Electricity Markets in Transition

Natalia Fabra

Universidad Carlos III de Madrid

Banca d'Italia. January 10, 2023

It all started before Feb 24, 2022

Figure: Gas Storage in Europe

(a) By Gazprom

It all started before Feb 24, 2022

Figure: Gas Storage in Europe

It all started before Feb 24, 2022

Figure: Gas imports from Russia

It all started before Feb 24, 2022

Figure: Gas Imports from Russian

Impacts on Energy Prices

Wholesale gas prices in Europe

Figure: Gas prices in Europe (TTF)

Impacts on Energy Prices

Market clearing in wholesale electricity markets

Figure: Gas plants currently set prices in electricity markets

Impacts on Energy Prices

Wholesale electricity prices in Europe

Figure: Electricity prices in Italy (black), France (orange) and Spain (green)

Electricity Prices versus Costs

Figure: Average costs of generating electricity across technologies (IEA)

Electricity Prices versus Costs

Figure: Average costs of generating electricity across technologies (IEA)

The Need for an Electricity Market Reform Not just a matter of addressing the current crisis

Figure: A Tale of Two States: Prices in Europe

(a) "Energy crisis"

(b) "Energy transition"

The Need for an Electricity Market Reform

Not just a matter of addressing the current crisis

Figure: A Tale of Two States: Generation in Spain

🗢 Cost 🔍 Nuclear 🗢 Hydroelectric 🔍 Combined Cycle 🖷 Wind 🗢 Solar Thermal 😑 Solar Pherovoltaic 🗢 Cogeneration/Weiste/Mini Hidmuric 🔍 Impor

(a) "Energy crisis"

(b) "Energy transition"

The Need for Reform A Tale of Two States

Figure: A Tale of Two States: Market Clearing

What do these two states have in common?

- 1 Prices driven to the marginal cost of the price-setting technology
- 2 Prices differ from average costs
- **3** No free entry (or exit): excessive profits or losses not competed away

What do these two states have in common?

- 1 Prices driven to the marginal cost of the price-setting technology
- 2 Prices differ from average costs
- 3 No free entry (or exit): excessive profits or losses not competed away

The outcome is not efficient and equity is violated

What do these two states have in common?

- 1 Prices driven to the marginal cost of the price-setting technology
- 2 Prices differ from average costs
- **3** No free entry (or exit): excessive profits or losses not competed away

The outcome is not efficient and equity is violated

Sources of inefficiency:

During the energy crisis:

- \blacksquare Electricity as an input \rightarrow loss of global competitiveness
- \blacksquare Increase in inflation and interest rates \rightarrow likelihood of recession
- \blacksquare Electrification discouraged \rightarrow energy transition at risk

What do these two states have in common?

- 1 Prices driven to the marginal cost of the price-setting technology
- 2 Prices differ from average costs
- **3** No free entry (or exit): excessive profits or losses not competed away

The outcome is not efficient and equity is violated

Sources of inefficiency:

During the energy crisis:

- \blacksquare Electricity as an input \rightarrow loss of global competitiveness
- \blacksquare Increase in inflation and interest rates \rightarrow likelihood of recession
- \blacksquare Electrification discouraged \rightarrow energy transition at risk

More generally, in electricity markets...

- Large risks for cost recovery \rightarrow investment delays, risk premia...
- Externalities: security of supply, learning economies...

A new electricity market architecture is needed

Which objectives?

1 Short-run efficiency: production and consumption

- The least cost production units must be dispatched at all times
- The price signal should reflect the system short-run marginal cost
- 2 Long-run efficiency: investments
 - Investments at the scale necessary
 - Investments of the "right" technology at the "right" locations
 - Investment risks allocated to the least risk-averse party

3 Equity

Electricity prices should be cost-reflective

Which electricity market architecture?

Contract type	Technologies	Key challenge
Spot pay-as-clear	All plants	Productive efficiency
Capacity Payments	CCGTs Energy Storage Demand response	Price exposure for optimal operation Missing money problem Mitigate market power
Contracts for Differences	Renewables	Derisk investments
	Hydro power	Cost-reflective
	Contract type Spot pay-as-clear Capacity Payments Contracts for Differences	Contract typeTechnologiesSpot pay-as-clearAll plantsCapacity PaymentsCCGTs Energy Storage Demand responseContracts for DifferencesRenewablesHydro power Nuclear powerHydro power Nuclear power

Which electricity market architecture?

Market/Regulation & Horizon	Contract type	Technologies	Key challenge
Short-term market	Spot pay-as-clear	All plants	Productive efficiency
Auctions for long-term contracts	Capacity Payments	CCGTs Energy Storage Demand response	Price exposure for optimal operation Missing money problem Mitigate market power
	Contracts for Differences	Renewables	Derisk investments
Regulated long-term contracts		Hydro power Nuclear power	Cost-reflective prices

The trade-off between exposing plants to the short-run price signal vs. derisking the investments depends on technology characteristics

European Commission's draft proposal

"Policy Options to Mitigate the Impact of Natural Gas Prices on Electricity Bills"

Objectives:

- "Mitigate the effect of high gas prices on power prices"
- "The benefits of lower cost renewables...to consumers".

