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Abstract

This paper shows how to identify and estimate price informativeness. Starting from i)
an asset pricing equation and ii) a stochastic process for asset payoffs, we show how to
exactly recover price informativeness from regressions of changes in asset prices on changes
in asset payoffs. Applying our identification results, we estimate a panel of stock-specific
measures of price informativeness for U.S. stocks. In the cross-section, large, high turnover,
and high institutional ownership stocks have higher price informativeness. In the time series,
the median, mean, and standard deviation of the distribution of price informativeness have
steadily increased since the mid-1980s.
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1 Introduction

Financial markets play an important role by aggregating information about the fundamentals of
the economy. By pooling different sources of information, asset prices act as a public signal to
any external observer in the economy, potentially influencing individual decisions. This view that
treats asset prices as a signal about future fundamentals is often traced back to Hayek (1945).1

Despite the substantial theoretical literature that studies how prices aggregate information,
the connection between the theoretical and empirical research on price informativeness remains
understudied. The ability to measure price informativeness opens the door to understanding
whether different markets aggregate dispersed information to different degrees at a particular
moment or over time, which in turn makes it possible to test and discipline a variety of theories
of information aggregation.

In this paper, we show how to identify and estimate exact stock-specific measures of price
informativeness. To our knowledge, we provide the first identification results of price infor-
mativeness within the literature on learning in financial markets. To derive our results, we
only need to postulate i) an asset pricing equation and ii) a stochastic process for asset pay-
offs. Our main result shows that a specific combination of R-squareds from linear regressions
of changes in asset prices on changes in asset payoffs exactly identifies price informativeness.
Our results are valid within a large class of models that may feature rich heterogeneity across
investors’ preferences, endowments, private signals, and private trading needs; competitive or
strategic market structures; symmetric or asymmetric information; and that require minimal
distributional assumptions.

We begin by formally defining within our framework two price informativeness measures that
have been widely studied in the theoretical literature on learning in financial markets: absolute
and relative price informativeness. Absolute price informativeness, which formally corresponds
to the precision of the unbiased signal about the innovation to the asset payoff contained in the
asset price, measures the precision of the public signal revealed by the asset price. Relative price
informativeness, which corrects absolute price informativeness to account for the variability of
the asset payoff, measures how much can be learned from the price relative to the total amount
that can be learned. Relative price informativeness takes values between 0 and 1, making
it easily interpretable and comparable across stocks. Moreover, in a Gaussian environment,
relative price informativeness exactly corresponds to the Kalman gain in the updating process
of a Bayesian external observer who only learns from the price. For instance, finding that relative

1Hayek (1945) highlights the relevance of price informativeness as follows: “The economic problem of society
is (...) rather a problem of how to secure the best use of resources known to any of the members of society, for
ends whose relative importance only these individuals know. Or, to put it briefly, it is a problem of the utilization
of knowledge which is not given to anyone in its totality.”
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price informativeness is 0.2 implies i) that the uncertainty faced by an external observer about
the asset payoff is reduced by 20% after observing the price, and ii) that an external observer
puts a weight of 20% on the price signal (and a weight of 80% on the prior) when forming a
posterior belief over the future payoff.

We succinctly describe here our approach to identifying and estimating (relative) price in-
formativeness. Consider the following two regressions that relate log-price changes, ∆pt, to the
contemporary and future differences in log-asset payoffs, denoted by ∆xt and ∆xt+1, respec-
tively:

∆pt = β + β0∆xt + β1∆xt+1 + et (R1)

∆pt = ζ + ζ0∆xt + eζt , (R2)

where we denote the R-squareds of Regressions R1 and R2 by R2
∆x,∆x′ and R2

∆x, respectively.
Our main result shows that the normalized difference in R-squareds

R2
∆x,∆x′ −R2

∆x
1−R2

∆x

exactly corresponds to relative price informativeness. In addition to this identification result, we
show that estimating these two regressions using ordinary least squares (OLS) yields a consistent
estimate of relative price informativeness. An important implication of our results is that it is
possible to recover price informativeness by relying exclusively on price and payoff information,
without having to observe the sources of noise in asset prices — subsumed in the error terms et
and eζt . Our identification results are therefore agnostic about the nature of the noise in asset
prices.

Even though we show that price informativeness can be recovered without fully specifying
the model primitives, a microfounded model is necessary to understand the link between price
informativeness and the primitives in the economy. For this reason, we develop several micro-
founded dynamic models of trading that are consistent with the asset pricing equation and the
stochastic process for asset payoffs that we use to derive our identification results. First, we
study a model in which investors have private signals about future payoffs and orthogonal trad-
ing motives in the form of random priors (sentiment). Subsequently, we study a representative
agent model similar to those used in the macro-finance literature. Finally, we study a model
with informed and uninformed investors, as in the classic literature on information and learning.
Analyzing these applications has a dual purpose. First, these applications show that our identi-
fication results apply to economies i) with or without dispersed information among investors, ii)
with time-varying risk aversion/risk-premia, iii) with investors who may or may not learn from
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prices, and iv) in which noise may arise from different sources. Second, these applications allow
us to provide a structural economic interpretation to the empirical results presented in Section
5, a task we carry out in Section 6.

Even though price informativeness and price/return predictability are connected, these are
conceptually different notions. We relate our results to the well-established literature on return
predictability, which is based on running predictive regressions of future returns on current vari-
ables, the opposite of our approach. We explain that predictive regressions are the appropriate
tool if one is interested in predicting future returns, but that our approach is the correct one
if one wants to recover price informativeness. We also discuss in detail how our results relate
to alternative measures of informativeness, like the posterior variance of a Bayesian external
observer or the forecasting price efficiency notion of Bond, Edmans and Goldstein (2012).

Before estimating price informativeness, we extend our identification results in several dimen-
sions. First, we describe how to account for a non-zero correlation between payoff innovations
and noise. Second, we allow for the possibility of public signals about future payoffs. Third, we
augment the payoff process to have an unlearnable component.2 These extensions highlight that
our results apply to more general and empirically relevant scenarios, allowing us also to refine
the interpretation of our empirical results.

Finally, we use our identification results to estimate relative price informativeness. We
recover a panel of stock-specific measures of price informativeness between 1980 and 2017 by
running rolling time-series regressions of the form implied by Proposition 1 at the stock level
using quarterly data. We find that the distribution of informativeness across stocks is right-
skewed, with time-series averages of the median and mean levels of price informativeness across
all stocks and years given by 1.84% and 4.25%, respectively. Our estimation exercise allows us to
uncover both cross-sectional and time-series patterns about the behavior of price informativeness.
In the cross section, we find that stocks that i) are larger, ii) turn over more quickly, and iii)
have a higher institutional ownership share have higher price informativeness. In the time series,
we find that the median and mean price informativeness have steadily increased since the mid-
1980s. The standard deviation of price informativeness has also increased over this period. In the
Online Appendix, we include additional results that show the robustness of our cross-sectional
and time-series findings.

We conclude by providing an economic interpretation of the empirical estimates of price
informativeness. If one were merely interested in knowing the precision of the signal contained
in asset prices about future payoffs, our empirical results directly conclude that such signal is
more precise for large, high turnover, and high institutional ownership stocks, and has become

2In previous versions of this paper, we also considered environments with multiple risky assets and strategic
investors.
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more precise on average over the last few decades. In terms of deeper primitives, through the
lens of the structural models developed in Section 3, our cross-sectional empirical findings imply
that investors have relatively more precise private information about large, high turnover, and
high institutional ownership stocks. Our time-series findings imply that, over the last decades,
on average private information has increased relative to the noise in prices.

Related Literature Our theoretical framework builds on the literature that studies the
role played by financial markets in aggregating dispersed information, following Grossman and
Stiglitz (1980), Hellwig (1980), Diamond and Verrecchia (1981), and De Long et al. (1990),
among others. Vives (2008) and Veldkamp (2011) provide systematic reviews of this well-
developed and growing body of work. To our knowledge, we provide the first results on how
to identify and consistently estimate price informativeness — understood as the precision of
the signal about future payoffs contained in asset prices — within the literature of learning in
financial markets.

While a substantial theoretical literature has studied how financial markets aggregate infor-
mation, the development of empirical measures of price informativeness is more recent. There
is a body of work that has proposed ad hoc variables to measure the informational content of
prices. These ad hoc measures have been inspired by economic models to different degrees.
Influenced by the predictions of the CAPM/APT frameworks and following the prominent Roll
(1988) presidential address, Morck, Yeung and Yu (2000) study regressions of asset returns on
factors and informally argue that the R2 of such regressions can be used to capture whether
asset prices are informative/predictive about firm-specific fundamentals. This ad hoc measure,
sometimes referred to as price nonsynchronicity, has been used in several empirical studies that
link price informativeness to capital allocation. In particular, Wurgler (2000) finds that coun-
tries with higher price nonsynchronicity display a better allocation of capital. Durnev, Morck
and Yeung (2004) document a positive correlation between price nonsynchronicity and corporate
investment. Chen, Goldstein and Jiang (2006) establish that there exists a positive relation-
ship between the sensitivity of corporate investment to stock prices and two measures of the
information contained in prices, price nonsynchronicity and the probability of informed trading
(PIN), concluding that managers learn from the price when making corporate investment deci-
sions. The PIN, developed in Easley, O’Hara and Paperman (1998), estimates the probability
of an informed trade using high-frequency data through the lens of a model with informed and
uninformed traders. See also the work of Hou and Moskowitz (2005) and Weller (2018), who
propose alternative empirical measures.

While some of the existing work using ad hoc measures may uncover interesting empirical
relations, Hou, Peng and Xiong (2013) forcefully highlight that a measure like Roll’s R2 (price
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nonsynchronicity) lacks a structural interpretation. They question the link between return price
nonsynchronicity and price informativeness theoretically, in rational and behavioral settings,
and empirically. In general, even if ad hoc measures of price informativeness were correlated
with actual price informativeness, it would be impossible to interpret the magnitude of these ad
hoc variables without a structural approach. In this paper, we address the Hou, Peng and Xiong
(2013) critique of the existing literature by showing how to identify and consistently estimate
exact stock-specific measures of price informativeness within a structural framework.

More recently, Bai, Philippon and Savov (2016), have considered the question of whether
financial markets have become more informative over time. Even though their empirical ap-
proach is loosely motivated by a theoretical model, they do not provide identification results or
show how to formally identify and estimate price informativeness in the context of a structural
model. We discuss in detail how our results relate to this paper in Section A of the Online Ap-
pendix. Our results and the recent work of Farboodi et al. (2020) and Kacperczyk, Sundaresan
and Wang (2020) complement each other. While our focus is to provide identification results
for price informativeness (i.e., the signal-to-noise ratio in prices) in a general framework, Far-
boodi et al. (2020) seek to understand how changes in data processing over time have altered the
amount of information (signal) incorporated in asset prices. Using our measure of price informa-
tiveness as an input in their analysis, they conclude that the divergence in price informativeness
across stocks is due to an increase in the amount of information incorporated in prices of large,
high growth stocks driven by an increase in data processing capacity. Kacperczyk, Sundaresan
and Wang (2020) find a positive relationship between price informativeness and the ownership
share of foreign institutional investors, using both ad hoc measures of informativeness and the
identification results that we develop in this paper.

