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1 Introduction

Informational frictions are a key reason the COVID-19 pandemic has developed into a global

economic and health crisis. Unlike its close sibling, Severe Acute Respiratory Syndrome

(SARS), COVID-19 often causes no symptoms for an extended period during which the

virus can be unknowingly transmitted.1 As a result, even if the virus only infects a small

fraction of the population at any given point in time, it can cause large-scale and persistent

disruptions to the economy.2 If it were possible to identify all the infected individuals and

quarantine them for 14 days, the virus would die out, and the economic damages would be

quite minimal.

Traditional technologies to produce information, such as diagnostic tests and manual

contact tracing, are costly on the scale of the whole population. For instance, if we were

to test the whole American population once a day for a year, it would cost more than $1

trillion. Moreover, diagnostic tests are often conducted after the symptoms appear, by which

time the virus may have already been transmitted.

Big data may offer a possible solution to such informational frictions. Our digital age

generates enormous data as byproduct of our economic and social activity. It is conceiv-

able that we can use these data to generate low-cost and real-time information about virus

transmission. Indeed, governments and private institutions worldwide have experimented

with numerous digital contact tracing apps, resulting in many technological advancements

and rich data resources.3 However, there is little consensus on whether these technologies

actually work. Braithwaite, Callender, Bullock, and Aldridge (2020) reviewed research pub-

lished in the past twenty years and concluded “no empirical evidence of the effectiveness of

automated contact tracing (regarding contacts identified or transmission reduction) was iden-

tified”, and that “large-scale manual contact tracing is therefore still key in most contexts.”

Furthermore, much of the existing discussion focuses on public health outcomes. However,

the COVID-19 pandemic is an economic crisis as much as a public health one. Therefore, it

is also crucial to understand the economic impacts of these big data technologies.

This paper sheds light on these questions by studying the “Health Code app” intro-

1See World Health Organization Coronavirus disease 2019 (COVID-19) situation report-73.
2At the peak of the COVID-19 pandemic in the U.S. in 2021, the daily cases are less than 0.1% of the

U.S. population.
3Notable examples include the “Exposure Notification API” developed by Apple and Google, the “Check-

In” app developed by PwC, the “IBM Digital Health Pass” developed by IBM, and the “CommonPass”
developed by the Commons Project.
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duced during the COVID-19 outbreak in China. This app uses mobile location and digital

transaction records to produce a colored QR code indicating the health status of the holder.

If the app holder has not been in contact with any COVID-19 patients in the past 14 days,

the app will generate a green QR code as shown in Figure 1a. However, if a potential contact

is detected, the code will turn yellow or red, and the holder must self-quarantine for 7 to 14

days until the code turns green again.

The information produced by the Health Code app can alleviate the informational fric-

tions in important ways. First, the Health Code app notifies infected individuals of the

potential exposure so that they can take diagnostic tests sooner. Second, public and private

institutions can use the colored QR code to monitor health conditions in the public space.

Healthy individuals can conveniently certify their health status at the checkpoints of air-

ports, railway stations, and restaurants. Infected individuals, in contrast, face an “effective

quarantine” because they cannot enter public spaces without a green code. This “effective

quarantine” alleviates the public concern about being infected by hidden carriers of the virus,

which facilitates the resumption of normal work and life.

A key advantage of this big data technology over traditional technologies is its timeliness.

Once a COVID-19 patient is confirmed, individuals in direct contact with the patient can

be instantly identified so that the transmission chains can be cut off as soon as possible.

Another advantage of this big data technology is the low cost. Because the contact history

data are readily available, the economic cost of producing another QR code is virtually

zero.4 Therefore, it can be implemented on a large scale. While this big data technology

has many advantages, it is still unclear how accurate the digital contact history can predict

infections. Furthermore, it is also unclear how effectively the information produced can

facilitate economic recovery.

A key challenge to evaluating the effects of big data technologies is that they are often

introduced as a nationwide policy, so their effects are confounded with other disease control

policies, people’s attitudes, and culture. A unique feature of the Health Code app is that

it was introduced in a staggered manner across 322 Chinese cities. To better understand

the empirical setting, consider the example of Hangzhou and Nanjing, which are two similar

coastal cities. The Health Code app was first introduced in Hangzhou because Hangzhou is

the headquarter of Ant Financial, the FinTech company that developed this app.5 After the

4The use of big data technology could lead to a potential privacy cost, which will be discussed later.
5The Hangzhou Municipal government approached Ant Financial to develop a solution based on big data

to replace manual contact tracing and physical health records on February 4, 2020, 12 days after the Wuhan
lockdown. On February 9, 2020, 17 days after Wuhan’s lockdown, “Hangzhou Health Code” was launched
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launch of the Health Code app, Hangzhou’s economic activity, measured by daily greenhouse

gas emissions, appeared to recover significantly. Economic recovery did not appear to bring a

resurgence of infections. Instead, new COVID-19 cases dropped in Hangzhou. In comparison,

a neighboring city, Nanjing, experienced little economic recovery but more infections during

the same period.6

By exploiting the staggered implementation of the Health Code app as a natural exper-

iment, I show that Hangzhou’s experience can be generalized to other places. Specifically, I

investigate high-frequency changes in cities’ economy and public health around the Health

Code launch dates using the event study design. I find that cities displayed no pre-trends

in economic activity or infections before the Health Code launch. However, four weeks after

the launch, the treated cities experienced a 24% increase in greenhouse gas emissions rela-

tive to the control cities. Interestingly, the resumption of economic activity did not bring a

resurgence of infections. Instead, local infection growth dropped significantly after the city

launched Health Code. Population inflows from outbreak epicenters also led to fewer local

cases after the introduction of the Health Code app. The results are robust if the treated

cities are matched with control cities with similar economic activity levels and outbreak

severity.

One may worry that the Health Code launch timing may be endogenous to other policy

changes. For instance, local governments may have launched the Health Code app when

they reopen the economy. Thus, the resumption in economic activity could be mechanically

driven by the relaxation of the lockdown policy rather than reducing informational frictions.

To alleviate this concern, I use the daily intensity of each city’s population movement con-

structed from mobile location data to control lockdown policies’ strictness. Furthermore, I

also use local governments’ public health emergency levels to control other disease control

measures such as mask mandate and social distancing rules. In other words, the identification

is obtained by comparing two cities with similar lockdown and social distancing rules. More

importantly, this alternative explanation cannot explain the decline in local infections after

the introduction of the Health Code app. If the Health Code app had no effects on reducing

informational frictions, lifting the lockdown would have led to a resurgence of infections.

A related concern is that city officials may have decided to launch the Health Code app

when they observed signals that the local transmission was going down. This concern is

in Hangzhou.
6Both Hangzhou and Nanjing raised the public health emergency level to the highest level on January

26. By February 9, Hangzhou and Nanjing had 169 and 71 cases, respectively. In the following three weeks,
new cases rose by 4 and 22 for these two cities, respectively.
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partly addressed by the absence of pre-trends in economic activity and inflections before the

introduction of the Health Code ap. To further address this concern, I employ an instru-

mental variable approach by exploiting the fact that the Health Code app was developed

by FinTech firms and distributed through popular payment apps such as Alipay. Therefore,

cities with higher FinTech penetration were likely to launch the Health Code app earlier than

cities with low FinTech penetration. Indeed, I find that FinTech penetration in 2018 signifi-

cantly predicts how early a city launched the Health Code app during 2020. The instrument

is exogenous to the simultaneity concern because FinTech penetration is determined using

the 2018 data and is unlikely to be correlated with private information that local officials

had or actions they took during the pandemic. This alternative empirical strategy yields

similar results: cities that launched the Health Code app early achieved greater economic

recovery and lower infection growth.

While the micro-level evidence provides cleanly identified effects, it is difficult to draw

welfare implications for the aggregate economy because common aggregate effects are dif-

ferenced out.7 To this end, I construct a macroeconomic Susceptible-Infectious-Recovered

(SIR) model following Alvarez, Argente, and Lippi (2020). In the model, big data technol-

ogy generates a publicly verifiable signal on agents’ health status. This information allows

society to impose targeted quarantines on those who received bad signals. I calibrate the

model using parameters identified from the micro-level data. The model’s key parameters

include the accuracy of the signal, the adoption rate of this technology in the population,

and the effectiveness of other disease control policies. The calibrated baseline model closely

matches the path of COVID-19 cases in China.

