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1 Introduction

Since Jordà (2005) introduced the popular local projection (LP) impulse response estimator,
there has been a debate about its benefits and drawbacks relative to Vector Autoregression
(VAR) estimation (Sims, 1980). Recently, Plagborg-Møller & Wolf (2021) proved that these
two methods in fact estimate precisely the same impulse responses asymptotically, provided
that the lag length used for estimation tends to infinity. This result holds regardless of
identification scheme and regardless of the underlying data generating process (DGP). Nev-
ertheless, the question of which estimator to choose in finite samples remains open. It is also
an urgent question, since researchers have remarked that LPs and VARs can give conflicting
results when applied to central economic questions such as the effects of monetary or fiscal
stimulus (e.g., Ramey, 2016; Nakamura & Steinsson, 2018).

Whereas the LP estimator utilizes the sample autocovariances flexibly by directly pro-
jecting an outcome at the future horizon h on current covariates, a VAR(p) estimator instead
extrapolates longer-run impulse responses from the first p sample autocovariances. Hence,
though the estimates from the two methods agree approximately at horizons h ≤ p, they
can disagree substantially at intermediate and long horizons.1 Intuitively, the extrapola-
tion employed by VARs should yield a lower variance but potentially a higher bias than for
LPs, perfectly analogous to the trade-off between direct and iterated reduced-form forecasts
(Schorfheide, 2005; Kilian & Lütkepohl, 2017).2 How much more should one care about bias
than variance to optimally choose the LP estimator over the VAR estimator in realistic sam-
ple sizes? And how does the trade-off depend on the DGP? Unfortunately, these questions
are challenging to answer analytically, due to the dynamic and nonlinear nature of the time
series estimators, as well as the breadth of DGPs encountered in applied practice.

In this paper we illuminate the bias-variance trade-off in impulse response estimation
through a comprehensive simulation study, applying LP and VAR methods to thousands
of empirically relevant DGPs. Our goal is to identify which estimators perform well on
average across many DGPs and thus may serve as practical default procedures. Rather
than insisting on the usual binary distinction between “local projections” and “VARs”, we
furthermore consider an entire menu of related estimation approaches. We find that the usual
least-squares LP estimator tends to have lower bias than the least-squares VAR estimator, as

1See Plagborg-Møller & Wolf (2021, Proposition 2) for a formal result.
2The trade-off is also conceptually similar to the relationship between polynomial series estimators and

kernel estimators in cross-sectional nonparametric regression.
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expected, but this bias reduction incurs a substantial cost of higher variance. Consequently,
unless researchers are almost exclusively concerned with bias, least-squares LP is not optimal,
and shrinkage estimation via Bayesian VARs or penalized LPs is usually attractive.

Our simulation study considers an extensive array of DGPs, obtained by drawing specifi-
cations at random from a large-scale, empirically calibrated dynamic factor model (DFM).3

We use the estimated DFM in Stock & Watson (2016), which has been fitted to 207 U.S.
macroeconomic time series that span a wide variety of variable categories. As discussed by
Stock & Watson, DFMs are well-known to accurately capture the joint co-movements of con-
ventional macroeconomic data, thus ensuring that our simulation results will be informative
about the universe of standard U.S. time series. From the encompassing 207-variable DFM
we draw 6,000 random subsets of five variables (subject to certain constraints that emulate
applied practice), whose model-implied time series processes constitute the set of DGPs we
consider for our simulation study. Importantly, these DGPs vary in terms of how well they
can be approximated by low-order VAR models, thus yielding a non-trivial bias-variance
trade-off between LPs and VARs. Moreover, the DGPs exhibit substantial heterogeneity in
persistence, shape of impulse response functions, and invertibility of the structural shocks,
consistent with the heterogeneity faced by applied researchers. An estimation method that
works well across this multitude of DGPs therefore carries substantial promise as an attrac-
tive default procedure.

We study the ability of several variants of LP and VAR methods to accurately estimate
impulse response functions. In addition to the popular least-squares LP and VAR estimators,
we enrich the bias-variance possibility frontier by considering: (i) penalized LP (Barnichon &
Brownlees, 2019), which smooths out the estimated impulse response function; (ii) Bayesian
VAR estimation, which shrinks VAR coefficients toward white noise; (iii) model averaging of
univariate and multivariate VAR models of various lag lengths (Hansen, 2016); and (iv) bias
correction of the VAR coefficients (Pope, 1990; Kilian, 1998). For each estimation method,
we consider three classical structural identification schemes: observed shocks, instrumental
variables (IVs)/proxies, and recursive identification. For IV identification, we distinguish
between internal IV methods (Ramey, 2011; Plagborg-Møller & Wolf, 2021) and external IV
methods (Stock, 2008; Stock & Watson, 2012; Mertens & Ravn, 2013).

Applying the various estimation methods to simulated data from our multitude of DGPs,
a clear and unavoidable bias-variance trade-off emerges. We highlight four main lessons:

3Our overall approach is inspired by Lazarus et al. (2018), who are instead interested in the question of
how to select among different long-run variance estimators.
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1. Least-squares LP and VAR estimators lie on opposite ends of the bias-variance spectrum:
small bias and large variance for LPs, and large bias and small variance for VARs. Thus,
for any given impulse response horizon, there exists a weight on squared bias relative to
variance in the loss function that would make a researcher indifferent between the least-
squares LP and VAR estimators. Yet, the slope of this trade-off is stark: indifference
between the two methods requires a researcher to care on average around four times more
about squared bias than about variance.

2. Shrinkage methods dramatically lower the variance of LP and VAR methods, at a usually
moderate cost in terms of bias. In particular, unless researchers care almost exclusively
about bias, penalized LP is preferred to least-squares LP, and Bayesian VAR shrinkage is
preferred to or at least competitive with the least-squares VAR estimator. However, when
the data is very persistent, the performance of the Bayesian VAR estimator is sensitive
to the choice of prior at long horizons.

3. For any given loss function, no single method dominates at all horizons. Unless the
concern for bias is overwhelming, penalized LP is the most attractive estimation method
at short horizons, while least-squares or Bayesian VAR estimation are the most attractive
methods at intermediate and long horizons.

4. In the case of IV identification, the SVAR-IV estimator is heavily (median-)biased, but
provides substantial reduction in dispersion. Depending on the weight attached to bias,
it may therefore be justifiable to use external IV methods despite their lack of robustness
to non-invertibility (unlike internal IV methods).

Our findings provide a novel perspective on recent work emphasizing the potential dangers
of VAR model mis-specification (Ramey, 2016; Nakamura & Steinsson, 2018). We consider
DGPs that do not admit finite-order VAR representations, so VAR methods indeed suffer
from larger bias, as cautioned there. Reducing that bias via direct projection, however,
incurs a steep cost in terms of increased sampling variance at intermediate and long horizons.
Researchers who employ conventional LP estimators should be prepared to pay that price.

Literature. Our large-scale simulation study is inspired by the seminal work of Mar-
cellino et al. (2006) on direct and iterated multi-step forecasts, though we focus instead on
structural impulse responses. While simulation studies in the forecasting literature often
consider low-dimensional specifications, we consider systems with several variables, consis-
tent with standard practice in the applied structural macroeconometrics literature. The
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structural perspective also requires us to contend with issues such as the variety of different
popular shock identification schemes, normalization of impulse responses, and the special
role of external instrumental variables.

Our large-scale set-up differs from prior simulation studies of LP and VAR methods,
which have considered at most a handful of DGPs. Examples include Jordà (2005), Meier
(2005), Kilian & Kim (2011), Brugnolini (2018), Choi & Chudik (2019), Austin (2020),
and Bruns & Lütkepohl (2021). These papers either obtain their DGPs from stylized, low-
dimensional VARMA models, calibrated DSGE models, and/or a few empirically calibrated
VAR models. Our analysis also differs in the following respects: we consider shrinkage esti-
mation procedures as competitors to the least-squares estimators; we study several popular
structural identification schemes; and we examine how our conclusions vary with the impulse
response horizon and the researcher’s loss function. All these features are essential to the
above-mentioned main lessons that we draw from our results.

Even though the simulation results are at the heart of our analysis, we start off by illus-
trating the bias-variance trade-off through an analytical example that builds on Schorfheide
(2005). That paper develops a general theory of the asymptotic bias and variance of direct
and iterated (reduced-form) forecasts under local mis-specification. While these theoretical
results are valuable for analytically distilling the forces at work, they do not by themselves
resolve the bias-variance trade-off faced by practitioners, as this trade-off invariably depends
in a complicated fashion on many features of the DGP.

Finally, we stress that our paper focuses solely on point estimation, as opposed to infer-
ence or hypothesis testing. See Inoue & Kilian (2020) and Montiel Olea & Plagborg-Møller
(2021) for theoretical and simulation results on VAR and LP confidence interval procedures.
Moreover, we focus exclusively on impulse response estimands, rather than variance decom-
positions or historical decompositions.

