (tolerance) criterion, and  is the number of times convergence is achieved before the

algorithm stops.
14So, to be clear, the proposal draw for , ̃, is accepted with probability min[1, (−1, ̃ |  ,

)], and rejected otherwise, where −1 is the current position in the Markov chain, and

(−1 ̃ | ) =
(̃ | )

(−1 | )

which uniquely involves the restricted likelihood. With Bayesian priors it would be

(−1 ̃ | ) =
(̃ | ) (̃)

(−1 | ) (−1)

where  (·) would encodes the priors about .
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(2008, Appendix C).

I run a burn-in pre-sample of 1,000,000 draws which I then discard. I then generate

10,000,000 draws, which I ‘thin’ by sampling every 1,000 draws in order to reduce

their autocorrelation. This leaves 10,000 draws from the ergodic distribution which

I use for inference. For all models the fraction of accepted draws is very close to the

ideal one, in high dimensions, of 0.23 (see Gelman, Carlin, Stern, and Rubin, 1995).

I check convergence of the Markov chain based on Geweke’s (1992) inefficiency

factors (IFs) of the draws from the ergodic distribution for each individual parameter.

The IFs are defined as the inverse of the relative numerical efficiency measure of

Geweke (1992),

 = (2)−1
1

(0)

Z
−

() (7)

where () is the spectral density of the sequence of draws from RWM for the para-

meter of interest at frequency . I estimate the spectral densities via the lag-window

estimator as described in chapter 10 of Hamilton (1994). I also considered an es-

timator based on the fast-Fourier transform, and results were very similar. For all

parameters the IFs are equal to at most 3-4, well below the values of 20-25 which are

typically taken to indicate problems in the convergence of the Markov chain.

4.4 Restrictions imposed in estimation

In estimation I impose the restrictions that for each parameters’ draw a permanent

shock to the level of the JRF index generates a non-negative impulse-response function

(IRF) for JRF at all horizons. Further, for the system featuring the JRF index and

the land and ocean temperature anomalies I impose the restriction that, once the

individual series’ IRFs have been normalized by their respective long-run impacts, at

all horizons

(1) the response of the ocean temperature anomaly is slower than the response of

the land temperature anomaly (i.e. the normalized IRF of the latter lies below the

normalized IRF of the former at all horizons), and

(2) the response of the land temperature anomaly is slower than the response of

the JRF index (i.e. the normalized IRF of the latter lies below the normalized IRF

of the former at all horizons).

The rationale for (1) is the well-known slower responsiveness of the ocean tem-

perature anomaly to increases in the JRF compared to its land counterpart. As for

(2) the rationale is that, as matter of logic, the JRF index ought to respond faster to

its own shocks than either of the two temperature anomalies.

As for the other systems, beyond the restriction that a permanent shock to JRF

produces a non-negative IRF for JRF itself at all horizons, I impose the restriction

that, at all horizons, the normalized IRFs of all temperature anomalies lie below the

normalized IRF of the JRF index.
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Figure 3  First difference of joint radiative force, and two-sided estimate 
             of Mu(t) (median, and 16-84 and 5-95 credible set) 
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Figure 4  Impulse-response functions to a permanent shock to the level of joint radiative forcing 
             (median, and 16-84 and 5-95 credible set) 
 
 
 



I impose all of the previously discussed restrictions by rejecting the draws that do

not satisfy them. I now turn to discussing the evidence.

5 Evidence

Figure 3 shows the first difference of the JRF index and the two-sided median esti-

mate of , together with the 16-84 and 5-95 per cent credible sets of the posterior

distribution, based on the model with  = [, 
Land
 , Ocean ]0. The estimate of 

has been computed via the Monte Carlo integration procedure proposed by Hamilton

(1986). Two facts are readily apparent from the figure. First, as it was to be expected

based on the normalization in (5),  behaves as a sort of time-varying equilibrium

level of the first difference of the JRF index. Second,  had been fluctuating around

zero until about the 1970s, whereas since then it has been increasing rapidly. This

is consistent with the dramatic acceleration of climate change over the most recent

period.

