
Programming FPGAs for Economics:

An Introduction to Electrical Engineering Economics

Bhagath Cheela 1 Andre DeHon1

Jesús Fernández-Villaverde2 Alessandro Peri 3

1University of Pennsylvania, Electrical and Systems Engineering,

2University of Pennsylvania, Economics

3University of Colorado Boulder, Economics

Bank of Italy, December 2022

1 / 36
Programming FPGAs for Economics

N

Introduction

What we do

- We show how to use FPGAs and their HLS compilers to solve Krusell Smith (1998)

- Amazon Web Services: Efficiency gains of FPGA acceleration:

- Speedup: Acceleration of one single FPGA is comparable to 78 CPU cores

- Costs Savings: <18% of multi-core CPU acceleration

- Energy Savings: <5% of multi-core CPU acceleration

- Speed Gains: pipeline, data-level parallelism, and data precision

2 / 36
Programming FPGAs for Economics

N

Introduction

What we do

- We show how to use FPGAs and their HLS compilers to solve Krusell Smith (1998)

- Amazon Web Services: Efficiency gains of FPGA acceleration:

- Speedup: Acceleration of one single FPGA is comparable to 78 CPU cores

- Costs Savings: <18% of multi-core CPU acceleration

- Energy Savings: <5% of multi-core CPU acceleration

- Speed Gains: pipeline, data-level parallelism, and data precision

2 / 36
Programming FPGAs for Economics

N

Introduction

What we do

- We show how to use FPGAs and their HLS compilers to solve Krusell Smith (1998)

- Amazon Web Services: Efficiency gains of FPGA acceleration:

- Speedup: Acceleration of one single FPGA is comparable to 78 CPU cores

- Costs Savings: <18% of multi-core CPU acceleration

- Energy Savings: <5% of multi-core CPU acceleration

- Speed Gains: pipeline, data-level parallelism, and data precision

2 / 36
Programming FPGAs for Economics

N

Introduction

What we do

- We show how to use FPGAs and their HLS compilers to solve Krusell Smith (1998)

- Amazon Web Services: Efficiency gains of FPGA acceleration:

- Speedup: Acceleration of one single FPGA is comparable to 78 CPU cores

- Costs Savings: <18% of multi-core CPU acceleration

- Energy Savings: <5% of multi-core CPU acceleration

- Speed Gains: pipeline, data-level parallelism, and data precision

2 / 36
Programming FPGAs for Economics

N

Introduction

What we do

- We show how to use FPGAs and their HLS compilers to solve Krusell Smith (1998)

- Amazon Web Services: Efficiency gains of FPGA acceleration:

- Speedup: Acceleration of one single FPGA is comparable to 78 CPU cores

- Costs Savings: <18% of multi-core CPU acceleration

- Energy Savings: <5% of multi-core CPU acceleration

- Speed Gains: pipeline, data-level parallelism, and data precision

2 / 36
Programming FPGAs for Economics

N

Contribution

Field-Programmable Gate Arrays

We show how to use FPGAs and their HLS compilers to solve Krusell Smith (1998)

3 / 36
Programming FPGAs for Economics

N

Contribution

Field-Programmable Gate Arrays

We show how to use FPGAs and their HLS compilers to solve Krusell Smith (1998)

CPU/GPUs

- Application Specific Integrated Circuit

FPGAs

- Application Specific Integrated Circuit

4 / 36
Programming FPGAs for Economics

N

Contribution

Field-Programmable Gate Arrays

We show how to use FPGAs and their HLS compilers to solve Krusell Smith (1998)

CPU/GPUs

- Application Specific Integrated Circuit

- 3GHz/1GHz

FPGAs

- Application Specific Integrated Circuit

- 250MHz

4 / 36
Programming FPGAs for Economics

N

Contribution

Field-Programmable Gate Arrays

We show how to use FPGAs and their HLS compilers to solve Krusell Smith (1998)

CPU/GPUs

- Application Specific Integrated Circuit

- 3GHz/1GHz

- Designed to efficiently execute serial
(graphical) operations

FPGAs

- Application Specific Integrated Circuit

- 250MHz

- Fully programmable

4 / 36
Programming FPGAs for Economics

N

Contribution

Field-Programmable Gate Arrays

How do we get the most out of our scarce computational resources? We specialize

5 / 36
Programming FPGAs for Economics

N

Contribution

Field-Programmable Gate Arrays

We show how to use FPGAs and their HLS compilers to solve Krusell Smith (1998)

- Research: DNA matching (Hoang, 1993), molecular dynamics (Azizi et al., 2004), Basic
Local Alignment Search Tool (BLAST) (Herbordt et al., 2006), astrophysics particles
simulator (Berczik et al., 2009), cancer treatment (Young-Schultz et al., 2020)

- Finance: JP Morgan Estimation Risk Parameters of Derivative Portfolio

- Economics: RBC Model (Peri, 2020). . . RTL approach

How do we get higher performance than a processor
while retaining programmability?

6 / 36
Programming FPGAs for Economics

N

Contribution

Field-Programmable Gate Arrays

We show how to use FPGAs and their HLS compilers to solve Krusell Smith (1998)

- Research: DNA matching (Hoang, 1993), molecular dynamics (Azizi et al., 2004), Basic
Local Alignment Search Tool (BLAST) (Herbordt et al., 2006), astrophysics particles
simulator (Berczik et al., 2009), cancer treatment (Young-Schultz et al., 2020)

- Finance: JP Morgan Estimation Risk Parameters of Derivative Portfolio

- Economics: RBC Model (Peri, 2020). . . RTL approach

How do we get higher performance than a processor
while retaining programmability?

6 / 36
Programming FPGAs for Economics

N

Contribution

Field-Programmable Gate Arrays

We show how to use FPGAs and their HLS compilers to solve Krusell Smith (1998)

- Research: DNA matching (Hoang, 1993), molecular dynamics (Azizi et al., 2004), Basic
Local Alignment Search Tool (BLAST) (Herbordt et al., 2006), astrophysics particles
simulator (Berczik et al., 2009), cancer treatment (Young-Schultz et al., 2020)

- Finance: JP Morgan Estimation Risk Parameters of Derivative Portfolio

- Economics: RBC Model (Peri, 2020). . . RTL approach

How do we get higher performance than a processor
while retaining programmability?

6 / 36
Programming FPGAs for Economics

N

Contribution

Field-Programmable Gate Arrays

We show how to use FPGAs and their HLS compilers to solve Krusell Smith (1998)

- Research: DNA matching (Hoang, 1993), molecular dynamics (Azizi et al., 2004), Basic
Local Alignment Search Tool (BLAST) (Herbordt et al., 2006), astrophysics particles
simulator (Berczik et al., 2009), cancer treatment (Young-Schultz et al., 2020)

- Finance: JP Morgan Estimation Risk Parameters of Derivative Portfolio

- Economics: RBC Model (Peri, 2020). . . RTL approach

How do we get higher performance than a processor
while retaining programmability?

6 / 36
Programming FPGAs for Economics

N

Contribution

Field-Programmable Gate Arrays

We show how to use FPGAs and their HLS compilers to solve Krusell Smith (1998)

- Research: DNA matching (Hoang, 1993), molecular dynamics (Azizi et al., 2004), Basic
Local Alignment Search Tool (BLAST) (Herbordt et al., 2006), astrophysics particles
simulator (Berczik et al., 2009), cancer treatment (Young-Schultz et al., 2020)

- Finance: JP Morgan Estimation Risk Parameters of Derivative Portfolio

- Economics: RBC Model (Peri, 2020). . . RTL approach

How do we get higher performance than a processor
while retaining programmability?