As in any structural model, the measure of informativeness that we recover is linked to
our assumptions on the behavior of investors and the market structure. While our framework is
general along several dimensions, there is scope to think about how to identify price informative-
ness in alternative models of trading that depart from our linearity assumptions, like the model
in Albagli, Hellwig and Tsyvinski (2015). In particular, our analysis purposefully abstracts
from feedback between prices and fundamentals, summarized in Bond, Edmans and Goldstein
(2012) and tested in Chen, Goldstein and Jiang (2006). Incorporating two-way feedback be-
tween asset prices and payoffs unavoidably introduces non-linearities that must be addressed
using full-information methods.

Outline Section 2 describes the general framework used to define price informativeness and
presents our main results. Section 3 studies several microfounded models that are special cases of
the general framework. Section 4 extends our results to more general environments, and Section
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5 empirically implements the identification results introduced in the paper. Section 6 provides
an economic interpretation of our empirical results through the lens of the general framework
introduced in Section 2 and the microfounded models developed in Section 3, and Section 7
concludes. All proofs, derivations, and additional results are in the Appendix.

2 General Framework

In this section, we show how to formally identify and estimate price informativeness from an
asset pricing equation and a stochastic process for asset payoffs. To stay as close as possible to
the empirical implementation in Section 5, we derive the main results in the body of the paper in
a log-difference-stationary environment, which is considered a better representation of reality.3

2.1 Environment

We consider a discrete time environment with dates t = 0, 1, 2, . . . ,∞, in which investors trade
a risky asset in fixed supply at a (log) price pt at each date t. We assume that the (log) payoff
of the risky asset at date t+ 1, xt+1, follows a difference-stationary AR(1) process

∆xt+1 = µ∆x + ρ∆xt + ut, (1)

where ∆xt ≡ xt−xt−1, µ∆x is a scalar, |ρ| < 1, and where the innovations to the payoff difference,
ut, have mean zero, a finite variance denoted by Var [ut] = σ2

u = τ−1
u , and are identically and

independently distributed over time. Note that the innovation to the t+ 1 payoff difference, ut,
is indexed by t — instead of t+ 1 — to indicate that investors can potentially learn about the
realization of ut at date t.

We assume that the equilibrium (log) price difference is given by

∆pt = φ+ φ0∆xt + φ1∆xt+1 + φn∆nt, (2)

where φ, φ0, φ1, and φn are parameters and where ∆nt ≡ nt − nt−1 represents the change in
the aggregate component of investors’ trading motives that are orthogonal to the asset payoff,
given by ∆nt = µ∆n + ε∆n

t , where Var [∆nt] = σ2
∆n = τ−1

∆n. As shown in Section 3, the random
variable nt can be interpreted as a measure of investors’ sentiment, risk-bearing capacity, or
noise trading activity. Our timing assumes that date t variables, in particular ∆xt and ut, are
realized before the price pt is determined. We further assume that ut and ∆nt are independent

3In the Supplemental Appendix, we re-derive the main results of the paper in a level-stationary environment,
which is the benchmark environment in the literature on information and learning in financial markets (Vives,
2008; Veldkamp, 2011), and also in log-level-stationary and difference-stationary environments.
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— this is without loss of generality, as we show in Section 4.
In Section 3, we show that Equation (2) emerges endogenously as the solution to several

fully specified dynamic models of trading. In that case, the parameters φ, φ0, φ1, and φn can
be mapped to specific combinations of primitives. In Section 4, we extend our results to even
more general environments.

2.2 Price Informativeness: Definition

Within the environment introduced in Section 2, we now formally define two related measures
of informativeness: absolute and relative price informativeness. Neither of these notions is new.
In fact, we focus our analysis on them because they have been widely used in the theoretical
literature on information and learning. Absolute price informativeness is discussed in Section 4 of
Vives (2008). Relative price informativeness corresponds to the exact notion of informativeness
used in Grossman and Stiglitz (1980).4 The contribution of this paper is to formally identify and
estimate these notions. We discuss closely related measures of price informativeness in Remark
1 below.

Formally, in our context, the unbiased signal of the innovation to future payoffs ut contained
in the price is the key variable of interest from the perspective of understanding how informative
are asset prices about future payoffs. This endogenous unbiased signal, which we denote by πt,
is given by

πt ≡
∆pt −

(
φ+ φ1µ∆x + φnµ∆n + (φ0 + ρφ1) ∆xt

)
φ1

. (3)

Given Equation (3), πt = ut + φn
φ1

(∆nt − µ∆n) defines an endogenous unbiased signal about ut,
where φn

φ1
(∆nt − µ∆n) acts as the noise contained in the price signal. This signal πt is unbiased

because E [πt|ut,∆xt] = ut. Both absolute and relative price informativeness are the relevant
measures for an external observer who uses the asset price as a signal to learn about future asset
payoffs.

Definition. (Price informativeness)
a) Absolute price informativeness, denoted by τπ ∈ [0,∞), is the precision of the unbiased signal
about the innovation to the asset payoff contained in the asset price. Given Equation (2), it is
formally given by

τπ ≡ (Var [πt|xt+1,∆xt])−1 =
(
φ1
φn

)2
τ∆n, (4)

where τ∆n = Var [∆nt]−1.
b) Relative price informativeness, denoted by τRπ ∈ [0, 1], is the ratio between absolute price

4Relative price informativeness, as defined in Equation (4) below, exactly corresponds to Equation (17) in
Grossman and Stiglitz (1980).
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informativeness and the sum of absolute price informativeness and the precision of the innovation
to the asset payoff. Given Equation (2), it is formally given by

τRπ ≡
τπ

τπ + τu
, (5)

where τu = Var [ut]−1.

The definition of absolute price informativeness connects with the large body of work that
follows Blackwell (1953). According to Blackwell’s informativeness criterion to rank experi-
ments/signals, a signal is more informative than another when it is more valuable to a given
decision-maker. According to that criterion, in the environment considered here, absolute price
informativeness induces a complete order of price signals for a decision-maker with a quadratic
objective around the value of the future asset payoff. We would like to emphasize that, in gen-
eral, price informativeness and social welfare can move in opposite directions. That is, it is well
known that more informative signals can be associated with higher or lower social welfare de-
pending on the environment considered — see, for instance, Angeletos and Pavan (2007, 2009).
Consequently, the welfare implications of price informativeness can only be determined within
a particular structural model.

Intuitively, absolute price informativeness measures the signal-to-noise ratio contained in
the asset price. If the price is very responsive to xt+1, perhaps because investors trade with
very precise information about the future payoff, φ1 and price informativeness will be higher.
Alternatively, if the price is mostly driven by trading motives that are orthogonal to future
payoffs, perhaps reflecting investors’ sentiment, φ2

nτ
−1
∆n will be higher and price informativeness

will be lower. When price informativeness is high, an external observer receives a very precise
signal about future payoffs by observing the change in the asset price ∆pt. On the contrary,
when price informativeness is low, an external observer learns little about future payoffs by
observing the change in the asset price ∆pt.

The definition of relative price informativeness corrects absolute price informativeness to
account for the variability of the payoff, via τu. This measure captures the precision of the
price signal, given by τπ, relative to the sum of the prior and the signal precisions of an external
observer who only learns from the price, given by τπ+τu. When uncertainty is Gaussian, relative
price informativeness as defined in Equation (5) corresponds exactly to the Kalman gain of a
Bayesian external observer who only learns from the price, as shown in Equation (7) below. If
an external observer had additional information about the future payoff in addition to the price,
the Kalman gain that we identify would be an upper bound to the one used by such external
observer.

Relative price informativeness is an appealing object because it provides a bounded (between
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0 and 1), unit-free measure of informativeness that facilitates precise quantitative comparisons.
The unit-free nature of this measure is particularly relevant when comparing informativeness
across assets with different underlying payoff distributions (i.e., different τu), for which com-
paring absolute price informativeness is meaningless. In Remark 1 below, we further explain
how absolute and relative price informativeness relate to other notions like posterior variances
or forecasting price efficiency. In the body of the paper, we focus on the identification of rela-
tive price informativeness because it is easily interpretable and comparable across stocks. We
include identification results for absolute price informativeness in the Appendix. Going for-
ward, to simplify the exposition, we often refer to relative price informativeness simply as price
informativeness.

2.3 Price Informativeness: Identification

Proposition 1 introduces the main result of the paper. It shows how to combine the R-squareds
of regressions of changes in asset prices on realized and future changes in asset payoffs to recover
price informativeness.

Proposition 1. (Identifying price informativeness) Let β, β0, and β1 denote the coeffi-
cients of the following regression of log-price differences on realized and future log-payoff differ-
ences:

∆pt = β + β0∆xt + β1∆xt+1 + et, (R1)

where ∆pt = pt − pt−1 denotes the date t change in log-price, ∆xt = xt − xt−1 and ∆xt+1 =
xt+1−xt respectively denote the date t and t+1 log-payoff differences, and where R2

∆x,∆x′ denotes
the R-squared of Regression R1. Let ζ and ζ0 denote the coefficients of the following regression
of log-price differences on realized log-payoff differences:

∆pt = ζ + ζ0∆xt + eζt , (R2)

where R2
∆x denotes the R-squared of Regression R2. Then, relative price informativeness, τRπ ,

defined in Equation (5), can be recovered as

τRπ =
R2

∆x,∆x′ −R2
∆x

1−R2
∆x

. (6)

Estimating Regressions R1 and R2 via OLS yields consistent estimates of R2
∆x,∆x′ and R2

∆x.

The proof of Proposition 1 relies on identifying the right combination of parameters in the
econometric specification defined by Regressions R1 and R2 that maps into the definition of
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relative price informativeness, τRπ . We show in the Appendix that a similar logic can be used to
recover absolute price informativeness. It should be evident that if one could observe the non-
payoff-related determinants of prices (nt or ∆nt), that information could be used to directly
recover all the relevant primitives in Equations (1) and (2). The non-trivial economic content of
Proposition 1 is that if one is interested in recovering price informativeness, it is possible to do
so by relying exclusively on price and payoff information, without having to observe nt or ∆nt.

0 R2
∆x R2

∆x,∆x′ 1

R2
∆x,∆x′ −R2

∆x

1−R2
∆x

Figure 1: Interpreting relative price informativeness
Note: Relative price informativeness can be computed as the reduction in uncertainty, given by R2

∆x,∆x′ −R2
∆x,

relative to the remaining residual uncertainty about future payoffs after conditioning on the realized date t payoff,
given by 1−R2

∆x.

Figure 1 illustrates how to interpret Equation (6). The denominator 1− R2
∆x can be inter-

preted as the residual uncertainty about future payoffs after conditioning on the realized date
t asset payoff. The numerator R2

∆x,∆x′ − R2
∆x can be interpreted as the percentage reduction

in uncertainty about future payoffs after observing the asset price at date t in addition to the
realized payoff ∆xt. Because R2

∆x,∆x′ ≥ R2
∆x and R2

∆x,∆x′ ∈ [0, 1], it must be that τRπ ∈ [0, 1].
As we show in the Appendix, if all random variables in the model are Gaussian, a Bayesian

external observer who only learns from the price has the following posterior distribution over ut:

ut|∆pt,∆xt ∼ N
(
τRπ πt, (τπ + τu)−1

)
, (7)

where πt, τπ, and τRπ are respectively defined in Equations (3), (4), and (5). Quantitatively,
a relative price informativeness of, for instance, 0.15, implies that the initial uncertainty of an
external observer who only learns from the price about the innovation to the future payoff is
reduced by 15% after learning from the price — this interpretation follows from the fact that
(τπ + τu)−1 =

(
1− τRπ

)
τ−1
u .