5.1 Impulse-response functions to a permanent shock to the

JRF index

Figure 4 shows the IRFs of the JRF index and of the land and ocean temperature

anomalies to a permanent one-standard deviation shock to the level of the JRF. The

response of the JRF is essentially flat at all horizons, thus clearly suggesting that

in fact the index is a pure unit root process. The responses of the two temperature

anomalies are as expected, and they partly reflect the restrictions imposed upon them.

In particular, the response of the ocean anomaly is slower and more drawn out than

that of the land anomaly, which in turn converges to its new long-run equilibrium only

beyond the 50 years ahead horizon considered herein. It is to be noticed, however, that

in line with a recent body of evidence from the climate science literature discussed

e.g. in Mann (2023), the bulk of temperatures’ response takes place within about 20

years.

5.2 Unconditional forecasts based on data up to 2023

5.2.1 Land and ocean temperature anomalies

Figure 5 shows results from the following exercise. I ‘freeze’ the state of the system (in

particular, the estimate of ) to 2023, and I then stochastically simulate the model

featuring the land and ocean anomalies forward in time until the end of the XXI cen-

tury conditional on data up to 2023. The evidence from the exercise is sobering: under

such ‘no change’ scenario, median forecasts predict the land and ocean temperature

anomalies to reach nearly 6 and 3 Celsius degrees by 2100, respectively, with the

corresponding 90%-coverage credible sets equal to [4.0; 7.9] and [2.1; 3.9] degrees. In
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Figure 5  Forecasts under a ‘no change’ scenario conditional on data up to 2023 
             (median, and 16-84 and 5-95 credible set) 
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Figure 6  Forecasts under a ‘no change’ scenario conditional on data up to 2013 
             (median, and 16-84 and 5-95 credible set) 
 
 
 
 



order to put these numbers into context it is worth recalling that the lower bound of

the estimates for the increase in temperatures associated with the Paleocene-Eocene

Thermal Maximum (PETM), about 55.5 million years ago, is about 5 Celsius degrees.

During that period Antarctica was covered with tropical forests, and Arctic waters

pullulated with alligators. Further, and crucially, the period of sustained carbon in-

crease that led to the PETM is estimated to have lasted between 20 thousand and

50 thousand years. If the land temperature anomaly were to reach nearly 6 Celsius

degrees (or possibly even higher values) within less than eight decades, the extent

to which society could adapt–or whether it could adapt at all–is entirely open to

question.

Figure 6 shows, based on the same model, results from an out-of-sample fore-

casting exercise. I estimate the model exactly as before based on data up to 2013,

and I then stochastically simulate it into the future up until 2023 as described in the

previous paragraph. The figure shows the same objects shown in Figure 5 together

with the actual values of the three series. Two main findings emerge from the figure.

First, consistent with the finding in Figure 3 of a continuous acceleration in the rate

of change of the JRF index since the early 1980s, between 2013 and 2023 the actual

value of the JRF has progressively drifted in the upper tail of the distribution of the

forecast conditional on data up until 2013. On the other hand, over the same period

both the land and the ocean temperature anomalies have been mostly in line with

the median projection based on data up to 2013, and in fact in the most recent years

both of them have been below the median forecast. The logical implication is that

in recent years temperature anomalies have not kept up with the rapid acceleration

in the rate of increase in the JRF. In turn, this implies that, to the extent that go-

ing forward the intrinsic dynamics of the system-Earth will re-establish the long-run

equilibrium relationship between the JRF and temperature anomalies, the latter will

have to increase faster than they have over the decade 2013-2023, in order to catch

up with the increases in the JRF.