6 / 36
Programming FPGAs for Economics

N

Contribution

HLS Compilers

We show how to use FPGAs and their HLS compilers to solve Krusell Smith (1998)

- We illustrate the use of Xilinx high-level synthesis FPGA C-to-gates

- We code our solution in C/C++ (Aruoba and Fernndez-Villaverde, 2015)

- #PRAGMAs instruct the compiler on how to design the FPGA hardware

- HLS compilers are bound to get easier and easier to use

7 / 36
Programming FPGAs for Economics

N

Contribution

HLS Compilers

We show how to use FPGAs and their HLS compilers to solve Krusell Smith (1998)

- We illustrate the use of Xilinx high-level synthesis FPGA C-to-gates

- We code our solution in C/C++ (Aruoba and Fernndez-Villaverde, 2015)

- #PRAGMAs instruct the compiler on how to design the FPGA hardware

- HLS compilers are bound to get easier and easier to use
7 / 36

Programming FPGAs for Economics

N

Contribution

HLS Compilers

We show how to use FPGAs and their HLS compilers to solve Krusell Smith (1998)

- We illustrate the use of Xilinx high-level synthesis FPGA C-to-gates

- We code our solution in C/C++ (Aruoba and Fernndez-Villaverde, 2015)

- #PRAGMAs instruct the compiler on how to design the FPGA hardware

- HLS compilers are bound to get easier and easier to use

7 / 36
Programming FPGAs for Economics

N

Contribution

HLS Compilers

We show how to use FPGAs and their HLS compilers to solve Krusell Smith (1998)

- We illustrate the use of Xilinx high-level synthesis FPGA C-to-gates

- We code our solution in C/C++ (Aruoba and Fernndez-Villaverde, 2015)

- #PRAGMAs instruct the compiler on how to design the FPGA hardware

- HLS compilers are bound to get easier and easier to use

7 / 36
Programming FPGAs for Economics

N

Contribution

Application

We show how to use FPGAs and their HLS compilers to solve Krusell Smith (1998)

- Heterogenous agent models with incomplete markets and aggregate uncertainty
Den Haan and Rendahl (2010)

- Solution algorithm: Maliar et al. (2010)

- Acceleration techniques can be generalized

- Software Rust (1997), Algan et al. (2008), Reiter (2009), Den Haan and Rendahl (2010),

Maliar et al. (2010), Reiter (2010), Young (2010), Algan et al. (2014), Sager (2014) Pröhl

(2015), Nuño and Thomas (2016), Achdou et al. (2021), Bhandari et al. (2017), Brumm and

Scheidegger (2017), Judd et al. (2017), Bayer and Luetticke (2018), Childers (2018), Mertens

and Judd (2018), Winberry (2018), Fernández-Villaverde et al. (2019), Auclert et al. (2020),

Bilal (2021), Kahou et al. (2021)

- Hardware Aldrich et al. (2011), Duarte et al. (2019), Peri (2020)

8 / 36
Programming FPGAs for Economics

N

Contribution

Application

We show how to use FPGAs and their HLS compilers to solve Krusell Smith (1998)

- Heterogenous agent models with incomplete markets and aggregate uncertainty
Den Haan and Rendahl (2010)

- Solution algorithm: Maliar et al. (2010)

- Acceleration techniques can be generalized

- Software Rust (1997), Algan et al. (2008), Reiter (2009), Den Haan and Rendahl (2010),

Maliar et al. (2010), Reiter (2010), Young (2010), Algan et al. (2014), Sager (2014) Pröhl

(2015), Nuño and Thomas (2016), Achdou et al. (2021), Bhandari et al. (2017), Brumm and

Scheidegger (2017), Judd et al. (2017), Bayer and Luetticke (2018), Childers (2018), Mertens

and Judd (2018), Winberry (2018), Fernández-Villaverde et al. (2019), Auclert et al. (2020),

Bilal (2021), Kahou et al. (2021)

- Hardware Aldrich et al. (2011), Duarte et al. (2019), Peri (2020)

8 / 36
Programming FPGAs for Economics

N

Contribution

Application

We show how to use FPGAs and their HLS compilers to solve Krusell Smith (1998)

- Heterogenous agent models with incomplete markets and aggregate uncertainty
Den Haan and Rendahl (2010)

- Solution algorithm: Maliar et al. (2010)

- Acceleration techniques can be generalized

- Software Rust (1997), Algan et al. (2008), Reiter (2009), Den Haan and Rendahl (2010),

Maliar et al. (2010), Reiter (2010), Young (2010), Algan et al. (2014), Sager (2014) Pröhl

(2015), Nuño and Thomas (2016), Achdou et al. (2021), Bhandari et al. (2017), Brumm and

Scheidegger (2017), Judd et al. (2017), Bayer and Luetticke (2018), Childers (2018), Mertens

and Judd (2018), Winberry (2018), Fernández-Villaverde et al. (2019), Auclert et al. (2020),

Bilal (2021), Kahou et al. (2021)

- Hardware Aldrich et al. (2011), Duarte et al. (2019), Peri (2020)

8 / 36
Programming FPGAs for Economics

N

Contribution

Application

We show how to use FPGAs and their HLS compilers to solve Krusell Smith (1998)

- Heterogenous agent models with incomplete markets and aggregate uncertainty
Den Haan and Rendahl (2010)

- Solution algorithm: Maliar et al. (2010)

- Acceleration techniques can be generalized

- Software Rust (1997), Algan et al. (2008), Reiter (2009), Den Haan and Rendahl (2010),

Maliar et al. (2010), Reiter (2010), Young (2010), Algan et al. (2014), Sager (2014) Pröhl

(2015), Nuño and Thomas (2016), Achdou et al. (2021), Bhandari et al. (2017), Brumm and

Scheidegger (2017), Judd et al. (2017), Bayer and Luetticke (2018), Childers (2018), Mertens

and Judd (2018), Winberry (2018), Fernández-Villaverde et al. (2019), Auclert et al. (2020),

Bilal (2021), Kahou et al. (2021)

- Hardware Aldrich et al. (2011), Duarte et al. (2019), Peri (2020)

8 / 36
Programming FPGAs for Economics

N

Contribution

Application

We show how to use FPGAs and their HLS compilers to solve Krusell Smith (1998)

- Heterogenous agent models with incomplete markets and aggregate uncertainty
Den Haan and Rendahl (2010)

- Solution algorithm: Maliar et al. (2010)

- Acceleration techniques can be generalized

- Software Rust (1997), Algan et al. (2008), Reiter (2009), Den Haan and Rendahl (2010),

Maliar et al. (2010), Reiter (2010), Young (2010), Algan et al. (2014), Sager (2014) Pröhl

(2015), Nuño and Thomas (2016), Achdou et al. (2021), Bhandari et al. (2017), Brumm and

Scheidegger (2017), Judd et al. (2017), Bayer and Luetticke (2018), Childers (2018), Mertens

and Judd (2018), Winberry (2018), Fernández-Villaverde et al. (2019), Auclert et al. (2020),

Bilal (2021), Kahou et al. (2021)

- Hardware Aldrich et al. (2011), Duarte et al. (2019), Peri (2020)

8 / 36
Programming FPGAs for Economics

N

The Model

9 / 36
Programming FPGAs for Economics

N

- Individual Agents Problem (IAP) Equilibrium

max
{ct,kt+1}∞t=0

∞∑
t=0

βt E0

[
c1−γt − 1

1− γ

]
s.t. ct + kt+1 =

[
µ(1− εt) + (1− τt)l̄εt

]
wt + (1− δ + rt)kt

kt+1 ≥ 0

- Representative Firm Problem

Yt = At(l̄Lt)
1−α
t Kα

t

rt = αAt

(
l̄Lt
Kt

)1−α

wt = (1− α)At

(
Kt

l̄Lt

)α

- Government: τt l̄Lt = µ(1− Lt)

- Aggregate Law of Motion: Γt+1 = H(Γt, At, At+1)

10 / 36
Programming FPGAs for Economics

N

- Individual Agents Problem (IAP) Equilibrium

max
{ct,kt+1}∞t=0

∞∑
t=0

βt E0

[
c1−γt − 1

1− γ

]
s.t. ct + kt+1 =

[
µ(1− εt) + (1− τt)l̄εt

]
wt + (1− δ + rt)kt

kt+1 ≥ 0

- Representative Firm Problem

Yt = At(l̄Lt)
1−α
t Kα

t

rt = αAt

(
l̄Lt
Kt

)1−α

wt = (1− α)At

(
Kt

l̄Lt

)α

- Government: τt l̄Lt = µ(1− Lt)

- Aggregate Law of Motion: Γt+1 = H(Γt, At, At+1)

10 / 36
Programming FPGAs for Economics

N

- Individual Agents Problem (IAP) Equilibrium

max
{ct,kt+1}∞t=0

∞∑
t=0

βt E0

[
c1−γt − 1

1− γ

]
s.t. ct + kt+1 =

[
µ(1− εt) + (1− τt)l̄εt

]
wt + (1− δ + rt)kt

kt+1 ≥ 0

- Representative Firm Problem

Yt = At(l̄Lt)
1−α
t Kα

t

rt = αAt

(
l̄Lt
Kt

)1−α

wt = (1− α)At

(
Kt

l̄Lt

)α

- Government: τt l̄Lt = µ(1− Lt)

- Aggregate Law of Motion: Γt+1 = H(Γt, At, At+1)

10 / 36
Programming FPGAs for Economics

N

- Individual Agents Problem (IAP) Equilibrium

max
{ct,kt+1}∞t=0

∞∑
t=0

βt E0

[
c1−γt − 1

1− γ

]
s.t. ct + kt+1 =

[
µ(1− εt) + (1− τt)l̄εt

]
wt + (1− δ + rt)kt

kt+1 ≥ 0

- Representative Firm Problem

Yt = At(l̄Lt)
1−α
t Kα

t

rt = αAt

(
l̄Lt
Kt

)1−α

wt = (1− α)At

(
Kt

l̄Lt

)α

- Government: τt l̄Lt = µ(1− Lt)

