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Overview

• Key role of elasticities in assessing the relative 
importance of supply-side vs demand-side shocks, in 
studying their dynamics, and in conducting policy 
counterfactuals 

 Pitfalls in structural models of the world oil market
(Baumeister and Hamilton, AER 2019;
Baumeister and Hamilton, Econometric Theory 2023)

 Heterogeneous adjustment dynamics across  
major oil consumers and producers
(Baumeister and Hamilton, 2023)



• Dynamic demand equation: 

World oil market

qt  yt  pt  bd′ xt−1  utd

xt−1  1,yt−1′ ,yt−2′ , . . . ,yt−m′ ′ with yt  qt,yt,pt′



• Dynamic demand equation: 

• Meaning of demand elasticity : 
If price were to increase by 1% with income held 
constant, by how much would quantity demanded 
change?

World oil market

qt  yt  pt  bd′ xt−1  utd

xt−1  1,yt−1′ ,yt−2′ , . . . ,yt−m′ ′ with yt  qt,yt,pt′



• Dynamic supply equation: 

• Determinants of world economic activity:

• Dynamic demand equation:

World oil market

qt  yt  pt  bd′ xt−1  utd

qt  yt  pt  bs′ xt−1  uts

yt  qt  pt  by′ xt−1  ut
y



Structural model:
Ayt  Bxt−1  u t Eu tu t′  D (diagonal)

A 

1 − −
− 1 −
1 − −

B  bs
′ by′ bd′  ′



Structural model:
Ayt  Bxt−1  u t Eu tu t′  D (diagonal)

A 

1 − −
− 1 −
1 − −

B  bs
′ by′ bd′  ′

Reduced form:
yt  A−1Bxt−1  A−1u t

 xt−1   t
 t  A−1u t
E t t′  A−1DA−1

′  



•

• If model just-identified, MLE of H:

• MLE estimate of short-run demand elasticity: 

Normalization of shocks to unit variance

yt  xt−1  Hu t∗ Eu t∗u t∗′  In

 t  A−1D1/2D−1/2u t  Hu t∗

H  A−1D1/2  impact on yt of one-standard-deviation
structural shocks

ĤMLEĤMLE
′

 ̂MLE

̂MLE  −ĥMLE33 /ĥMLE31

where hij denotes the i, j element of H−1



• Some studies have tried to calculate behavioral 
elasticities using the ratios of the elements of a single 
column of H (instead of correct formula that would 
use the inverse of H).

• Example: Calculate price elasticity of demand as ratio 
of change in oil consumption to change in price that 
results from a shock to supply.

• Studies that do this: 
– Kilian and Murphy (2012, 2014), Güntner (2014), Riggi and 

Venditti (2015), Kilian and Lütkepohl (2017), Ludvigson et 
al. (2017), Antolín-Díaz and Rubio-Ramírez (2018), Basher 
et al. (2018), Herrera and Rangaraju (2020), Zhou (2020)…

A common error in estimating elasticities



Why is this wrong?

For the 3-equation oil market model, H  A−1D1/2 with

A−1  |A|−1
− −   −    

− −   −    

 − 1  −  1 − 



Why is this wrong?

h11
h31

 −−
−1 ≠ 

Thus, the ratio of impact responses amounts to: 

For the 3-equation oil market model, H  A−1D1/2 with

A−1  |A|−1
− −   −    

− −   −    

 − 1  −  1 − 





• Dividing this by the change in price yields  

• This equals in the special case when 

• When , this estimate is a combination of 
sensitivity of demand to price and sensitivity of 
demand to income.

−−
−1



• In a system with n > 2 variables, calculating 
ratios of elements of a single column of H
could be used to calculate n – 1 different 
“measures” of each individual elasticity.

• One could define “price elasticity of demand” 
to be the ratio of change in consumption to 
change in price that results from any of the
n – 1 shocks other than the demand shock.



• Kilian and Murphy (2014) proposed two different 
measures of price elasticity of oil supply based 
on responses of production and price to either of 
two types of demand shocks.