Outline. Section 2 illustrates the bias-variance trade-off for LP and VAR estimators using
a simple analytical example. Section 3 describes the empirically calibrated dynamic factor
model that we use to generate our many DGPs. Section 4 defines the menu of LP- and VAR-
based estimation procedures. Section 5 contains our main simulation results and robustness
checks. Section 6 summarizes the lessons for applied researchers and offers guidance for
future research. The appendix contains implementation details. A supplemental appendix
with proofs and further simulation results and a Matlab code suite are available online
(https://github.com/dake-li/lp_var_simul).
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2 The bias-variance trade-off

This section motivates our simulation study with an analytical discussion of the bias-variance
trade-off between LP and VAR impulse response estimators. Section 2.1 begins with a simple
model that cleanly illustrates the trade-off, and Section 2.2 connects the discussion to the
rest of the paper.

2.1 Illustrative example

Plagborg-Møller & Wolf (2021) show that the impulse response estimands of VAR and LP
estimators with p lags generally differ at horizons h > p: the VAR extrapolates from the first
p autocovariances of the data, while LP exploits all autocovariances out to horizon h + p.
This observation suggests the presence of a bias-variance trade-off whenever the true DGP
is not a finite-order VAR, perfectly analogous to the choice between “direct” and “iterated”
predictions in multi-step forecasting (Marcellino et al., 2006). We here formalize this basic
intuition by extending the arguments of Schorfheide (2005) to structural impulse response
estimation in a simple DGP.

Model. Consider a simple sequence of drifting DGPs:

yt = ρyt−1 + ε1,t + ε2,t + α√
T

ε2,t−1, (1)

where εt ≡ (ε1,t, ε2,t)′ is an i.i.d. white noise process with Var(εt) = diag(1, σ2
2). The

DGP drifts towards an AR(1) process at rate T −1/2, where T is the sample size. We will
show that this ensures a non-trivial bias-variance trade-off in the limit T → ∞. The DGP
captures the notion that finite-order autoregressive models are often a good—but not exact—
approximation to the true underlying DGP. Note that the degree of autoregressive mis-
specification is governed by α.

We are interested in the impulse responses of yt with respect to a unit impulse in ε1,t. The
true impulse response function is evidently θh ≡ ρh. We assume that the researcher observes
wt ≡ (ε1,t, yt)′, i.e., she observes the shock ε1,t but not ε2,t. To evaluate the performance of
a given estimator θ̂h, we will throughout this paper consider loss functions of the form

Lω(θh, θ̂h) = ω ×
(
E[θ̂h − θh]

)2
+ (1 − ω) × Var(θ̂h). (2)
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For ω = 1
2 , this is proportional to the mean squared error (MSE).4 For ω > 1

2 , the researcher
is more concerned about (squared) bias than variance, and vice versa.

Estimators. For now, we consider two estimators of θh.

1. LP. The least-squares local projection estimator β̂h is obtained from the OLS regression

yt+h = β̂hε1,t + ζ̂ ′
hwt−1 + residualt,h, (3)

at each horizon h. Notice that this LP specification controls for one lag of the data.

2. VAR. We consider a recursive VAR specification in wt = (ε1,t, yt)′, again with one lag.
Define the usual least-squares coefficient estimator Â ≡ (∑T

t=2 wtw
′
t−1)(

∑T
t=2 wt−1wt−1)−1

and residual covariance matrix Σ̂ ≡ T −1∑T
t=2 ûtû

′
t, where ût ≡ wt − Âwt−1. Define the

lower triangular Cholesky factor Ĉ, where ĈĈ ′ = Σ̂. The un-normalized VAR impulse
responses with respect to the first orthogonalized shock at horizon h are given by ÂhĈe1,
where ej is the j-th unit vector of dimension 2, j = 1, 2. To facilitate comparison with
LP, we normalize the impact response of the first variable in the VAR (i.e., ε1,t) with
respect to the first shock to be 1. This yields the estimator δ̂h ≡ e′

2Â
hγ̂, where γ̂ ≡ (1, κ̂)′

and κ̂ ≡ Σ̂21/Σ̂11.5

Note that at the impact horizon h = 0, the two estimators β̂0 and δ̂0 are numerically equal.

Trade-off. How does the optimal choice of estimation method depend on the properties
of the DGP (1) and the bias weight ω in the loss function (2)? Along the stated asymptote,
the researcher faces a clear bias-variance trade-off:

Proposition 1. Consider the model (1), and fix h ≥ 0, ρ ∈ (−1, 1), σ2 > 0, and α ∈ R.
Assume E(ε4

j,t) < ∞ for j = 1, 2. Define σ2
0,y ≡ 1+σ2

2
1−ρ2 . Then, as T → ∞,

√
T (β̂h − θh) d→ N(aBiasLP, aVarLP),

√
T (δ̂h − θh) d→ N(aBiasVAR, aVarVAR), (4)

4The objective function (2) is not a loss function in the usual decision theoretic sense (which would call
it a risk function when ω = 1

2 ). We proceed with the non-standard terminology for ease of exposition.
5We have Ĉ =

( √
Σ̂11 0

Σ̂21/
√

Σ̂11 Σ̂22−Σ̂2
21/Σ̂11

)
. We therefore achieve the desired normalization of the impact

effect of the shock by dividing Ĉe1 by
√

Σ̂11. This gives the normalized impulse responses Âhγ̂.
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where for all h ≥ 0,

aBiasLP ≡ 0, aVarLP ≡ σ2
0,y(1 − ρ2(h+1)) − ρ2h,

and for h ≥ 1,

aBiasVAR ≡ ρh−1(h − 1) ασ2
2

σ2
0,y − 1 , aVarVAR ≡ ρ2(h−1)(1 − ρ2)σ2

0,y

(
1 + (h − 1)2

σ2
0,y − 1

)
+ ρ2hσ2

2.

Proof. Please see Supplemental Appendix F.

Proposition 1 implies a ranking of the asymptotic biases and variances. First, we clearly
have | aBiasVAR | > | aBiasLP | = 0 whenever h ≥ 2, ρ ̸= 0, and α ̸= 0. Second, as in
Schorfheide (2005), the asymptotic variances in Proposition 1 are the same as in the well-
specified model with α = 0. It then follows from the Cramér-Rao bound that aVarVAR ≤
aVarLP for all h, and the inequality is strict when h ≥ 2 and ρ ̸= 0.6

Figure 1 plots the asymptotic bias and standard deviation for two parametrizations: one
with low persistence and modest mis-specification (ρ = 0.6 and α = 1), and one with high
persistence and severe mis-specification (ρ = 0.9 and α = 5).7 Both set σ2 = 1. Figure 2
then plots the weight ω = ω∗

h on bias in the asymptotic analogue of the loss function (2)
that yields indifference between the LP and VAR estimator. That is, LP is preferred over
VAR if and only if ω ≥ ω∗

h. The three panels correspond to different degrees of persistence
ρ ∈ {0.2, 0.6, 0.9}, while the three curves in each panel correspond to different degrees of
mis-specification α ∈ {1, 5, 10}.

We draw the following four conclusions from Proposition 1 and Figures 1 and 2:

1. For h ∈ {0, 1}, there actually is no bias-variance trade-off: on impact, the two estimators
are numerically equivalent; at h = 1, both are asymptotically unbiased, and the asymp-

6The argument goes as follows. Both asymptotic variances in Proposition 1 are the same as they would
be when estimating the parameter θ̃h ≡ e′

2Ahchol(Σ)e1/Σ1/2
11 in the well-specified bivariate VAR(1) model

wt = Awt−1 + ut, ut
i.i.d.∼ N(0, Σ), when A =

( 0 0
0 ρ

)
and Σ =

(
1 1
1 1+σ2

2

)
(“chol” denotes the lower triangular

Cholesky factor). The VAR estimator is the MLE in this model. It can be verified that the LP estimator
(which regresses w2,t+h on w1,t, controlling for wt−1) is a consistent and asymptotically regular estimator
of θ̃h in this model (regardless of A and Σ). Hence, the Cramér-Rao bound implies aVarVAR ≤ aVarLP.
Moreover, when h ≥ 2 and ρ ̸= 0, LP is strictly inefficient since its asymptotic correlation with the VAR
estimator is not 1, according to the proof of Proposition 1.

7To interpret the magnitude of α, let τ̂ denote the t-statistic for testing the significance of the second lag
in a univariate AR(2) regression for {yt}. Supplemental Appendix F.3 shows that τ̂

d→ N
(

−ρ
σ2

2
1+σ2

2
α, 1

)
.

We remind the reader, however, that the purpose of this section is illustration, not quantitative realism.
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Analytical illustration: Asymptotic bias and standard deviation

Figure 1: Asymptotic bias and standard deviation for LP (red) and VAR (purple) in the DGP
(1) with σ1 = 1 and {ρ = 0.6, α = 1} (no markers) or {ρ = 0.9, α = 5} (markers).