I use the estimated model to compare economies with and without the Health Code

app. I find that this big data technology saved the economy from suffering a new wave of

infections after lockdowns were lifted, saving around 200,000 lives and 0.5% of the GDP in

2020. This result is striking because the signals produced by Health Code appear to be far

less accurate than typical diagnostic tests. The Health Code app is estimated to have a

false negative rate of 47% while typical viral and antibody tests need to have a below 5%

false-negative rate to qualify for U.S. FDA approval.8 However, because these signals can be

produced in realtime, this technology can significantly impact the aggregate economy even

if the signal is only modestly accurate.

7Nakamura and Steinsson (2018) review the growing literature that combines micro-level data and macro
models to achieve both causal identification and welfare analysis.

8See “Policy for Coronavirus Disease–2019 Tests During the Public Health Emergency,”
https://www.fda.gov/media/135659/download.

5



I compare the effects of the Health Code app with those of the lockdown policies. To this

end, I simulate a counterfactual economy in which lockdown policies were not implemented

at the end of January 2020. In that case, the infections would have kept rising in the first

two months of 2020 until the Health Code app and other disease control measures were rolled

out. Overall, the strict lockdown policies saved 74,000 lives in 2020. However, because the

massive lockdown constrained the economic activity of the whole population, it caused 1.1%

of GDP loss in 2020. Comparing the effects of the lockdown policies with those of the Health

Code app, I find that the Health Code app had a significant contribution in containing the

outbreak without inflicting steep costs on the economy.

Although the above evidence shows that big data technologies can reduce informational

frictions and create economic value, a necessary condition to realize this potential is that

people are willing to adopt such technologies. The baseline estimate suggests that the av-

erage adoption rate among citizens is around 90% following the official launch in a city.

This estimate is consistent with the disclosed adoptions rates in Zhejiang Province. The

high adoption rate is essential for big data technology to be effective. In a counterfactual

simulation in which the adoption rate is decreased to 20%, the death toll would have been

64,000 higher than the baseline simulation. The economic value created by the Health Code

app would decrease by around 67%.

Big data technologies often raise concerns about privacy infringement. Due to privacy

concerns, many COVID apps, such as the ones developed by Apple and Google, avoid linking

the contact history to the user’s identity. Instead, they use a “private notification” model

in which an anonymous message is sent to the holder when the user is exposed to the virus.

Under this private notification model, public health authorities or private businesses cannot

use the notification, or the absence thereof, to monitor human flows in public spaces. App

users have full discretion over whether to self-quarantine after receiving the notification.

Because people may not strictly follow the self-quarantine rule, especially when they are

asymptomatic, the effectiveness of the big data technology may be compromised. Indeed, the

counterfactual simulation shows that making the signal privately observable can significantly

change the outcomes, even the signals’ accuracy remains constant. Under the assumption

that 40% of the agents who receive bad signals decide to self-quarantine, the death toll would

have been 16,000 higher than the baseline simulation. The economic value created by the

Health Code app would decrease by 65%. This counterfactual exercise suggests a trade-off

between protecting the privacy and resolving informational frictions. Whether the value

created by the big data technology can justify the potential privacy cost is an open question

and worth future research.
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This paper contributes to the interdisciplinary literature on the potential of big data

technologies to help control infectious diseases. Existing literature has argued that digital

contact tracing could be an effective method to stop the COVID-19 pandemic based on

evidence from simulated models (Ferretti, Wymant, Kendall, Zhao, Nurtay, Abeler-Dörner,

Parker, Bonsall, and Fraser, 2020). However, real-world evidence for this approach is still

scarce (Braithwaite, Callender, Bullock, and Aldridge, 2020). This paper is one of the first

that provide such evidence.9 Furthermore, the existing literature is often silent about these

technologies’ economic impacts, while this paper suggests the economic value created by

these technologies can be substantial. The results can inform policy responses for the current

pandemic and future ones, which have become increasingly common due to the increased

human intrusion into natural habitats of wild animals (Jones, Patel, Levy, Storeygard, Balk,

Gittleman, and Daszak, 2008).

This paper also contributes to the fast-growing literature on the economic implications of

the COVID-19 pandemic.10 In particular, Alvarez, Argente, and Lippi (2020) and Farboodi,

Jarosch, and Shimer (2020) study the optimal lockdown policy of the government that faces

a trade-off between saving lives and saving the economy. A key conclusion from these studies

is that, in the absence of better technology, massive and sustained lockdowns are necessary

to control an infectious disease like COVID-19. However, such lockdowns could lead to steep

economic costs. My paper shows that big data technology can alleviate the information

frictions faced by the society, which can save both lives and livelihoods.

This paper also contributes to the literature on the economics of big data (see Veldkamp

and Chung (2019) and Goldstein, Jiang, and Karolyi (2019) for reviews). Existing literature

shows that big data can alleviate informational frictions in the mortgage market (Buchak,

9See Wymant, Ferretti, Tsallis, Charalambides, Abeler-Dörner, Bonsall, Hinch, Kendall, Milsom, Ayres,
Holmes, Briers, and Fraser (2021) and Rodŕıguez, Graña, Alvarez-León, Battaglini, Darias, Hernán, López,
Llaneza, Mart́ın, Ramirez-Rubio, Romańı, Suárez-Rodŕıguez, Sánchez-Monedero, Arenas, and Lacasa (2021)
for evidence in the U.K. and Spain.

10An incomplete list of this fast-growing literature includes: Acemoglu, Makhdoumi, Malekian, and
Ozdaglar (2019), Alvarez, Argente, and Lippi (2020), Atkeson (2020), Baker, Farrokhnia, Meyer, Pagel,
and Yannelis (2020), Barro, Ursúa, and Weng (2020), Barrios and Hochberg (2020), Berger, Herkenhoff,
and Mongey (2020), Bethune and Korinek (2020), Bian, Li, Xu, and Foutz (2020), Bordalo, Coffman, Gen-
naioli, and Shleifer (2020), Budish (2020), Charoenwong, Kwan, and Pursiainen (2020), Chen, Qian, and
Wen (2020), Correia, Luck, and Verner (2020), Coven and Gupta (2020), Dewatripont, Goldman, Muraille,
and Platteau (2020), Eichenbaum, Rebelo, and Trabandt (2020), Elenev, Landvoigt, and Van Nieuwerburgh
(2020), Fang, Wang, and Yang (2020), Farboodi, Jarosch, and Shimer (2020), Fernández-Villaverde and
Jones (2020), Gallant, Kroft, Lange, and Notowidigdo (2020), Goolsbee and Syverson (2020), Guerrieri,
Lorenzoni, Straub, and Werning (2020), Hassan, Hollander, van Lent, and Tahoun (2020), Hall, Jones, and
Klenow (2020), Hong, Wang, and Yang (2020), Hortaçsu, Liu, and Schwieg (2020), Jones, Philippon, and
Venkateswaran (2020), Kozlowski, Veldkamp, and Venkateswaran (2020), Piguillem and Shi (2020), and
Redding, Glaeser, and Gorback (2020).
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Matvos, Piskorski, and Seru, 2018) and equity market (Begenau, Farboodi, and Veldkamp,

2018; Zhu, 2019). My paper adds to this growing body of research by showing that big data

technologies can help tackle the twin economic and health crises of COVID-19. A related

strand of literature studies the implications of big data on privacy concerns (Argente, Hsieh,

and Lee, 2020; Athey, Catalini, and Tucker, 2017; Ramadorai, Uettwiller, and Walther, 2019;

Tang, 2019; Agarwal, Ghosh, Ruan, and Zhang, 2020). This paper adds to this line of inquiry

by discussing the trade-off between making health information publicly verifiable or keeping

it private to the users. This paper also broadly contributes to the vast economic literature

on informational frictions.11 The key insight of this literature is that imperfect information

constitutes important economic friction, which can lead to market failures and suboptimal

equilibrium outcomes. My paper contributes to this literature by showing that big data

technologies can alleviate informational frictions and create economic value.