• If we estimate these two magnitudes using Kilian 
and Murphy (2014) data and method but without 
imposing constraint on elasticity, they differ by 
factor of five.

• Kilian and Murphy force the measures to be 
close by imposing that both magnitudes have to 
be smaller than 0.025.

Example



• The correct frequentist or Bayesian approach 
results in a unique and optimal estimate of each 
individual elasticity that is invariant with respect 
to how the model is parameterized.



Empirical illustration: Cholesky identification

• Recursive structure implies:       0



Empirical illustration: Cholesky identification

• Recursive structure implies:
• Under this assumption, MLE can be obtained by 

dividing demand equation by and rewrite as:

• Estimate by OLS since error term is uncorrelated 
with any explanatory variables

      0

pt  −1qt − /yt − −1bd′ xt−1 − −1utd

 ̃qt  ̃yt  b̃d
′ xt−1  ũtd



Empirical illustration: Cholesky identification

• Recursive structure implies:
• Under this assumption, MLE can be obtained by 

dividing demand equation by and rewrite as:

• Estimate by OLS since error term is uncorrelated 
with any explanatory variables

•

      0

pt  −1qt − /yt − −1bd′ xt−1 − −1utd

 ̃qt  ̃yt  b̃d
′ xt−1  ũtd

̃MLE  −0.167893
 elasticity estimate: ̂  1/̃  −5.9562



Why is so large?
• A 10% increase in the price of oil with no change in 

income would result in a 60% drop in consumption 
within the month.



Why is so large?
• A 10% increase in the price of oil with no change in 

income would result in a 60% drop in consumption 
within the month.

• plays a key role in this conclusion.
• Suppose that , positive correlation between  

would bias OLS estimate upward (closer 
to zero) implies bias of estimated demand 

elasticity toward larger absolute value

ũtd and qt



Why is so large?
• A 10% increase in the price of oil with no change in 

income would result in a 60% drop in consumption 
within the month.

• plays a key role in this conclusion.
• Suppose that , positive correlation between  

would bias OLS estimate upward (closer 
to zero) implies bias of estimated demand 

elasticity toward larger absolute value

casts doubt on the Cholesky assumption of 

ũtd and qt



• Caldara, Cavallo, and Iacoviello (JME 2019) show 
that small changes in the elasticities also have 
implications for quantifying the determinants of 
fluctuations in oil prices and production. 

Other implications of a zero supply elasticity



Structural inference with inexact identifying 
information

• Frequentist: exact prior information about some 
aspects of the model

• Bayesian: represent prior information in the form of a 
probability density for 

is higher for values that are more plausible
is lower for values that are less likely

• Posterior density combines prior and data:

p |Y  pfY|

 pfY|d



Consider Bayesian who was certain
before seeing data that       0.
Had no useful information about ,,
Student t priors with c  0,  100,  3.

pA  1  1





2 − 1
2 1  1

 

 

2 − 1
2 

1  1





2 − 1
2

Bayesian interpretation of Cholesky
identification



Structural IRF of Bayesian who was dogmatic about 
some and uninformed about other parameters



Structural IRF of frequentist who used Cholesky
identifying assumptions



Bayesian posterior distribution of short-run 
demand elasticity β

17.5% probability that β > 0
97% probability that  |β| > 2 



A Bayesian generalization of traditional 
identification

Consider next a Bayesian who is
extremely confident (but not absolutely
certain) that supply elasticity is very small:
p  U0,0.025

pA  1  1





2 − 1
2 1  1

 

 

2 − 1
2 

1  1





2 − 1
2 if  ∈ 0,0.025

pA  0 otherwise



𝛼 ൌ 0 𝛼 ~ 𝑈ሺ0,0.025ሻ





Suppose we relax further:
p  U0,0.075



𝛼 ൌ 0 𝛼 ~ 𝑈ሺ0,0.025ሻ 𝛼 ~ 𝑈ሺ0,0.075ሻ



• As we become less certain, posterior credible 
sets widen substantially and we lose confidence 
in structural conclusions.

• Could compensate in part by also using prior 
information about demand elasticity 
(and other parameters).