Analytical illustration: Indifference weight ω∗
h

Figure 2: Weight ω = ω∗
h in the asymptotic loss function ω × aBias2

θ̂h
+(1 − ω) × aVarθ̂h

that
yields indifference between the LP and VAR estimator. LP is preferred whenever ω ≥ ω∗

h. The
three panels correspond to different values of ρ ∈ {0.2, 0.6, 0.9}; the three curves in each panel
correspond to different values of α ∈ {1, 5, 10}. All results are computed with σ2 = 1. The figure
omits the horizons h ∈ {0, 1}, at which the two estimation methods are (asymptotically) equivalent.



totic variance coincides. Thus, in Figure 1, the red and purple lines coincide initially,
for both parametrizations. Intuitively, the equivalence at h = 1 reflects the fact that the
VAR(1) estimator does not extrapolate, instead reporting the direct projection of yt+1 on
wt, exactly as LP does (Plagborg-Møller & Wolf, 2021).

2. For h ≥ 2, the bias-variance trade-off is non-trivial. LP directly projects yt+h on the shock
ε1,t, which is uncorrelated with any lagged controls, so the asymptotic bias is always zero.
In contrast, the VAR(1) estimator extrapolates the response at horizon h from the sample
autocovariances at horizon 1. Though this tight parametric extrapolation yields a low
variance relative to LP, it incurs a bias due to dynamic mis-specification when α ̸= 0. It
follows that the indifference weight ω∗

h in Figure 2 is always in (0, 1): LP can be justified
if the concern for bias is sufficiently high, and vice versa for VAR.

3. The indifference weight ω∗
h is decreasing in the degree of mis-specification α. That is, the

greater the mis-specification, the less the researcher needs to care about bias to prefer
LPs over VARs. This result follows immediately from the observation that the asymptotic
variances are independent of α, while the asymptotic bias of the VAR is increasing in α.8

4. For h → ∞, the bias-variance trade-off is invariably resolved in favor of the VAR estima-
tor: both asymptotic bias and variance for the VAR tend to zero, while the asymptotic
variance of LP tends to σ2

0,y > 0. The practical relevance of this result hinges crucially on
the persistence of the DGP, since Figure 2 shows that the indifference weight ω∗

h converges
more slowly to 1 as h → ∞ when the DGP is more persistent. The figure also shows that
ω∗

h need not be a monotone function of the horizon h.

To summarize, even in this simple model environment, the researcher’s evaluation of VAR
and LP estimators is shaped by several parameters: the DGP’s persistence ρ, the degree of
mis-specification α, the horizon h of interest, and the weight ω attached to squared bias
rather than variance in the loss function.

2.2 Outlook

Because analytical bias-variance calculations invariably end up depending on a multitude of
parameters, the rest of this paper will use simulations to explore the trade-off across a rich

8Schorfheide (2005), shows that this result goes through in much more general DGPs, though he focuses
on reduced-form estimators.
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and empirically relevant set of DGPs. In the language of Section 2.1, these DGPs will tell
us about empirically plausible degrees of mis-specification α and persistence ρ, and so about
the practically relevant bias weight ω necessary to justify the use of one linear projection
technique over another. Moreover, we will also consider several variants of the least-squares
LP and VAR estimators that use shrinkage approaches to further trace out the bias-variance
possibility frontier.

3 Data generating processes

This section presents our DGPs. We define the empirically calibrated encompassing model
in Section 3.1, from which we then draw thousands of DGPs with corresponding structural
impulse response estimands, as described in Section 3.2. We discuss implementation de-
tails in Section 3.3, and provide summary statistics for the DGPs in Section 3.4. Various
modifications to this baseline set of DGPs are considered later in Section 5.5.

3.1 Encompassing model

We construct our simulation DGPs from an encompassing model that is known to accurately
describe the population of U.S. macroeconomic time series: the large-scale dynamic factor
model (DFM) of Stock & Watson (2016).

The DFM postulates that a large-dimensional nX × 1 vector Xt of observed macroeco-
nomic time series is driven by a low-dimensional nf × 1 vector ft of latent factors, as well as
an nX × 1 vector vt of idiosyncratic components. The latent factors are assumed to follow a
stationary VAR(p) process

ft = Φ(L)ft−1 + Hεt, (5)

where εt = (ε1,t, . . . , εnf ,t)′ is an nf × 1 vector of aggregate shocks, which are i.i.d. and
mutually uncorrelated, Var(εt) = Inf

. The nf × nf matrix H determines the impact impulse
responses of the factors with respect to the aggregate shocks. The observed macroeconomic
aggregates Xt are given by

Xt = Λft + vt, (6)

where the idiosyncratic component vi,t for macro observable Xi,t follows the AR(q) process

vi,t = ∆i(L)vi,t−1 + Ξiξi,t, (7)
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with ξi,t i.i.d. across t and i. We assume all shocks and innovations are jointly normal and
homoskedastic. In Section 3.3 we describe how the parameters of the DFM are calibrated
to the Stock & Watson (2016) data set, but first we describe how we construct our lower-
dimensional DGPs from the encompassing large-scale DFM.

3.2 DGPs and impulse response estimands

We use the encompassing model (5)–(7) to build thousands of lower-dimensional DGPs for
our simulation study. Specifically, for each DGP, we draw a random subset of nw̄ variables
w̄t from the large vector Xt, i.e., w̄t ⊂ Xt. The variables w̄t follow the time series process
implied by the encompassing model (5)–(7). In particular, w̄t is driven by some combination
of aggregate structural shocks εt and idiosyncratic components vt. We draw thousands of
such random combinations of variables, thus yielding thousands of lower-dimensional DGPs.
The details of how we select the variable combinations are postponed until Section 3.3.

For each DGP drawn in this way, we consider three types of structural impulse response
estimands, chosen to mimic as closely as possible popular structural identification schemes in
applied macroeconometrics (Ramey, 2016; Stock & Watson, 2016). In the following, yt ∈ w̄t

denotes a response variable of interest in the DGP, it ∈ w̄t is a variable used to normalize
the scale of the shock (to be defined below), zt is an external instrument (if applicable), and
wt denotes the vector of all observed time series in the DGP.

1. Observed shock identification. In this identification scheme we assume that the
econometrician observes both the endogenous variables w̄t and the first structural shock
ε1,t, so the full vector of observables is wt = (ε1,t, w̄t)′. The objects of interest are the
impulse responses of an outcome variable yt with respect to a one standard deviation (i.e.,
one unit) innovation to ε1,t:

θh ≡ Λ̄ιy ,•Θf
•,1,h, h = 0, 1, 2, . . . , (8)

where Θf (L) = (I −Φ(L))−1H are the impulse responses of the factors ft to the structural
shocks εt implied by (5), while Λ̄ are those rows of Λ that correspond to the observables
w̄t. The index ιy corresponds to the location of yt in the vector w̄t.

This set-up captures those empirical studies in which the researcher has constructed a
plausible direct measure of the shock of interest. Examples include the monetary shock
series of Romer & Romer (2004) or the fiscal shock series of Ramey (2011).
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2. IV/proxy identification. In this scheme, rather than directly observing the structural
shock ε1,t, the econometrician observes the noisy proxy

zt = ρzzt−1 + ε1,t + νt, (9)

where νt is an i.i.d. process (independent of all shocks and innovations in the DFM) with
Var(νt) = σ2

ν . The full vector of observables is thus wt = (zt, w̄t)′. As is standard in IV
applications, we here adopt the “unit effect” normalization of Stock & Watson (2016), so
the object of interest becomes

θh ≡
Λ̄ιy ,•Θf

•,1,h

Λ̄ιi,•Θ
f
•,1,0

, h = 0, 1, 2, . . . , (10)

where the index ιi corresponds to the location of some normalization variable it in the
vector w̄t. The above unit effect normalization defines the magnitude of the shock ε1,t

such that it raises the normalization variable it by one unit on impact.

One example of an IV zt is the high-frequency change in futures prices around monetary
policy announcements employed by Gertler & Karadi (2015) to identify the effects of
monetary policy shocks.

3. Recursive identification. For our third and final structural estimand, the researcher
observes only the endogenous variables w̄t ⊂ Xt, with no further direct or noisy shock
measures. Thus, the total vector of observables is wt = w̄t. Consistent with a large litera-
ture on recursive shock identification in VARs (e.g., Christiano et al., 1999; Blanchard &
Perotti, 2002), we take as the estimand the impulse responses with respect to a recursive
orthogonalization of the reduced-form (Wold) forecast errors in the VAR(∞) process for
w̄t implied by the DFM. The ordering of the variables for the recursive identification is
described below in Section 3.3. Note that the recursively orthogonalized innovation dif-
fers across DGPs, and it generally does not equal any of the structural shocks εj,t in the
DFM. We nevertheless consider this impulse response estimand due to its popularity in
applied work. We relegate the mathematical definition of the recursive impulse response
estimand to Supplemental Appendix C.
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3.3 Implementation

This section first discusses the empirical calibration of the DFM and then specifies the
particular DGPs and structural impulse responses that we consider in the simulation study.