- Aggregate Law of Motion: Γt+1 = H(Γt, At, At+1)

10 / 36
Programming FPGAs for Economics

N

Application

Calibration

Table: Calibrated Parameters

α 0.36 Output capital share
β 0.99 Quarterly subjective discount factor
γ 1 Arrow-Pratt relative risk aversion coefficient
δ 0.025 Quarterly depreciation rate
µ 0.15 Unemployment benefits in terms of wages
l̄ 0.9 Time endowment
∆A 0.01 Aggregate productivity shock size

11 / 36
Programming FPGAs for Economics

N

The Algorithm

12 / 36
Programming FPGAs for Economics

N

1 Individual Households’ Problem (IHP)

- Policy Function Iteration

- Endogenous Grid Method

2 Aggregate Law of Motion

3 Simulation Stochastic Simulation

13 / 36
Programming FPGAs for Economics

N

Application

Individual Households’ Problem (IHP)

- For all states, (k, ε,m,A) ∈ K× {0, 1}ε ×M×A:

u′(c)dk′ = E
[
(1− δ + r′)u′(c′) | ε, A

]
dk′

14 / 36
Programming FPGAs for Economics

N

Application

Individual Households’ Problem (IHP)

- For all states, (k, ε,m,A) ∈ K× {0, 1}ε ×M×A:

u′(c)dk′ ≥ E
[
(1− δ + r′)u′(c′) | ε, A

]
dk′

Borrowing Constraint : k′ ≥ 0 λk′ = 0

14 / 36
Programming FPGAs for Economics

N

Application

Individual Households’ Problem (IHP)

- For all states, (k, ε,m,A) ∈ K× {0, 1}ε ×M×A:

u′(c)dk′ = λ+ E
[
(1− δ + r′)u′(c′) | ε, A

]
dk′

Borrowing Constraint : k′ ≥ 0 λk′ = 0

14 / 36
Programming FPGAs for Economics

N

Application

Individual Households’ Problem (IHP)

- For all states, (k, ε,m,A) ∈ K× {0, 1}ε ×M×A:

c = u′,−1 (λ+ E
[
(1− δ + r′)u′(c′) | ε, A

])

Borrowing Constraint : k′ ≥ 0 λk′ = 0

14 / 36
Programming FPGAs for Economics

N

Application

Individual Households’ Problem (IHP)

- For all states, (k, ε,m,A) ∈ K× {0, 1}ε ×M×A:

Wealth(k)− k′︸ ︷︷ ︸
Consumption

= u′,−1 (λ+ E
[
(1− δ + r′)u′(c′) | ε, A

])

Borrowing Constraint : k′ ≥ 0 λk′ = 0

Wealth(k) = Wealth(k, ε,m,A) = (µ(1− ε) + (1− τ)l̄ε)w + (1− δ + r)k

14 / 36
Programming FPGAs for Economics

N

Application

Individual Households’ Problem (IHP)

- For all states, (k, ε,m,A) ∈ K× {0, 1}ε ×M×A:

Wealth(k)− k′︸ ︷︷ ︸
Consumption

= u′,−1

λ+ E

(1− δ + r′)u′
(
Wealth(k′)− k′′

)︸ ︷︷ ︸
Consumption′

| ε, A

Borrowing Constraint : k′ ≥ 0 λk′ = 0

Wealth(k) = Wealth(k, ε,m,A) = (µ(1− ε) + (1− τ)l̄ε)w + (1− δ + r)k

Wealth(k′) = Wealth(k′, ε′,m′, A′) = (µ(1− ε′) + (1− τ ′)l̄ε′)w′ + (1− δ + r′)k′

14 / 36
Programming FPGAs for Economics

N

Application

Individual Households’ Problem (IHP)

- For all states, (k, ε,m,A) ∈ K× {0, 1}ε ×M×A:

Wealth(k)− k′︸ ︷︷ ︸
Consumption

= u′,−1

λ+ E

(1− δ + r′)u′
(
Wealth(k′)− k′′

)︸ ︷︷ ︸
Consumption′

| ε, A

Borrowing Constraint : k′ ≥ 0 λk′ = 0

Wealth(k) = Wealth(k, ε,m,A) = (µ(1− ε) + (1− τ)l̄ε)w + (1− δ + r)k

Wealth(k′) = Wealth(k′, ε′,m′, A′) = (µ(1− ε′) + (1− τ ′)l̄ε′)w′ + (1− δ + r′)k′

k′′ ≡ k′(k′) ≡ k′(k′(k, ε,m,A), ε′,m′, A′)

14 / 36
Programming FPGAs for Economics

N

Application

Individual Households’ Problem (IHP)

- For all states, (k, ε,m,A) ∈ K× {0, 1}ε ×M×A:

k′ = Wealth(k)− u′,−1

λ+ E

(1− δ + r′)u′

Wealth(k′)− k′′︸ ︷︷ ︸
Consumption′

Borrowing Constraint : k′ ≥ 0 λk′ = 0

Wealth(k) = Wealth(k, ε,m,A) = (µ(1− ε) + (1− τ)l̄ε)w + (1− δ + r)k

Wealth(k′) = Wealth(k′, ε′,m′, A′) = (µ(1− ε′) + (1− τ ′)l̄ε′)w′ + (1− δ + r′)k′

k′′ ≡ k′(k′) ≡ k′(k′(k, ε,m,A), ε′,m′, A′)

14 / 36
Programming FPGAs for Economics

N

Application

Individual Households’ Problem (IHP)

- For all states, (k, ε,m,A) ∈ K× {0, 1}ε ×M×A:

k̂′ =
[
µ(1− ε) + (1− τ)l̄ε

]
w + (1− δ + r)k︸ ︷︷ ︸

Wealth(k,ε,m,A)

−

{
λ+ βE

[1− δ + r′(
(µ(1− ε′) + (1− τ ′)l̄ε′)w′ + (1− δ + r′)k′︸ ︷︷ ︸

Wealth(k′,ε′,m′,A′)

−k′′
)γ]
}−1/γ

k′′ ≡ k′(k′) ≡ k′(k′(k, ε,m,A), ε′,m′, A′)

- Guess k′(k, ε,m,A).

- Set the lagrange multiplier λ(k, ε,m,A) = 0

- Update k′i+1 = ηk̂′i+1 + (1− η)k′i

until convergence max
(k,ε,m,A)∈K×{0,1}ε×M×A

|k′i+1 − k′i| < εk

14 / 36
Programming FPGAs for Economics

N

Application

Aggregate Law of Motion

Households’ distribution over capital holdings and employment status

Γ′ = H(Γ, A,A′).

Restriction 1: Set of moments, m ∈M

m′ = H(m,A,A′)

Restriction 2: m is the first moment (per capita stock of capital)

mt =
1

J

J∑
j=1

kj,t

Restriction 3:

E[lnm′|a,m] = b1(a) + b2(a) lnm a ∈ {ab, ag},

15 / 36
Programming FPGAs for Economics

N

Application

Algorithm

1. Individual Agents Problem (IAP)

- Policy Function Iteration

- Endogenous Grid Method

2. Simulation. At each period t = 1, . . . , 1, 100:

- Accumulation Step. mt =
1

J

J∑
j=1

kj,t

- Interpolation Step. kj,t+1(kj,t, εj,t,mt, At),

3. Aggregate Law of Motion: lnmt+1 = b1(a) + b2(a) lnmt + νt, t ∈ {101, . . . , 1100}

- Update bi+1
l (a) = ηbb̂

i
l(a) + (1− ηb)bil(a), l ∈ {1, 2}, a ∈ {ab, ag}

- Repeat 1-3 until convergence:
√ ∑
l∈{1,2},a∈{ab,ag}

(bi+1
l (a)− bil(a))2 < εb = 1e(−8)

16 / 36
Programming FPGAs for Economics

N

Application

Algorithm

1. Individual Agents Problem (IAP)

- Policy Function Iteration

- Endogenous Grid Method

2. Simulation. At each period t = 1, . . . , 1, 100:

- Accumulation Step. mt =
1

J

J∑
j=1

kj,t

- Interpolation Step. kj,t+1(kj,t, εj,t,mt, At),

3. Aggregate Law of Motion: lnmt+1 = b1(a) + b2(a) lnmt + νt, t ∈ {101, . . . , 1100}

- Update bi+1
l (a) = ηbb̂

i
l(a) + (1− ηb)bil(a), l ∈ {1, 2}, a ∈ {ab, ag}

- Repeat 1-3 until convergence:
√ ∑
l∈{1,2},a∈{ab,ag}

(bi+1
l (a)− bil(a))2 < εb = 1e(−8)