Even though we emphasize the economic identification of price informativeness, we also
address how to recover consistent estimates. It is worth highlighting that estimating Regressions
R1 and R2 through OLS (ordinary least squares) yields consistent estimates of all the relevant
parameters and R-squareds, since the error terms in both regressions are orthogonal to the
regressors. Therefore, the estimates of price informativeness implied by Equations (3) and (4)
will also be consistent.

We conclude this section with three remarks.
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Remark 1. Alternative measures of informativeness. The notion of price informativeness defined
above can be related to other variables, in particular, i) the posterior variance of the future
payoff conditional on the price and the current payoff, given by VP ≡ Var [ut|∆pt,∆xt] and ii)
forecasting price efficiency (FPE), given by VFPE ≡ Var [E [ut|∆pt,∆xt]], as defined in Bond,
Edmans and Goldstein (2012). Both variables are linked through the Law of Total Variance, as
follows

Var [ut|∆xt]︸ ︷︷ ︸
τ−1
u

= E

Var [ut|∆pt,∆xt]︸ ︷︷ ︸
VP

+ Var [E [ut|∆pt,∆xt]]︸ ︷︷ ︸
VFPE

.

While VP corresponds to the residual uncertainty about future payoffs after observing the
price, VFPE measures the variation of the expectation of future payoffs after observing the price.
When uncertainty is Gaussian, for a Bayesian external observer who only learns from the price,
both variables correspond to

VP = 1
τπ + τu

= 1− τRπ
τu

and VFPE = τπ
τπ + τu

1
τu

= τRπ
τu
. (8)

Equation (8) illustrates the challenge faced by both variables to identify the precision of the
price as a signal: they confound the effect of uncertainty about future payoffs (τ−1

u ) with price
informativeness (either τRπ or τπ). For instance, VP can be low because the payoff is not very
volatile (high τu) or because asset prices are very informative about future payoffs (high τRπ or
τπ). The same ambiguous inference applies to VFPE . Theoretically, this ambiguity may not be
a concern, since there is a known one-to-one mapping between these different notions. However,
measuring informativeness using VP of VFPE would only recover a combination of τu and τRπ or
τπ, which makes these notions inadequate to capture how precise is the signal contained in asset
prices about future payoffs.

Equation (8) also highlights that linking VP or VFPE to the precision of the information
contained in prices requires making assumptions on distributions of priors, signals, and up-
dating procedures. However, finding Var [πt|ut,∆xt] does not require making distributional
assumptions beyond the existence of second moments. Therefore, (Var [πt|ut,∆xt])−1 is a more
desirable primitive notion of informativeness, since it can be derived without making assump-
tions on how an external observer updates or on the shape of the underlying distributions.

Remark 2. Informativeness vs. predictability. Even though price informativeness and price/return
predictability may seem closely connected, they are conceptually different notions. Given the
assumptions made so far, Proposition 1 shows that running regressions of prices, which are
endogenous, on future payoffs, which are exogenous, allows us to recover price informativeness
consistently. This entails running a regression of a date t variable, ∆pt, on a future explanatory
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variable, ∆xt+1, which contrasts with the well-established literature on return predictability
(Cochrane, 2005; Campbell, 2017). One may wonder why we do not recover price informative-
ness using regressions of future payoffs on prices, since this type of regression can also be used
for predictive purposes. This would imply reinterpreting Regression R1 as follows

∆xt+1 = ϕ+ ϕ0∆xt + ϕ1∆pt + νt, (R3)

where ϕ = − β
β1
, ϕ0 = −β0

β1
, ϕ1 = 1

β1
, and νt = − et

β1
. The main pitfall of this regression is

that the OLS estimates of the coefficients and the residual variance will produce estimates
of their structural counterparts that are not consistent as long as Var [∆nt] 6= 0, because
Cov [∆pt, νt] = −Var[φn∆nt]

β1
6= 0. In other words, Regression R3 cannot be used to consis-

tently recover Var [∆xt+1|∆xt,∆pt]. In Section A.1 of the Online Appendix, we illustrate how
the OLS estimate of ϕ1 in Regression R3 is downward biased and inconsistent. There we also
describe the relation between our results and the literature on return predictability in detail.

To clarify, predictive regressions are the right tool if one is interested in forecasting future
prices/returns using current fundamentals. As forcefully expressed by Cochrane (2005), the
errors in predictive regressions are by construction orthogonal to the forecasts, so there is no
scope for bias or inconsistency in those cases. However, if one is interested in recovering price
informativeness, which is a specific combination of structural variables, the approach developed
in Proposition 1 is the adequate one.

Remark 3. Payoff interpretation. At the level of generality considered here, the payoff variable
xt could in principle represent any variable that satisfies Equations (1) and (2). That is, even
though it may seem that, for instance, dividends are the most natural payoff measure, the results
derived so far are agnostic about the exact nature of the payoff variable. We use this logic to
justify the choice of earnings, instead of dividends, as the payoff measure in the empirical
implementation of the results in Section 5. This observation may open the door to a higher
frequency implementation of our results as data become increasingly available.

3 Structural Models

We have shown in Section 2 that it is sufficient to specify an asset pricing equation and a
stochastic process for asset payoffs to identify price informativeness. In this section, we explore
several fully specified environments that are consistent with Equations (1) and (2). First, we
study a model in which investors have private signals about future payoffs and orthogonal trading
motives in the form of random priors (sentiment). Subsequently, we study a representative agent
model similar to those used in the macro-finance literature. Finally, we study a model with
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informed and uninformed investors, as in the classic literature on information and learning.5

The results in this section have a dual purpose. First, these applications show that our iden-
tification results apply to economies i) with or without dispersed information among investors,
ii) with time-varying risk aversion/risk-premia, iii) in which investors may or may not learn from
prices, and iv) in which noise may arise from different sources. These applications are particu-
larly useful to highlight that our approach does not take a stance on the source of the aggregate
noise. Second, these applications allow us to provide a structural economic interpretation to
the empirical results presented in Section 5. In Section 6, we interpret our empirical findings
through the lens of the three models studied in this section.

3.1 Sentiment as Noise

We start by considering a model in which investors’ sentiment is the source of noise in the price.
Starting from primitives allows us to understand which assumptions on investors’ behavior
endogenously determine an equilibrium pricing equation of the form assumed in Section 2.

Environment We consider a tractable overlapping generations model. Time is discrete, with
dates denoted by t = 0, 1, 2, . . . ,∞. The economy is populated by a continuum of investors,
indexed by i ∈ I, who live for two dates. Each investor i is born with wealth wi0 and has
well-behaved expected utility preferences over his terminal wealth wi1, with flow utility given by
Ui
(
wi1
)
, where U ′i (·) > 0 and U ′′i (·) < 0. We assume that the distribution of initial wealth is

bounded and i.i.d. across time and investor types.
There are two long-term assets in the economy: a risk-free asset in perfectly elastic supply,

with gross return Rf > 1, and a risky asset in fixed supply Q, whose date t (log) payoff is
xt = ln (Xt) and which trades at a (log) price pt = ln (Pt). The process followed by xt is given
by

∆xt+1 = µ∆x + ut, (9)

where ∆xt+1 = xt+1 − xt, µ∆x is a scalar, and x0 = 0. The realized payoff xt is common
knowledge to all investors before the price pt is determined. The realized payoff at date t + 1,
xt+1, is only revealed to investors at date t + 1. Note that Equation (9) is a special case of
Equation (1) when ρ = 0. We focus on the ρ = 0 case to simplify the exposition.

We assume that investors receive private signals about the innovation to the risky asset
payoff. Formally, each investor receives a signal about the payoff innovation ut given by

sit = ut + εist with εist ∼ N
(
0, τ−1

s

)
,

5In the Supplemental Appendix, we present conditions on investors’ asset demands that are sufficient to
generate an asset pricing equation of the form assumed in Equation (2).

13



where εist ⊥ ε
j
st for all i 6= j, and ut ⊥ εist for all t and all i.

We also assume that investors have additional private trading motives coming from hetero-
geneous priors that are random in the aggregate. This is a particularly tractable formulation
that sidesteps many of the issues associated with classic noise trading while still preventing full
revelation of information — see Dávila and Parlatore (2020) for a thorough analysis of this for-
mulation, which extends the classic DSSW model (De Long et al., 1990) to incorporate learning
from prices. Formally, each investor i born at date t has a prior over the innovations to the
payoff difference ut given by

ut ∼i,t N
(
nit, τ

−1
u

)
,

where
nit = nt + εint with εint

iid∼ N
(
0, τ−1

n

)
,

and
∆nt = µ∆n + ε∆n

t with εnt ∼ N
(
0, τ−1

∆n

)
,

where n0 = 0, µ∆n is a scalar, and where ε∆n
t ⊥ εint for all t and all i. The variable nt, which

can be interpreted as the aggregate sentiment in the economy, is not observed and acts as a
source of aggregate noise, preventing the asset price from being fully revealing. Without loss of
generality, we assume that ut+s ∼i,t N

(
0, τ−1

u

)
for all s > 0.6

Each investor i born at date t optimally chooses a portfolio share in the risky asset, denoted
by θit, to solve

max
θit

Eit
[
Ui
(
wi1

)]
(10)

subject to a wealth accumulation constraint

wi1 =
(
Rf + θit

(
Xt+1 + Pt+1

Pt
−Rf

))
wi0, (11)

where the information set of an investor i in period t is given by Iit =
{
sit, n

i
t, {Xs}s≤t , {Ps}s≤t

}
.

Definition. (Equilibrium) A stationary rational expectations equilibrium in linear strategies
is a set of portfolio shares θit for each investor i at date t and a price function Pt such that: i) θit
maximizes the investor i’s expected utility given his information set and ii) the price function
Pt is such that the market for the risky asset clears at each date t, that is,

∫
θitw

i
0di = Q.7

In this class of models, it is well known that it is not possible to characterize in closed-form
6To simplify the analysis, we assume that investors do not learn from their priors and that the signals and

priors are identically distributed across investors. Our results can be easily extended to allow for heterogeneity
in τs, τu, and τn.

7It is well known that dynamic rational expectation models may feature multiple equilibria. Our approach is
valid for any given equilibrium that may arise.
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the portfolio problem solved by investors and the equilibrium price — see e.g., Vives (2008).
However, we show that it is possible to find a closed-form solution to the model in approximate
form.

Equilibrium Characterization In the Appendix, we show that the risky asset demand of
an investor i at date t can be approximated as

θit ≈
1
γi
k0 + k1Eit [pt+1 − xt+1] + Eit [∆xt+1]− (pt − xt)− rf

Varit [k1 (pt+1 − xt+1) + ∆xt+1]
,

where γi ≡ −wi0U
′′
i (wi0)

U ′i(wi0)
, rf = ln

(
Rf
)
, and k0 and k1 are scalars defined in the Appendix.