DFM parameters. We parametrize the DFM (5)–(7) based on the empirical reduced-
form parameter estimates from Stock & Watson (2016), using the same specification as in
Lazarus et al. (2018). We provide a brief summary here and refer to Stock & Watson for
further details. The full vector of observables Xt contains quarterly observations on 207
time series for 1959Q1–2014Q4, mostly consisting of real activity variables, price measures,
interest rates, asset and wealth variables, and productivity series.9 Each series is seasonally
adjusted and—importantly—transformed to approximate stationarity. Following the formal
dimensionality tests of Stock & Watson, we allow for nf = 6 factors and two lags in the
factor equation (5). Finally, we allow for two lags in the idiosyncratic component equation
(7). The reduced-form parameters are estimated by principal components and least-squares
procedures. This pins down all parameters of the DFM except for the structural impact
response matrix H, which we discuss below.

DGP and estimand selection. To provide a comprehensive picture of the bias-variance
trade-off, we select thousands of different possible sets of observables w̄t ⊂ Xt. We consider
two protocols for selecting these observables: one aimed at mimicking monetary policy shock
applications, and one aimed at fiscal policy shock applications. Specifically, for each type of
policy shock, we randomly draw nspec = 3,000 configurations of nw̄ = 5 macro observables
w̄t. Thus, we end up with a total of 6,000 DGPs. For the monetary policy DGPs we restrict
w̄t to always contain the federal funds rate, while for the fiscal policy DGPs we restrict w̄t

to contain federal government spending. These two series are chosen as the normalization
variables it for the IV and recursive estimands. The remaining four variables in w̄t are
selected uniformly at random from Xt, except we impose that at least one variable should be
a measure of real activity, and at least one other variable a measure of prices.10 The impulse
response variable yt is selected uniformly at random from the four series (other than it).

For each of the 6,000 DGPs, we implement the three structural impulse response esti-
mands in Section 3.2 as follows:

9Table 1 and the Data Appendix of Stock & Watson (2016) list all variables and their categories.
10Real activity series correspond to categories 1–3 in the classification in Table 1 of Stock & Watson (2016),

while price series correspond to category 6.
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1. Observed shock. We select the structural impact response matrix H in the factor equa-
tion (5) so as to maximize the impact effect of the shock ε1,t on the federal funds rate (for
monetary shocks) and government spending (for fiscal shocks), subject to the constraint
that H is consistent with our estimate of the reduced-form innovation variance-covariance
matrix for the factors. This ensures that monetary and fiscal shocks account for substan-
tial short-run variation in nominal interest rates and government spending, respectively.
Additionally, we avoid issues related to division by near-zeros when normalizing the im-
pulse responses for the IV estimand. See Appendix A.1 for further details.

2. IV. The matrix H is defined as in the “observed shock” case. As for the IV parameters
in equation (9), we draw ρz uniformly at random from the set {0, 0.25, 0.5}.11 To ensure
an empirically plausible signal-to-noise ratio, we calibrate σ2

ν using real-world IV series.
Specifically, we base the calibration on the Romer & Romer (2004) series for monetary
policy DGPs and the Ben Zeev & Pappa (2017) series for fiscal policy DGPs. See Ap-
pendix A.2 for details. We show below in Section 3.4 that the strength of these IVs ranges
from somewhat weak to moderately strong, as measured by the first-stage F-statistic.

3. Recursive. For monetary policy DGPs, we order the federal funds rate last, as in Chris-
tiano et al. (1999); this restricts the other included variables to not respond contempo-
raneously to the monetary innovation. For fiscal policy DGPs, we order the government
expenditure series first, as in Blanchard & Perotti (2002); this restricts the fiscal authority
to respond to other innovations in the recursive VAR with a lag.

3.4 Summary statistics

Consistent with the experience of applied researchers, our DGPs exhibit substantial hetero-
geneity along several dimensions. Table 1 displays the distribution of various population
parameters across our 6,000 DGPs. The table focuses on impulse responses with respect
to directly observed monetary policy and government spending shocks, though results for
recursively defined shocks are similar, as shown in Supplemental Appendix E.4.

First of all, the DGPs feature varying degrees of persistence. Our primary measure of the
persistence of the DGP is given by trace(LRV (w̄t))/ trace(Var(w̄t)), where “LRV” denotes
the long-run variance matrix.12 This measure varies widely across the DGPs, with more than

11The external IVs used in empirical practice tend to have low to moderate autocorrelation (Ramey, 2016),
consistent with our assumptions on ρz.

12This measure equals (1 + ρ)/(1 − ρ) for an AR(1) process with coefficient ρ.
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DGP summary statistics
Percentile min 10 25 50 75 90 max

Data and shocks
trace(long-run var)/trace(var) 0.42 0.93 0.98 1.14 2.29 4.78 18.09
Largest VAR eigenvalue 0.82 0.84 0.84 0.84 0.84 0.86 0.91
Fraction of VAR coef’s ℓ ≥ 5 0.02 0.10 0.15 0.23 0.34 0.44 0.84
Degree of shock invertibility 0.14 0.16 0.19 0.28 0.41 0.47 0.65
IV first stage F-statistic 9.28 9.40 9.48 15.31 23.38 23.91 24.66

Impulse responses up to h = 20
No. of interior local extrema 1 2 2 2 3 4 6
Horizon of max abs. value 0 0 0 0 1 2 8
Average/(max abs. value) -0.42 -0.16 -0.08 -0.02 0.06 0.11 0.43
R2 in regression on quadratic 0.01 0.09 0.20 0.46 0.69 0.83 0.97

Table 1: Quantiles of various population parameters across the 6,000 DGPs for observed shock
and IV identification. “long-run var”: long-run variance. “Fraction of VAR coef’s ℓ ≥ 5”:∑50

ℓ=5 ∥Aw
ℓ ∥/

∑50
ℓ=1 ∥Aw

ℓ ∥, where ∥·∥ is the Frobenius norm. IV first stage F-statistic: T ×R2/(1−R2),
where T = 200 and R2 is the population R-squared in a projection of it on (zt − E(zt | zt−1)). “Av-
erage/(max abs. value)”: ( 1

21
∑20

h=0 θh)/ maxh{|θh|}. “R2 in regression on quadratic”: R-squared
from a regression of the impulse response function {θh}20

h=0 on a quadratic polynomial in h.

25% of the DGPs being anti-persistent on average (i.e., the ratio is less than 1), and the 90th
percentile nearly equal to 5. The largest eigenvalue of the VAR companion matrix, another
measure of persistence, has a median of 0.84 and does not vary as much across DGPs.13 We
consider an alternative set of more persistent DGPs in a robustness check in Section 5.5.

Second, the DGPs are heterogeneous in terms of how well they can be approximated by a
relatively low-order VAR. Table 1 reports the ratio ∑50

ℓ=5 ∥Aw
ℓ ∥/

∑50
ℓ=1 ∥Aw

ℓ ∥, which measures
the relative magnitude of the coefficient matrices {Aw

ℓ }ℓ in the VAR(∞) representation for
{w̄t} at or after lag 5 (with ∥ · ∥ denoting the Frobenius matrix norm). The 10th and 90th
percentiles equal 0.10 and 0.44, respectively. Hence, the analysis in Section 2 suggests that
the bias of low-order VAR procedures will vary substantially across the various DGPs that
we consider in our simulations.

Third, for the IV specifications, the DGPs differ in terms of the degree of invertibility of

13This is because the (transformed) interest rate and government spending series are quite persistent, and
all DGPs include one of these two series.
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Selected impulse response function estimands

Figure 3: Selected impulse responses of macro observables to monetary and fiscal policy shocks.
Here the impulse response functions are normalized to have a maximum value 1 or −1.

the shock and the strength of the IV. The degree of invertibility is defined as the R-squared
value in a population projection of the shock of interest on current and lagged macro ob-
servables {w̄t−ℓ}∞

ℓ=0. The bias of some SVAR-based external instrument procedures depends
on how far below 1 this measure is, as discussed further in Section 4. The table shows that
90% of the DGPs have degrees of invertibility below 47%, i.e., substantial non-invertibility.
This is not surprising: the DFM (5)–(7) features a realistic amount of idiosyncratic noise vt,
making it challenging to accurately back out the aggregate shock of interest ε1,t from a small
number of observed time series w̄t. The strength of the IV is somewhat weak to moderate,
as the population first stage F-statistic (from a regression of the normalization variable it on
the IV zt) varies between approximately 10 and 25, given sample size T = 200.

Finally, the true values of our impulse response estimands exhibit a wide variety of shapes.
Table 1 shows that, though most impulse response functions peak at horizons h = 0 or h = 1,
they are typically not simple monotonically decaying or even hump-shaped functions: the
median number of interior local extrema of the impulse response functions is 2 (a monotonic
function would have 0; a hump-shaped function would have 1). Many impulse response
functions change sign at some horizon, as evidenced by the average response (across horizons)
typically being much smaller than the maximal response. Finally, the smoothness of the
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impulse response functions varies substantially: the R-squared value in a regression of the
impulse responses {θh}20

h=0 on a quadratic polynomial b0 + b1 × h + b2 × h2 has 10th and
90th percentiles given by 0.09 and 0.83, respectively. Figure 3 displays the true values of
six impulse response functions that provide a representative picture of the heterogeneity.
Note, however, that all of them tend to zero when the horizon gets large, as required by the
stationarity of the DGPs.