16 / 36
Programming FPGAs for Economics

N

Application

Algorithm

1. Individual Agents Problem (IAP)

- Policy Function Iteration

- Endogenous Grid Method

2. Simulation. At each period t = 1, . . . , 1, 100:

- Accumulation Step. mt =
1

J

J∑
j=1

kj,t

- Interpolation Step. kj,t+1(kj,t, εj,t,mt, At),

3. Aggregate Law of Motion: lnmt+1 = b1(a) + b2(a) lnmt + νt, t ∈ {101, . . . , 1100}

- Update bi+1
l (a) = ηbb̂

i
l(a) + (1− ηb)bil(a), l ∈ {1, 2}, a ∈ {ab, ag}

- Repeat 1-3 until convergence:
√ ∑
l∈{1,2},a∈{ab,ag}

(bi+1
l (a)− bil(a))2 < εb = 1e(−8)

16 / 36
Programming FPGAs for Economics

N

Application

Algorithm

1. Individual Agents Problem (IAP)

- Policy Function Iteration

- Endogenous Grid Method Interpolation

2. Simulation. At each period t = 1, . . . , 1, 100:

- Accumulation Step. mt =
1

J

J∑
j=1

kj,t

- Interpolation Step. kj,t+1(kj,t, εj,t,mt, At),

3. Aggregate Law of Motion: lnmt+1 = b1(a) + b2(a) lnmt + νt, t ∈ {101, . . . , 1100}

- Update bi+1
l (a) = ηbb̂

i
l(a) + (1− ηb)bil(a), l ∈ {1, 2}, a ∈ {ab, ag}

- Repeat 1-3 until convergence:
√ ∑
l∈{1,2},a∈{ab,ag}

(bi+1
l (a)− bil(a))2 < εb = 1e(−8)

16 / 36
Programming FPGAs for Economics

N

Acceleration Schemes
and

Hardware Architecture

17 / 36
Programming FPGAs for Economics

N

Acceleration Schemes and Hardware Architecture

CPU Multi-core Acceleration
- CPU-C Kernel:

Table: Benchmarking the CPU: Alternative Search Algorithms

Linear Search Binary Search Jump Search
Execution Time 97348.3 49667.3 37854.5
Speedup - 1.96 2.57

Note: Columns 1-3: Average execution time (in seconds) and speedups of alternative
interpolation range search algorithms. Speedups are computed relative to the linear
search algorithm. Results are obtained by solving 1,200 baseline economies sequentially
using a single core instance (m5n.large).

- Compilers: G++ 9.4.0 and mpiCC 4.1.1 (OpenMPI)

- Optimization flags: -O3

- Amazon M5N: 1 (m5n.large), 8 (m5n.4xlarge), 48 (m5n.24xlarge) core(s)

Intel Xeon Scalable Processors (Cascade Lake, 2nd generation), with sustained
all-core Turbo CPU frequency of 3.1 GHz, maximum single core Turbo CPU frequency
of 3.5 GHz; Network Bandwidth: up to 25 Gbps.

- Open-MPI routines:

- collect available cores

- spread (data-independent) economies across the cores

- 1200 economies (Robustness: loadbalance)

Table: Benchmarking the CPU: Alternative Search Algorithms

Linear Search Binary Search Jump Search
Execution Time 97348.3 49667.3 37854.5
Speedup - 1.96 2.57

Note: Columns 1-3: Average execution time (in seconds) and speedups of alternative
interpolation range search algorithms. Speedups are computed relative to the linear search
algorithm. Results are obtained by solving 1,200 baseline economies sequentially using a
single core instance (m5n.large).

18 / 36
Programming FPGAs for Economics

N

Acceleration Schemes and Hardware Architecture

CPU Multi-core Acceleration

- CPU-C Kernel: 3x as fast as Matlab

- Compilers: G++ 9.4.0 and mpiCC 4.1.1 (OpenMPI)

- Optimization flags: -O3

- Amazon M5N: 1 (m5n.large), 8 (m5n.4xlarge), 48 (m5n.24xlarge) core(s)

Intel Xeon Scalable Processors (Cascade Lake, 2nd generation), with sustained
all-core Turbo CPU frequency of 3.1 GHz, maximum single core Turbo CPU frequency
of 3.5 GHz; Network Bandwidth: up to 25 Gbps.

- Open-MPI routines:

- collect available cores

- spread (data-independent) economies across the cores

- 1200 economies (Robustness: loadbalance)

18 / 36
Programming FPGAs for Economics

N

Acceleration Schemes and Hardware Architecture

CPU Multi-core Acceleration

- CPU-C Kernel: 3x as fast as Matlab

- Compilers: G++ 9.4.0 and mpiCC 4.1.1 (OpenMPI)

- Optimization flags: -O3

- Amazon M5N: 1 (m5n.large), 8 (m5n.4xlarge), 48 (m5n.24xlarge) core(s)

Intel Xeon Scalable Processors (Cascade Lake, 2nd generation), with sustained
all-core Turbo CPU frequency of 3.1 GHz, maximum single core Turbo CPU frequency
of 3.5 GHz; Network Bandwidth: up to 25 Gbps.

- Open-MPI routines:

- collect available cores

- spread (data-independent) economies across the cores

- 1200 economies (Robustness: loadbalance)

18 / 36
Programming FPGAs for Economics

N

Acceleration Schemes and Hardware Architecture

CPU Multi-core Acceleration

- CPU-C Kernel: 3x as fast as Matlab

- Compilers: G++ 9.4.0 and mpiCC 4.1.1 (OpenMPI)

- Optimization flags: -O3

- Amazon M5N: 1 (m5n.large), 8 (m5n.4xlarge), 48 (m5n.24xlarge) core(s)

Intel Xeon Scalable Processors (Cascade Lake, 2nd generation), with sustained
all-core Turbo CPU frequency of 3.1 GHz, maximum single core Turbo CPU frequency
of 3.5 GHz; Network Bandwidth: up to 25 Gbps.

- Open-MPI routines:

- collect available cores

- spread (data-independent) economies across the cores

- 1200 economies (Robustness: loadbalance)

18 / 36
Programming FPGAs for Economics

N

Acceleration Schemes and Hardware Architecture

CPU Multi-core Acceleration

- CPU-C Kernel: 3x as fast as Matlab

- Compilers: G++ 9.4.0 and mpiCC 4.1.1 (OpenMPI)

- Optimization flags: -O3

- Amazon M5N: 1 (m5n.large), 8 (m5n.4xlarge), 48 (m5n.24xlarge) core(s)

Intel Xeon Scalable Processors (Cascade Lake, 2nd generation), with sustained
all-core Turbo CPU frequency of 3.1 GHz, maximum single core Turbo CPU frequency
of 3.5 GHz; Network Bandwidth: up to 25 Gbps.

- Open-MPI routines:

- collect available cores

- spread (data-independent) economies across the cores

- 1200 economies (Robustness: loadbalance)

18 / 36
Programming FPGAs for Economics

N

Acceleration Schemes and Hardware Architecture

CPU Multi-core Acceleration

- CPU-C Kernel: 3x as fast as Matlab

- Compilers: G++ 9.4.0 and mpiCC 4.1.1 (OpenMPI)

- Optimization flags: -O3

- Amazon M5N: 1 (m5n.large), 8 (m5n.4xlarge), 48 (m5n.24xlarge) core(s)

Intel Xeon Scalable Processors (Cascade Lake, 2nd generation), with sustained
all-core Turbo CPU frequency of 3.1 GHz, maximum single core Turbo CPU frequency
of 3.5 GHz; Network Bandwidth: up to 25 Gbps.

- Open-MPI routines:

- collect available cores

- spread (data-independent) economies across the cores

- 1200 economies (Robustness: loadbalance)

18 / 36
Programming FPGAs for Economics

N

Acceleration Schemes and Hardware Architecture

CPU Multi-core Acceleration

- CPU-C Kernel: 3x as fast as Matlab

- Compilers: G++ 9.4.0 and mpiCC 4.1.1 (OpenMPI)

- Optimization flags: -O3

- Amazon M5N: 1 (m5n.large), 8 (m5n.4xlarge), 48 (m5n.24xlarge) core(s)

Intel Xeon Scalable Processors (Cascade Lake, 2nd generation), with sustained
all-core Turbo CPU frequency of 3.1 GHz, maximum single core Turbo CPU frequency
of 3.5 GHz; Network Bandwidth: up to 25 Gbps.