As we show in the Appendix, taking a first-order log-linear approximation of the first-order
condition, the portfolio choice of investor i in period t can be approximated by

θit ≈ αixxt + αiss
i
t + αinn

i
t − αippt + ψi,

where the coefficients αix, αis, αin, and αip are positive scalars that represent the individual
demand sensitivities to the contemporary payoff, the private signal, the private trading needs,
and the asset price respectively, and ψi can be a positive or negative scalar that incorporates the
risk premium. These coefficients are time invariant since we have assumed that the distribution
of investor types is time invariant and the wealth distribution across time and investor type is
i.i.d. Using the market clearing condition with this approximation and the information structure
described above yields a log-linear approximated price given by

pt ≈
αx
αp
xt + αs

αp
ut + αn

αp
nt + ψ

αp
,

where αh ≡
∫
αihw

i
0di denotes the wealth-weighted cross-sectional average of a given coefficient

αih and ψ =
∫
ψiwi0di −Q. Using this expression, we can map the equilibrium price process in

the model to the one assumed in the general framework.
First, we take a first-order Taylor expansion of an investor’s future marginal utility U ′

(
wi1
)

around the initial wealth level wi0. Second, we impose that terms of order (dt)2, that is, terms
that involve the product of two or more net interest rates, are negligible. Third, as in Camp-
bell and Shiller (1988), we take a log-linear approximation of returns around a predetermined
dividend-price ratio. Finally, we assume that the joint distribution of demand sensitivities and
risk aversion is time invariant.

Lemma 1. The price process assumed in Equation (2) in the general framework in Section 2
can be obtained endogenously as an approximation of the equilibrium price process in the model
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described in this section, i.e., the equilibrium price process is given by

∆pt ≈ φ+ φ0∆xt + φ1∆xt+1 + φn∆nt,

where the coefficients φ = 0, φ0 = αx
αp
− αs
αp
, φ1 = αs

αp
, and φn = αn

αp
are determined in equilibrium.

Lemma 1 and the payoff process assumed in this section imply that all the identification
results derived in the general framework in Section 2 can be applied in the context of the
fully specified model derived in this section. This connection allows us to give a structural
interpretation to the coefficients recovered from Regressions R1 and R2.

For example, the sensitivity of the price to the future payoff, φ1, is given by ratio of the
(wealth-weighted) averages of individual demand sensitivities to information and price αs

αp
.

Therefore, the more weight individual investors put on their private signals, the more sensitive
the price will be to the future payoff and, everything else equal, the higher price informativeness
will be (higher R2

∆x,∆x′ − R2
∆x). Analogously, when investors put more weight on their orthog-

onal trading motives, i.e., high αn, the price will be more sensitive to the aggregate sentiment
and, all else equal, price informativeness will be lower (lower R2

∆x,∆x′ −R2
∆x).

3.2 Representative Agent

In this section, we show how to map the canonical representative agent model widely used in
macro asset pricing to the setting in Section 2. This application shows that our identification
results do not rely on assuming dispersed information across investors and can accommodate
time-varying risk aversion.

Environment Suppose there is one representative agent in the model with sentiment intro-
duced in the previous section, 3.1. This is the same as having all investors i ∈ I receive the
exact same signal,

sit = ut + εst with εst ∼ N
(
0, τ−1

s

)
,

have the same prior, ut ∼i N
(
nt, τ

−1
u

)
, where

nt = nt + εnt with εnt
iid∼ N

(
0, τ−1

n

)
,

and have the same initial endowment wealth, wi0 = w0, and utility, γi = γ.

Equilibrium Characterization In this case, the log-linearly approximated price is equal to

pt ≈
αx
αp
xt + αs

αp
st + αn

αp
nt + ψ

αp
,
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where the coefficients αx, αs, αn, and αp are demand sensitivities and ψ is a constant.
Since all investors receive the same signal st and have the same prior nt, there is no asym-

metric information among investors in the model and, therefore, investors do not learn from the
price. However, the price contains information about the innovation ut for an external observer
who only learns from the price. The equilibrium price can be rewritten as

pt ≈
αx
αp
xt + αs

αp
ut + αs

αp
εst + αn

αp
nt + ψ

αp
.

From the perspective of an external observer, there are two sources of noise that prevent the
change in the price from being fully revealing: the noise in the signal εst and the investors’ prior
nt. It is easy to map the representative agent model into the framework developed in Section 2,
as the lemma below shows.

Lemma 2. The price process assumed in Equation (2) in the general framework in Section 2
can be obtained endogenously as an approximation of the equilibrium price process in the model
described in this section, i.e., the equilibrium price process is given by

∆pt ≈ φ+ φ0∆xt + φ1∆xt+1 + φn∆n̂t,

where the coefficients φ = 0, φ0 = αx
αp
− αs

αp
, φ1 = αs

αp
, and φn = αn

αp
are equilibrium outcomes,

and where ∆n̂t ≡ ∆nt + αs
αn

∆εst.

As in the previous section, Lemma 2 and the payoff process assumed allow us to apply all
the identification results derived in Section 2 within the representative agent model. This shows
that the price process in Equation (2) also encompasses models in which all investors share the
same information and there is no learning from the price. In fact, our general framework does
not require information to be dispersed in the economy and it can accommodate environments
with and without learning.

Finally, it is worth highlighting that it is easy to introduce time-varying risk aversion in
this framework — this would imply assuming that γ and consequently ψ vary over time, as γt
and ψt. In that case, time-varying risk aversion manifests itself as another source of noise, in
particular when Regressions R1 and R2 include none of the controls discussed in Section 4.2.
Alternatively, following our interpretation of public information/signals in Section 4.2, one could
add observable controls that capture changes in risk premia.

3.3 Informed, Uninformed, and Noise Traders

Noise traders are a widely used modeling device in environments with dispersed information
to avoid dealing with fully revealing equilibria. The general framework in Section 2 applies to
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settings with noise traders. This application highlights that our identification results accommo-
date different forms of noise, which allows us to remain agnostic about the source of noise in the
economy.

Environment Suppose that we are in the same model developed in Section 3.1 with the only
difference being that there are three types of investors: informed, uninformed, and noise traders.
Informed and uninformed investors share the same prior and only differ in the information they
receive. Informed investors receive a perfectly informative signal of the innovation to the payoff.
Uninformed investors and noise traders do not receive any signals. Mapping this to the model in
Section 3.1 implies that the prior distribution of the innovation ut for informed and uninformed
investors is

ut ∼i N
(
nt, τ

−1
u

)
,

where nt
iid∼ N

(
0, τ−1

n

)
and the precision of the signals for informed investors is τsi =∞ and for

uninformed investors is τsi = 0.
Finally, noise traders have private trading motives that are orthogonal to the innovation

to the payoff — these are the sole drivers of their demand. Formally, the demand of all noise
traders in period t is random and given by δt ∼ N

(
0, τ−1

N

)
. The noise trader demand is only

observed by noise traders.

Equilibrium Characterization In this case, the first-order log-approximated price is

pt ≈
αx
αp
xt + αs

αp
ut + αn

αp
nt + ψ

αp
+ δt
αp
, (12)

where αh ≡
∫
I∪U α

i
hw

i
0di denotes the wealth-weighted cross-sectional average of αih over the set

of informed and uninformed investors with αis = 0 for all uninformed investors, αin = 0 for all
informed investors, and ψ ≡

∫
I∪U ψ

iwi0di−Q.

Lemma 3. The price process assumed in Equation (2) in the general framework in Section 2,
can be obtained endogenously as an approximation of the equilibrium price process in the model
described in this section, i.e., the equilibrium price process is given by

∆pt ≈ φ+ φ0∆xt + φ1∆xt+1 + φn∆ñt,

where the coefficients φ = 0, φ0 = αx
αp
− αs

αp
, φ1 = αs

αp
, and φn = αn

αp
are equilibrium outcomes and

∆ñt ≡ ∆nt + 1
αn

∆δt.

Lemma 3 shows that all our identification results in Section 2 remain valid within the classic
information model in Grossman and Stiglitz (1980) with inelastic noise traders. Within the
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model, only uninformed investors learn from the price and the only source of noise for them is
the noise trader demand. However, for an external observer who only learns from the price there
are two sources of noise embedded in the change in the price. The change in the noise trader
demand ∆δt and the change in the prior of the investors ∆nt. Defining ∆ñt ≡ ∆nt + 1

αn
∆δt

allows us to clearly map this model into the general framework developed in Section 2. This
lemma together with the results in the previous two sections show that the price process assumed
in our general framework can accommodate different sources of noise that prevent the price from
being fully revealing for an external observer.

4 Extensions

Before empirically implementing our results, we extend the results derived in Section 2 in several
dimensions. We describe i) how to account for a non-zero correlation between ut and ∆nt, ii)
how to allow for the possibility of public signals about future payoffs, and iii) how to implement
our results when the payoff process has an unlearnable component. This section has two goals.
First, it shows that our results apply to more general and empirically relevant scenarios. Second,
it allows us to refine the interpretation of our empirical results.

4.1 Correlated Payoff and Noise

In Section 2, we assume that the innovation to the asset payoff ut is uncorrelated with the
aggregate source of noise ∆nt. In this section, we allow for the aggregate source of noise to be
correlated with the payoff. Formally, we consider the following process for the aggregate noise:

∆nt = µ∆n + ωut + ε∆n
t ,

with ω 6= 0, where ε∆n
t has mean zero and finite variance and is i.i.d. across time and independent

of the innovations ut. In this case, the equilibrium price process

∆pt = φ+ φ0∆xt + φ1∆xt+1 + φn∆nt (13)

can be written as

∆pt = φ− φnωµ∆x + φnµ∆n + φ0∆xt + (φ1 + φnω) ∆xt+1 + φnε
∆n
t , (14)

and absolute price informativeness is given by

τπ ≡ Var [πt|ut, xt]−1 =
(
φ1 + φnω

φn

)2
τ∆n. (15)
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The main difference between this extension and the baseline framework is that the sensitivity
of the price to the future payoff, which determines how much information is contained in the
price, has an additional component that comes from the comovement between the payoff and
noise, φnω, as can be seen from Equations (14) and (15). However, this sensitivity can still be
recovered from the coefficient on ∆xt+1 in Regression R1 and, as the proposition below shows,
the identification result derived in the general framework remains valid.

Proposition 2. (Identifying price informativeness when payoff and noise are cor-
related) Relative price informativeness can be recovered and consistently estimated from the
R-squareds of Regressions R1 and R2 as follows:

τRπ =
R2

∆x,∆x′ −R2
∆x

1−R2
∆x

.

As the proposition above shows, even though the structural characterization of price informa-
tiveness is different when the payoff is correlated with the aggregate noise, price informativeness
can be recovered in the same way as in the baseline general framework. Therefore, we can assume
that the private trading motives are orthogonal to the asset payoff without loss of generality.

4.2 Public Signals

In our results until now, we have considered private signals as the only source of information in
the economy. In this subsection, we consider the case in which investors also observe a public
signal about the asset payoff. We extend the environment in the general framework in Section
2 by considering an environment in which investors observe a vector χt of N public signals

χt = ωut + εχt ,

where ω is an N×1 vector and εχt is an N×1 random vector that has mean zero, finite variance,
and is i.i.d. across time and independent of the innovations ut. In this case, we augment the
price process in Equation (2) to include the private signals χt as follows

∆pt = φ+ φ0∆xt + φ1∆xt+1 + φχ ·∆χt + φn∆nt, (16)

where φχ is an N × 1 vector of coefficients.
There are two relevant notions of price informativeness that depend on the information

available to the external observer. If the public signals are not available to the external observer,
price informativeness is given, as in Section 2, by τπ ≡ Var [πt|ut, xt]−1, where πt is defined
in Equation (3). If public signals are observed by the external observer, the unbiased signal
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contained in the price is

π′t ≡
1
φ1

(
∆pt −

(
φ+ φ1µ∆x + φnµ∆n + (φ0 + φ1ρ) ∆xt + φχ ·∆χt

))

and price informativeness is given by τπ′ ≡ Var [π′t|ut, xt, χt]
−1. The proposition below provides

identification results for each of these two cases.