2 Background and Data

Health Code. Health Code is a big data technology that uses location history and mobile

transactions to predict an individual’s risk of being infected by COVID-19. It was developed

by several technology companies in China, including Alipay and Tencent, during the height

of the COVID-19 outbreak. Although various versions of Health Code apps are introduced

in different cities, these apps are functionally similar. As a result, I use the “Health Code

app” as an umbrella term to refer to this technology throughout the paper.

The Health Code app generates colored QR codes as shown in Figure 1a. Holders of

a green code can freely travel in the city; holders of yellow or red codes are supposed to

quarantine for 7 or 14 days, respectively. The yellow or red codes turn back to green after

the quarantine. These colored codes not only notify users of possible exposure but also serve

as digital health certificates. As shown in Figure 1b, public health authorities usually set up

checkpoints in public spaces, such as subways, to check passengers’ codes. Only green code

holders can board public transportation. Many private businesses, such as supermarkets and

shopping malls, also require employees and customers to scan their codes. These businesses

do so in their own best interests because customers are more comfortable entering business

sites when they know that other people who work or shop there are likely to be healthy. The

11See Stiglitz (2002) for a review of the theoretical literature on informational frictions, see also Veldkamp
(2011) and Angeletos and Lian (2016) for reviews on the applications of information theory in macroeco-
nomics and finance.
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numerous checkpoints encourage adoption and generate more data for contact tracing. At

the same time, these checkpoints also impose an effective quarantine on potentially infected

individuals.

The Health Code app can potentially mitigate the adverse impact of pandemics in two

ways. First, this technology can accelerate the virus’s detection and curb the transmission

through digital contact tracing. Second, by generating a credible real-time health certifi-

cate, this technology allows healthy people to resume normal work and life, reducing the

pandemic’s economic damages. This function was particularly valuable in the early stage of

the COVID-19 pandemic when testing capacity was limited.

Because many checkpoints are set up in public spaces, people have a strong incentive

to adopt this technology. For instance, around 90% of the provincial population obtained

Health Code within 15 days after the app’s introduction in Zhejiang Province. Among all

the Health Codes issued in Zhejiang, 98.2% were green, and 1.8% were yellow or red as of

February 24, 2020.12 It is worth noting that people do not need smartphones to use their

code because they can print the QR code for scanning at checkpoints.13 This feature allows

Health Code to cover people who may not have smartphones, such as the elderly.

The first Health Code app was developed by Alipay and implemented in its headquarters

city, Hangzhou, on February 9, 2020, 17 days after Wuhan’s lockdown. Following Hangzhou,

many provinces and cities launched their versions of the Health Code. It is worth noting

that local governments launched their Health Code apps without the central government’s

coordination, which created a patchwork of policies in the early stage.14 Cities did not

recognize each other’s Health Code; different versions of Health Code apps sometimes showed

inconsistent results; some people were required to scan multiple versions of Health Code

at a single location.15 The uncoordinated implementation of the Health Code created an

inconvenience for people who travel across cities. Health Code was eventually homogenized

with the national government guideline published on May 2, 2020. This study will focus

on February 9, 2020-March 31, 2020, because the staggered implementation across cities

provides a natural experiment to study this technology’s effects.

12See March 1, 2020, New York Times article: “In Coronavirus Fight, China Gives Citizens a Color Code,
With Red Flags”, by Paul Mozur, Raymond Zhong, and Aaron Krolik.

13When the QR code is printed out, the colored coding associated with this QR code can be shown in
the device which scans the QR code. See June 24, 2020 Xinhua News article, “How to show Health Code
without smartphones”, http://www.xinhuanet.com/2020-06/24/c 1126157347.htm.

14Across different public spaces within the same city, the adoption of the Health Code is highly coordinated
by the local government.

15See March 9, 2020, South China Morning Post article, “National version of China’s controversial Health
Code isn’t ready.”
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Summary statistics. Table 1 provides the summary statistics of the sample. The sample

period starts from January 1, 2020, and ends on March 31, 2020. I describe the data sources

and variables definitions below.

Health Code Launch Dates. I collect the Health Code’s launch dates for 322 Chinese

cities from local government websites and news media. The launch dates are determined

based on local governments’ announcements that local Health Codes are available to down-

load and checked in certain public spaces. Figure 2 shows the number of cities that launch

the Health Code app over time. The implementation process started 17 days after the Wuhan

lockdown and lasted for two months until the end of March when all 322 cities had launched

Health Code. Figure 3 shows the geographical distribution of the Health Code launch dates.

The launch dates are not related to cities’ geographical proximity to the epicenter of the

virus outbreak, Wuhan.

FinTech penetration. I use the Peking University Digital Financial Inclusion Index to

measure FinTech penetration.16 This index is constructed by using Ant Financial’s massive

dataset on digital financial inclusion, using the information on the number of Alipay accounts

per 10,000 people, the number of transactions conducted through mobile banking, and the

number of loans obtained from FinTech leaders, and so on. This index is available at the

city level from 2011–2018. I use the 2018 value as an instrument for the timing of Health

Code implementation.

Greenhouse gas emissions. I use the daily level of nitrogen dioxide (NO2) and sulfur

dioxide (SO2) from the China National Environmental Monitoring Center (CNEMC) as

high-frequency measures of economic activity.17 NO2 and SO2 are greenhouse gases created

by factories and automobiles burning fossil fuels. Because the Chinese economy heavily relies

on fossil fuels as a source of energy, the amounts of NO2 and SO2 are good economic activity

measures in China.18

Figure 4a plots the average greenhouse gas emissions of the sample cities. The values

are normalized by the average of the first two weeks in 2020. The first vertical line indicates

January 23, 2020, the day of Wuhan’s lockdown. The second vertical line indicates February

9, 2020, when the Hangzhou Health Code was introduced. A 40% drop in greenhouse gas

emissions occurred shortly after Wuhan’s lockdown and did not recover until late February.

The rapid reduction in NO2 emissions and the later recovery are visible in the satellite images

16The data can be accessed from Https://tech.antfin.com/research/data.
17The source of the data can be found on the website of CNEMC: Http://www.cnemc.cn/.
18See Morris and Zhang (2019) who use NO2 emissions to verify China’s output data.
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produced by Google Earth, as shown in Figure 4b.

Virus outbreak. I collect the daily count of confirmed, dead, and recovered COVID-19

cases for 322 cities from the Centers for Disease Control and Prevention of China (CDC).19

Figure 5a plots the time series of COVID-19 cases in the sample. From January 11, 2020,

to April 3, 2020, the data cover 81,198 confirmed COVID-19 cases, 3,302 deaths, and 75,887

recoveries. It is worth noting that the pandemic had not reached its peak when the Health

Code app was first introduced.

Public health emergency level. I collect information on local governments’ public health

emergency levels from their websites and local news reports. The lowest level is coded as

0 and the highest as 3. A higher level of emergency allows local governments to impose

stricter lockdown and social distancing rules. Figure 5b shows the average emergency levels

over time. The emergency level was raised to the highest level shortly after the Wuhan

lockdown on January 23, 2020. The emergency level was gradually lowered starting from

March 2020 and reached around 1.5 at the end of the sample period.

Population movements. The population movement data cover 322 Chinese cities between

January 1, 2020, and April 10, 2020. The data are created using real-time phone location

data from the largest Chinese search engine in China, Baidu.20 The Baidu data also provide

between-city migration flows, which are used to construct infection inflows from epicenter

cities to other cities.

Figure 5b plots the national average within-city movement in the sample period.21 I

report the value as a percentage of the average value in the first week of 2020. Figure 5b

shows a steep drop in within-city movement after January 23, 2020, the day of Wuhan’s

lockdown. The Within-city movement slowly recovered in mid-February as the public health

emergency levels were lowered. By the end of the sample period, the within-city movement

rebounded to about 95% of the pre-COVID-19 level.

19The source of the data can be found on the website of CDC: Http://2019nCoV.chinacdc.cn/2019-nCoV/.
20The source of the data can be found on the website of CNEMC: Http://https://qianxi.baidu.com/.
21Note that the sample period contains the Lunar New Year holiday, during which the population move-

ments in cities would naturally decrease. To control for the Lunar New Year’s effect, I normalize the
within-city movement using the same-day value of the 2019 lunar calendar.
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3 Empirical Results

In this section, I test two main hypotheses: (1) the introduction of the Health Code app

increased local economic activity, and (2) the introduction of the Health Code app reduced

COVID-19 infections.