4 Estimation methods

We now give a brief overview of the different VAR- and LP-based estimation methods that
we consider in the simulation study. Though all these methods aim at estimating the same
population impulse responses defined in Section 3.2, the methods differ in terms of their
bias/variance properties, and in terms of their robustness to non-invertibility. Implementa-
tion details are relegated to Appendix B.14 All estimators include an intercept.

Local projection approaches. The basic idea behind local projections, as proposed
by Jordà (2005), is to estimate the impulse responses separately at each horizon by a direct
regression of the future outcome on current covariates. We consider two such approaches:

1. Least-squares LP. OLS regression of the response variable yt+h on the innovation
variable xt, controlling for p lags of all data series wt. The innovation variable equals
xt = ε1,t for “observed shock” identification and xt = zt for IV identification. In the
case of recursive identification, we additionally control for the contemporaneous values
of the variables that are ordered before xt in the system (Plagborg-Møller & Wolf,
2021). Since least-squares LP does not mechanically impose any functional form on
the relationship between impulse responses at different horizons h, the bias tends to
be small. However, the estimated impulse response functions tend to look jagged in
finite samples and tend to be estimated with high variance at longer horizons.

2. Penalized LP (abbreviated “Pen LP”). To lower the variance of least-squares LP at
the expense of potentially increasing the bias, Barnichon & Brownlees (2019) propose
a penalized regression modification of LP. The estimator minimizes the sum of squared
forecast residuals (across both horizons and time) plus a penalty term that encourages

14To visualize the various estimation methods, Supplemental Appendix D plots the estimated impulse
response functions in a few data sets simulated from a single DGP.
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the estimation of smooth impulse responses. This is a type of shrinkage estimation:
the unrestricted least-squares estimate is pushed in the direction of a smooth quadratic
function of the horizon. The degree of shrinkage is chosen by cross-validation.

In the case of IV identification, we apply the LP-IV estimation approach of Stock & Watson
(2018), which is robust to non-invertibility.

VAR approaches. Like local projections, a VAR with lag length p flexibly estimates the
impulse responses out to horizon p; however, the VAR extrapolates the responses at longer
horizons h > p using only the sample autocovariances out to lag p. As suggested by the
analysis in Section 2, this tends to generate impulse response estimates with lower variance
but higher bias than LP estimates at intermediate horizons. In our stationary class of DGPs,
VAR impulse response estimates eventually tend to zero when the horizon gets large (with
high probability), unlike LP estimates; this feature will be important for the bias/variance
trade-off at long horizons. We consider four VAR-based approaches:

1. Least-squares VAR. Standard VAR impulse response estimates based on equation-
by-equation OLS estimates of the reduced-form coefficients.

2. Bias-corrected VAR (abbreviated “BC VAR”). As above, but using the formula in
Pope (1990) to analytically correct the first-order bias of the reduced-form coefficients
caused by persistent data.

3. Bayesian VAR (abbreviated “BVAR”). As above, but where the reduced-form co-
efficients are posterior mean estimates under a Minnesota-style prior.15 Due to the
stationarity of the DGP, we shrink towards independent white noise processes (rather
than independent unit root processes, which is conventional for highly persistent data).
The prior variance hyper-parameters follow the recommendations in Canova (2007).

4. VAR model averaging (abbreviated “VAR Avg”). Hansen (2016) develops a data-
driven method for averaging across the impulse response estimates produced by several
different VAR specifications. We construct a weighted average of 40 different speci-
fications, each of which is estimated by OLS: univariate AR(1) to AR(20) models,
and multivariate VAR(1) to VAR(20) models. The weights are chosen to minimize an
empirical estimate of the final impulse response estimator’s MSE.

15We report posterior means of the impulse responses based on 100 draws.
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The VAR model averaging estimator effectively includes LP among the list of candidate
estimators (as in the related approach of Miranda-Agrippino & Ricco, 2021a). This is
because the candidate VAR(20) model gives results similar to LP with several lagged
controls, at all horizons considered in our study (Plagborg-Møller & Wolf, 2021).

Observed shock identification is carried out by simply ordering the shock first in the recursive
VAR. We consider two different approaches to IV estimation:

i) Internal instruments. Proceed as if the IV were equal to the true shock of interest,
i.e., order the IV first in the VAR and compute responses to the first orthogonalized
innovation (Ramey, 2011). Plagborg-Møller & Wolf (2021) prove that this approach
consistently estimates the normalized structural impulse responses (10) even if the IV is
contaminated with measurement error as in (9), and even if the shock is non-invertible.

ii) SVAR-IV (also known as proxy-SVAR). Exclude the IV from the reduced-form VAR,
and estimate the structural shock by projecting the IV on the reduced-form VAR inno-
vations (Stock, 2008; Stock & Watson, 2012; Mertens & Ravn, 2013; Gertler & Karadi,
2015). This estimator is consistent if the shock of interest is invertible, but not otherwise
(Forni et al., 2019; Miranda-Agrippino & Ricco, 2021b; Plagborg-Møller & Wolf, 2022).
We shall see that the SVAR-IV estimator tends to exhibit lower dispersion than the
“internal instruments” estimator due to the smaller dimension of the VAR system, po-
tentially justifying the use of the former despite its lack of robustness to non-invertibility.

We implement the “internal instruments” approach using all four types of VAR estimation
techniques described earlier. For brevity, we only consider the least-squares version of the
SVAR-IV estimator.

Lag length selection. As a baseline, the LP and VAR estimators use p = 4 lags for
estimation (except VAR model averaging, which uses many different lag lengths). In our
DGPs, the Akaike Information Criterion almost always selects very short lag lengths p̂AIC ,
as discussed further in Section 5.6 below. Thus, for all intents and purposes our results may
be interpreted as having been generated by the lag length selection rule p = max{p̂AIC , 4}.
Our reading of applied practice is that researchers typically include at least 4 lags in quarterly
data. Results for p = 8 are discussed in Section 5.5.
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5 Results

This section presents our simulation results. We summarize the results through four take-
aways, one in each subsection. The first three takeaways focus on observed shock identifica-
tion. The fourth takeaway is concerned with IV identification. We show in Section 5.5 that
these conclusions are qualitatively robust to several specification choices (including recursive
identification). Finally, in Section 5.6, we justify our focus on the average performance of es-
timators across DGPs, by arguing that there is limited scope for selecting among estimators
in a data-dependent way.

Throughout this section we present results for our 6,000 monetary and fiscal policy shock
DGPs considered jointly rather than separately. For each DGP, we simulate time series of
length T = 200 quarters and approximate the population bias and variance of the estimators
by averaging across 5,000 Monte Carlo simulations. Our baseline results take about one
week to produce in Matlab on 16 servers with 25 parallel cores each.

5.1 There is a clear bias-variance trade-off between LP and VAR

Our first takeaway is that researchers invariably face a bias-variance trade-off: because most
of our DGPs are not well approximated by finite-order VAR models, least-squares LPs tend
to have lower bias, while least-squares VAR estimators tend to have lower variance. This
agrees with the simple analytical example in Section 2. We focus on the baseline least-squares
LP and VAR estimators in this subsection, leaving other procedures for later.

Figures 4 and 5 depict the bias-variance trade-off at various horizons. These figures show
the median (across our 6,000 DGPs) of the absolute bias or standard deviation, respectively,
as a function of the horizon. The different lines correspond to different estimators, with least-
squares LP and VAR being the thick lines. Before taking the median, we cancel out the units
of the response variables by dividing the bias and standard deviation by

√
1
21
∑20

h=0 θ2
h, i.e.,

the root mean squared value of the true impulse response function out to horizon 20. Note
that the scale of the vertical axis differs between the bias and standard deviation plots.

The figures show that least-squares LP and VAR estimators have similar bias and variance
at horizons h ≤ p = 4, but not at longer horizons h > p. The median LP bias is close to zero
at all horizons, yet the variance is high and does not decrease with the horizon.16 In contrast,

16Kilian & Kim (2011) find in simulations that LP does not have lower bias than VAR estimators, but
they consider a different variant of LP that uses an auxiliary VAR to identify the structural shocks.
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Observed shock: Bias of estimators

Figure 4: Median (across DGPs) of absolute bias of the different estimation procedures, relative
to
√

1
21
∑20

h=0 θ2
h.

Observed shock: Standard deviation of estimators

Figure 5: Median (across DGPs) of standard deviation of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h.