5.2.2 Different latitudes

Figure 7 shows results from the same unconditional exercise as in Figure 5, but this

time for the global temperature anomalies (i.e., jointly for the land and the ocean)

at three different latitudes, the Equator (i.e. latitude 0), 60 degrees North, and the

Arctic,15 together with the IRFs to a permanent shock to the JRF index. In line with

the well-known fact that the impact of climate change gets systematically stronger at

higher and higher latitudes, and it is therefore maximum at the Poles and minimum

at the Equator, two main findings clearly emerge from the figure. First, the long-

run response of temperatures to a one standard deviation permanent shock to the

JRF index exhibits dramatic differences across latitudes: one hundred years after the

15Notice that NOAA does not define the Arctic as the latitude 90 degrees North, but rather as a

geographical area.
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                          Figure 7  Northern emisphere: Impulse-response functions to a permanent shock to joint radiative forcing, 
and forecasts under a ‘no change’ scenario conditional on data up to 2023 for different latitudes 
(medians, and 16-84 and 5-95 credible set) 



shock it is equal to about 0.02 Celsius degrees at the Equator, whereas at the 60

degrees North latitude and at the Arctic it is equal to about 0.04 and respectively

0.045 degrees. Second, as a consequence of this, unconditional forecasts under the ‘no

change’ scenario based on data up to 2022 exhibit a corresponding significant extent

of variation across latitudes. Whereas the median forecast for the Equator for the

year 2100 is equal to 3.2 Celsius degrees, with a 90%-coverage credible set equal to

[1.5, 5.1], the corresponding objects for the 60 degrees North latitude and the Arctic

are 6.0 and [2.9, 9.8], and 7.4 and [4.7, 10.4] respectively.

5.2.3 Individual continents

Figure 8 shows the corresponding projections for individual continents. Since conti-

nents’ temperature anomalies’ data start in 1910, within the present context it is not

possible to take as reference period the standard sample considered by the IPCC,

1850-1900. Because of this, in Figure 8 I take as reference the year 2023. The main

finding in the figure is that the forecasts point towards a non-negligible extent of

heterogeneity, with the median projections for 2100 being equal to about 6 degrees

for Europe and Asia, about 5 for North America, and about 4 for Africa, Oceania

and South America.

Table 4 Median and 16-84 and 5-95 per cent-

coverage credible sets of climate sensitivity

Land and ocean

Land 0.995 [0.844 1.227] [0.763 1.461]

Ocean 0.472 [0.394 0.588] [0.351 0.705]

Alternative latitudes:

Equator 0.669 [0.640 0.705] [0.628 0.730]

60 degrees North 1.300 [1.249 1.340] [1.209 1.354]

Arctic 1.507 [1.457 1.576] [1.435 1.632]

Individual continents:

Africa 0.717 [0.651 0.778] [0.602 0.820]

Asia 1.057 [0.959 1.153] [0.885 1.223]

Europe 1.022 [0.927 1.118] [0.860 1.186]

North America 0.862 [0.780 0.945] [0.723 1.002]

South America 0.705 [0.596 0.810] [0.514 0.885]

Oceania 0.624 [0.531 0.713] [0.463 0.778]

5.2.4 Climate sensitivity

Tables 4 and 5 report the median and the 16-84 and 5-95 per cent-coverage credible

sets of climate sensitivity, which I define as the increase in temperature anomalies
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Figure 8  Forecasts under a ‘no change’ scenario conditional on data up to 2022 for individual 
             continents (median, and 16-84 and 5-95 credible set: reference year for computation 
             of temperature anomaly is 2023) 
 
 
 



associated with a unitary increase in the JRF index.16 Focusing on median estimates,

the main findings in the table can be summarized as follows:

first, whereas the land anomaly increases virtually one-for-one with the JRF, the

ocean anomaly increases only slightly less than half as much.

Second, the higher the latitude, the greater the climate sensitivity: whereas at the

equator it is equal to about 1.5, at 30 degrees North it is equal to nearly 1.9, and at

60 degrees North it is equal to 2.8.