3.1 Evidence from the Event-Study Approach

I first use an event-study approach following Borusyak and Jaravel (2017) to examine changes

in high-frequency economic and public health indicators around the launch dates. Consider a

panel of i = 1, ..., N cities in which the outcome Yi,t is observed for t = 1, ..., T periods, where

t is calendar time. City i launches the Health Code app in some time Ei. Let Ki,t = t− Ei

denote the “relative time”—the number of periods relative to the event. The regression

model is the following:

Yi,t = αi + βt +
∑
k

γk1{Ki,t = k}+ ηXi,t + ϵi,t,

where {γk} for k < 0 corresponds to pre-trends, and for k ≥ 0 corresponds to dynamic

effects k periods relative to the event. In the baseline estimation, I define the unit of periods

as a week so γk represents the treatment effects k weeks from the event date. I use a

event window of 14 weeks around the introduction of Health Code. αi and βt are city fixed

effects and time fixed effects, which absorb time-invariant city characteristics and aggregate

shocks. Xi,t includes within-city population movement and local public health emergency

level, which control for the intensity of lockdown policies and other disease control measures.

The empirical design effectively compares changes in treated cities’ economic activity and

public health condition with those of control cities before and after the introduction of the

Health Code app.

3.1.1 Economic activity

I first examine the effect of the introduction of the Health Code on economic activity mea-

sured by daily NO2 emissions. Table 2 presents the results and Figure 6a plots the point

estimates and 95% confidence intervals. Note that Table 2 only presents the pre-treatment

effects for two weeks due to space constraints. The full set of estimates is plotted in Figure 6a.
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A key identification assumption of the event study approach is parallel trends, which I

can verify by examining {γk} for k < 0. Indeed, before the introduction of the Health Code

app, there is no significant difference between treated and control cities. Two weeks after

the introduction of the Health Code app, the NO2 emissions of the treated cities start to

rise significantly compared with the control cities. The difference in NO2 emissions rises to

24% four weeks after the introduction of the Health Code app. The results suggest that the

introduction of the Health Code app significantly facilitates economic recovery.

3.1.2 COVID-19 infections

So far, the evidence suggests that the introduction of the Health Code app allowed the

economy to return to normal. However, one important question is whether the reopening of

the economy led to a resurgence of virus infections. To answer this question, I estimate the

same regression (3.1) on local infection growth. Table 3 presents the results and Figure 6b

plots the point estimates and 95% confidence intervals. Again, there is no pre-trend before

the introduction of the Health Code, which suggests the introduction does not seem to

correlate with the severity of the outbreaks. About two weeks after the introduction of the

Health Code app, the infection growth dropped by around 70% and stayed low afterward.

Next, I estimate the sensitivity of local cases to the inflows of infected individuals

from epicenter cities following Fang, Wang, and Yang (2020). Specifically, I construct a

new variable, Infection inflowi,t, to measure the potential outside infections brought in by

population inflows:

Infection inflowi,t =
∑
j

Existing casesj,t × Inflowi,j,t, (1)

where Inflowi,j,t is the population flow from source city j to destination city i, and Existing casesj,t

is the number of existing cases in a source city j. I then follow Fang, Wang, and Yang (2020)

to estimate impulse-response functions of local cases to the infection inflow. The key differ-

ence is that I allow the impulse-response functions to be different after the introduction of

the Health Code app. Specifically, the regression model is the following:

log (New cases)i,t+h = (β1,h + β2,h1{t > Ei})× log (Infection inflow)i,t + γXi,t + ϵi,t, (2)

where log (New cases)i,t+h is the log number of new cases in city i at date t + h; Ei is the

introduction date of the Health Code app in city i; Xi,t is a vector of control variables which
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include the emergency level, the log number of confirmed cases, city fixed effects and time-

fixed effects. β1,h measures the response of local cases to the past infection inflows without

Health Code in place, while β1,h + β2,h measures the response of local cases to the past

infection inflows with Health Code in place.

Figure 7a plots the impulse response of local cases to past infection inflows without the

Health Code. A 1% increase in infection inflows leads to a 0.08% increase in local cases

in 7-10 days after the inflow occurred. In contrast, with the Health Code, the sensitivity

of local cases to past infection decreases to around 0.04%, as shown in Figure 7b. This

result suggests that the Health Code helps screen out around 50% of the potential sources

of infection.

3.1.3 Alternative hypotheses and robustness

One may worry that cities that launched the Health Code app early may have had a less

severe outbreak to start with. To address this concern, I match the treated cities to control

cities with a similar number of active cases when the Health Code was introduced using

propensity score. The result is presented in column 2 of Tables 2–3. The results are again

robust in the matching sample. A related concern is that cities that launched Health Code

early could have higher economic importance. Thus they were forced to reopen before other

cities. I address this concern by matching treated cities to control cities with similar pre-

COVID-19 economic activity. The result is presented in column 3 of Tables 2–3. The results

are also robust to this alternative matching scheme.

A related concern is that the introduction of the Health Code app could be correlated

with changes in other disease control measures. For instance, cities may have relaxed their

lockdown policy upon the introduction. Even if Health Code did not alleviate the outbreak,

we would observe an increased economic activity mechanically.

This alternative hypothesis does not seem to be consistent with the reduction in infec-

tions after the introduction of the Health Code app. In other words, a mechanical change

in lockdown policy can only move the economy along a given output-infection frontier, and

more infections will accompany the economic recovery. To achieve high economic activity and

low infections, one has to change the underlying technology to expand the output-infection

frontier. Therefore, a shift from a blanket lockdown to more-targeted quarantines could be

interpreted as a consequence of the introduction of the Health Code app in the sense that
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the information generated by this technology makes a targeted quarantine policy feasible.

Furthermore, there is no significant correlation between the app’s introduction and lockdown

easing in the data. Regressing the Health Code introduction dummy on the contempora-

neous changes in the public emergency levels leads to a precisely estimated zero. The 95%

confidence interval of the regression coefficient is -.045 to .022. This result is consistent with

Fisman, Lin, Sun, Wang, and Zhao (2021) who show that the lift in lockdown policy by Chi-

nese local governments was likely prompted by citizen discontent instead of the innovations

in disease control technologies.

Recent literature on event study design shows that linear regressions implicitly assume

the treatment effects are homogeneous (see Borusyak, Jaravel, and Spiess (2021) and the ref-

erences therein). If this assumption is violated, the estimator may place distorted weights on

treatment effects. To address this concern, Table 4 uses the imputation estimator proposed

by Borusyak, Jaravel, and Spiess (2021), which are robust to treatment-effect heterogeneity.

The results are robust to this alternative estimator.

3.2 Evidence from Instrumental Variable Regressions

I use an instrumental variable approach to obtain exogenous variations in the Health Code

launch timing to sharpen the identification further. I exploit the fact that the Health Code

apps are developed by FinTech firms and are distributed through popular payment apps.

Therefore, cities with higher FinTech penetration are more likely to introduce Health Code

early. Specifically, I construct a new variable “Health Code Earlinessi,” defined as the frac-

tion of days that the Health Code is in place between February 9, 2020, and March 31, 2020,

which corresponds to the date when the Health Code app was first introduced in Hangzhou

and the end of the sample period, respectively. The earlier a city launched the Health Code

app, the higher the Health Code Earlinessi value. I use FinTech penetration measured in

2018 to predict the earliness of the Health Code launch during the 2020 pandemic. Because

a city’s FinTech penetration was determined using 2018 data and was largely driven by its

geographical distance from Alipay’s headquarter, it is unlikely to be correlated with private

information that local officials had during the pandemic or actions taken around the Health

Code app’s launch date. Formally, the first-stage regression is the following:

Health Code Earlinessi = γFinTech penetrationi + ui.

15



The sample is a cross-section of cities with non-zero infections as of February 9, 2020, and

non-missing FinTech penetration. I find that FinTech penetration in 2018 significantly pre-

dicts how early a city launched the Health Code app during the COVID-19 pandemic. The

F -statistic of the first-stage regression is 21, suggesting that this instrument is relevant for

the timing of the Health Code launch. Then, I relate the predicted earliness of the Health

Code launch to the change in economic activity during the period when the Health Code

app was rolled out across different cities:

∆Yi = β ̂Health Code Earlinessi + ηXi + ϵi,

where ∆Yi is the change in economic or public health conditions between February 9, 2020

and March 31, 2020. Xi,t is a vector of control variables which include within-city movement,

public health emergency level, and the log number of confirmed cases as of February 9, 2020.