Bring in inexact information from multiple    
sources rather than claiming to have exact prior 
knowledge about a few parameters 



• Rows of A correspond to behavior of individual 
agents (e.g. consumers, producers, govt policy)

• Prior information in the form of:
– Elasticities (Baumeister and Hamilton 2019; Aastveit et al., 

2020; Brinca et al., 2021)
– Policy rules (Baumeister and Hamilton 2018; Nguyen 2019; 

Belongia and Ireland, 2021)
– Behavioral equations from economic theory (Aruoba et al. 

2022; Lukmanova and Rabitsch 2021)

• Rows of H correspond to the general equilibrium 
consequences of changes in those agents’ behavior

include via composite prior

Sources of prior information



Set identification using sign restrictions

• Prior knowledge in the form of signs of effects of 
structural shocks (see, e.g., Uhlig 2005; Rubio-
Ramírez, Waggoner, and Zha 2010)

• For example: oil market model of Kilian and Murphy 
(2012) with

signH 
−  

−  −
  

yt  qt,yt,pt′



RWZ sign restriction algorithm

Step 1   Take a draw from the posterior
Step 2   Compute the Cholesky factor P of 
Step 3   Generate an matrix ௜௝ from      

Step 4   Take the QR decomposition of with
an orthonormal matrix 

Step 5   Compute IRFs using 
Step 6   Keep H if it satisfies the sign restrictions; 

otherwise discard it.

Q′Q  In
H  PQ′



• Researchers typically report median and 68% of 
retained set of values. 

• BUT each of these draws is perfectly consistent    
with all the observed data and 
with all the specified restrictions.



A frequentist critique
• Conditional on MLE estimate of reduced-form 

parameters, calculate upper and lower bounds of the 
set across all generated draws: 

• Accounting for estimation uncertainty will further 
increase set

• Moon and Schorfheide (2012), Watson (2019), and 
Giacomini and Kitagawa (2021) criticized practice of 
reporting 68% error bands strictly smaller than 

̂
ijs
, ̂ijs

̂
ijs
, ̂ijs



A Bayesian critique
• Baumeister and Hamilton (2015) showed that the 

( , ) element of has the following density

• Reporting median and 68% credibility sets can only 
be justified if this distribution was acknowledged as 
prior information

• What prior information does this distribution 
incorporate?

pqij 
Γn/2

Γ1/2Γn−1/2 1 − qij
2n−3/2 if qij ∈ −1,1

0 otherwise



• If , all values are equally likely.
• If , effect of first shock on first variable is 

more likely to be large.
• If , values near zero are more likely.



Why is this problematic?

• This prior implies that before seeing the data, we 
would have the same prior knowledge regardless 
of the dataset, economic content, sample period … 

reasonable? 

• This practice of ruling out values that are perfectly 
consistent with data and restrictions means that 
additional prior information is used that is not 
made explicit.



• Rubio-Ramirez and co-authors argue that using 
this prior information is justified because the prior 
implies a uniform distribution with respect to a 
certain measure.

• BUT a frequentist who is unpersuaded by the 
validity of the prior information would find the 
reported confidence bands to be much too 
narrow.

• Users make no effort to persuade others that the 
prior information they have relied on is 
convincing.



Why is this such a big deal?
• In set-identified structural VARs, the credibility of the 

prior is key because the influence of the prior does 
not vanish asymptotically (Baumeister and Hamilton, 
2015; Giacomini and Kitagawa, 2021)

• For some parameters, data are completely 
uninformative, and you get back the prior.

Bayesian with uniform prior would claim to rule 
out some values for those parameters even 
though there is no basis in the data for doing so
Thus, uniform prior is used in an informative way! 



Quantitative relevance of the prior

• Inoue and Kilian (2022) argue that prior for Q is 
negligible in tightly identified VAR models given 
that they imply a narrow identified set

• As we add information in the form of more and 
tighter constraints, we will end up discarding most 
of the RWZ draws.

• BUT using only a handful of numbers may give a 
very inaccurate estimate of the identified set.



• Kilian and Murphy (2014) generated 5 million 
draws for the vector of possible parameters.