Table 5 Median and 16-84 and 5-95 percen-

tiles of the posterior distribution of climate

sensitivity

Athens 0.5834 [0.3329 0.9410] [0.2114 1.2460]

Atlanta 0.4798 [0.2648 0.8169] [0.1599 1.1865]

Beijing 1.0767 [0.5991 1.6970] [0.3591 2.2241]

Berlin 1.1413 [0.6336 1.8776] [0.3987 2.5585]

Bern 1.3216 [0.7642 2.0567] [0.4994 2.6685]

Cape Town 0.4566 [0.1803 0.8215] [0.0448 1.0861]

Casablanca 0.9170 [0.5512 1.3526] [0.3437 1.7214]

Copenhagen 0.8938 [0.5004 1.4974] [0.3186 2.0841]

Dublin 0.5305 [0.2609 0.9169] [0.1337 1.2441]

Helsinki 1.1714 [0.6844 1.9411] [0.4527 2.7102]

Il Cairo 0.6008 [0.2868 1.0269] [0.1381 1.3666]

Lisbon 0.7761 [0.4610 1.2059] [0.3003 1.5533]

London 0.7956 [0.4088 1.3705] [0.2262 1.9088]

LosAngeles 0.7161 [0.2791 1.3311] [0.0690 1.8433]

Madrid 0.8800 [0.5238 1.3526] [0.3445 1.7218]

Mexico City 0.5824 [0.3324 0.9124] [0.1891 1.1514]

New Delhi 0.5908 [0.2497 1.1149] [0.0790 1.6083]

Oslo 0.8947 [0.5032 1.5013] [0.3198 2.0764]

Paris 1.2209 [0.7055 1.9344] [0.4517 2.5318]

Riad 1.3052 [0.8105 1.9300] [0.5508 2.4227]

Rio De Janeiro 0.8538 [0.4811 1.3210] [0.2683 1.6709]

Rome 0.7434 [0.4512 1.1403] [0.3060 1.4820]

Santiago 0.3204 [0.1006 0.7014] [-0.0012 1.0900]

Sydney 0.7108 [0.3517 1.1728] [0.1877 1.5771]

Stockholm 0.8803 [0.4924 1.4763] [0.3213 2.1006]

Vienna 1.2850 [0.7306 2.0857] [0.4759 2.7726]

Warsaw 1.1733 [0.6671 1.9581] [0.4365 2.7186]

Third, there is a significant extent of heterogeneity across continents. Asia and

16My definition is different from that found in the climate science literature, where climate sensi-

titivity is defined as the increase in temperatures associated with a doubling of the concentration of

CO2 in the atmosphere.
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Europe are the continents characterized by the largest climate sensitivity, in both

cases (based on median estimates) just slightly greater than one, so that for practical

purposes in the long run the JRF and temperatures in the two continents increase

virtually one-for-one. At the other extreme is Oceania, with a median estimate equal

to just 0.624. It is to be noticed that the 90 per cent-coverage credible set for Oceania

does not overlap with the corresponding sets for Asia end Europe, thus pointing to

large and material differences between continents’ climate sensitivity. In between are

Africa, and North and South America, with median estimates ranging between 0.705

and 0.862, and the 90 per cent-coverage credible sets mostly overlapping with those

of Asia, Europe, and Oceania.

Fourth, the range of variation for individual cities is quite extraordinary, from a

minimum of 0.3 for Chile’s Santiago to a maximum of 1.3 for the Swiss capital, Bern.

5.3 Conditional forecasts based on alternative assumptions

about the future path of the JRF

Figure 9 shows evidence from the following exercise. I ‘freeze’ once again the state of

the system at 2023, and I then stochastically simulate the model forward in time until

the end of the XXI century conditional on (1) data up to 2023, and (2) alternative

possible paths for the evolution of the JRF until 2100. I compute the conditional

forecasts as in Waggoner and Zha (1999). I consider four possible scenarios for the

evolution of the JRF after 2023, specifically

• the JRF being stabilized in 2050, with its first difference progressively decreasing
starting in 2024 and reaching zero in 2050, and

• three scenarios in which the JRF peaks in 2050 and it is then brought back in
2100 to the level it had reached in 1990, 2000, and 2010 respectively.