Table 5 presents the results. Cities that launched the Health Code app early achieved

greater economic recovery. Specifically, daily NO2 emissions were 3.3 times higher if a

city launched the Health Code app at the beginning of the sample period instead of never

launching it. Cities that launched the Health Code app early also experienced lower COVID-

19 infections and deaths during the sample period. The results are consistent with the

event-study approach.

4 Model

Although the micro-level data provide clear evidence that big data technologies can mitigate

the economic and human costs of the COVID-19 pandemic, it is difficult to draw welfare

implications. To evaluate Health Code’s aggregate welfare effects, I calibrate a macroeco-

nomic SIR model following Alvarez, Argente, and Lippi (2020). My model differs from theirs

in that I introduce a big data technology that can produce a signal on the agents’ health

status. I discipline the model using parameters identified from the micro-data. I then use

the model to conduct counterfactual simulations to analyze the effects of big data technology

on mitigating the economic and human costs of the COVID-19 crisis.
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4.1 Setting

The total living population N(t) is divided between those susceptible S(t), infected I(t), and

recovered R(t), that is,

N(t) = S(t) + I(t) +R(t). (3)

Note that the total living population N(t) will change through time, as deceased agents are

subtracted from the total. I normalize the initial population to N(0) = 1. The recovered

agents are assumed to be permanently immune to the virus.

The law of motion of the infected agents is:

İ(t) = βS(t)(1− LS)× I(t)(1− LI)− γI(t), (4)

where β is the number of susceptible agents per unit of time to whom an infected agent can

transmit the virus, and γ is the rate that infected agents recover or die. LS and LI are the

reduction in activities of susceptible and infected agents, respectively.

An infected agent is removed from the susceptible group, so the law of motion of sus-

ceptible agents is:

Ṡ(t) = −βS(t)(1− LS)× I(t)(1− LI). (5)

The infected agents die with a rate of κ, so the law of motion of the total living popu-

lation is:

Ṅ(t) = −κI(t). (6)

The infected agents recover at a rate of γ − κ, so the law of motion of recovered agents

is:

Ṙ(t) = (γ − κ)I(t). (7)

The welfare loss in the pandemic equals the sum of economic output loss and the eco-

nomic value of human life loss:

∫ T

0

e−rt

λ(S(t)LS + I(t)LI)︸ ︷︷ ︸
Economic costs

+ χD(t)︸ ︷︷ ︸
Human toll

 dt, (8)

where r is the discount rate, T is the time that a vaccine is developed, S(t)LS + I(t)LI is
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the reduction of in-person economic activity due to lockdown or fear of infections, λ is the

elasticity of output loss due to the reduction of in-person activity, D(t) = κI(t) is the death

toll, and χ is the economic value of human life.

A big data technology generates a signal y on the agents’ type according to the following

distribution:
p(y = s|S) = ps

p(y = i|I) = pi,
(9)

where ps is the probability that a healthy agent is predicted as low-risk, and pi is the

probability that an infected agent is predicted as high-risk. This technology allows society

to impose a targeted quarantine policy: if an agent receives high-risk signal i, he or she will

be quarantined with probability ℓi; if an agent receives low-risk signal s, he or she will be

quarantined with probability ℓs. In the absence of the big data technology, the government

can only impose an untargeted lockdown, ℓ, on the whole population.

4.2 Parameterization

To map the model to the data, I need to parameterize the reduction in activities, Ls and

Li, to functions of observable quantities in the data. I first measure the fraction of the

population that can potentially adopt the big data technology as
∑

iwi1{t > Ei}, where Ei
is the launch date of Health Code by city i, and wi is the population weight of city i. I then

define α as the adoption rate of citizens after the Health Code app is launched in a city. So

the fraction of population covered by the Health Code is given by

h(t) = α
∑
i

wi1{t > Ei} (10)

Given h(t), the fraction of susceptible agents and the fraction of infected agents under

quarantine are the following:

LS = h (ℓsps + ℓi(1− ps)) + (1− h)ℓ

LI = h (ℓs(1− pi) + ℓipi) + (1− h)ℓ.
(11)

Before the Health Code is introduced, the reductions in activity by both susceptible and
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infected agents is parametrized as the following function:

ℓ(t) = ϕx(t) + ψd(t). (12)

x(t) is the reduction in population movements, which is observable in the data. ϕ is the

effectiveness of mobility restrictions in reducing transmission. d(t) is a dummy variable that

takes a value of 1 after January 23, 2020, Wuhan’s lockdown date. ψ captures other disease

control measures introduced since Wuhan’s lockdown, including expanding testing capacity,

requiring masks, and increasing awareness of personal hygiene.

The reduction in population movements can be further decomposed into two compo-

nents:

x(t) = g(t) + u(t), (13)

where g(t) is the reduction in population movements due to a government lockdown, and u(t)

is the reduction in population movements to the fear of infections (Goolsbee and Syverson,

2020). I assume this variable is a function of the number of infected agents that are not

under quarantine: u(t) = θ ln (I(1− LI)).

After the Health Code is introduced, agents who receive high-risk signals will be quaran-

tined, ℓi = 1. Agents who receive low-risk signals will face the same lockdown policy before

the introduction of Health Code: ℓs = ℓ.

4.3 Calibrated Parameters

For COVID-19-specific parameters, I directly take the values from Alvarez, Argente, and

Lippi (2020). Specifically, I set β, the rate at which infected agents meet other agents and

transmit the virus, at a value of 20%. I set γ, the rate at which infected agents either recover

or die to 1/18, reflecting an estimated duration of illness of 18 days. The fatality rate per

day is set to 0.05γ, which implies a 5% fatality rate for those infected. The economic value

of human life, χ, is set to 150 times GDP per capita following Kniesner, Viscusi, Woock,

and Ziliak (2012). I calibrate the elasticity of output loss due to the reduction of in-person

activity, λ, to 0.12 to match the 4% reduction in Chinese GDP compared to its long-run

trend. Figure 7a and 7b show that the introduction of the Health Code app leads to a 50%

reduction in infection rates. This moment implies a restriction on the adoption rate and the
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accuracy of detecting infections, (1 − α)pi = 0.5.22 I calibrate the sensitivity of population

movements to the number of undetected infections θ to 0.025 to match the relative magnitude

of economic loss and death toll.23

I estimate the remaining parameters by minimizing the differences between the simulated

cases and the actual cases in the data:

min
pi,α,ϕ,ψ,I0

∑
t

(Ĉ(t)− C(t))2 (14)

where Ĉ(t) and C(t) are the daily confirmed cases in the model and the data, respectively.24

The remaining parameters include: (1) the probability that the Health Code app detects

infections pi; (2) the adoption rate α; (3) the effect of mobility restriction on infections ϕ; (4)

the effect of other disease control measures on infections, ψ; (5) the initial number of infected

cases, I0. The data input includes the observed reduction in population movement, x(t), and

the fraction of the population that can potentially adopt the Health Code,
∑

iwi1{t > Ei}.
The sample period is from January 16, 2020, to March 31, 2020.

Table 6 shows the parameters of the model. The false-positive rate of the Health Code

app is estimated to be 47%. In other words, around half of the patients who carry the

virus is undetected by the Health Code. The false-positive rate is significantly higher than

conventional viral or antibody tests, which requires the false-negative rate to be below 5%.25

Nevertheless, the Health Code’s comparative advantage is that it can track millions of users

in realtime.

The false-positive rate of the Health Code is estimated to be 2%.26 Although the 2%

22Specifically, from equation (11), the change in the infection rates can be derived as C
C− =

βS(1−Ls)I(1−LI)

βS(1−L−
s )I(1−L−

I )
≈ 1−LI

1−L−
I

= (1 − α)pi where C
− and C are the infection rates before and after the Health

Code app was introduced, respectively.
23Intuitively, a larger θ reduces the death toll but increases economic losses because there is a larger

reduction in economic activity for a given level of infections.
24Note that I allow a 14-day lag between the time an infection occurs and a case is confirmed in the

model: Ĉ(t) = βS(t− τ)(1− LS(t− τ))× I(t− τ)(1− LI(t− τ)). I drop two observations on February 13
and 14, 2020, because there was a change in diagnosis criteria, which led to an abnormal spike on these two
dates.