Observed shock: Least-squares LP vs. VAR

Figure 6: Fraction of DGPs for which the least-squares LP estimator has a lower loss than the
VAR estimator. Darker areas correspond to regions where LP is preferred more often. Horizontal
axis: impulse response horizon h. Vertical axis: weight ω on squared bias in the loss function (2).
The loss function is normalized by the scale of the impulse response function, as in Figures 4 and 5.
The impact horizon h = 0 is omitted due to numerical equivalence between the estimators.

the median VAR variance decays quickly toward zero as a function of the horizon, at the cost
of elevated bias at intermediate horizons (i.e., horizons h that are moderately larger than
the estimation lag length p). These observations are consistent with the theoretical results
in Section 2, Schorfheide (2005), and Plagborg-Møller & Wolf (2021).

Figure 6 shows that least-squares VAR is preferred over least-squares LP for almost all
horizons and almost all researcher loss functions; the only exceptions are when the weight
ω on squared bias in the loss function (2) is near 1 and the horizon h is intermediate. The
figure uses grey shadings to indicate the fraction of DGPs for which, at a given h and ω, the
loss for least-squares LP is smaller than that for least-squares VAR. For h ≤ p = 4, the VAR
is preferred almost uniformly because its variance is slightly smaller; however, the difference
is negligible. In the region with a non-trivial bias-variance trade-off—i.e., h > 4—a stark
picture emerges: for the researcher to prefer the LP method, her relative weight on squared
bias will usually have to be at least four times larger than that on variance. This is because,
as already revealed by Figures 4 and 5, the relatively low bias of the LP method comes at
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a very steep cost in terms of increased sampling variance. Viewed through the lens of the
analytical illustration in Figure 2, the findings coming out of our large number of empirically
disciplined DGPs are consistent with a calibration of our simple model in Section 2 with (i)
moderate persistence (ρ) and (ii) non-zero but limited VAR mis-specification (α).

5.2 Shrinkage dramatically lowers variance, at some cost of bias

Our second main takeaway is that shrinkage methods often allow a substantial reduction in
variance, at a moderate cost in terms of bias. In this subsection we focus on two shrink-
age methods in particular: penalized LP, which shrinks the conventional least-squares LP
estimates towards smooth impulse response functions, and the Bayesian VAR (BVAR) esti-
mator, which shrinks the least-squares VAR coefficients towards independent white noise.

The dash-dotted and x-marked lines in Figure 4 show that penalized LPs and BVARs
have uniformly higher bias than least-squares LPs and VARs, respectively. This is an in-
evitable cost of shrinkage, since the stylized prior information used for the shrinkage is never
completely accurate. For penalized LP, the increase in bias is particularly stark at short
horizons, since this estimator uses the longer-horizon impulse response estimates to inform
the estimation of the short-run impulse responses (through the prior belief in smoothness).

Figure 5, however, shows that shrinkage can lead to large reductions in variance: the
median standard deviation of penalized LP lies everywhere below that of standard LP (and
is in fact the lowest of all methods for h ≤ p), and the standard deviation of the BVAR
estimator is always strictly below that of least-squares VAR.

Figures 7 and 8 depict the head-to-head loss-based comparison of penalized LP vs. least-
squares LP, and of BVAR vs. least-squares VAR, respectively. Given the relatively high
bias of penalized LP at short horizons, the trade-off for h ≤ p is non-trivial: the researcher’s
optimal choice of least-squares LP vs. penalized LP is sensitive to the bias weight ω. At in-
termediate horizons, however, the case for penalized LP becomes overwhelming: substantial
decreases in variance are achieved at the cost of moderate increases in bias, so a preference
for conventional LP methods requires an overwhelming concern for bias.17 In the compar-
ison of BVARs and least-squares VARs, the bias-variance trade-off is similarly non-trivial:
shrinkage offers a very competitive reduction in variance in return for its increased bias, and
so justification of least-squares VAR requires a relatively high bias weight ω. Note that if we

17Penalized LP performs similarly to least-squares LP at horizon h = 20. The reason is mechanical: the
Barnichon & Brownlees (2019) smoothness penalty affects estimates near the “boundary” (i.e., the largest
penalized horizon) less than at the other horizons.
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25Observed shock: Least-squares LP vs. Penalized LP

Figure 7: Fraction of DGPs for which the least-squares LP estimator has a lower loss than
penalized LP. Darker areas correspond to regions where least-squares LP is preferred more often.
See caption for Figure 6.

Observed shock: Least-squares VAR vs. Bayesian VAR

Figure 8: Fraction of DGPs for which the least-squares VAR estimator has a lower loss than the
BVAR estimator. Darker areas correspond to regions where least-squares VAR is preferred more
often. See caption for Figure 6. The impact horizon h = 0 is omitted due to numerical equivalence
between the estimators.



Observed shock: Optimal estimation method

Figure 9: Method that minimizes the average (across DGPs) loss function (2). Horizontal axis:
impulse response horizon. Vertical axis: weight on squared bias in loss function. The loss function
is normalized by the scale of the impulse response function, as in Figures 4 and 5. At h = 0, VAR
and LP are numerically identical; we break the tie in favor of VAR.

focus on the longest horizons in Figures 4 and 5, the difference between least-squares VAR
and BVAR is minimal, unlike when comparing the two LP procedures. This is because any
kind of VAR-estimated impulse response function tends to zero as h → ∞.

5.3 No method dominates, but shrinkage is generally welcome

Our third takeaway is that, for a fixed loss function, no single method is best at all hori-
zons. Nevertheless, regardless of the horizon, one of the LP or VAR shrinkage procedures is
preferred by most loss functions, unless bias receives a high weight.

Figure 9 shows the optimal estimation method as a function of the horizon h and the
bias weight ω. We report the estimation method that minimizes the average loss (2) across
DGPs, after normalizing the loss to cancel out units as in Figures 4 and 5.

The attractive performance of the shrinkage estimators is evident visually, as most of the
figure is either cross-hatched green (penalized LP) or solid-dotted blue (BVAR). If interest
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centers solely on short impulse response horizons, penalized LP is almost always the best
choice, except when ω is close to 1 (i.e., an almost exclusive concern for bias). At horizons
longer than the lag length p = 4, some kind of VAR method is generally preferable. In
particular, BVAR shrinkage is optimal if the weight on bias is not too large, while least-
squares VAR or bias-corrected VAR are preferred if the weight on bias is high.

Though bias-corrected VAR (yellow with horizontal lines) looks attractive in Figure 9
when ω ≥ 0.8, Figure 4 shows that in practice the reduction in bias relative to the conven-
tional least-squares VAR estimator is small. This finding is due to the modest persistence of
our DGPs, as discussed in Section 3.4. Figure 9 also shows that least-squares LP (orange with
diagonal lines) as well as the VAR model averaging estimator (light blue with hollow circles)
are almost never optimal.18 Least-squares LP is essentially dominated because its low bias is
not much lower than that of penalized LP at intermediate horizons, and so the high variance
of least-squares LP is difficult to justify. The reason why VAR model averaging does poorly
is due to its high median standard deviation relative to other VAR-based estimators (see
Figure 5). Closer inspection reveals that the high standard deviation is a consequence of the
estimator having a very fat-tailed sampling distribution, with a non-negligible probability of
erratic estimates.19

5.4 SVAR-IV is heavily biased, but has relatively low dispersion

Our last takeaway is concerned with IV/proxy estimation procedures. Among the robust
“internal instruments” procedures, the bias-variance trade-off is very similar to that discussed
above for the case of an observed shock. The “external instruments” SVAR-IV procedure,
however, contributes very starkly to the trade-off: it can be severely biased due to its lack
of robustness to non-invertibility, but at the same time it has substantially lower dispersion
than the “internal instruments” procedures.

Figures 10 and 11 show the median bias and interquartile range of the various IV es-
timators. We here report median bias instead of (mean) bias and the interquartile range
instead of standard deviation, because the sampling distributions of the IV impulse response
estimates is fat-tailed, as is often the case with moderately strong IVs.20 If we ignore the
dotted burgundy line for SVAR-IV, these figures are qualitatively similar to those presented

18Least-squares LP is in fact strictly preferred in a very thin region with intermediate p and ω ≈ 1.
19We use Hansen’s (2016) code off the shelf. It would be interesting to investigate whether the procedure

could be modified to avoid erratic estimates.
20For completeness, (mean) bias and standard deviation are reported in Supplemental Appendix E.1.
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IV: Median bias of estimators

Figure 10: Median (across DGPs) of absolute median bias of the different estimation procedures,
relative to

√
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∑20

h=0 θ2
h.

IV: Interquartile range of estimators

Figure 11: Median (across DGPs) of interquartile range of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h.



in Section 5.1. However, SVAR-IV stands out by exhibiting especially high median bias
at short horizons, but low interquartile range at short and intermediate horizons. This is
consistent with the existing theoretical work referenced in Section 4: unlike the “internal in-
struments” procedures, SVAR-IV is asymptotically biased when the shock is not invertible,
and we saw in Section 3.4 that the degree of invertibility is generally low in our DGPs. On
the other hand, the SVAR-IV procedure has fewer parameters to estimate, as it excludes the
IV zt from the reduced-form VAR regression, causing a reduction in dispersion relative to
the other procedures. Though we view the high median bias of SVAR-IV across our DGPs
as a worrying finding, its low dispersion is intriguing and may in some cases in fact trump
the bias concerns.