I consider 2050 as the year in which the JRF either gets stabilized, or it peaks and

then starts decreasing, for the following reason. Bringing the JRF back to the level

it had reached in either 1990, 2000, or 2010, and possibly even stabilizing it in 2050,

will require removing huge quantities of CO2 from the atmosphere. This, in turn, will

require enormous amounts of (clean) energy. Under this respect, at the moment the

only possible energy source that might be used for this purpose would seem to be

nuclear fusion, which however is not predicted to become available (in particular at

the scale required) before mid-century.

Stabilization of the JRF in 2050 leaves open the possibility that warming will

reach levels that in the climate science community are widely regarded as dangerous.

Specifically, the 90%-coverage credible sets for the land and ocean temperature anom-

alies for the year 2100 are equal to [1.9, 3.2] and [1.1, 1.7], with the corresponding

median projections being equal to 2.6 and 1.4. Further, for the land anomaly (i.e.,
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Figure 9  Forecasts conditional on data up to 2023 and alternative scenarios for the evolution 
             of joint radiative force (median, and 16-84 and 5-95 credible set) 
 
 
 



that which is most relevant for us humans), the entire mass of the posterior distribu-

tion lies beyond 1.5 degrees, which rightly or wrongly is regarded as the benchmark

threshold beyond which warming will truly become dangerous.

Turning to the set of projections obtained by allowing the JRF index to peak in

2050, and then to decrease back to the level it had reached in either 1990, 2000, or

2010, evidence suggests that given the extent of uncertainty involved, bringing climate

change under control will require to scale the JRF back to the level it had reached in

the early years of the XXI century. Specifically, the 90%-coverage credible sets for the

land anomaly for the year 2100 obtained by bringing the JRF back to the levels of

2000 and 2010 are [0.2, 1.4] and [0.6, 1.8] respectively, whereas the corresponding sets

for the ocean anomaly are [0.2, 0.9] and [0.4, 1.1]. Clearly, to the extent that bringing

climate change under control requires keeping the increases in global temperatures

below 1.5 degrees, only a level of the JRF equal to that reached in the early years of

the XXI century can provide sufficient reassurance that this will in fact be the case.

5.3.1 ‘Freezing’ the JRF at the level reached in 2023

Figure 10 shows results from the corresponding exercise in which the JRF is ‘frozen’ at

the level it reached in 2023. The evidence is sobering. Even if we were able to somehow

prevent any increase in the JRF starting from 2024, still the intrinsic dynamics of the

system in response to past JRF increases would produce potentially dangerous levels

of warming going forward. Focusing on the land temperature anomaly, the posterior

probability that it would exceed 1.5 Celsius degrees by the end of the century is equal

to about two-thirds, with a median projection for the year 2100 equal to 1.8 Celsius

degrees.

The evidence in Figure 10 provides stark proof that, once taking into account of

statistical uncertainty, the JRF has already exceeded, in recent years, the level climate

scientists regard as safe, and it reinforces the previous section’s point that only scaling

it back to the level reached in the early years of the XXI century would bring climate

change under control.

6 Conclusions

In this paper I have used Bayesian VARs in order to forecast global temperature

anomalies until the end of the XXI century, by exploiting their cointegration with

the Joint Radiative Forcing of the drivers of climate change. My main results can

be summarized as follows. The response of the JRF index to a permanent shock

to its own level, which is essentially flat at all horizons, clearly suggests that the

JRF is very close to a pure unit root process. By contrast, the responses of global

land and ocean temperature anomalies are delayed and drawn out. In particular,

in response to the shock the land and ocean temperature anomalies fully converge

to their new long-run values in more than 50 years. Under a ‘no change’ scenario
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Figure 10  Forecasts conditional on data up to 2023, with joint radiative forcing frozen at the level 
               reached in 2023 (median, and 16-84 and 5-95 credible set) 
 