- Open-MPI routines:

- collect available cores

- spread (data-independent) economies across the cores

- 1200 economies (Robustness: loadbalance)

18 / 36
Programming FPGAs for Economics

N

Acceleration Schemes and Hardware Architecture

CPU Multi-core Acceleration

- CPU-C Kernel: 3x as fast as Matlab

- Compilers: G++ 9.4.0 and mpiCC 4.1.1 (OpenMPI)

- Optimization flags: -O3

- Amazon M5N: 1 (m5n.large), 8 (m5n.4xlarge), 48 (m5n.24xlarge) core(s)

Intel Xeon Scalable Processors (Cascade Lake, 2nd generation), with sustained
all-core Turbo CPU frequency of 3.1 GHz, maximum single core Turbo CPU frequency
of 3.5 GHz; Network Bandwidth: up to 25 Gbps.

- Open-MPI routines:

- collect available cores

- spread (data-independent) economies across the cores

- 1200 economies (Robustness: loadbalance)

18 / 36
Programming FPGAs for Economics

N

Acceleration Schemes and Hardware Architecture

FPGA Acceleration

- Amazon F1: 1 (f1.2xlarge), 2 (f1.4xlarge), 8 (f1.16xlarge) FPGA(s)

- Workflow:

- host initializes parameters, grids, guesses

- host launches jobs across available FPGAs (OpenCL)

- Kernel: FPGA(s) solve(s) the algorithm (Custom Logic Hardware Design)

- host reads back and saves the results (OpenCL)

19 / 36
Programming FPGAs for Economics

N

Acceleration Schemes and Hardware Architecture

FPGA Acceleration

- Amazon F1: 1 (f1.2xlarge), 2 (f1.4xlarge), 8 (f1.16xlarge) FPGA(s)

- Workflow:

- host initializes parameters, grids, guesses

- host launches jobs across available FPGAs (OpenCL)

- Kernel: FPGA(s) solve(s) the algorithm (Custom Logic Hardware Design)

- host reads back and saves the results (OpenCL)

19 / 36
Programming FPGAs for Economics

N

Acceleration Schemes and Hardware Architecture

FPGA Acceleration

- Amazon F1: 1 (f1.2xlarge), 2 (f1.4xlarge), 8 (f1.16xlarge) FPGA(s)

- Workflow:

- host initializes parameters, grids, guesses

- host launches jobs across available FPGAs (OpenCL)

- Kernel: FPGA(s) solve(s) the algorithm (Custom Logic Hardware Design)

- host reads back and saves the results (OpenCL)

19 / 36
Programming FPGAs for Economics

N

Acceleration Schemes and Hardware Architecture

FPGA Acceleration

- Amazon F1: 1 (f1.2xlarge), 2 (f1.4xlarge), 8 (f1.16xlarge) FPGA(s)

- Workflow:

- host initializes parameters, grids, guesses

- host launches jobs across available FPGAs (OpenCL)

- Kernel: FPGA(s) solve(s) the algorithm (Custom Logic Hardware Design)

- host reads back and saves the results (OpenCL)

19 / 36
Programming FPGAs for Economics

N

Acceleration Schemes and Hardware Architecture

FPGA Acceleration

- Amazon F1: 1 (f1.2xlarge), 2 (f1.4xlarge), 8 (f1.16xlarge) FPGA(s)

- Workflow:

- host initializes parameters, grids, guesses

- host launches jobs across available FPGAs (OpenCL)

- Kernel: FPGA(s) solve(s) the algorithm (Custom Logic Hardware Design)

- host reads back and saves the results (OpenCL)

19 / 36
Programming FPGAs for Economics

N

Hardware
Design

20 / 36
Programming FPGAs for Economics

N

Acceleration Schemes and Hardware Architecture

Custom Logic Hardware Design

Compute three economies (kernels) in parallel (one per SLR)

Kernel Design

Common Challenges and Remedies

1 Large memory access latency
- Global memory large but slow (tens of clock cycles)
- On-chip local memories small, but numerous and fast (single clock) Select

2 Two ports to access data in parallel (for reading or writing) Make Copies
#pragma HLS ARRAY PARTITION

Application-Specific Challenges and Remedies

21 / 36
Programming FPGAs for Economics

N

Acceleration Schemes and Hardware Architecture

Custom Logic Hardware Design

Compute three economies (kernels) in parallel (one per SLR)

Kernel Design

Common Challenges and Remedies

1 Large memory access latency
- Global memory large but slow (tens of clock cycles)
- On-chip local memories small, but numerous and fast (single clock) Select

2 Two ports to access data in parallel (for reading or writing) Make Copies
#pragma HLS ARRAY PARTITION

Application-Specific Challenges and Remedies

21 / 36
Programming FPGAs for Economics

N

Acceleration Schemes and Hardware Architecture

Custom Logic Hardware Design

Compute three economies (kernels) in parallel (one per SLR)

Kernel Design

Common Challenges and Remedies

1 Large memory access latency
- Global memory large but slow (tens of clock cycles)
- On-chip local memories small, but numerous and fast (single clock) Select

2 Two ports to access data in parallel (for reading or writing) Make Copies
#pragma HLS ARRAY PARTITION

Application-Specific Challenges and Remedies

21 / 36
Programming FPGAs for Economics

N

Acceleration Schemes and Hardware Architecture

Custom Logic Hardware Design

Compute three economies (kernels) in parallel (one per SLR)

Kernel Design

Common Challenges and Remedies

1 Large memory access latency
- Global memory large but slow (tens of clock cycles)
- On-chip local memories small, but numerous and fast (single clock) Select

2 Two ports to access data in parallel (for reading or writing) Make Copies
#pragma HLS ARRAY PARTITION

Application-Specific Challenges and Remedies

21 / 36
Programming FPGAs for Economics

N

Acceleration Schemes and Hardware Architecture

Custom Logic Hardware Design

Compute three economies (kernels) in parallel (one per SLR)

Kernel Design

Common Challenges and Remedies

1 Large memory access latency
- Global memory large but slow (tens of clock cycles)
- On-chip local memories small, but numerous and fast (single clock) Select

2 Two ports to access data in parallel (for reading or writing) Make Copies
#pragma HLS ARRAY PARTITION

Application-Specific Challenges and Remedies

21 / 36
Programming FPGAs for Economics

N

A. Individual Agents Problem (IAP) Design

k̂′ =
[
µ(1− ε) + (1− τ)l̄ε

]
w + (1− δ + r)k︸ ︷︷ ︸

Wealth(k,ε,m,A)

−

{
λ+ βE

[1− δ + r′(
(µ(1− ε′) + (1− τ ′)l̄ε′)w′ + (1− δ + r′)k′︸ ︷︷ ︸

Wealth(k′,ε′,m′,A′)

−k′′
)γ]
}−1/γ

k′′ ≡ k′(k′) ≡ k′(k′(k, ε,m,A), ε′,m′, A′)

- Pipeline: Jump search algorithm to find the interpolation range

B. Simulation Design At each period t = 1, . . . , 1100:

- Accumulation Step. mt =
1

J

J∑
j=1

kj,t

- Floating-point addition: non-associative (Example), multiple clock cycles
- Fixed-precision accumulator: associative, one clock cycle

- Interpolation Step. kj,t+1(kj,t, εj,t,mt, At), j = 1, . . . , 10, 000

22 / 36
Programming FPGAs for Economics

N

A. Individual Agents Problem (IAP) Design

k̂′ =
[
µ(1− ε) + (1− τ)l̄ε

]
w + (1− δ + r)k︸ ︷︷ ︸

Wealth(k,ε,m,A)

−

{
λ+ βE

[1− δ + r′(
(µ(1− ε′) + (1− τ ′)l̄ε′)w′ + (1− δ + r′)k′︸ ︷︷ ︸

Wealth(k′,ε′,m′,A′)

−k′′
)γ]
}−1/γ

k′′ ≡ k′(k′) ≡ k′(k′(k, ε,m,A), ε′,m′, A′)

- Pipeline: Jump search algorithm to find the interpolation range

B. Simulation Design At each period t = 1, . . . , 1100:

- Accumulation Step. mt =
1

J

J∑
j=1

kj,t

- Floating-point addition: non-associative (Example), multiple clock cycles
- Fixed-precision accumulator: associative, one clock cycle

- Interpolation Step. kj,t+1(kj,t, εj,t,mt, At), j = 1, . . . , 10, 000

22 / 36
Programming FPGAs for Economics

N

A. Individual Agents Problem (IAP) Design

k̂′ =
[
µ(1− ε) + (1− τ)l̄ε

]
w + (1− δ + r)k︸ ︷︷ ︸

Wealth(k,ε,m,A)

−

{
λ+ βE

[1− δ + r′(
(µ(1− ε′) + (1− τ ′)l̄ε′)w′ + (1− δ + r′)k′︸ ︷︷ ︸

Wealth(k′,ε′,m′,A′)

−k′′
)γ]
}−1/γ

k′′ ≡ k′(k′) ≡ k′(k′(k, ε,m,A), ε′,m′, A′)