• Rule out various draws based on a long list of 
criteria (e.g., supply elasticity < 0.0258)

• The end result of running the code is that only 16 
of the original 5 million draws remain.

• Select the draw with “impact price elasticity of oil 
demand in use closest to the posterior median”

Example



Effect of speculative demand shock on real 
activity and price as originally reported in KM14



Effect of speculative demand shock calculated 
using KM14 code with 

two different random number seeds

Dashed red: seed = 316 (used by KM14). Blue: seed = 613.



What to do going forward?
(1) Robust Bayesian approach (Giacomini and 

Kitagawa, 2021): inference based on full set of 
possible priors

→ Bayesian robust posterior credible set corresponds
to frequentist confidence set asymptotically

(2) Upper and lower bound based on MLE (no prior)

(3) Use informative prior about objects of interest 
derived from economic theory or prior evidence 
that is stated upfront and summarizes knowledge 
in the form of a probability distribution 
(BH 2015, 2018, 2019, 2020, 2022, 2023)



Example: labor market dynamics

demand:
Δnt  kd  dΔwt  b11d Δwt−1  b12d Δnt−1  b21d Δwt−2

 b22d Δnt−2   bm1d Δwt−m  bm2d Δnt−m  utd

supply:
Δnt  ks   sΔwt  b11s Δwt−1  b12s Δnt−1  b21s Δwt−2

 b22s Δnt−2   bm1s Δwt−m  bm2s Δnt−m  uts



For fixed  s, MLE of d can be
found by an IV regression of ̂2t
on ̂1t using ̂2t − ̂1t as instrument:

̂ 
∑ t1

T
̂2t−̂1t̂2t

∑ t1
T

̂2t−̂1t̂1t
 ̂22−̂12

̂12−̂11



-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

0

5
The function ()

h
H

h
L





̂  ̂22−̂12
̂12−̂11

for   0,
̂MLE  hH  ̂22/̂12
for   −,
̂MLE  hL  ̂12/̂11
given ̂12  0







Contours for log likelihood

h
H

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

0

5







Contours for log of prior

1 2 3 4 5
-5
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-3

-2

-1

0





Contours for log of posterior

1 2 3 4 5
-5

-4

-3

-2

-1

0

• Student t priors for labor demand and supply 
elasticity

• Prior induces ranking in posterior



• So far, described the behavior of the world oil market 
BUT oil market is composed of many individual 

producers and consumers

• Differences between individual observations and 
aggregate outcomes can be an important source of 
identification.
Examples:
Bartik instruments

(Bartik, 1991; Blanchard et al., 1992; Goldsmith-Pinkham et al., 2020; 
Carlino and Drautzburg, 2020)

Granular instrumental variables
(Gabaix and Koijen, 2020; Qian, 2023; Banafti and Lee, 2022; Sarto, 2022; 
Caldara, Cavallo and Iacoviello, 2019)

Moving to the Disaggregate Level



A structural model of the world oil market

qit  growth rate of country i oil production
sqi  share of country i in world total
∑ i1

n sqiqit  approximate growth in global
oil production

• Data from 1973M1 to 2023M2 (drop COVID period)

• Our empirical analysis will use the three biggest 
producers (U.S., Saudi Arabia, Russia) plus the rest 
of the world 



A structural model of the world oil market

• Our empirical analysis will use the three biggest 
consumers (U.S., Japan, Europe) plus the rest of 
the world 

cjt  growth rate of country j oil consumption
scj  share of country j in world total
∑ j1

m scjcjt  approximate growth in global

oil consumption



qit  qipt  bqi′ xt−1  uqit  uit
qi  country i short-run supply elasticity
xt−1 contains 12 lags production and
consumption of every country in world
plus 12 lags of world price
uqit  supply shock for country i
uit  error in measuring country i production

Supply curve of country i



cjt  cjpt  bcj′ xt−1  ucjt  ujt
cj  country j short-run demand elasticity
ucjt  demand shock for country j
ujt  error in measuring country j consumption