 
 
 



the land and ocean temperature anomalies are projected to reach nearly 6 and 3 
Celsius degrees, respectively, by 2100. Forecasts conditional on alternative paths for 
the JRF show that, given the extent of uncertainty, bringing climate change under 
control will require to bring the JRF back to the level of the early XXI century. 
In recent years the JRF has exhibited a marked acceleration, which by 2023 has 
not been fully reflected in temperature anomalies yet, thus pointing towards their 
corresponding acceleration going forward. From a methodological point of view, my 
evidence suggests that previous cointegration-based studies of climate change suffer 
from model mis-specification. First, climate change series are clearly I(2), whereas 
the vast majority of studies have not tested for this possibility, and have rather 
assumed that they are only integrated of order one. Second, evidence suggests that 
fixed-coefficients I(2) cointegrated VECMs are at odds with the data, whose first 
differences exhibit random-walk time-variation in the mean. I model this feature via 
a multivariate random-walk specification for the means of the first differences, subject 
to the restrictions imposed by cointegration between the levels.
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A Why Excluding El Niño and La Niña

Figure A.1 shows the radiative forcing of El Niño and La Niña (ENSO), together with

its estimated normalized spectral density with 90%-coverage bootstrapped confidence

bands.17 Two main findings are clearly apparent from the figure:

(1) the radiative forcing of ENSO is extraordinarily noisy compared to the radia-

tive forcing of the other drivers of climate change. For example in Figure 1 in the

main text of the paper the radiative forcing of the dominant driver of climate change,

CO2, goes from zero (by normalization) in 1880 to nearly 2 in 2022. By contrast,

the ENSO radiative forcing in Figure 2 has a standard deviation of 1.0742, and since

1850 it has oscillated from a minimum of -2.6940 to a maximum of 2.3704.

(2) As the second panel of Figure A.1 clearly illustrates, ENSO’s radiative forcing

has essentially no spectral power at frequencies beyond 25 years.

The implication of (1) and (2) is that, for the present purposes, including in the

JRF index the radiative forcing of ENSO shown in the first panel of Figure A.1 would

uniquely add a large amount of comparatively high-frequency noise, whereas it would

bring essentially no information about the long-horizon, low-frequency developements

that are the focus of the present work. To put it differently, this would uniquely

complicate the analysis, whereas it would not bring any benefit whatsoever. Because

of this, in the construction of the JRF index I have decided to ignore the El Niño and

La Niña phenomenon.

B Stock and Watson’s (1996, 1998) Methodology

for Searching for Random-Walk Time-Variation

Section 3.2 in the main text of the paper presents evidence from tests for the null

hypothesis of time-invariance against the alternative of random-walk time-variation

for the first difference of either the JRF index, the land temperature anomaly, or the

ocean temperature anomaly, based on Stock and Watson’s (1996, 1998) TVP-MUB

methodology applied to the AR() model

 = + 1−1 + 2−2 + + − +  = 0 +  (B.1)

where  is the first difference of any of the three series. I select the lag order, , as

the maximum among the lag orders selected by the Akaike and Schwartz information

criteria, for a maximum possible number of lags =20 years. In implementing the

17I estimate the spectral density by smoothing in the frequency domain the Fast-Fourier-Transform

(FFT)-based estimator of the series’ periodogram via a Bartlett spectral window. The bandwidth

is selected automatically via the procedure proposed by Beltrao and Bloomfield (1987). Spectral

bootstrapping is implemented via the procedure proposed by Franke and Hardle (1992). I implement

10,000 bootstrap replications.
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TVP-MUB methodology I closely follow Stock and Watson (1996, 1998). Letting

=[, 1, ..., ]
0, the time-varying parameters version of (B.1) is given by:

 = 0 +  (B.2)