25See “Policy for Coronavirus Disease-2019 Tests During the Public Health Emergency,” which
states: “For this guidance, FDA defines the acceptance criteria for the performance as 95% agree-
ment at 1x-2x LoD, and 100% agreement at all other concentrations and for negative specimen.”
https://www.fda.gov/media/135659/download.

26This parameter is calibrated by matching the ratio of number of yellow and red code holders and the
actual COVID patients in Zhejiang Province. As of February 24, 2020, the fraction of yellow or red code
holders in Zhejiang Province was 1.8%, and the fraction of the infected population was 0.002%.

20



false positive rate appears to be small, it is significantly higher than the effective zero false-

positive rate required for the conventional viral or antibody tests.27 If we multiply the 2%

false positive rate with the size of the population, it implies that millions of healthy people

will receive yellow or red code and have to face quarantine. In the model, agents who receive

a bad signal cannot work. Therefore, the 2% false positive rate creates a high hurdle for the

Health Code app to have an overall positive impact on the economy.

The adoption rate in the population is estimated to be 95%, consistent with the data

in Zhejiang Province, where around 90% of the provincial population obtained the Health

Code app within 15 days after it was introduced.

Figure 8 shows the simulated path of confirmed cases in the data and the model. The

model fits the data quite well: the predicted peak of the infection took place around two

weeks after the Wuhan’s lockdown on January 23, 2020, which matches closely with the

data. Furthermore, the number of new cases remained low after lockdowns were gradually

loosened in March 2020.

4.4 Mechanism

Before I conduct counterfactual simulations, it is useful to analyze the basic reproduction

number in epidemiology, or R0, implied in the model. R0 represents the expected number

of cases directly generated by one case in a population where all individuals are susceptible

to infection. In the absence of interventions, the basic reproduction number is R0 = β/γ.

When R0 > 1, each infected agent is expected to infect more than one agent before this

infected agent recovers or dies. Therefore, in the absence of a cure or vaccine, the virus will

infect all the agents in the long-run steady state. In contrast, if R0 < 1, each infected agent

is expected to infect less than one agent. The virus will disappear in the long run, even

without a cure or vaccine. In the model, the basic reproduction number is the following:

R0 = β/γ × (1− h (ℓps + (1− ps))− (1− h)ℓ)︸ ︷︷ ︸
1−LS

× (1− h (ℓ(1− pi) + pi)− (1− h)ℓ)︸ ︷︷ ︸
1−LI

,
(15)

where the first term is the basic reproduction number without any interventions, the second

and third terms are the fractions of susceptible and infected agents that are not under

quarantine.

27See “Policy for Coronavirus Disease-2019 Tests During the Public Health Emergency,”
https://www.fda.gov/media/135659/download.
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I plot the resulting basic reproduction number for each level of ℓ, the fraction of sus-

ceptible agents under lockdown. The resulting curve is the infection-possibilities frontier,

as shown in Figure 9, which shows the possible combinations of lockdown intensity and the

infection rate that can be achieved using available technology. I consider two scenarios. In

the first scenario, the Heath Code app is not adopted, h = 0. The basic reproduction number

of COVID-19 in this scenario is 3.6 if no lockdown is imposed. In this case, the government

needs to lock down 52.7% of the susceptible population to bring R0 below 1. In the second

scenario, the Heath Code app is adopted by the whole population, h = 1. In this case,

the infection-possibilities frontier is expanded, and only 20% of the susceptible population

needs to be locked down to bring R0 below 1. It is worth noting that, even when the whole

population adopts the Heath Code app, h = 1, the R0 is still above 1 without any lockdown.

In other words, the Health Code app alone cannot contain the COVID-19 pandemic without

other disease control policies in place.

4.5 Counterfactual Simulations

So far, I have analyzed the Health Code’s effect through the lens of the basic reproduction

number of COVID-19. This section will use the structural model to analyze the welfare

implications of this technology. First, I simulate the path of the baseline economy until the

end of 2020. I also assume the behavioral and technological changes since the outbreak are

still in place for the rest of the year. The blue line of Figure 10 shows the fraction of infected

agents in the population in this baseline scenario. I find that infections will not rebound

later in the year, even if the economy reopens. Row 1 of Table 7 shows the economic losses

and human toll of the baseline economy. The economic loss amounts to 4.26% of the annual

GDP, while the death toll amounts to around 4,650, consistent with the data. The small

number of deaths has a limited impact on social welfare under the assumption that the

economic value of human life is 150 times GDP per capita, so the loss of welfare is around

4.31% of the annual GDP.

Next, I consider a counterfactual economy without the Health Code app. Other disease

control measures represented by ψ remain in this counterfactual scenario. The red line

of Figure 10 shows the fraction of infected agents in the population in this counterfactual

scenario. In this case, infections start to rebound as the lockdown was eased in early March

and keep rising throughout 2020. Row 2 of Table 7 shows the economic and human losses of

this counterfactual economy. Compared with the baseline case, this simulation shows that
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the Health Code app reduced economic loss by 0.5% of GDP and saved more than 200,000

lives.

To evaluate the Health Code app’s relative contribution to the lockdown policies, I

consider a counterfactual economy in which the government did not impose any lockdown in

January 2020. As shown by the yellow line of Figure 10, infections kept rising until the end of

March. The infections only leveled off when the Health Code app and other disease control

measures were implemented. This counterfactual suggests that 70,000 more lives would have

been lost if strict lockdowns were not imposed during the outbreak’s peak. This result is

consistent with Fang, Wang, and Yang (2020), who show that the lockdown significantly

reduced future infections. However, the lockdown policies also imposed a steep economic

price: the economy suffered a 1.1% loss in GDP in 2020 due to the strict lockdown policies.

In summary, these two counterfactual simulations show that the Health Code app had

a similar if not larger effect in containing the outbreak compared with the strict lockdown

policies. Furthermore, unlike the strict lockdown policies that inflicted a steep cost on the

economy, the Health Code app facilitated economic recovery and reduced the pandemic’s

economic impact.

4.6 Discussion on Privacy

Big data technology often raises concerns about privacy infringement. Because of this con-

cern, many contact tracing apps avoid linking the contact history to the user’s identity.

Instead, an anonymous message is sent to the app holder if he or she is exposed to the virus.

A possible trade-off is that targeted quarantine may not be enforced as people who receive

exposure may not strictly follow self-isolation guidelines.28

To examine the private notification model’s effectiveness, I consider a counterfactual

scenario in which the signal is privately observable, and only 40% of individuals choose

to quarantine themselves upon receiving a bad signal. Under this counterfactual scenario,

the economy will experience a second wave of infections when the lockdown is lifted after

March, as shown in the purple line of Figure 10. The economy would suffer an additional

28For example, a July 22, 2020, Washington Post article entitled, “Australians are ignoring self-isolation
guidelines. Coronavirus cases are climbing” reports that between July 7 and July 21, nearly 90% of people
who tested positive in the state of Victoria did not self-isolate between when their symptoms began and
when they were tested. More than 50% of people who tested positive in that same period did not self-isolate
between the time they were tested for the virus and the time they got their results.
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loss of 0.33% GDP compared with the baseline scenario, suggesting that the economic value

created by the Health Code app would decrease by around 65%. In addition, the death toll

would have been 16,000 higher than the baseline simulation with publicly verifiable signals.

Overall, the private notification model reduces welfare by 0.5% GDP relative to the baseline

simulation. This counterfactual exercise suggests a trade-off between the economic value of

big data technology and privacy concern.