- Pipeline: Jump search algorithm to find the interpolation range

B. Simulation Design At each period t = 1, . . . , 1100:

- Accumulation Step. mt =
1

J

J∑
j=1

kj,t

- Floating-point addition: non-associative (Example), multiple clock cycles
- Fixed-precision accumulator: associative, one clock cycle

- Interpolation Step. kj,t+1(kj,t, εj,t,mt, At), j = 1, . . . , 10, 000

22 / 36
Programming FPGAs for Economics

N

A. Individual Agents Problem (IAP) Design

k̂′ =
[
µ(1− ε) + (1− τ)l̄ε

]
w + (1− δ + r)k︸ ︷︷ ︸

Wealth(k,ε,m,A)

−

{
λ+ βE

[1− δ + r′(
(µ(1− ε′) + (1− τ ′)l̄ε′)w′ + (1− δ + r′)k′︸ ︷︷ ︸

Wealth(k′,ε′,m′,A′)

−k′′
)γ]
}−1/γ

k′′ ≡ k′(k′) ≡ k′(k′(k, ε,m,A), ε′,m′, A′)

- Pipeline: Jump search algorithm to find the interpolation range

B. Simulation Design At each period t = 1, . . . , 1100:

- Accumulation Step. mt =
1

J

J∑
j=1

kj,t

- Floating-point addition: non-associative (Example), multiple clock cycles
- Fixed-precision accumulator: associative, one clock cycle

- Interpolation Step. kj,t+1(kj,t, εj,t,mt, At), j = 1, . . . , 10, 000

22 / 36
Programming FPGAs for Economics

N

A. Individual Agents Problem (IAP) Design

k̂′ =
[
µ(1− ε) + (1− τ)l̄ε

]
w + (1− δ + r)k︸ ︷︷ ︸

Wealth(k,ε,m,A)

−

{
λ+ βE

[1− δ + r′(
(µ(1− ε′) + (1− τ ′)l̄ε′)w′ + (1− δ + r′)k′︸ ︷︷ ︸

Wealth(k′,ε′,m′,A′)

−k′′
)γ]
}−1/γ

k′′ ≡ k′(k′) ≡ k′(k′(k, ε,m,A), ε′,m′, A′)

- Pipeline: Jump search algorithm to find the interpolation range

B. Simulation Design At each period t = 1, . . . , 1100:

- Accumulation Step. mt =
1

J

J∑
j=1

kj,t

- Floating-point addition: non-associative (Example), multiple clock cycles
- Fixed-precision accumulator: associative, one clock cycle

- Interpolation Step. kj,t+1(kj,t, εj,t,mt, At), j = 1, . . . , 10, 000

22 / 36
Programming FPGAs for Economics

N

Efficiency
Gains

23 / 36
Programming FPGAs for Economics

N

Efficiency Gains

Baseline Economy Time Performance

Table: Efficiency Gains of FPGA Acceleration

Speedup Relative Costs (%) Energy (%)

Cores
FPGAs FPGAs FPGAs

1 2 8 1 2 8 1 2 8

1 78.49 156.38 604.38 17.67 17.73 18.35 5.26 5.28 5.46
8 11.00 21.91 84.68 15.76 15.82 16.37 4.69 4.71 4.87
48 1.67 3.32 12.83 17.34 17.40 18.01 5.16 5.18 5.36

Speedup

- 1 FPGA performance of 78.49 cores.

-

24 / 36
Programming FPGAs for Economics

N

Efficiency Gains

Baseline Economy Time Performance

Table: Efficiency Gains of FPGA Acceleration

Speedup Relative Costs (%) Energy (%)

Cores
FPGAs FPGAs FPGAs

1 2 8 1 2 8 1 2 8

1 78.49 156.38 604.38 17.67 17.73 18.35 5.26 5.28 5.46
8 11.00 21.91 84.68 15.76 15.82 16.37 4.69 4.71 4.87
48 1.67 3.32 12.83 17.34 17.40 18.01 5.16 5.18 5.36

Speedup

- 1 FPGA performance of 78.49 cores.

- 8 FPGAs performance of 604.38 cores.

24 / 36
Programming FPGAs for Economics

N

Efficiency Gains

Baseline Economy Time Performance

Table: Efficiency Gains of FPGA Acceleration

Speedup Relative Costs (%) Energy (%)

Cores
FPGAs FPGAs FPGAs

1 2 8 1 2 8 1 2 8

1 78.49 156.38 604.38 17.67 17.73 18.35 5.26 5.28 5.46
8 11.00 21.91 84.68 15.76 15.82 16.37 4.69 4.71 4.87
48 1.67 3.32 12.83 17.34 17.40 18.01 5.16 5.18 5.36

Costs

- Costs = Total Execution Time × AWS on-demand prices

-

-

24 / 36
Programming FPGAs for Economics

N

Efficiency Gains

Baseline Economy Time Performance

Table: Efficiency Gains of FPGA Acceleration

Speedup Relative Costs (%) Energy (%)

Cores
FPGAs FPGAs FPGAs

1 2 8 1 2 8 1 2 8

1 78.49 156.38 604.38 17.67 17.73 18.35 5.26 5.28 5.46
8 11.00 21.91 84.68 15.76 15.82 16.37 4.69 4.71 4.87
48 1.67 3.32 12.83 17.34 17.40 18.01 5.16 5.18 5.36

Costs

- Costs = Total Execution Time × AWS on-demand prices

- FPGA acceleration solves at less than 18.35% of the CPU cost

-

24 / 36
Programming FPGAs for Economics

N

Efficiency Gains

Baseline Economy Time Performance

Table: Efficiency Gains of FPGA Acceleration

Speedup Relative Costs (%) Energy (%)

Cores
FPGAs FPGAs FPGAs

1 2 8 1 2 8 1 2 8

1 78.49 156.38 604.38 17.67 17.73 18.35 5.26 5.28 5.46
8 11.00 21.91 84.68 15.76 15.82 16.37 4.69 4.71 4.87
48 1.67 3.32 12.83 17.34 17.40 18.01 5.16 5.18 5.36

Costs

- Costs = Total Execution Time × AWS on-demand prices

- FPGA acceleration solves at less than 18.35% of the CPU cost

- One million economies: from $1043 to $184

24 / 36
Programming FPGAs for Economics

N

Efficiency Gains

Baseline Economy Time Performance

Table: Efficiency Gains of FPGA Acceleration

Speedup Relative Costs (%) Energy (%)

Cores
FPGAs FPGAs FPGAs

1 2 8 1 2 8 1 2 8

1 78.49 156.38 604.38 17.67 17.73 18.35 5.26 5.28 5.46
8 11.00 21.91 84.68 15.76 15.82 16.37 4.69 4.71 4.87
48 1.67 3.32 12.83 17.34 17.40 18.01 5.16 5.18 5.36

Energy

- Energy = Total Execution time × Power CPU core (8Watts), FPGA (33Watts)

-

-

24 / 36
Programming FPGAs for Economics

N

Efficiency Gains

Baseline Economy Time Performance

Table: Efficiency Gains of FPGA Acceleration

Speedup Relative Costs (%) Energy (%)

Cores
FPGAs FPGAs FPGAs

1 2 8 1 2 8 1 2 8

1 78.49 156.38 604.38 17.67 17.73 18.35 5.26 5.28 5.46
8 11.00 21.91 84.68 15.76 15.82 16.37 4.69 4.71 4.87
48 1.67 3.32 12.83 17.34 17.40 18.01 5.16 5.18 5.36

Energy

- Energy = Total Execution time × Power CPU core (8Watts), FPGA (33Watts)

- FPGA Energy is 5.46% of CPU Energy

-

24 / 36
Programming FPGAs for Economics

N

Efficiency Gains

Baseline Economy Time Performance

Table: Efficiency Gains of FPGA Acceleration

Speedup Relative Costs (%) Energy (%)

Cores
FPGAs FPGAs FPGAs

1 2 8 1 2 8 1 2 8

1 78.49 156.38 604.38 17.67 17.73 18.35 5.26 5.28 5.46
8 11.00 21.91 84.68 15.76 15.82 16.37 4.69 4.71 4.87
48 1.67 3.32 12.83 17.34 17.40 18.01 5.16 5.18 5.36

Energy

- Energy = Total Execution time × Power CPU core (8Watts), FPGA (33Watts)

- FPGA Energy is 5.46% of CPU Energy

- Organizations with in-house computational clusters Departments, Central Banks

- Relax power limits constraints
-

24 / 36
Programming FPGAs for Economics

N

Efficiency Gains

Baseline Economy Time Performance

Table: Efficiency Gains of FPGA Acceleration

Speedup Relative Costs (%) Energy (%)