Proposition 3. (Identifying price informativeness with public signals)
a) When the public signals available to investors are not available to the external observer,

relative price informativeness can be recovered and consistently estimated from the R-squareds
of Regressions R1 and R2 as follows

τRπ =
R2

∆x,∆x′ −R2
∆x

1−R2
∆x

.

b) When the public signals available to investors are part of the information set of the external
observer, relative price informativeness can be recovered from the following regressions of prices
on payoffs and the public signals

∆pt = β
′ + β′0∆xt + β′1∆xt+1 + β′2 ·∆χt + e′t (R1-PS)

∆pt = ζ
′ + ζ ′0∆xt + ζ ′2 ·∆χt + eζ′t , (R2-PS)

as

τRπ′ =
R2

∆x,∆x′,∆χ −R2
∆x,∆χ

1−R2
∆x,∆χ

,

where R2
∆x,∆x′,∆χ and R2

∆x,∆χ are the R-squareds of Regression R1-PS and Regression R2-PS,
respectively.

Part a) of the proposition above follows directly from reinterpreting the unobserved terms
in the price equation (16), i.e., φχ · ∆χt + φn∆nt, as noise that is correlated with the payoff
and using Proposition 2. This shows that our results are robust to investors having public
information when this information is not available to the external observer.

Part b) shows how to extend our identification results when the public signals are part of
the external observer’s information set. The proof is analogous to the proof of Proposition 1 in
the general framework, with the coefficients in Regressions R1-PS and R2-PS being matched to
the expressions of the price process in Equations (16). A detailed proof of Proposition 3 can be
found in the Appendix.

Intuitively, to capture the additional information contained in the price, the Regressions R1-
PS and R2-PS need to condition for the information set of the external observer. In the general
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framework in Section 2 we assume that the external observer only observes the price and the
contemporary payoff. If the information set of the external observer contains other information,
then Proposition 3 shows that our identification results remain valid provided the regressions of
prices on payoffs are augmented to include the information available to the external observer.

One can draw an analogy between the standard notions of market efficiency (weak, semi-
strong, and strong) and the set of controls used in our regressions. For instance, regressions that
include exclusively past payoffs as controls resemble weak-form efficiency notions. By expand-
ing the set of controls to include public or private information, the recovered informativeness
measures resemble semi-strong or strong notions of efficiency.

4.3 Learnable and Unlearnable Payoff

So far, we have considered that all components of the payoff are learnable, that is, that there is
no systematic component of the payoff that deviates from the signals received by the investors.
However, it is plausible to think that investors can only learn about a part of the innovation
and that the remainder is unlearnable. Formally, we assume that the innovation to the payoff
is given by

∆xt+1 = µ∆x + ut, (17)

where ∆xt+1 = xt+1 − xt, µx is a scalar, and x0 = 0. Moreover, the innovation to the payoff is
given by

ut = uLt + uUt ,

where uLt and uUt are the learnable and unlearnable components of the innovation where

uLt ∼ N
(

0,
(
τLu

)−1
)

and uUt ∼ N
(

0,
(
τUu

)−1
)

with uLt ⊥ uUt . The main difference between these two components is that investors only receive
private signals about the learnable component, uLt . Formally, each investor receives a signal

sit = uLt + εist with εist ∼ N
(
0, τ−1

s

)
,

where εist ⊥ ε
j
st for all i 6= j, uLt ⊥ εist, and uUt ⊥ εist for all t and all i. Moreover, as in Section 2,

∆nt ≡ nt−nt−1 represents the change in the aggregate component of investors’ trading motives
that are orthogonal to the asset payoff, given by ∆nt = µ∆n+ε∆n

t , where Var [∆nt] = σ2
∆n = τ−1

∆n.
In this case, the price process is given by

∆pt = φ+ φ0∆xt + φ1∆xt+1 + φn∆nt − φ1∆uUt ,
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where φ = 0, φ0 = αx
αp
− αs

αp
, φ1 = αs

αp
and φn = αn

αp
. Using the process for the payoff, this price

process can also be written as

∆pt = φ+ φ1µ∆x + φ0∆xt + φ1u
L
t + φ1u

U
t−1 + φn∆nt.

Therefore, the unbiased signal about the change in the learnable component of the innovation
contained in the price is

πLt ≡
1
φ1

(
∆pt −

(
φ+ φ1µ∆x + φnµ∆n + φ0∆xt

))
= uLt + uUt−1 + φn

φ1
ε∆n
t ,

and absolute and relative price informativeness are respectively given by

τπL ≡ Var
[
uUt−1 + φn

φ1
∆ε∆n

t

∣∣∣∣uLt ,∆xt]−1
=
((
τLu + τUu

)−1
+
(
φn
φ1

)2
τ−1

∆n

)−1

and

τRπL =
(

1 + τLu
τLu + τUu

+
(
φn
φ1

)2 (τ∆n
τLu

)−1
)−1

.

Note that the noise in the signal πLt is not independent of ∆xt since ∆xt = µ∆x+uLt−1 +uUt−1.
Then, conditioning on ∆xt becomes relevant in our definition of price informativeness because
∆xt contains information about the noise in the signal. Note that by conditioning on uLt ,
both definitions of price information recover the precision of the asset price about the learnable
component of payoffs.

When the innovation to the asset payoff has an unlearnable component, the error term in
regression R1 is given by et = φnε

∆n
t − φ1∆uUt and, therefore, is correlated with the regressors

∆xt+1 and ∆xt. Moreover, the error term in Regression R2 is given by eζt = φnε
∆n
t + φ1u

L
t +

φ1u
U
t−1, which is correlated with ∆xt through uUt−1. Hence, to obtain consistent estimates of the

parameters in both regressions, one must run Regressions R1 and R2 instrumenting for ∆xt+1

and ∆xt with a variable that is correlated with the learnable component of the innovation but not
with the unlearnable one. In addition to instrumenting for ∆xt+1 and ∆xt to recover consistent
estimates of the regression parameters, the identification procedure needs to be adjusted to take
into account the extra term in the expression for absolute price informativeness and in the error
term et. Earnings forecasts should be good candidate for an instrument, since earnings forecasts
are determined by the information available to analysts about future payoffs and, therefore, are
only correlated with the learnable component of payoffs. More generally, any variable correlated
with the future payoff that is known before the payoff is realized is a valid candidate as an
instrument in practice.

The following proposition shows how to identify and estimate price informativeness when
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the innovation to the asset payoff has an unlearnable component.

Proposition 4. (Identifying price informativeness about learnable component of pay-
offs) When the innovation to the asset payoff has an unlearnable component, relative price
informativeness about the learnable component of the innovation can be recovered as follows:

τRπL =
Var

(
eζt

)
− Var (et)

Var
(
eζt

∣∣∣∆xt)
1

1− Var(uUt )
Var(uLt )

, (18)

where
Var

(
uUt

)
Var

(
uLt
) =

1− Var
(
eζt

)
−Var(et)

φ2
1Var(ut)

1 + Var
(
eζt

)
−Var(et)

φ2
1Var(ut)

(19)

and Var
(
eζt

)
and Var (et) are the variances of the residuals in Regressions R2 and R1, respec-

tively, Var
(
eζt

∣∣∣∆xt) is the variance of the residual in a regression of the residuals in Regression
R2 on ∆xt, and Var (ut) is the variance of the residuals recovered from Equation 17. Estimating
Regressions R2 and R1 consistently requires instrumenting for ∆xt+1 and ∆xt with a variable
that is correlated with the learnable component of the innovation but not with the unlearnable
one.

Proposition 4 shows how to identify relative price informativeness when the innovation to
the asset payoff has an unlearnable component. There are two terms that help identify price
informativeness in this case. The first term in Equation (18) is a ratio of residual variances, which
is analogous to the ratio of normalized difference in R-squareds in our previous identification
results, once adjusted for the correlation between ∆xt and the error term eζt . In the limit, when
the variance of the unlearnable component is 0, the first term in Equation (19) converges to the
expression in Proposition 1 since

lim
Var(uUt )→0

Var
(
eζt

)
− Var (et)

Var
(
eζt

∣∣∣∆xt) =
R2

∆x,∆x′ −R2
∆x

1−R2
∆x

.

The second term in Equation (18) is a correction term that takes into account the presence
of an unlearnable component in the innovation to the payoff. When there is no unlearnable
component in the innovation, i.e., when Var

(
uUt

)
→ 0, the correction term is one, which brings

us back to our identification results in our benchmark model. On the other hand, when the
unlearnable component is the one driving all the change in the payoff, i.e., when Var

(
uUt

)
→∞,

the correction term goes to zero and there is no information about the payoff in prices.
Summing up, if payoffs have an unlearnable component, the identification and estimation of
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price informativeness should be modified. Regarding the identification, Proposition 4 shows how
it is necessary to correct the expression from our baseline model. On the estimation side, both
regressions require an instrument correlated with the learnable component of the innovation but
not with the unlearnable one.

Instead of looking for stock-specific instruments, we present our empirical results using
Proposition 1, and use the results of this section to explore the potential bias via simulations.
In Section D of the Online Appendix, we simulate a calibrated version of this model and show
that the estimates of price informativeness obtained using the OLS procedure from Proposition
1 can be at times better in small samples than the estimates obtained using Proposition 4.

5 Empirical Implementation: Stock-Specific Price Informative-
ness

In this section, we make use of our identification results to construct and analyze measures of
stock-specific relative price informativeness. We exclusively report estimates of relative price
informativeness since these allow for meaningful and easily interpretable comparisons across
stocks and over time. We recover a panel of stock-specific measures of price informativeness by
running rolling time-series regressions of the form introduced in Proposition 1 at the stock level
using quarterly data. In this section, we simply describe our approach and our findings, leaving
the economic interpretation of our results to Section 6.

We find that the distribution of informativeness across stocks is right-skewed, with time-
series averages of the median and mean levels of price informativeness across all stocks and years
respectively given by 1.84% and 4.25%. Our approach allows us to uncover both cross-sectional
and time-series patterns regarding the behavior of price informativeness. In the cross section, we
find that stocks that i) are larger, ii) turn over more quickly, and iii) have a higher institutional
ownership share have higher price informativeness. In the time series, we find that the median
and mean price informativeness have steadily increased over time since the mid-1980s. The
standard deviation of price informativeness has also increased over this period. In the Online
Appendix, we include additional results that show the robustness of our cross-sectional and
time-series findings.

Data Description and Empirical Specification We initially provide a brief description
of the data and the sample selection procedure. The Online Appendix and the companion R
notebooks include a more detailed description.8 We obtain information on stock prices and

8The complete replication materials as well as the recovered measures of informativeness can be found at
https://github.com/edavila/identifying_price_informativeness.
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accounting measures from the CRSP/Compustat dataset, as distributed by WRDS. Our sample
selection procedure follows the conventional approach described in Bali, Engle and Murray
(2016). From the Center for Research in Security Prices (CRSP), we obtain data on stock
prices, market capitalization, turnover, S&P500 status, and industry (SIC) classification for all
common US-based stocks listed on the NYSE, NASDAQ, and AMEX. From Compustat, we
obtain accounting data that includes earnings and book values, at both quarterly and annual
frequencies.