Does the value of privacy justify the efficiency loss due to privacy protection? This

question is difficult to answer because the value of privacy is hard to measure. Nevertheless,

I conduct a back-of-the-envelope comparison based on the estimated value of privacy in the

literature. The most related estimate of how much Chinese people value privacy is from Tang

(2019), who ran a field experiment in China and finds that the subjects are willing to give

up their personal information for $33. This value amounts to 0.33% GDP per capita, which

seems to be slightly smaller than the 0.50% GDP welfare loss resulting from the private

notification model.29

This back-of-envelope calculation is subject to the caveat that people in different coun-

tries may value privacy differently. Furthermore, one’s stated preference for privacy may

differ from real preferences inferred from actual actions. Athey, Catalini, and Tucker (2017)

conduct experiments in the United States and find that even people who claim to value

privacy are willing to relinquish their private data for small benefits. It is also worth noting

that using big data technologies may not necessarily lead to a loss of privacy because data

anonymization technology can reduce the risk of privacy violations. For instance, many digi-

tal health certificate apps, such as the “Travel Pass” app from the International Air Transport

Association (IATA) and the “CommonPass” app developed by the Commons Project, are

designed to deliver a simple yes or no answer as to whether the individual meets the current

entry criteria without transmitting the underlying data to a centralized database.

Overall, this counterfactual exercise suggests a trade-off between protecting the privacy

and resolving informational frictions. This paper quantifies the value of the big data tech-

nology in the COVID-19 pandemic. Whether this value can justify the potential privacy cost

requires a better understanding of how people value privacy, which is left for future research.

29The GDP per capita in China was around $10,000 as of 2018. See the World Bank data:
https://data.worldbank.org/indicator/NY.GDP.PCAP.CD?locations=CN.
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4.7 Discussion on Adoption

A key necessary condition for the effectiveness of this big data technology is a high adoption

rate. I consider a counterfactual situation in which the adoption rate is 20%. I find that the

economy would have experienced a second wave after the lockdown was lifted, as shown in

the green line in Figure 10. The economy would have incurred an additional 0.34% loss in

GDP compared with the baseline simulation with high adoption rates as shown by Table 7.

In other words, the economic value created by the Health Code app would have decreased by

around 67%. The death toll would have been 64,000 higher than the baseline simulation with

high adoption rates. The overall welfare loss would be 1% GDP higher than the baseline

simulation.

An important contributing factor to the high adoption rates could be the app’s design.

The app combines contact tracing and health certification, which creates important synergies.

On the one hand, digital contact tracing reduces the costs of digital health certification

because users do not have to conduct regular diagnostic tests to certify their health. On

the other hand, because it is easy to obtain such health certificates, private institutions

and businesses can easily monitor the health condition in their business sites by setting

up checkpoints. The prevalence of the Health Code checkpoints, in turn, encourages more

adoption by individuals. Higher adoption also makes contact tracing more accurate. This

mechanism has important implications in the ongoing debate on the design of contact tracing

and health certificate apps.30

In addition to the app design, government coordination could have played a role. Instead

of having different apps used by different private businesses, one app was introduced for the

whole city, creating large network effects. Furthermore, people’s familiarity with FinTech

may have also contributed. China is the global leader in mobile payment adoption: over

81% of smartphone users had made a mobile payment in the past six months as of the end of

2019.31 The Health Code app was developed by highly trusted FinTech firms in China and

was integrated with popular mobile payment apps, which makes the adoption much easier.

30For instance, on March 4, 2021, France’s Health Minister raised issues around whether the digital
contact tracing app in France should be repurposed to a digital pass for public venues. See a March 4, 2021,
Politico article, “France mulls digital COVID pass for public venues”.

31See “Global proximity mobile payment usage penetration 2019, by country” survey by eMarketer.
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5 Conclusion

The COVID-19 pandemic has featured one of the largest ever experiments with big data

technologies. Governments and private institutions introduced numerous contact tracing

and digital health certificate apps to combat the dual economic and public health crisis

caused by the COVID-19 pandemic. Using the staggered introduction of the Health Code

app across Chinese cities, this paper shows that such technologies can effectively alleviate

economic and human losses caused by the COVID-19 pandemic. This large-scale experiment

demonstrates big data’s potential to solve large-scale social and economic problems caused

by informational frictions. It also provides valuable lessons for the ongoing debate on the

trade-off between big data technologies’ economic potential and privacy concerns.
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Table 1: Summary Statistics

N mean sd p5 p25 p50 p75 p95

NO2 24742.0 63.0 30.3 22.9 40.1 57.5 81.4 119.5

SO2 24742.0 82.8 36.7 33.9 58.8 79.1 100.0 145.3

Confirmed cases 28658.0 144.3 1985.5 0.0 0.0 8.0 31.0 213.0

Cured cases 28658.0 82.6 1251.6 0.0 0.0 3.0 18.0 140.0

Deaths 28658.0 5.0 91.1 0.0 0.0 0.0 0.0 3.0

Emergency level 28658.0 1.7 1.2 0.0 0.0 2.0 3.0 3.0

Within-city movements 28658.0 77.5 25.6 32.3 56.3 84.1 99.1 109.3

FinTech Penetration Index 26522.0 0.8 0.1 0.7 0.7 0.7 0.8 0.9

Note: This table reports summary statistics of the regression sample. The sample is a panel of 322 cities
from January 1, 2020, to March 31, 2020. Data sources: Baidu Migration, China National Environmental
Monitoring Center, Chinese Center for Disease Control and Prevention.
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Table 2: Effects of the Health Code on NO2 Emissions: Event Study

(1) (2) (3)
NO2 NO2 NO2

Week -2 0.008 0.021 0.010
[0.024] [0.028] [0.024]

Week -1 0.034 0.041 0.035
[0.025] [0.030] [0.025]

Week 0 0.036 0.043 0.038
[0.026] [0.032] [0.026]

Week 1 0.081∗∗∗ 0.091∗∗ 0.082∗∗∗

[0.030] [0.036] [0.030]

Week 2 0.139∗∗∗ 0.137∗∗∗ 0.140∗∗∗

[0.034] [0.039] [0.035]

Week 3 0.206∗∗∗ 0.207∗∗∗ 0.205∗∗∗

[0.040] [0.046] [0.040]

Week 4 0.244∗∗∗ 0.245∗∗∗ 0.239∗∗∗

[0.047] [0.054] [0.047]

Week 5 0.325∗∗∗ 0.320∗∗∗ 0.316∗∗∗

[0.054] [0.062] [0.054]

Week 6+ 0.445∗∗∗ 0.464∗∗∗ 0.432∗∗∗

[0.070] [0.077] [0.067]

Constant 0.268∗∗∗ 0.253∗∗∗ 0.266∗∗∗

[0.040] [0.044] [0.040]

Control Yes Yes Yes
City F.E. Yes Yes Yes
Time F.E. Yes Yes Yes
Emergency F.E. Yes Yes Yes
Sample Full sample Match by cases Match by act.
Observations 24,742 24,742 24,742
Adj. R-squared 0.562 0.573 0.562

Note: This table reports the effects of the Health Code on economic activity measured by daily NO2
emissions. The dependent variable is NO2 emission normalized by the average of the first two weeks in 2020.
Week k represents the effect k weeks from the launch date. Week 6+ represents the effects 6 weeks or more
after the launch date. The control variable is within-city movement. The sample is a panel of 322 cities from
January 1, 2020 to March 31, 2020. Standard errors are clustered at both the date and the city level. Data
sources: Baidu, Chinese Center for Disease Control and Prevention.
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Table 3: Effects of the Health Code on Infections: Event Study

(1) (2) (3)
Infection Infection Infection

Week -2 0.013 0.034 0.021
[0.076] [0.084] [0.074]

Week -1 0.017 0.031 0.021
[0.059] [0.060] [0.058]

Week 0 0.010 0.037 0.026
[0.068] [0.075] [0.073]

Week 1 -0.228∗∗∗ -0.195∗∗ -0.219∗∗

[0.083] [0.089] [0.082]

Week 2 -0.717∗∗∗ -0.682∗∗∗ -0.704∗∗∗

[0.078] [0.090] [0.083]

Week 3 -1.048∗∗∗ -0.992∗∗∗ -1.046∗∗∗

[0.149] [0.171] [0.139]

Week 4 -0.723∗∗∗ -0.676∗∗∗ -0.699∗∗∗

[0.121] [0.149] [0.108]

Week 5 -0.881∗∗∗ -0.846∗∗∗ -0.849∗∗∗

[0.177] [0.203] [0.149]

Week 6+ -0.823∗∗∗ -0.781∗∗∗ -0.759∗∗∗

[0.226] [0.255] [0.202]

Constant -0.078 -0.064 -0.086
[0.067] [0.082] [0.064]