Cores
FPGAs FPGAs FPGAs

1 2 8 1 2 8 1 2 8

1 78.49 156.38 604.38 17.67 17.73 18.35 5.26 5.28 5.46
8 11.00 21.91 84.68 15.76 15.82 16.37 4.69 4.71 4.87
48 1.67 3.32 12.83 17.34 17.40 18.01 5.16 5.18 5.36

Energy

- Energy = Total Execution time × Power CPU core (8Watts), FPGA (33Watts)

- FPGA Energy is 5.46% of CPU Energy

- Organizations with in-house computational clusters Departments, Central Banks

- Relax power limits constraints
- Clusters are expensive to maintain (HPC specialist, $85, 000)

24 / 36
Programming FPGAs for Economics

N

Robustness

25 / 36
Programming FPGAs for Economics

N

Efficiency Gains

Single Kernel Design

Table: Speedup Comparison One-Kernel Single FPGA vs. Single CPU Core

FPGA-Time(sec) CPU-Time(sec) Speedup(x) Costs(%) Energy(%)

0.84 31.54 37.66 36.81 7.30

26 / 36
Programming FPGAs for Economics

N

Efficiency Gains

Performance by Grids Size Time Performance

Table: Speedup Comparison across Grid Sizes

Individual Capital, Nk 100 200 300

1 FPGA vs. 8 Cores 11.00 14.16 14.59
2 FPGA vs. 8 Cores 21.91 28.24 29.13
8 FPGA vs. 8 Cores 84.68 109.68 114.50

Note: Speedups recorded by comparing the solution of 1,200 economies using AWS
instances connected to 1, 2, and 8 FPGAs and using Open-MPI parallelization on AWS

instances with 8 and 48 cores (rows) for different individual household capital Nk.

27 / 36
Programming FPGAs for Economics

N

Inspecting
the Mechanism

28 / 36
Programming FPGAs for Economics

N

Table: Speedup Gains: Acceleration Channels Accounting

Baseline Pipelining
Data Parallelism

Within
Economy

Across
Econ.

Single-core Execution

FPGA Solution 0.40

CL Utilization (%)
BRAM 5.48
DSP 6.13
Registers 3.94
LUT 6.11
URAM 5.50

Solution in 80 seconds (vs 30 seconds in CPU)

Automatic optimization (3GHz/250MHz=14x)

29 / 36
Programming FPGAs for Economics

N

Table: Speedup Gains: Acceleration Channels Accounting

Baseline Pipelining
Data Parallelism

Within
Economy

Across
Econ.

Single-core Execution

FPGA Solution 0.40 0.57

CL Utilization (%)
BRAM 5.48 8.45
DSP 6.13 12.87
Registers 3.94 5.24
LUT 6.11 9.14
URAM 5.50 5.50

Pipelining

- Interpolation

- Data precision

29 / 36
Programming FPGAs for Economics

N

Table: Speedup Gains: Acceleration Channels Accounting

Baseline Pipelining
Data Parallelism

Within
Economy

Across
Econ.

Single-core Execution

FPGA Solution 0.40 0.57 37.66

CL Utilization (%)
BRAM 5.48 8.45 22.26
DSP 6.13 12.87 31.13
Registers 3.94 5.24 12.03
LUT 6.11 9.14 25.17
URAM 5.50 5.50 5.50

Resources single-kernel design: Figure

29 / 36
Programming FPGAs for Economics

N

Table: Speedup Gains: Acceleration Channels Accounting

Baseline Pipelining
Data Parallelism

Within
Economy

Across
Econ.

Single-core Execution

FPGA Solution 0.40 0.57 37.66 78.49

CL Utilization (%)
BRAM 5.48 8.45 22.26 18.33
DSP 6.13 12.87 31.13 66.92
Registers 3.94 5.24 12.03 30.65
LUT 6.11 9.14 25.17 67.53
URAM 5.50 5.50 5.50 18.33

Resources three-kernel design: Figure

29 / 36
Programming FPGAs for Economics

N

Efficiency Gains

Carbon Footprint of Research Computing

- CPU core power: 0.013 kWh

- Xcel Energy: 37% (Natural Gas), 26% (Coal), 37% (Renewables)

- US EPA: 0.91 (Natural Gas), 2.21 (Coal), 0.1 (Renewables)

- lbs CO2 per Xcel Colorado kWh: 0.9483lbs

- lbs CO2 per CURC HPC core: 0.0123lbs CO2/core hour

- Summit and Blanca Super computers: 150 millions core hours per year

- Lbs CO2 per year: 1,849,185 lbs
- Metric Tons of CO2 per year: 838.78 168 cars per year

- FPGA power: 0.033 kWh

- lbs CO2 per FPGA core: 0.031 lbs CO2/FPGA hour

- Summit and Blanca Super computers: 1,911,071 FPGA hours per year (78.49x)

- Lbs CO2 per year: 59,804 lbs
- Metric Tons of CO2 per year: 27.12 5 cars per year

30 / 36
Programming FPGAs for Economics

N

Efficiency Gains

Carbon Footprint of Research Computing

- CPU core power: 0.013 kWh

- Xcel Energy: 37% (Natural Gas), 26% (Coal), 37% (Renewables)

- US EPA: 0.91 (Natural Gas), 2.21 (Coal), 0.1 (Renewables)

- lbs CO2 per Xcel Colorado kWh: 0.9483lbs

- lbs CO2 per CURC HPC core: 0.0123lbs CO2/core hour

- Summit and Blanca Super computers: 150 millions core hours per year

- Lbs CO2 per year: 1,849,185 lbs
- Metric Tons of CO2 per year: 838.78 168 cars per year

- FPGA power: 0.033 kWh

- lbs CO2 per FPGA core: 0.031 lbs CO2/FPGA hour

- Summit and Blanca Super computers: 1,911,071 FPGA hours per year (78.49x)

- Lbs CO2 per year: 59,804 lbs
- Metric Tons of CO2 per year: 27.12 5 cars per year

30 / 36
Programming FPGAs for Economics

N

Toward Electrical Engineering Economics

Conclusions

- FPGA and HLS compiler to solve heterogeneous agent models

- With minor modifications of C-code we document:

speedup of the magnitude of medium-to-high scale clusters

costs savings (<18.35 %)

energy savings (<5.46 %) (reduction of carboon footprint)

- Tutorial (85 pages)

- Next Steps: Climate Change Models, Monetary Policy

31 / 36
Programming FPGAs for Economics

N

Toward Electrical Engineering Economics

Conclusions

- FPGA and HLS compiler to solve heterogeneous agent models

- With minor modifications of C-code we document:

speedup of the magnitude of medium-to-high scale clusters

costs savings (<18.35 %)

energy savings (<5.46 %) (reduction of carboon footprint)

- Tutorial (85 pages)

- Next Steps: Climate Change Models, Monetary Policy

31 / 36
Programming FPGAs for Economics

N

Toward Electrical Engineering Economics

Conclusions

- FPGA and HLS compiler to solve heterogeneous agent models

- With minor modifications of C-code we document:

speedup of the magnitude of medium-to-high scale clusters

costs savings (<18.35 %)

energy savings (<5.46 %) (reduction of carboon footprint)

- Tutorial (85 pages)

- Next Steps: Climate Change Models, Monetary Policy

31 / 36
Programming FPGAs for Economics

N

Toward Electrical Engineering Economics

Conclusions

- FPGA and HLS compiler to solve heterogeneous agent models

- With minor modifications of C-code we document:

speedup of the magnitude of medium-to-high scale clusters

costs savings (<18.35 %)

energy savings (<5.46 %) (reduction of carboon footprint)

- Tutorial (85 pages)

- Next Steps: Climate Change Models, Monetary Policy

31 / 36
Programming FPGAs for Economics

N

Toward Electrical Engineering Economics

ASICs

32 / 36
Programming FPGAs for Economics

N

Table: Technical Specifications

AWS Instance Cores FPGAs Pricing ($/hour) Memory (GiB)

m5n.large 1 - 0.119 8
m5n.4xlarge 8 - 0.952 64
m5n.24xlarge 48 - 5.712 384
f1.2xlarge 1 1 1.650 122
f1.4xlarge 4 2 3.300 244
f1.16xlarge 32 8 13.200 976

32 / 36
Programming FPGAs for Economics

N

Table: Resource Utilization by Grids Size

Individual Capital, Nk 100 200 300

BRAM(%) 18.33 20.97 24.72
DSP(%) 66.92 66.92 66.92
Registers(%) 30.65 30.51 30.76
LUT(%) 67.53 68.88 70.35
URAM(%) 18.33 18.33 18.33

32 / 36
Programming FPGAs for Economics

N

CPU cores

N. 1 8 48

Time (s) 37854.52 5303.73 803.63
Cost ($) 1.25 1.40 1.28
Energy (J) 302836.16 339438.72 308593.92