In this section, we report the results of the analysis using quarterly data, available from 1961
until 2017. In the Supplementary Appendix, we report the results of the analysis using annual
data, available from 1950 until 2017. To match the timing of our model and to ensure that the
accounting data were public on the trading date, we merge the Compustat data with CRSP
data three months ahead, although our findings are robust to using alternative windows. We
use the personal consumption expenditure index (PCEPI), obtained from FRED, to deflate all
nominal variables.

We implement Proposition 1 by running time-series regressions for each individual stock
— indexed by j here — over rolling windows of 40 quarters. By working with the model in
log-differences, we sidestep concerns associated with failures of stationary — see e.g., Campbell
(2017). The use of rolling regressions makes the underlying assumption of parameter stability
over a given estimation window more plausible.

We denote by pjt the log price of stock j, adjusted for splits. We use earnings — as measured
by EBIT — as the relevant measure of payoffs, since stock-level measures of dividends are
problematic for different reasons. As discussed in Section 2, our model can be flexibly interpreted
to use earnings as the payoff measure. Since earnings can be negative, we compute ∆xjt directly
as a growth rate, as explained in the Online Appendix — we obtain comparable results when
we compute ∆xjt as the log-difference of the logistic transformation of standardized earnings.
Formally, in a given rolling window, we run time-series regressions of the form

∆pjt = β
j + βj0∆xjt + βj1∆xjt+1 + dj,qt + εjt ⇒ R2,j

∆x,∆x′ (20)

∆pjt = ζ
j + ζj0∆xjt + dj,qt + ε̂jt ⇒ R2,j

∆x , (21)

where ∆pjt is a measure of capital gains, ∆xjt and its one period ahead counterpart ∆xjt+1 are
measures of earnings growth, and dj,qt denote stock-specific quarterly dummies. The introduction
of dj,qt accounts for seasonality patterns, and can be interpreted along the lines of Section 4.2. We
estimate the regression coefficients and errors using OLS. We respectively denote the R-squareds
of the regressions (20) and (21) by R2,j

∆x,∆x′ and the R2,j
∆x. Hence, Regression R1 maps to Equation

(20), while Regression R2 maps to Equation (21), but for the addition of the quarterly dummies,

26



0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Relative Price Informativeness

F
re

qu
en

cy

Figure 2: Price informativeness: relative-frequency histogram
Note: Figure 2 shows a relative-frequency histogram of price informativeness for a representative time period,
the last quarter of 2015. Note that informativeness is computed over a rolling window of 40 quarters prior. The
histogram features 1,591 stocks.

interpreted as public signals.
Consistent with Proposition 1, we recover relative price informativeness for stock j in a given

period/window from Equations (20) and (21) as follows:

τR,jπ =
R2,j

∆x,∆x′ −R
2,j
∆x

1−R2,j
∆x

.

After restricting our results to stocks with contiguous observations and whose maximum
leverage across observations is lower than 0.95, we end up with a panel of quarterly price infor-
mativeness measures for 2,440 unique stocks. We have explored alternative criteria to deal with
outliers or abnormal observations — for instance, restricting the set of observations to those
with βj1 ∈ [0, 1] — but this does not change our conclusions.

Table 1 reports year-by-year summary statistics of the distribution of stock-specific price
informativeness, starting in 1980. Throughout the paper, informativeness in year t is computed
over a rolling window of 40 quarters prior. We illustrate our results graphically in Figure 2,
which presents a relative-frequency histogram of price informativeness for a specific time period
(last quarter of 2015). The shape of this histogram is representative of other periods.

The distribution of informativeness that we recover is right-skewed every year, with a mean
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Table 1: Price informativeness: year-by-year summary statistics

t Median Mean SD Skew Kurt P5 P25 P75 P95 n

1980 0.0203 0.0405 0.0491 2.0237 4.9861 0.0011 0.0066 0.0553 0.1331 136
1981 0.0241 0.0397 0.0497 2.2526 5.6176 0.0008 0.0065 0.0531 0.1523 171
1982 0.0219 0.0422 0.0508 1.6819 2.7538 0.0005 0.0046 0.0644 0.1512 284
1983 0.0215 0.0429 0.0569 2.7807 12.0644 0.0009 0.0056 0.0587 0.1582 307
1984 0.0184 0.0387 0.0529 2.4882 7.9165 0.0005 0.0051 0.0487 0.1537 456
1985 0.0167 0.0347 0.0488 3.0589 12.8434 0.0006 0.0048 0.0459 0.1232 800
1986 0.0163 0.0364 0.0523 3.3520 17.0220 0.0005 0.0049 0.0466 0.1327 808
1987 0.0169 0.0352 0.0479 2.8658 12.0565 0.0007 0.0045 0.0484 0.1224 888
1988 0.0164 0.0353 0.0501 3.0991 13.6756 0.0003 0.0044 0.0461 0.1277 825
1989 0.0174 0.0348 0.0472 2.8804 12.6139 0.0005 0.0047 0.0442 0.1298 771
1990 0.0153 0.0327 0.0451 3.0686 15.3927 0.0007 0.0049 0.0442 0.1200 760
1991 0.0147 0.0347 0.0503 2.8258 10.7292 0.0004 0.0038 0.0458 0.1347 1094
1992 0.0153 0.0351 0.0499 2.9706 13.0878 0.0004 0.0045 0.0459 0.1285 1175
1993 0.0159 0.0361 0.0504 2.4868 7.7488 0.0005 0.0045 0.0460 0.1438 1248
1994 0.0169 0.0365 0.0511 2.6197 8.8519 0.0003 0.0045 0.0466 0.1437 1258
1995 0.0165 0.0360 0.0499 2.5047 8.0230 0.0004 0.0043 0.0456 0.1430 1301
1996 0.0166 0.0361 0.0496 2.4757 7.5962 0.0004 0.0043 0.0464 0.1370 1394
1997 0.0178 0.0362 0.0473 2.5007 8.6653 0.0005 0.0052 0.0490 0.1305 1457
1998 0.0178 0.0369 0.0515 3.1369 14.8746 0.0005 0.0054 0.0486 0.1321 1423
1999 0.0192 0.0400 0.0557 3.0497 13.8314 0.0005 0.0053 0.0540 0.1501 1352
2000 0.0220 0.0433 0.0577 2.5430 8.8059 0.0005 0.0060 0.0558 0.1634 1273
2001 0.0211 0.0428 0.0571 2.5582 9.5999 0.0005 0.0052 0.0590 0.1621 1237
2002 0.0193 0.0415 0.0565 2.5283 8.2349 0.0006 0.0052 0.0555 0.1536 1267
2003 0.0190 0.0398 0.0525 2.3117 6.5211 0.0005 0.0047 0.0548 0.1453 1405
2004 0.0181 0.0397 0.0526 2.3279 6.6881 0.0004 0.0043 0.0571 0.1448 1477
2005 0.0189 0.0391 0.0530 2.6971 10.6341 0.0004 0.0045 0.0533 0.1490 1519
2006 0.0192 0.0391 0.0523 2.5171 8.6964 0.0004 0.0047 0.0514 0.1428 1587
2007 0.0205 0.0420 0.0562 2.4062 7.1299 0.0006 0.0053 0.0542 0.1643 1611
2008 0.0228 0.0473 0.0645 2.7105 10.3734 0.0007 0.0068 0.0611 0.1823 1622
2009 0.0239 0.0538 0.0759 2.6774 9.1915 0.0006 0.0065 0.0688 0.2036 1695
2010 0.0221 0.0500 0.0710 2.7967 11.2454 0.0005 0.0052 0.0647 0.2017 1700
2011 0.0219 0.0494 0.0711 2.9496 12.6900 0.0005 0.0060 0.0621 0.1992 1703
2012 0.0221 0.0509 0.0725 2.7526 10.5131 0.0006 0.0057 0.0668 0.2067 1666
2013 0.0220 0.0499 0.0724 2.8060 10.5111 0.0005 0.0052 0.0624 0.2027 1662
2014 0.0223 0.0499 0.0727 2.8700 11.0478 0.0004 0.0057 0.0617 0.1959 1689
2015 0.0215 0.0495 0.0702 2.6747 9.2983 0.0006 0.0063 0.0630 0.1999 1720
2016 0.0207 0.0481 0.0675 2.5495 8.7341 0.0005 0.0057 0.0604 0.1960 1696
2017 0.0201 0.0481 0.0677 2.5475 8.7405 0.0004 0.0056 0.0619 0.1912 1667

Note: Table 1 reports year-by-year summary statistics on the panel of price informativeness measures recovered.
It provides information on the median; mean; standard deviation; skewness; excess kurtosis; and 5th, 25th, 75th,
and 95th percentiles of each yearly distribution, as well as the number of stocks in each year. Since our panel
of price informativeness is quarterly, we average the measures of quarterly price informativeness at the yearly
level before computing the summary statistics. We start reporting summary statistics in 1980, since we have
informativeness measures for more than 100 stocks starting on that year. Informativeness in year t is computed
over a rolling window of 40 quarters prior.
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that is roughly 0.02 larger than the median of the distribution of informativeness. Because the
distribution of informativeness is skewed, the median is often perceived as a better measure
of central tendency. The 95% percentile of the distribution stays between 0.12 and 0.2, which
means that an external observer who only learns from the price would rarely put more than a 20%
weight on the price when updating his beliefs to form a posterior over future payoffs. Since we
have not included additional controls in the regressions besides quarter fixed effects, our results
should be interpreted as the price informativeness for an external observer who exclusively
observes prices and past payoffs. See the Online Appendix for the results including additional
controls, which correspond to a notion of informativeness in which the external observer has a
larger information set, as explained in Section 4.2.

Price Informativeness in the Cross Section By computing stock-specific measures of
price informativeness, we are able to establish a new set of cross-sectional patterns relating price
informativeness to stock characteristics. We focus on five stock characteristics that have been
widely used to explain patterns in the cross section of stock returns — see, e.g., Bali, Engle and
Murray (2016). These are i) size, measured as the natural log of stocks market capitalization,
ii) value, measured as the ratio between a stock’s book value and its market capitalization, iii)
turnover, measured as the ratio between trading volume and shares outstanding, iv) idiosyncratic
volatility, measured as the standard deviation — over a 30 month period — of the difference
between the returns of a stock and the market return, and v) institutional ownership, measured
as the proportion of shares held by institutional investors.

In Table 2, we report the estimates of panel regressions of relative price informativeness (in
twentiles) on each of the five explanatory variables, using year fixed effects. The coefficients
that we report can be interpreted as a weighted average of the slopes of running year-by-year
regressions of price informativeness of a given explanatory variable (size, value, turnover, return
volatility, institutional ownership). Figures OA-4 through OA-8 in the Online Appendix provide
an alternative graphical illustration of our results. These figures show that the cross-sectional
relations identified in Table 2 are stable over time. In the Online Appendix, we also show that
these cross-sectional patterns remain valid using pooled measures of price informativeness over
time.