5.5 Robustness

This section argues that our main conclusions in Sections 5.1 to 5.4 are robust to several
alterations of our baseline simulation specification. Since our baseline DGPs are not highly
persistent (see Section 3.4), we here pay particular attention to robustness exercises that con-
sider DGPs with greater persistence. Various other robustness checks are listed subsequently,
with details relegated to Supplemental Appendix E.

Persistence. We consider an alternative set of DGPs with higher persistence than our
baseline specification. This is achieved by adjusting the VAR(2) process for the factors ft

so that the largest absolute eigenvalue of the VAR polynomial equals 0.95, implying that
some impulse responses in each DGP decay with a half-life of approximately 3.4 years.
We correspondingly scale the factor innovations to keep the trace of the factor variance-
covariance matrix constant. See Appendix A.3 for details on the adjustment.

Higher persistence does not change our qualitative conclusions, except that the perfor-
mance of the Bayesian VAR procedure becomes more sensitive to the prior at long horizons.
Figure 12 shows the optimal method choice for this more persistent set of DGPs; other
results are presented in Supplemental Appendix E.2. At short horizons, the results are sim-
ilar to the baseline results in Figure 9, with penalized LP an attractive option unless the
concern for bias is overwhelming. At long horizons, the least-squares or bias-corrected VAR
procedures do relatively better than the Bayesian VAR procedure compared to our baseline.
This is because the BVAR procedure we consider shrinks towards white noise, which incurs
a substantial bias for some persistent DGPs. The natural alternative of centering the prior
at independent random walks produces only slightly lower bias. We thus conclude that,
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Observed shock, persistent DGPs: Optimal estimation method

Figure 12: Method that minimizes the average (across DGPs) loss function (2) for the alternative
persistent DFM. Horizontal axis: impulse response horizon. Vertical axis: weight on squared bias
in loss function. The loss function is normalized by the scale of the impulse response function, as
in Figures 4 and 5. At h = 0, VAR and LP are numerically identical; we break the tie in favor of
VAR.

when the data is very persistent and interest centers on long horizons, prior elicitation for
Bayesian VARs should receive careful attention and should not be left to convention. An-
other finding is that the bias correction of the VAR estimator has more bite in the persistent
set of DGPs, though the performance of this estimator remains qualitatively comparable to
the un-corrected least-squares VAR estimator.

Rather than directly changing the persistence of the DGPs, we also consider an alternative
exercise that cumulates impulse responses across horizons. Starting with our baseline results,
we compute cumulated impulse responses for those time series in the Stock & Watson (2016)
data set that have been differenced prior to estimation. Thus, the resulting impulse responses
can be interpreted as the responses of the levels of these variables. With this change in
estimand, both bias and variance of the estimates now tend to increase with the horizon, as
shown in Supplemental Appendix E.3. Yet our takeaways regarding the relative magnitudes
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of bias and variance are not materially affected. In particular, unless the concern for bias is
substantial, the bias-variance trade-off continues to be best addressed by employing shrinkage
techniques such as penalized LPs or BVARs.

Other robustness checks. The following modifications to our baseline simulation spec-
ification all leave our main conclusions qualitatively unchanged.

• Recursive identification: Results for recursively identified shocks are strikingly sim-
ilar to those for observed shock identification. See Supplemental Appendix E.4.

• Monetary vs. fiscal shocks: If we consider the monetary shock DGPs separately
from the fiscal shock DGPs, the bias-variance trade-off is qualitatively similar to when
we consider the DGPs jointly. See Supplemental Appendix E.5.

• Lag length: If the estimation lag length p is set to 8 instead of 4, our conclusions go
through as long as we reinterpret “short horizons” to mean h ≤ 8 instead of h ≤ 4.
See Supplemental Appendix E.6.

• Sample size: Halving the sample size to T = 100 quarters tends to increase the
estimator standard deviations more than the biases, so shrinkage techniques look even
more desirable than in our baseline. See Supplemental Appendix E.7.

• Variable categories: We find little evidence that the biases or standard deviations
of individual impulse response estimators depend systematically on which categories
of time series are included in the DGP (e.g., how many financial variables are used).
See Supplemental Appendix E.8.

• Salient observables: Our results remain essentially unchanged if we restrict attention
to a subset of 18 oft-used, salient macroeconomic time series out of the 207 ones in
the Stock & Watson (2016) data set. We consider the exhaustive list of all five-
variable DGPs that can be formed from these 18 series, subject to the selection rules
in Section 3.3. See Supplemental Appendix E.9.

• Near-worst-case performance: Whereas our baseline results pertain to the median
performance of estimators across DGPs, some researchers may instead prefer to focus
on ensuring acceptable performance for particularly challenging DGPs. To this end,
Supplemental Appendix E.10 reports the 90th percentiles of the bias and standard de-
viation across DGPs. Interestingly, adopting this “near-worst-case” perspective does
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not alter much the relative magnitudes of bias and standard deviation across estima-
tion procedures. Hence, none of the estimation procedures seem to have a particular
advantage in ensuring robustness to challenging environments, over and above their
performance on typical DGPs.

5.6 Discussion: can we select the estimator based on the data?

Whereas the preceding results have focused on the performance of estimators on average
across our many DGPs, it is natural to ask whether the choice of estimator can be guided
by the data at hand. We now show that this appears to be difficult, as conventional model
selection or evaluation criteria are unable to detect even substantial mis-specification of
the VAR(4) model in the vast majority of our DGPs. These findings are consistent with
the previously documented poor performance of the VAR model averaging estimator. For
simplicity, we focus again on the “observed shock” DGPs.

First, the Akaike Information Criterion (AIC) tends to select very short lag lengths p̂AIC

in our DGPs, as mentioned earlier. The 90th percentile of p̂AIC (across simulations) does
not exceed 2 in any of our 6,000 DGPs, and it equals 2 in only 11.0% of the DGPs. This
frequently used model selection tool therefore essentially never indicates that the VAR(4)
specification is mis-specified.

Second, the Lagrange Multiplier test of residual serial correlation has low power in most of
our DGPs. We carry out this test by regressing the VAR sample residuals on their first lags,
controlling for four lags of the observed variables, and employing the specific likelihood ratio
test defined in Johansen (1995). Using a 10% significance level for the test, less than 0.1% of
the DGPs exhibit a rejection probability above 25%. Hence, this conventional specification
test of the VAR(4) model is severely under-powered, despite the fact that many of our DGPs
are in fact not well approximated by a VAR(4) model in population (see Section 3.4).

It is of course possible that other model selection criteria or specification tests will work
better. However, at a minimum, the performance of the VAR model averaging estimator
discussed in Section 5.3 and the evidence presented in this subsection together suggest that
it is not straightforward to develop effective data-dependent estimator selection rules for use
on conventional macroeconomic time series data. We therefore leave the issue of data-driven
estimator selection to future research.
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6 Conclusion and directions for future research

We conducted a large-scale simulation study of the performance of LP and VAR structural
impulse response estimators, as well as several variants of these methods. By generating
thousands of DGPs from an empirically estimated encompassing dynamic factor model, we
ensured that our results apply to a wide range of settings faced by applied researchers. We
drew the following four conclusions.

1. As predicted by theory, there is a non-trivial bias-variance trade-off between least-squares
LP and VAR estimators. Empirically relevant DGPs are unlikely to admit finite-order
VAR representations, so mis-specification of VAR estimators is a valid concern, as dis-
cussed by Ramey (2016) and Nakamura & Steinsson (2018). Reducing this bias by going
all the way to LP estimation, however, tends to come at a surprisingly steep cost in terms
of increased sampling variance at intermediate and long horizons.

2. Shrinkage procedures—such as the penalized LP procedure of Barnichon & Brownlees
(2019) and Bayesian VAR estimation—can dramatically lower the variance at the cost
of often only moderately larger bias. Typically the researcher must care overwhelmingly
about bias to justify the use of conventional least-squares estimators over shrinkage pro-
cedures. An important caveat is that, if the data is highly persistent and interest centers
on long horizons, shrinkage via Bayesian VARs requires careful prior elicitation. The lit-
erature on shrinkage estimators of impulse responses is not yet saturated, and we believe
our findings are encouraging for further work in this area.

3. No method dominates at all response horizons, though one of the shrinkage procedures is
usually optimal or near-optimal. Penalized LP is especially attractive at short horizons,
while BVAR estimation is generally attractive—or at least competitive—at intermediate
and long horizons. One might hope to achieve the best of both worlds by selecting among
estimators in a data-dependent way, but preliminary evidence suggests that the scope
for this is limited. In particular, we find that conventional model selection or evaluation
tools are unable to detect substantial VAR mis-specification in realistic sample sizes.
Despite our negative results in this area, we view data-dependent estimator selection as
an important topic for future research.