AWS Instance m5n.large m5n.4xlarge m5n.24xlarge

FPGA devices

N. 1 2 8

Time (s) 482.30 242.06 62.63
Cost ($) 0.22 0.22 0.23
Energy (J) 15915.90 15975.96 16534.32

AWS Instance f1.2xlarge f1.4xlarge f1.16xlarge

Back

32 / 36
Programming FPGAs for Economics

N

Table: Time Performance by Individual Capital Grid Size, Nk

: CPU Execution Time

Nk = 100 Nk = 200 Nk = 300

CPU-Cores CPU-Cores CPU-Cores
8 48 8 48 8 48

5303.73 803.63 9502.63 1500.15 15432.15 2347.69

: FPGA Execution Time

Nk = 100 Nk = 200 Nk = 300

FPGAs FPGAs FPGAs
1 2 8 1 2 8 1 2 8

482.30 242.06 62.63 671.28 336.54 86.64 1057.53 529.75 134.78

Back

33 / 36
Programming FPGAs for Economics

N

Toward Electrical Engineering Economics

Equilibrium Back

Given an exogenous transition law for {A, ε}, a recursive competitive
equilibrium is the set of prices {w, r}, policy function k′(·), tax rate τ , and
law of motion H(·) for the cross-sectional distribution Γ such that:

given the individual household state {k, ε; Γ, A}, prices {w, r} and the laws of motion
of {A, ε} and Γ, the policy function k′(·) solves the Bellman equation representation
of the household’s sequential problem;

given {Γ, A}, input factor prices {w, r} receive their marginal products;

given A, the labor income tax rate τ balances the government budget;

the markets for labor and capital clear;

given {w, r,Γ, k′} and the transition laws for {A, ε}, the law of motion H(·) is
satisfied.

33 / 36
Programming FPGAs for Economics

N

Toward Electrical Engineering Economics

Golbderg (1991) Back

Let

x = 1e30
y = −1e30
z = 1

(x+ y) + z = 1, x+ (y + z) = 0

Floating-point addition is non-associative

33 / 36
Programming FPGAs for Economics

N

Toward Electrical Engineering Economics

Within Economy Resources Back

Figure: Single-kernel Design: Resource Utilization

Note: Resources utilized by: (i) the single-kernel CL design (yellow area); (ii) by the
AWS Shell (orange area); and (iii) available CL resources (other colors). The image
is captured using Xilinx Vivado.

34 / 36
Programming FPGAs for Economics

N

Toward Electrical Engineering Economics

Within Economy Resources Back

Figure: Three-kernel Design: Resource Utilization

Note: Resources utilized by: (i) the three-kernel CL design (yellow, green, blue areas
each corresponding to one kernel); (ii) by the AWS Shell (orange area); and (iii)
available CL resources (other colors, of which the pink area serves as a wrapper).
The image is created using Xilinx Vivado.

35 / 36
Programming FPGAs for Economics

N

Toward Electrical Engineering Economics

Bibliography

Achdou, Y., J. Han, J.-M. Lasry, P.-L. Lions, and B. Moll (2021). Income
and wealth distribution in macroeconomics: A continuous-time approach.
Review of Economic Studies 89(1), 45–86.

Aldrich, E. M., J. Fernández-Villaverde, A. Ronald Gallant, and J. F.
Rubio-Raḿırez (2011). Tapping the supercomputer under your desk:
Solving dynamic equilibrium models with graphics processors. Journal of
Economic Dynamics and Control 35(3), 386–393.

Algan, Y., O. Allais, and W. J. Den Haan (2008). Solving
heterogeneous-agent models with parameterized cross-sectional
distributions. Journal of Economic Dynamics and Control 32(3), 875–908.

Algan, Y., O. Allais, W. J. Den Haan, and P. Rendahl (2014). Solving and
simulating models with heterogeneous agents and aggregate uncertainty. In
Handbook of Computational Economics, Volume 3, pp. 277–324. Elsevier.

Auclert, A., M. Rognlie, and L. Straub (2020). Micro jumps, macro humps:
Monetary policy and business cycles in an estimated HANK model.
Working Paper 26647, National Bureau of Economic Research.

Azizi, N., I. Kuon, A. Egier, A. Darabiha, and P. Chow (2004). Reconfigurable
molecular dynamics simulator. In 12th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, pp. 197–206.

Bayer, C. and R. Luetticke (2018). Solving heterogeneous agent models in
discrete time with many idiosyncratic states by perturbation methods.
Mimeo, University of Bonn.

Berczik, P., R. Mnner, G. Marcus, R. Banerje, A. Kugel, R. Klessen, and
G. Lienhart (2009). Accelerating astrophysical particle simulations with
programmable hardware (FPGA and GPU). Computer Science Research
and Development, 231–239.

Bhandari, A., D. Evans, M. Golosov, and T. J. Sargent (2017). Fiscal policy
and debt management with incomplete markets. Quarterly Journal of
Economics 132(2), 617–663.

Bilal, A. (2021). Solving heterogeneous agent models with the master
equation. Technical report, University of Chicago.

Brumm, J. and S. Scheidegger (2017). Using adaptive sparse grids to solve
high-dimensional dynamic models. Econometrica 85(5), 1575–1612.

Childers, D. (2018). Solution of rational expectations models with function
valued states. Manuscript, Carnegie Mellon.

Den Haan, W. J. and P. Rendahl (2010). Solving the incomplete markets
model with aggregate uncertainty using explicit aggregation. Journal of
Economic Dynamics and Control 34(1), 69–78.

Duarte, V., D. Duarte, J. Fonseca, and A. Montecinos (2019). Benchmarking
machine-learning software and hardware for quantitative economics.
Journal of Economic Dynamics and Control 111, 103796.

Fernández-Villaverde, J., S. Hurtado, and G. Nuño (2019). Financial frictions
and the wealth distribution. Working Paper 26302, National Bureau of
Economic Research.

Herbordt, M. C., J. Model, Y. Gu, B. Sukhwani, and T. VanCourt (2006).
Single pass, blast-like, approximate string matching on FPGAs. In 2006
14th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, pp. 217–226.

Hoang, D. (1993). Searching genetic databases on splash 2. In [1993]
Proceedings IEEE Workshop on FPGAs for Custom Computing Machines,
pp. 185–191.

Judd, K. L., L. Maliar, S. Maliar, and I. Tsener (2017). How to solve
dynamic stochastic models computing expectations just once. Quantitative
Economics 8(3), 851–893.

Kahou, M. E., J. Fernández-Villaverde, J. Perla, and A. Sood (2021).
Exploiting symmetry in high-dimensional dynamic programming. Working
Paper 28981, National Bureau of Economic Research.

Maliar, L., S. Maliar, and F. Valli (2010). Solving the incomplete markets
model with aggregate uncertainty using the Krusell-Smith algorithm.
Journal of Economic Dynamics and Control 34(1), 42–49.

Mertens, T. M. and K. L. Judd (2018). Solving an incomplete markets model
with a large cross-section of agents. Journal of Economic Dynamics and
Control 91, 349–368.

Nuño, G. and C. Thomas (2016). Optimal monetary policy with
heterogeneous agents. Working Paper 1624, Banco de España.

Peri, A. (2020). A hardware approach to value function iteration. Journal of
Economic Dynamics and Control 114, 103894.

Pröhl, E. (2015). Approximating equilibria with ex-post heterogeneity and
aggregate risk. Research Paper 17-63, Swiss Finance Institute.

Reiter, M. (2009). Solving heterogeneous-agent models by projection and
perturbation. Journal of Economic Dynamics and Control 33(3), 649–665.

Reiter, M. (2010). Solving the incomplete markets model with aggregate
uncertainty by backward induction. Journal of Economic Dynamics and
Control 34(1), 28–35.

Rust, J. (1997). Using randomization to break the curse of dimensionality.
Econometrica 65(3), 487–516.

Sager, E. (2014). Solving the incomplete markets model with aggregate
uncertainty: The method of mixtures. US Bureau of Labor Statistics,
Office of Prices and Living Conditions.

Winberry, T. (2018). A method for solving and estimating heterogeneous
agent macro models. Quantitative Economics 9(3), 1123–1151.

Young, E. R. (2010). Solving the incomplete markets model with aggregate
uncertainty using the KrusellSmith algorithm and non-stochastic
simulations. Journal of Economic Dynamics and Control 34(1), 36–41.

Young-Schultz, T., L. Lilge, S. Brown, and V. Betz (2020). Using OpenCL to
enable software-like development of an FPGA-accelerated biophotonic
cancer treatment simulator. Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 86–96.

36 / 36
Programming FPGAs for Economics

N

	Introduction
	Contribution
	Application
	Acceleration Schemes and Hardware Architecture
	Efficiency Gains
	Toward Electrical Engineering Economics