Our cross-sectional analysis yields several robust patterns. First, we find a strong positive
cross-sectional relation between a stock’s size (market capitalization) and price informativeness;
that is, large stocks have higher price informativeness. Second, we find a negative and weak
cross-sectional relation between a stock’s book-to-market ratio and price informativeness; that
is, value stocks have lower price informativeness. Third, we find a strong positive cross-sectional
relation between a stock’s turnover and price informativeness; that is, stocks that trade fre-
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Table 2: Cross-sectional results (1)

Estimate Std. Error t-stat

Size 0.00214 0.000130 16.42
Value -0.00092 0.000367 -2.52
Turnover 0.00030 0.000019 16.42
Idiosyncratic Volatility 0.00379 0.005241 0.72
Institutional Ownership 0.01436 0.001051 13.66

Note: Table 2 reports the estimates (âc1) of panel regressions of price informativeness on cross-sectional charac-
teristics (in twentiles) with year fixed effects (ξt): τR,bπ,t = ac0 + ac1c

b
t + ξt + εb,t, where τR,b,tπ denotes the average

price informativeness per bin (twentile) in a given period, cbt denotes the value of the given characteristic per bin
(twentile) in a given period, ξt denotes a year fixed effect, ac0 and ac1 are parameters, and εb,t is an error term.
Figures OA-4 through OA-8 provide the graphical counterpart of the results in this table. Size is measured as
the natural log of stock market capitalization, value is measured as the ratio between a stock’s book value and its
market capitalization, turnover is measured as the ratio between trading volume and shares outstanding, idiosyn-
cratic volatility is measured as the standard deviation — over a 30 month period — of the difference between the
returns of a stock and the market return, and institutional ownership is measured as the proportion of a stock
held by institutional investors.

quently have higher price informativeness. Fourth, we find a positive but insignificant weak
cross-sectional relation between a stock’s idiosyncratic return volatility and price informative-
ness; that is, stocks whose returns are more volatile have higher price informativeness. Finally,
we find a strong positive cross-sectional relation between a stock’s institutional ownership share
and price informativeness, that is, stocks owned mostly by institutional investors have higher
price informativeness.

Figures 3 and 4 illustrate additional cross-sectional patterns of the behavior of informa-
tiveness by exchange, S&P 500 status, and sector. Instead of focusing on mean or median
comparisons, we find it more informative to graphically compare the distributions of informa-
tiveness by characteristic after extracting year fixed effects. Even though the distributions of
informativeness differ across characteristics, the relations seem less strong than those identified
in Table 2. First, we compare across exchanges and find that stocks listed in the NYSE have
higher median informativeness than those in the NASDAQ, which appear to be more informative
than those listed in the AMEX. Second, we study whether price informativeness varies among
stocks that belong to the S&P500 and those that do not. Consistent with our findings on size,
we find that stocks outside of the S&P have lower price informativeness on average. Finally,
we study the behavior of price informativeness across sectors. We find that the median price
informativeness is highest in the wholesale/retail and the finance/insurance sectors, and lowest
in the service sector.
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Figure 3: Cross-sectional results (2)

Note: The left panel in Figure 3 shows a box plot by exchange of the residuals of a regression of relative price
informativeness on year fixed effects. The left panel in Figure 3 shows a box plot by S&P 500 status of the
residuals of a regression of relative price informativeness on year fixed effects. The solid middle line represents
the median. The top and bottom of the box represent the 75th and 25th percentiles. The whiskers extend up to
1.5 times the interquartile range.
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Figure 4: Cross-sectional results (3)

Note: Figure 4 shows a box plot by one-digit SIC industry code of the residuals of a regression of relative price
informativeness on year fixed effects. The solid middle line represents the median. The top and bottom of the
box represent the 75th and 25th percentiles. The whiskers extend up to 1.5 times the interquartile range.
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Price Informativeness over Time We also study how the distribution of stock-specific price
informativeness evolves over time.9 Table 1 includes a large amount of information about the
time evolution of the distribution of informativeness. To better illustrate the results, we show
the behavior of the median, mean, and standard deviation of the cross-sectional distribution of
informativeness between 1980 and 2017 graphically in Figure 5.

We find that both the median and the mean of the distribution of informativeness feature
increasing trends starting in the mid-1980s. The median moves from roughly 1.5% to 2% between
1986 and 2017, while the mean moves from roughly 3.5% in 1986 to roughly 5% by 2017. The
large and dispersed estimates of mean and median informativeness before 1985 are due to smaller
sample sizes in that period. For that reason, we emphasize the steadily increasing trend that
starts in the mid-1980s. We also find that the standard deviation of informativeness has a
positive long-run trend in our sample. In this case, there is a large spike in the cross-sectional
standard deviation of informativeness around the global financial crisis of 2008 — other measures
of dispersion have a similar behavior.
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Figure 5: Price informativeness over time

Note: The left panel in Figure 5 shows the time-series evolution of the cross-sectional mean and median relative
price informativeness. The right panel in Figure 5 shows the time-series evolution of the cross-sectional standard
deviation of price informativeness. The red dashed lines show linear trends starting in 1986. In both panels, the
dots correspond to the average within a quarter of the price informativeness measures computed using quarterly
data.

9To keep the paper focused, we exclusively study the behavior of the panel of stock-specific price informativeness
measures. There is scope to apply our approach to aggregate data in order to generate a time-series of aggregate
price informativeness. There is also scope to explore the time series evolution of informativeness after grouping
stocks by characteristics.
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6 Economic Interpretation of Empirical Findings

Finally, we interpret the empirical findings presented in Section 5 through the lens of the general
framework developed in Section 2 and the structural models developed in Section 3. If one were
merely interested in knowing the precision of the signal contained in asset prices about future
payoffs, our empirical results directly conclude that such signal is more precise for large, high
turnover, and high institutional ownership stocks, and has become more precise on average over
the last few decades.

However, one may be interested in translating these empirical patterns of informativeness to
particular elements of a model. Within the general framework developed in Section 2, we can
combine Equations (4) and (5) to express relative price informativeness as

τRπ = 1

1 +
(
φn
φ1

)2
τu
τ∆n

. (22)

From Equation (22), we can conclude that stocks with high informativeness are those with a
high value of φ1 (sensitivity of the asset price to the future payoff) relative to φn (sensitivity of
the asset price to its non-payoff relevant component) and/or a high value of τ−1

u (variance of the
innovation to the payoff) relative to τ−1

∆n (variance of the non-payoff relevant component, i.e.,
noise). Therefore, our empirical results imply that the (either of the) ratios φ1

φn
and τ−1

∆n
τ−1
u

must
be higher for large, high turnover, and high institutional ownership stocks, and that (either of)
such ratios must have increased on average over the last few decades. Equation (22) clearly
highlights that price informativeness captures the signal-to-noise ratio in asset prices, but not
the sources of noise or information independently.

The models developed in Section 3 allow us to go one step further by relating our empirical
findings on informativeness to deeper primitives. In all three models, the ratio φ1

φn
corresponds

to αs
αn

, which denotes the ratio of the aggregate demand sensitivities to information and noise,
respectively. Consequently, across all three models, higher price informativeness can be inter-
preted as either a higher αs

αn
and/or a higher τ∆n

τu
. While τu is a primitive in all three models,

αs, αn, and, in some cases, τ∆n, are equilibrium objects, as we explain below.
The first model considered in Section 3, in which noise arises from investors’ sentiment,

provides the clearest connection between relative price informativeness and model primitives
in the context of a fully structural model. In this model, the aggregate demand sensitivity to
information relative to noise is exactly given by the ratio of the precision of investors’ private
signals (τs) about the future payoff relative to the precision of the innovation (τu), that is,
αs
αn

= τs
τu
. In this model, the noise embedded in the price is only coming from the investors’

sentiment and τ∆n is also a primitive of the model. Therefore, price informativeness can be
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expressed as the following combination of primitives:

τRπ = 1

1 +
(
τu
τs

)2
τu
τ∆n

. (23)

Equation (23) implies that price informativeness is increasing in the precision of investors’ private
signals (τs), decreasing in the volatility of the payoff innovation (τ−1

u ), and decreasing in the
volatility of aggregate noise (τ−1

∆n). Through the lens of this model, one interpretation of our
empirical results is that investors have more precise private information about stocks with higher
market capitalization and high turnover. It is conceivable that investors acquire more private
information about stocks with higher market capitalization and high turnover because they can
benefit from such information at a larger scale. However, this conclusion is not obvious, since one
may conjecture that larger firms attract the attention of more unsophisticated traders, which
would make the prices of those stocks noisy and uninformative, or that high turnover stocks
feature a large number of noise traders, thus engendering low price informativeness. Similarly,
our time series empirical findings are consistent with an increase in the average precision of
private information relative to noise over the last few decades. Similar arguments can be given
for the other characteristics, e.g., value, institutional ownership, idiosyncratic volatility.

In the second model considered in Section 3, which features a representative agent, the
relative aggregate demand sensitivity to noise and information is also given αs

αn
= τs

τu
, but in

this case the precision of the noise embedded in the price τ∆n is endogenous, which makes the
connection between informativeness and primitives less direct. As in the model with sentiment,
we show that price informativeness is increasing in the precision of investors’ private signals
(τs) and decreasing in the volatility of the innovation (τ−1

u ). All else equal, it is also the case
that price informativeness is decreasing in the volatility of aggregate noise (τ−1

∆n). Therefore, the
interpretation of the results is almost identical to the interpretation of the model with sentiment
as noise. We should note that if we had allowed for time varying risk aversion — as discussed
on page 17 and shown in the Appendix — the movements in discount rates could be interpreted
as changes in the (endogenous) volatility of τ∆n.

Finally, the model with informed, uninformed, and noise traders delivers similar implications
to the model with sentiment. In this last model, price informativeness is increasing in the fraction
of informed investors (λ) and decreasing in the volatility of noise trading (τN ). Through the lens
of this model, our empirical results can be interpreted as concluding that large, high turnover,
and high institutional ownership stocks feature a higher share of informed investors relative to
noise traders, and that the share of informed investors has increased over the last few decades
in relation to the volatility of noise trading.
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7 Conclusion

We have shown that the outcomes of regressions of changes in asset prices on changes in asset
payoffs can be combined to recover exact measures of price informativeness within a large class
of linear/linearized models. Empirically, we compute a panel of stock-specific measures of price
informativeness and find that the median and mean levels of price informativeness fluctuates
around levels of 2% and 4%, respectively. These values, which can be interpreted as the weight
that an external observer who only learns from the price puts on the price signal when forming
a posterior belief about future payoffs, measure the precision of the public signal contained
in prices about future payoffs. Cross-sectionally, we find that price informativeness is higher
for stocks with higher market capitalization, that trade more frequently, and that have a higher
institutional share. Over time, we find that mean and median price informativeness have steadily
increased since the mid-1980s. We discuss alternative scenarios that may generate these patterns.

Our identification results open the door to answering a broad set of questions. Empirically,
there is scope to explore further the relation between price informativeness measures and other
characteristics in the cross section or over time. It also seems worthwhile to document and
explain the behavior of price informativeness in different contexts, perhaps internationally or
in different markets. Theoretically, our results can be used to discipline theories of information
and learning in financial markets.10 There is scope to export our approach to identification to
other environments in which structurally recovering the informativeness of endogenous signals is
important, for instance, auctions, macroeconomic environments, or labor markets. Finally, we
hope that our approach encourages further research on formally identifying price informativeness
in richer models, such as those with feedback effects or significant non-linearities.

10For instance, our results open the door to testing the results in Kacperczyk, Nosal and Sundaresan (2020),
who theoretically characterize the relation between institutional ownership and price informativeness, or Dávila
and Parlatore (2020), who theoretically characterize the relation between trading costs and price informativeness.
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Appendix
A Proofs and Derivations

A.1 Section 2: Proofs and Derivations

Proof of Proposition 1. (Identifying price informativeness) For completeness, we
reproduce here Regressions R1 and R2:

∆pt = β + β0∆xt + β1∆xt+1 + et (R1)

∆pt = ζ + ζ0∆xt + eζt . (R2)

Note that the R-squareds of both regressions can be expressed as follows

R2
∆x,∆x′ = 1− Var (et)

Var (∆pt)
and R2

∆x = Var (ζ0∆xt)
Var (∆pt)

.