4. In the case of IV identification, the popular SVAR-IV (or proxy-SVAR) procedure can be
badly biased at short horizons, but it has substantially lower dispersion at all horizons than
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“internal instruments” procedures such as LP-IV. The high (median) bias of SVAR-IV is
due to its lack of robustness to non-invertibility, which is a pervasive and realistic feature
of our DGPs. An interesting question is whether it is possible to develop alternative non-
invertibility-robust estimation procedures that capture some of the variance improvement
enjoyed by SVAR-IV.

Whereas our simulation DGPs are calibrated to stationarity-transformed macroeconomic
time series, future research could fruitfully analyze the bias-variance trade-off in other data
environments. First, due to space constraints, we have not considered applying the estima-
tion procedures directly to time series data with unit roots. Second, we conjecture that the
nature of the bias-variance trade-off may differ somewhat in panel data settings, to the extent
that the availability of a large cross section reduces the sampling variance of the estimators
for a given time dimension.

Appendix A Details on DGP definitions

A.1 Shock definition

Our definition of the structural shock of interest, ε1,t, ensures that it has the largest possi-
ble contemporaneous effect on nominal interest rates (for monetary shocks) and government
spending (for fiscal shocks). Letting ηt = Hεt and ι∗ denote the index of the policy instru-
ment, the shock is thus defined through the solution of the following problem:

max
H

Λ̄ι∗,•He1 s.t. HH ′ = Ση,

where Ση ≡ Var(ηt), and e1 selects the first column of H. The solution is given by H•,1 =
ΣηΛ̄′

ι∗,•(Λ̄ι∗,•ΣηΛ̄′
ι∗,•)−1/2.21

A.2 IV process calibration

We calibrate the parameters of the IV equation (9) using the shock series of Romer & Romer
(2004) and Ben Zeev & Pappa (2017) for monetary and fiscal simulation DGPs, respectively.

21The remaining columns in H are chosen arbitrarily to satisfy the variance-covariance constraint; these
columns only matter for the simulation results through the implications for reduced-form dynamics.
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We regress each shock series ẑt on leads and lags of the estimated factor innovations η̂t:

ẑt = ĉ +
p∑

l=−p

â′
lη̂t−l + residualt.

We choose the number p of leads and lags based on the BIC. If the underlying structural
shock measured by ẑt is recoverable with respect to the factors in the DFM (Plagborg-Møller
& Wolf, 2022), then the R2 in the above two-sided regression will pin down the signal-to-noise
ratio of ẑt. We calibrate the signal-to-noise ratio of the simulation IV (9) to be consistent
with this estimated signal-to-noise ratio. Specifically, σ2

ν = 1
R2 − 1.

A.3 More persistent factor model

The more persistent encompassing factor model studied in Section 5.5 adjusts the baseline
factor model as follows. We replace the polynomial Φ(L) = Φ1 + Φ2L in the VAR(2)
process (5) for the factors by the polynomial Φ̃(L) = Φ̃1 + Φ̃2L, where Φ̃1 ≡ b × Φ1, Φ̃2 ≡
b2 ×Φ2, b ≡ 0.95/λmax, and λmax is the absolute value of the largest eigenvalue of the original
VAR polynomial I − LΦ(L). It is straightforward to verify that this adjustment scales all
eigenvalues up by a factor of b. In particular, the largest absolute eigenvalue of I − LΦ̃(L)
equals 0.95. To hold constant the explanatory power of the factors in the DFM, we multiply
the matrix H by a scalar factor such that the trace of Var(ft) is left unchanged.

Appendix B Details on estimation procedures

Least-squares LP. The least-squares LP estimator of the impulse response at horizon
h is based on the coefficient β̂h in the h-step-ahead OLS regression

yt+h = µ̂h + β̂hxt + ζ̂hqt +
p∑

ℓ=1
φ̂h,ℓwt−ℓ + residualh, (B.1)

that is, we regress on the variable xt, with controls given by the vector qt as well as p lags of
all of the data wt. The estimands of Section 3.2 can now be estimated as follows:

1. Observed shock. We set xt equal to the observed shock ε1,t and omit the contempo-
raneous controls qt (we still control for lagged data).22

22The lags are not needed for consistency in this case, but they often improve efficiency.
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2. IV. We estimate a Two-Stage Least Squares (2SLS) version of (B.1), setting xt equal
to the normalization variable it, and instrumenting for this variable with the IV zt. We
omit qt in this specification (but still include lagged controls). This is numerically the
same as doing a LP of yt+h on zt (with lagged controls), and dividing this coefficient by
the LP coefficient in a regression of it on zt (with lagged controls), see Stock & Watson
(2018) and Plagborg-Møller & Wolf (2021).

3. Recursive identification. xt is the innovation variable, while qt are the variables
ordered before xt in the identification scheme (Plagborg-Møller & Wolf, 2021).

Penalized LP. The Barnichon & Brownlees (2019) estimator lowers the variance of LP
by exploiting a prior belief in smoothness of the impulse response function across horizons.
Following their preferred implementation, we model the impulse response function using B-
spline basis functions. The jaggedness penalty function penalizes deviations from a quadratic
function of the horizon h. We penalize impulse responses up to horizon h̄ = 20. The penalty
parameter is selected in a data-dependent way using 5-fold cross-validation. We do not
penalize the coefficients on the control variables in the LP. When reporting relative impulse
responses (10), we divide by the least-squares LP estimate of the impact response of the
normalization variable it to the structural shock.

Least-squares VAR. The least-squares VAR coefficient estimates are obtained through
equation-by-equation OLS regressions. We perform a conventional Cholesky decomposition
of the forecast error variance-covariance matrix and compute impulse response functions with
respect to the orthogonalized shocks. The estimands of Section 3.2 can now be estimated as
follows:

1. Observed shock. The shock ε1,t is ordered first in wt, and we compute responses to
the first innovation.

2. IV. We initially consider an “internal instruments” approach as in Ramey (2011).
That is, we include the IV zt in the data vector wt, order the IV first, and compute
responses with respect to the first innovation (Plagborg-Møller & Wolf, 2021). The
relative impulse response (10) is obtained by dividing by the impact response of the
normalization variable it.

3. Recursive identification. The ordering of variables in wt equals the ordering of
the desired population impulse response estimand (cf. Section 3.2), and we compute
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responses to the innovation of the policy instrument it.

In contrast to the above internal instruments approach, the SVAR-IV (or “proxy-SVAR”)
estimator of Stock (2008) is obtained by computing the reduced-form impulse responses Ψ̂h

(h = 0, 1, . . . ) corresponding to a VAR in w̄t (i.e., excluding zt), and then reporting relative
impulse responses (10) corresponding to the absolute structural impulse responses Ψ̂hγ̂,
where γ̂ is the sample covariance vector of the reduced-form VAR residuals ût and the IV zt.

Bayesian VAR. Our BVAR implementation assumes a Gaussian VAR(p) model with a
Gaussian prior on the VAR coefficients (the residual variance-covariance matrix Σ̂ is fixed at
the unconstrained least-squares estimate). The prior is a version of the popular “Minnesota
prior”. Following Kilian & Lütkepohl (2017, chapter 5.2.3), we adapt this prior to a stationary
setting by centering the prior of the VAR reduced-form coefficients at zero, which would
imply that the time series are independent white noise processes. The prior variance hyper-
parameters are given by the default choices in Canova (2007, chapter 10.2.2).23

VAR model averaging. Hansen (2016) proposes a data-dependent procedure for aver-
aging across impulse responses estimates produced by a collection of different AR and VAR
models with different lag lengths. Let δ̂h(r) denote the un-normalized, least-squares recursive
impulse response estimate at some horizon h for model r = 1, . . . , R. We estimate δ̂h(r) from
R = 40 candidate models: First, univariate AR models for yt with lag lengths from p = 1 up
to p = 20; and second, VAR models in wt with lag lengths from p = 1 up to p = 20. As in
Hansen (2016), the variance-covariance matrix of innovations Σ and thus the impact effect δ0

are fixed across candidate models and treated as known without error.24 The VAR model av-
eraging estimator is given by ∑R

r=1 ω̂rδ̂h(r), where the weights {ω̂r}R
r=1 are chosen to minimize

the data-dependent approximated MSE estimate M̂(ω1, . . . , ωR) ≈ E[T (∑R
r=1 ωrδ̂h(r)−δh)2],

subject to the constraints that all weights are nonnegative and ∑R
r=1 ωr = 1. Details of the

MSE estimate are given in Hansen (2016, Section 6).25 We run this optimization for the
weights separately at each impulse response horizon. Relative impulse responses (10) are

23Specifically, for each lag ℓ, the prior variance is 0.04/ℓ2 for lags of the same variable, 0.01/ℓ2 for lags of
other variables, and 4000 for the intercept.

24To match the impact effect estimate in our benchmark method of least-squares VAR, we use Σ̂ from the
p = 4 VAR estimate as the true value across all the candidate models.

25The object of interest, δ̂h(r), is a scalar, which allows us to omit the weighting matrix required in the
MSE estimate in Hansen (2016).
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computed by dividing the absolute impulse response by the least-squares VAR(4) impact
impulse response estimate of it with respect to the identified shock.
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