European Commission's draft proposal

"Policy Options to Mitigate the Impact of Natural Gas Prices on Electricity Bills"

Objectives:

- "Mitigate the effect of high gas prices on power prices"
- "The benefits of lower cost renewables...to consumers".

Key ingredients:

- **1** *"Remunerating Renewables and other Technologies Based on Their True Production Costs"*
 - Contracts-for-Differences allocated through auctions
 - For the existing plants: current inframarginal cap
- 2 "Effective Competition for Gas in Well-Functioning Short-Term Markets"

Designing long-term contracts Contracts for Differences (CfD)

- Generators sell their electricity at the market price (p).
- Pay/receive diff btw a strike price f and a reference price p':

$$\pi = pq + (f - p')q$$

Designing long-term contracts Contracts for Differences (CfD)

- Generators sell their electricity at the market price (p).
- Pay/receive diff btw a strike price f and a reference price p':

$$\pi = pq + (f - p')q$$

Rearranging the above expression...

$$\pi = fq + (p - p')q$$

...as if generators receive a fixed price f and keep the diff btw the market price p and the reference price p' (non-linear pricing).

Contracts for Differences (CfD)

Figure: A CfD in which p' = p (no price exposure)

Des-risking investments while protecting consumers

Setting strike prices and reference prices of CfDs

Strike price: a key factor of profitability

- For **new plants**, set *f* through an auction.
 - If auctions are sufficiently competitive, f gives a fair rate of return.
- For existing plants, regulate *f* in a cost-reflective manner.

Setting strike prices and reference prices of CfDs

Reference price: a key factor of price exposure

- For renewables: set *p*′ = price captured by plants of the same technology over a month.
 - Provides incentives for location, equipment choices, maintenance.
 - Allows for derisking the investments.

Setting strike prices and reference prices of CfDs

Reference price: a key factor of price exposure

- For renewables: set *p*′ = price captured by plants of the same technology over a month.
 - Provides incentives for location, equipment choices, maintenance.
 - Allows for derisking the investments.
- For hydro and nuclear: set p' = average market price over a year.
 - Preserves incentives to produce (or avoid maintenance) at peak times.
 - Allows adjusting their profitability.

CfDs contracts for hydro and nuclear power plants

Payments are (where \tilde{p} is annual average):

$$\pi = fq + (p - \tilde{p})q$$

Strong incentives to dispatch at peak times

A one-way CfD for the whole capacity k, in exchange for a capacity payment sk:

$$\pi = sk + pq + max(0, p - f)k$$

A one-way CfD for the whole capacity k, in exchange for a capacity payment sk:

$$\pi = sk + pq + max(0, p - f)k$$

A one-way CfD for the whole capacity k, in exchange for a capacity payment sk:

$$\pi = sk + pq + max(0, p - f)k$$

• If p > f, above expression becomes

$$\pi = sk + fk - (k - q)p$$

A one-way CfD for the whole capacity k, in exchange for a capacity payment sk:

$$\pi = sk + pq + max(0, p - f)k$$

• If p > f, above expression becomes

$$\pi = sk + fk - (k - q)p$$

Benefits of using reliability options:

- Incentives to be available at times if high prices.
- Market power mitigated.
- Generators receive *sk* regardless of production: lower risks.

Capacity payments for storage and demand response

- Plants earn market revenues plus capacity payments *sk*.
- Capacity payment *s* set through an auction.
- Full price exposure preserved while *s* allows for break even.

Capacity payments for storage and demand response

- Plants earn market revenues plus capacity payments *sk*.
- Capacity payment *s* set through an auction.
- Full price exposure preserved while *s* allows for break even.
- Suitable for assets that arbitrage price differences:
 - Energy storage, demand response.

Benefits of proposed market architecture

- Carbon-free power markets, at least cost for consumers and society.
- **2** Gas prices do not propagate through the entire electricity market.
- 3 Lower capital costs of low-carbon assets through de-risking.
- 4 Lower and less volatile consumer prices while price signal preserved.
- 5 Market power mitigated.
- 6 Windfall profits and losses avoided.
- **7** Instruments to ensure security of supply, with fewer fossil fuels.

Conclusions

• There is an urgent need to reform electricity markets:

- **1** Tackle the energy crisis
- 2 Support the energy transition

New electricity market architecture: aim at efficiency & equity

- 1 Liquid short-run markets
- 2 Auctions for long-run contracts
- 3 Contracts should respond to the characteristics of the technologies
 - Balance costs/benefits of de-risking vs price exposure

Conclusions

• There is an urgent need to reform electricity markets:

- **1** Tackle the energy crisis
- 2 Support the energy transition

New electricity market architecture: aim at efficiency & equity

- 1 Liquid short-run markets
- 2 Auctions for long-run contracts
- 3 Contracts should respond to the characteristics of the technologies
 - Balance costs/benefits of de-risking vs price exposure

Power markets can be a powerful source of efficiency for our economies...as long as we design them right!

ENERGYECOLAB

uc3m Universidad Carlos III de Madrid

Thank You!

Questions? Comments?

More info at nfabra.uc3m.es and energyecolab.uc3m.es