Demand curve of country j



vt  vpt  bv′ xt−1  uvt
This equals difference between correctly
measured production and consumption
vt  ∑ i1

n sqiqit − uit − ∑ j1
m scjcjt − ujt

Inventory demand



qit  qipt  bqi′ xt−1  uqit  uit i  1, . . . ,n
or

n1
qt 

n1

q pt 
nk
Bq xt−1 

n1
uqt 

n1
ut

cjt  cjpt  bcj′ xt−1  ucjt  ujt j  1, . . . ,m
or

m1
ct 

m1

c pt 
mk
Bc xt−1 

m1
uct 

m1
ut

sq′ q − sc′ c − vpt 

sc′Bc − sq′ Bq  bv′ xt−1  sc′ uct − sq′ uqt  uvt

Structural model



62

These are n  m  1 equations to determine
the n  m  1 variables qt,ct,pt in terms of
the structural shocks uqt,ut,uct,ut,uvt.

It is possible to estimate structural parameters
like q and c if we make assumptions about

the correlations between these structural shocks.



A less restrictive model

uct  hcft  cfct  ct

• We allow for ௤௧ and ௖௧ to be correlated through 
common dependence on a single factor ௧.

• We also allow ௖௧ to depend on a global demand 
shock ௖௧ with different loadings for each country.

• We also allow ௖௧ to depend on idiosyncratic 
factors.



91
y t  qt′,ct′,pt′

y t  xt−1   t
xt−1  1,y t−1′ , . . . ,y t−12′ ′

• Reduced form is a VAR(12)



In 0nm −q
0mn Im −c
01n 01m 1

qt
ct
pt



hqft  qfqt  qt  ut

hcft  cfct  ct  ut
sc′ hcft  cfct  ct − sq

′ hqft  qfqt  qt  uvt

A t  u t
Eutut′  D



Assumptions

E
qt
ct

qt
′ ct

′


q 0nm
0mn c

(diagonal)

• Idiosyncratic shocks are uncorrelated



E
ft
fqt
fct

ft fqt fct  I3

Assumptions
• Factor normalization

• Measurement errors have common variance

E
ut
ut

ut′ ut′ 
2 In 0nm
0mn 2 Im



D 

hqhq′  qq
′  q  2 In hqhc′

hchq′ hchc′  cc
′  c  2 Im

−sq′ hqhq′  qq
′  q  sc′hchq′ −sq′ hqhc′  sc′ hchc′  cc

′  c

− hqhq′  qq
′  q sq  hqhc′ sc

−hchq′ sq  hchc′  cc
′  csc

2 sq′ hqhq′  qq
′  q sq − 2sc′hchq′ sq  sc′ hchc′  cc

′  csc  v2

Implied variance-covariance matrix

• Model has 15 testable overidentifying assumptions.

• These are not rejected in our dataset.



Maximum likelihood estimates of 
elasticities and their standard errors

69

U.S. supply 0.019 (0.017)
Saudi supply 0.259 (0.056)
Russia supply 0.029 (0.011)
ROW supply 0.043 (0.029)
U.S. demand ‐0.094 (0.031)
Japan demand ‐0.018 (0.037)
Europe 
demand

‐0.225 (0.045)

ROW demand ‐0.161 (0.045)
Inventory 
demand

‐0.314 (0.060)

Global 
supply 
elasticity: 
0.064 
(0.021)

Global 
demand 
elasticity: 
-0.139 
(0.037)



Effects of a 50% decrease in Russian 
oil production

• Suppose geopolitical developments lead 
to a cut in Russian production of 5.25 
mb/d

• For this analysis we impose that inventory 
sales can not be used to mitigate 
production shortfall ( ௩
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Impact effects of 50% cut in Russian oil 
production
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Dynamic effects of 50% cut in Russian 
oil production
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Key Takeaway

• Identifying assumptions are not a “necessary evil” 
to recover structural magnitudes of interest like 
elasticities.

• Rich identifying information is available:

Bayesian approach: Think carefully about what   
prior evidence and economic theory tells us 
about the structure and use it coherently.

Disaggregated approach: Exploit interaction of 
individual units that determine aggregate 
economic outcomes for identifying structural 
magnitudes.