 = −1 +  (B.3)

with   (0+1, 
22), with 0+1 being a (+1)-dimensional vector of zeros;

2 being the variance of ;  being a covariance matrix; and []=0. Following

Nyblom (1989) and Stock and Watson (1996, 1998), I set =[(
0
)]
−1. Under such

a normalisation, the coefficients on the transformed regressors, [(
0
)]
−12, evolve

according to a (+1)-dimensional standard random walk, with 2 being the ratio

between the variance of each ‘transformed innovation’ and the variance of .
18

The point of departure is the OLS estimate of  in (B.1), ̂. Conditional on

̂ I compute the residuals, ̂, and the estimate of the innovation variance, ̂
2, and

I perform an exp-Wald test for a single break in the mean of  at an unknown point

the sample as in (e.g.) Bai and Perron (1998, 2003) by regressing  on a constant,

using either Newey andWest’s (1987) or Andrews’ (1991) covariance matrix estimator

to control for possible autocorrelation and/or heteroskedasticity in the residuals. I

estimate the matrix  as in Stock and Watson (1996) as

̂ =

"
−1

X
=1


0


#−1
.

I consider a 50-point grid of values for  over the interval [0, 0.15], which I call Λ.

For each  ∈ Λ I compute the corresponding estimate of the covariance matrix of 
as ̂=

2
 ̂
2̂, and conditional on ̂ I simulate model (B.2)-(B.3) 10,000 times as in

Stock and Watson (1996, section 2.4), drawing the pseudo innovations from pseudo

random  (0, ̂2). For each simulation, I compute an exp-Wald test (obviously,

without however applying the HAC correction) thus building up its empirical distri-

bution conditional on . Based on the empirical distributions of the test statistic I

then compute the median-unbiased estimate of  as that particular value of  which

is closest to the statistic I previously computed based on the actual data. I compute

the -value based on the empirical distribution of the test conditional on =0. Fi-

nally, for reasons of robustness I consider three alternative values of trimming, 15,

25, and 33 per cent.

In line with the previous discussion, I partially simulate the JRF index 10,000

times, and I implement the previously described procedure based on each partially

simulated series. For the JRF index the table therefore reports the median and the

5th and 95th percentiles of the Monte Carlo distribution of the -values.

18To be precise, given that the Stock-Watson methodology is based on local-to-unity asymptotics,

 is actually equal to the ratio between  , a small number which is fixed in each sample, and T , the

sample length.
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C The I(2) Cointegrated VECM

Let the standard I(1) cointegrated VECM representation for a (N×1) vector of I(1)
series  be (abstracting form the intercept term)

∆ = Γ1∆−1 + + Γ−1∆−+1 +Π−1 +  (C.1)

with Π = 0, where  is the matrix of the cointegration vectors,  is the matrix
of the loading coefficients, [0] = Σ, and the rest of the notation is standard.

Expression (C.1) implies the following restricted VAR() representation in levels for

,

 = Π1−1 + +Π∆− +  (C.2)

The I(2) cointegrated VECM representation for  is then given by

∆2 = Ψ1∆
2−1 + +Ψ−2∆

2−+2 +Π−1 − Γ∆−1 +  (C.3)

with

Ψ = −
−1X
=+1

Γ (C.4)

for  = 1, 2, ..., -2. Based on Γ and the Ψ’s in (C.3), it is possible to recover the

Γ’s in (C.1) as follows. Since

Γ =  −
−1X
=1

Γ (C.4)

it can be shown that

Γ1 = Ψ1 − Γ+ 

Γ2 = Ψ2 −Ψ1

Γ3 = Ψ3 −Ψ2



Γ−2 = Ψ−2 −Ψ−1
Γ−1 = −Ψ−2

I estimate the model via Bayesian methods, by combining the log-likelihood of the

data with a minimal set of inequality restrictions (discussed in sub-section 4.4 of

the main text) on the impulse-response functions (IRFs) of the three series to a

permanent shock to the JRF index. In practice, this means that I perform MLE

estimation subject to the restriction that I reject models (i.e. draws) that do not

satisfy the restrictions on the IRFs. So, although I adopt a Bayesian approach, which

allows me to reject draws that do not satisfy the restricitions on the IRFs, in fact