Control Yes Yes Yes
City F.E. Yes Yes Yes
Time F.E. Yes Yes Yes
Emergency F.E. Yes Yes Yes
Sample Full sample Match by cases Match by act.
Observations 1,899 1,899 1,899
Adj. R-squared 0.145 0.161 0.144

Note: This table reports the effects of the Health Code on infection growth. The dependent variable is
infection growth rate measured by three-day moving average of changes in log new cases. Week k represents
the effect k weeks from the launch date. Week 6+ represents the effects 6 weeks or more after the launch
date. The control variable is within-city movement. The sample is a panel of 322 cities from January 1, 2020
to March 31, 2020. Standard errors are clustered at both the date and the city level. Data sources: Baidu,
Chinese Center for Disease Control and Prevention.
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Table 4: Effects of the Health Code on NO2 Emissions: Robustness

(1) (2) (3)
NO2 NO2 NO2

tau 0.084∗∗∗ 0.065∗∗∗ 0.084∗∗∗

[0.026] [0.020] [0.028]

Control Yes Yes Yes
City F.E. Yes Yes Yes
Time F.E. Yes Yes Yes
Emergency F.E. Yes Yes Yes
Sample Full sample Match by cases Match by act.
Observations 22,796 22,796 22,796

Note: This table reports the effects of the Health Code on economic activity measured by daily NO2 emissions
using the imputation estimator proposed by Borusyak, Jaravel, and Spiess (2021). The dependent variable
is NO2 emission normalized by the average of the first two weeks in 2020. “tau” represents the average
treatment effect of the Health Code over the treated cities. The sample is a panel of 322 cities from January
1, 2020 to March 31, 2020. Standard errors are clustered at both the date and the city level. Data sources:
Baidu, Chinese Center for Disease Control and Prevention.

Table 5: Health Code, Economic Activity, and Public Health: Instrumental Vari-
able Approach

(1) (2) (3) (4)
NO2 SO2 Infection Death

Health Code Earliness 3.336∗∗∗ 1.487∗∗ -1.588∗∗∗ -2.851∗∗∗

[0.505] [0.616] [0.509] [0.629]

Within-city movements 0.007∗∗∗ 0.010∗∗∗ -0.005∗∗∗ -0.006∗∗∗

[0.002] [0.002] [0.002] [0.002]

Confirmed cases 0.014 0.040∗∗ -0.025∗ 0.200∗∗∗

[0.013] [0.016] [0.013] [0.016]

Emergency F.E. Yes Yes Yes Yes
Observations 220 220 235 235
Adj. R-squared 0.196 0.100 0.077 0.446

Note: This table reports the results of the following two-stage regression model

Health Code Earlinessi = γFinTech penetrationi + ui,

∆Yi = β ̂Health Code Earlinessi + ηXi + ϵi,

where ∆Yi is the changes in economic activity or public health condition from February 9, 2020, to March
31, 2020 of city i. Health Code Earlinessi is the fraction of time that the Heath Code app is in place from
February 9, 2020, to March 31, 2020. Health Codei is instrumented by FinTech penetrationi measured
in 2018. The vector of the control variables, Xi, includes within-city movement, public health emergency
levels, and the log number of confirmed case as of February 9, 2020. Data sources: Baidu, Chinese Center
for Disease Control and Prevention.
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Table 6: Parameter Values for SIR Model with Health Code

Parameter Value Definition

1− pi 0.47 False negative rate
1− ps 0.02 False positive rate
α 0.95 Adoption rate
ϕ 0.40 Effectiveness of population movement restrictions
ψ 0.19 Other disease control measures
θ 0.03 Elasticity of population movement reduction due to undetected infections
I0 1250 Initial infection number
λ 0.12 Economic costs of lockdown
β 0.20 Daily increase of active cases without intervention
κ 0.05γ Fatalities per active case (per day)
γ 1/18 Daily rate of infected recovery (includes those that die)
χ 150 Value of statistical life

Table 7: Counterfactual Simulations

Baseline Economic loss Death Welfare loss

4.26 4650 4.31

Counterfactuals Relative to baseline

No Health Code +0.51 +216385 +3.01
No lockdown -1.10 +74755 -0.23
Private signal +0.33 +15525 +0.50
Low adoption +0.34 +64147 +1.08
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(a) Hangzhou Health Code

(b) Subway entrance in Hangzhou

Figure 1: Health Code and Checkpoints
Figure 1a shows the first Health Code introduced in China, the Hangzhou Health Code. Individuals with a
green code can freely travel in the city. Individuals with a yellow code must quarantine for 7 days. Individuals
with a red code must quarantine for 14 days. The code turns back to green after the corresponding quarantine
period. Figure 1b shows a subway guard in Hangzhou checking phones while helping a man set up the Alipay
Health Code software. Everyone must have a green code to pass. Source: New York Times.
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Figure 2: Implementation of Health Code in Chinese Cities
This figure plots the number of cities that launch Health Code on each date. The first vertical line indicates
January 23, 2020, the date of Wuhan’s lockdown. The second vertical line indicates February 9, 2020, when
the first Health Code was introduced in Hangzhou.

Date
Feb 15
Feb 20
Feb 25
Feb 29
Mar 5
Mar 10
Mar 15
Mar 20
Mar 25
Data not available

Figure 3: Implementation of Health Code in Chinese Cities
This figure shows the launch dates of the Health Code app in five-day intervals. Data source: local govern-
ment websites and news reports.
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Figure 4: Greenhouse Gas Emission

Figure 4a shows the average economic activity of Chinese cities measured by greenhouse gas emissions. Data
source: the China National Environmental Monitoring Center (CNEMC). Figure 4b shows the heat maps of
nitrogen dioxide (NO2) levels over China. Data source: Google Earth.
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(b) Population Movements and Emergency Level

Figure 5: COVID Infections, Population Movements, and Emergency Level

Figure 5a plots the cumulative confirmed, cured, dead, and current cases of COVID-19 in the sample.
Figure 5b plots the average within-city population movements and public health emergency level. Data
source: Chinese Center for Disease Control and Prevention, Baidu Migration.
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Figure 6: Dynamic Effects of the Health Code Introduction

This figure plots the dynamic effects of Health Code 14 weeks around the launch date of the Health Code
app. The horizontal axis is the week relative to the launch date of the Health Code app. Data source: the
China National Environmental Monitoring Center (CNEMC) and Chinese Center for Disease Control and
Prevention.
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Figure 7: Impulse Response of Local Cases to Infection Inflows
This figure plots the impulse response of locally confirmed cases to a 1% increase in infection
inflows. The upper and lower panels show the effect without and with Health Code, respec-
tively. The horizontal axis is the date since the infected inflows have occurred. Standard
errors are clustered at both the date and the city level. Data source: Baidu, Chinese Center
for Disease Control and Prevention.

41



Feb Mar Apr
2020   

0

1000

2000

3000

4000

5000

N
ew

ly
 c

o
n

fi
rm

ed
 c

as
es Model

Data

Figure 8: New Daily Cases in Simulation and Data
This figure plots shows new daily cases in simulation and in data. The sample period is from
January 16th, 2020, to March 31, 2020. The parameters used for the simulation are reported
in Table 6.

0 0.2 0.4 0.6 0.8 1

Fraction of susceptible population under lockdown

0

1

2

3

4

B
as

ic
 r

ep
ro

d
u

ct
io

n
 n

u
m

b
er

Without Health Code
With Health Code

Figure 9: Infection-Possibilities Frontier
This figure plots the infection-possibilities frontier, which shows the possible combinations of
reproduction number of a pandemic and the fraction of population under lockdown for a given
set of technology. The gray region is the set of possible combinations without Health Code.
The green region is the additional possibilities created by Health Code. The parameters
used to construct these two curves are reported in Table 6.
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Figure 10: Counterfactual Paths of Infections
This figure shows the counterfactual paths of infections. The blue line is the baseline case
with both Health Code and lockdown. The red line is a counterfactual case in which Health
Code is absent. The yellow line is a counterfactual case in which a lockdown is absent. The
purple line is a counterfactual case in which the signal is private and 40% of agents with
bad signals choose to self-quarantine. The green line is a counterfactual case in which the
adoption rate is 20%. The parameters used for the simulation are reported in Table 6.
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