I do not specify a single prior for any parameter. I numerically maximize the log-

likelihood of the data via simulated annealing exactly as in Benati (2008). Following
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Goffe, Ferrier, and Rogers (1994) I implement simulated annealing via the algorithm

proposed by Corana, Marchesi, Martini and Ridella (1987). I then stochastically map

the log-likelihood based on Random Walk Metropolis (RWM). In implementing the

RWM algorithm I exactly follow An and Schorfheide (2007, Section 4.1), with the

only difference that the jump to the new position in the Markov chain is accepted or

rejected based on a rule which does not involve any Bayesian priors, as it uniquely

involves the likelihood of the data. I calibrate the covariance matrix’s scale factor

based on the methodology proposed by Benati (2008, Appendix C).

I run a burn-in pre-sample of 1,000,000 draws which I then discard. I then generate

10,000,000 draws, which I ‘thin’ by sampling every 1,000 draws in order to reduce

their autocorrelation. This leaves 10,000 draws from the ergodic distribution which

I use for inference. The fraction of accepted draws is very close to the ideal one, in

high dimensions, of 0.23 (see Gelman, Carlin, Stern, and Rubin, 1995).

I check convergence of the Markov chain based on Geweke’s (1992) inefficiency

factors (IFs) of the draws from the ergodic distribution for each individual parameter.

For all parameters the IFs are equal to at most 3-4, well below the values of 20-25

which are typically taken to indicate problems in the convergence of the Markov

chain.

32



Table A.1 Bootstrapped p-values for Elliot, Rothenberg, and Stock’s

(1996) unit root tests for temperature anomalies for different latitudes

=1 =2 =3 =4 =5

Latitude: 0

In levels, without time trend 0.0002 0.0485 0.2324 0.4663 0.6551

In levels, with time trend 0.0000 0.0015 0.0084 0.0499 0.1236

In first differences, without time trend 0.0000 0.0000 0.0000 0.0000 0.0000

Latitude: 30 North

In levels, without time trend 0.6392 0.8624 0.9605 0.9796 0.9810

In levels, with time trend 0.3206 0.6153 0.7910 0.8376 0.8038

In first differences, without time trend 0.0000 0.0000 0.0000 0.0000 0.0000

Latitude: 60 North

In levels, without time trend 0.0627 0.3521 0.6822 0.8909 0.9656

In levels, with time trend 0.0027 0.0280 0.1427 0.3346 0.4500

In first differences, without time trend 0.0000 0.0000 0.0000 0.0000 0.0000

Table A.2 Simulated p-values for Stock and

Watson’s tests for the null of time-invariance

against the alternative of random-walk time-

variation in the mean of the first differences

of the series

Latitude:

HAC correction: 0 30 North 60 North

Trimming: 0.15

Newey and West (1987) 0.4040 0.0026 0.0008

Andrews (1991) 0.3680 0.0022 0.0000

Trimming: 0.25

Newey and West (1987) 0.3618 0.0064 0.0002

Andrews (1991) 0.3302 0.0054 0.0000

Trimming: 0.33

Newey and West (1987) 0.3514 0.0158 0.0030

Andrews (1991) 0.3232 0.0118 0.0000
 Mean and median of the Monte Carlo distribution of

-values, and fraction of -values smaller than 10%.
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Figure A.1  Radiative force of El Niño-Southern Oscillation: raw series and normalized  
                spectral density (with 90%-coverage bootstrapped confidence bands) 
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Figure A.2  Evidence on the close similarity between alternative partially simulated series 
for CO2, NH4, and N2O: maximum and minimum among the sorted partially 
simulated paths out of 100,000 simulations 
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