After substituting Equation (1) in Equation (2), the following relation holds

∆pt = φ+ φ1µ∆x + φnµ∆n + (φ0 + ρφ1) ∆xt + φ1ut + φnε
∆n
t . (24)

By comparing Regression R2 with the structural Equation (24), it follows that ζ = φ+φ1µ∆x +
φnµ∆n, ζ0 = φ0 +ρφ1, and εζt = φ1ut+φnε

∆n
t . By comparing Regression R1 with the structural

Equation (2), it follows that β = φ, β0 = φ0, β1 = φ1, and et = φn∆nt.
From Equation (24), the following variance decomposition must hold

Var (∆pt) = Var (ζ0∆xt) + Var
(
φ1ut + φnε

∆n
t

)
= Var (ζ0∆xt) + (φ1)2 Var (ut) + Var (et) ,

which can be rearranged to express τπ
τu

as follows

1 = Var (ζ0∆xt)
Var (∆pt)︸ ︷︷ ︸

R2
∆x

+ Var (et)
Var (∆pt)︸ ︷︷ ︸
1−R2

∆x,∆x′


(φ1)2

Var (et)
Var (ut)︸ ︷︷ ︸
τπ
τu

+1

⇒
τπ
τu

=
R2

∆x,∆x′ −R2
∆x

1−R2
∆x,∆x′

.

Therefore, relative price informativeness can be written as τRπ = τπ
τπ+τu = 1

1+ 1
τπ
τu

=
R2

∆x,∆x′−R
2
∆x

1−R2
∆x

.

Given the assumptions on ut and ∆nt, it is straightforward to show that the OLS esti-
mates of Regressions R1 and R2 are consistent, which implies that price informativeness can be
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consistently estimated as τ̂Rπ =
̂R2
∆x,∆x′−R̂

2
∆x

1−R̂2
∆x

. Formally, plim
(
τ̂Rπ

)
= plim

(
̂R2
∆x,∆x′−R̂

2
∆x

1−R̂2
∆x

)
= τRπ .

A.2 Section 3: Proofs and Derivations

Portfolio Demand Approximation The optimality condition of an investor who maximizes
Equation (10) subject to the wealth accumulation constraint in Equation (11) is given by

E
[
U ′i

(
wi1

)(Xt+1 + Pt+1
Pt

−Rf
)∣∣∣∣ Iit] = 0. (25)

We approximate an investor’s first-order condition in three steps.
First, we take a first-order Taylor expansion of an investor’s future marginal utility U ′

(
wi1
)

around the current date t wealth level wi0. Formally, we approximate U ′
(
wi1
)
as follows

U ′
(
wi1

)
≈ U ′

(
wi0

)
+ U ′′

(
wi0

)
∆wi1,

which allows us to express Equation (25) as

U ′
(
wi0
)
Ei
[
Xt+1 + Pt+1

Pt
−Rf

]
+ U ′′

(
wi0
)
wi0Ei

[(
Rf − 1 + θit

(
Xt+1 + Pt+1

Pt
−Rf

))(
Xt+1 + Pt+1

Pt
−Rf

)]
≈ 0.

Second, we impose that terms that involve the product of two or more net interest rates are
negligible. In continuous time, these terms would be of order (dt)2. Formally, it follows that

(
Rf − 1

)
Eit
[
Xt+1 + Pt+1

Pt
−Rf

]
≈ 0 and

(
Eit
[
Xt+1 + Pt+1

Pt
−Rf

])2
≈ 0,

which allows us to express Equation (25) as

U ′
(
wi0

)
Eit
[
Xt+1 + Pt+1

Pt
−Rf

]
+ U ′′

(
wi0

)
wi0θ

i
tVarit

[
Xt+1 + Pt+1

Pt

]
≈ 0.

Therefore, we can express an investor’s risky portfolio share θit as

θit ≈
1
γi

Eit
[
Xt+1+Pt+1

Pt
−Rf

]
Varit

[
Xt+1+Pt+1

Pt

] , (26)

where γi ≡ −wi0U
′′
i (wi0)

U ′i(wi0)
denotes the coefficient of relative risk aversion. These coefficients are

time invariant since we have assumed that the distribution of investor types is time invariant
and the wealth distribution across time and investor type is i.i.d.

Third, as in Campbell and Shiller (1988), we take a log-linear approximation of returns
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around a predetermined dividend-price ratio. Formally, note that

ln
(
Xt+1 + Pt+1

Pt

)
= ln

(
1 + ept+1−xt+1

)
+ ∆xt+1 − (pt − xt) ,

where yt = lnYt for any given variable Yt. Following Campbell and Shiller (1988), we approxi-
mate the first term around a point PX = ep−x, to find that

ln
(
1 + ept+1−xt+1

)
≈ ln (1 + PX) + PX

PX + 1 (pt+1 − xt+1 − (p− x)) .

= k0 + k1 (pt+1 − xt+1) ,

where k1 ≡ PX
PX+1 and k0 ≡ ln (1 + PX)− k1 (p− x).

Therefore, starting from Equation (26), we can express an investor’s risky portfolio share θit
as

θit ≈
1
γi
k0 + k1Eit [pt+1 − xt+1] + Eit [∆xt+1]− (pt − xt)− rf

Var [k1 (pt+1 − xt+1) + ∆xt+1] ,

where we define rf ≡ lnRf and we used that ey ≈ 1 + y.

Forming expectations In order to characterize the equilibrium it is necessary to charac-
terize investors’ expectations. We conjecture and subsequently verify that k1Eit [pt+1 − xt+1] +
Eit [∆xt+1] is linear in sit, nit, and xt and that Var [k1 (pt+1 − xt+1) + ∆xt+1] is a constant. Under
this conjecture, θit is a linear function of sit, xt, and nit, given by

θit ≈ αixxt + αiss
i
t + αinn

i
t − αippt + ψi.

These coefficients are time invariant since we have assumed that the distribution of investor
types is time invariant and the wealth distribution across time and investor type is i.i.d.

This expression and the market clearing condition
∫
θitw

i
0di = Q imply that

pt = αx
αp
xt + αs

αp
ut + αn

αp
nt + ψ

αp
,

where αh ≡
∫
αihw

i
0di for h = {x, s, n, p} and ψ ≡

∫
ψiwi0di − Q. As in Vives (2008), we make

use of the Strong Law of Large Numbers, since the sequence of independent random variables{
αisw

i
0ε
i
st, α

i
nw

i
0ε
i
nt

}
has uniformly bounded variance and mean zero. This expression can also

be written as
pt =

(
αx
αp
− αs
αp

)
xt + αs

αp
xt+1 + αn

αp
nt + ψ

αp
− αs
αp
µ∆x. (27)

Investors in the model learn from the price. The information contained in the price for an
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investor in the model is

π̂t = αp
αs

(
pt −

(
αx
αp
xt + αn

αp
µ∆n + ψ

αp

))
,

which has a precision τπ̂ ≡ Var
[
π̂t|ut, {xs}s≤t , pt−1

]−1
=
(
αs
αn

)2
τ∆n. Note that we denote by

πt the unbiased signal of ut contained in the change in log prices ∆pt and by π̂t the unbiased
signal about ut contained in the log price pt.

Given the information set of the investor, Var
[
nt|ut, {xs}s≤t , pt−1

]
= Var

[
∆nt|ut, {xs}s≤t , pt−1

]
.

Then,

Eit [ut] = E
[
ut|Iit

]
= τss

i
t + τun

i
t + τπ̂π̂t

τs + τu + τπ̂
=
τss

i
t + τun

i
t + τπ̂

αp
αs

(
pt − αx

αp
xt − αn

αs
µ∆n − ψ

αp

)
τs + τu + τπ̂

and Var
[
ut| Iit

]
= (τs + τu + τπ̂)−1, where Iit =

{
sit, n

i
t, {ps}s≤t , {xs}s≤t

}
. Note that these two

expressions imply that our conjecture about θit is satisfied. To see this, note that

k1Eit [pt+1 − xt+1] + Eit [∆xt+1] = k1Eit
[
αx
αp
xt+1 + αs

αp
ut+1 + αn

αp
nt+1 + ψ

αp
− xt+1

]
+ µ∆x + Eit [ut]

= k1

((
αx
αp
− 1 + 1

k1

)(
µ∆x + Eit [ut]

)
+ αn
αp

Eit [nt] +
(
αx
αp
− 1
)
xt + αn

αp
µ∆n + ψ

αp

)
,

where we used that Eit [ut+1] = 0, that Eit
[
ε∆n
t+1

]
= 0, and that Eit [nt] is linear in pt and xt. To

see this, first note that nt−1 is known at time t since the information set of the investor includes
all past prices and payoffs. Therefore, the prior mean of investor i about nt is µ∆n + nt−1.
Second, the price pt contains information about nt. The unbiased signal about nt contained in
the price pt is given by

πnt ≡
αp
αn

(
pt −

(
αx
αp
xt + ψ

αp

))
= nt + αs

αn
ut,

and its precision is given by τπn ≡
(
αn
αs

)2
τu. Then,

Eit [nt] =
τ∆n (µ∆n + nt−1) + τπn

αp
αn

(
pt −

(
αx
αp
xt + ψ

αp

))
τ∆n + τπn

and Varit [nt] = (τ∆n + τπn)−1. Moreover,

Varit [k1 (pt+1 − xt+1) + ∆xt+1] = k2
1

(
αx
αp
− 1 + 1

k1

)2
(τs + τu + τπ̂)−1 +k2

1

(
αs
αp

)2
τ−1
u +k2

1

(
αn
αp

)2
τ−1
∆n.
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Using these expressions in the first-order condition and matching coefficients gives

αix = 1
κi
k1

(αx
αp
− 1 + 1

k1

)(
1−

τπ̂
αx
αs

τs + τu + τπ̂

)
−

τπn
αx
αp

τ∆n + τπn

 (28)

αis = 1
κi
k1

(
αx
αp
− 1 + 1

k1

)
τs

τs + τu + τπ̂
(29)

αin = 1
κi
k1

(
αx
αp
− 1 + 1

k1

)
τu

τs + τu + τπ̂
(30)

αip = 1
κi

1− k1

(αx
αp
− 1 + 1

k1

)
τπ̂

αp
αs

τs + τu + τπ̂
− τπn

τ∆n + τπn

 (31)

ψi = 1
κi


k0 + k1

(
−
(
αx
αp
− 1 + 1

k1

)( τπ
αp
αs

τs+τu+τπ̂ − µ∆x

)
+ 1

)(
αn
αp
µ∆n + ψ

αp

)
+k1

αn
αp

τ∆n(µ∆n+nt−1)+τπn
αp
αn

ψ
αp

τ∆n+τπn − rf

 , (32)

where κi ≡ γiVarit [k1 (pt+1 − xt+1) + ∆xt+1].

Proof of Lemma 1 Iterating forward Equation (27) and taking differences, we find that

∆pt =
(
αx
αp
− αs
αp

)
∆xt + αs

αp
∆xt+1 + αn

αp
∆nt.

This maps to the price process in the general framework by setting φ = 0, φ0 = αx
αp
− αs
αp

, φ1 = αs
αp

,
and φn = αn

αp
.

Proof of Lemma 2 When investors are identical, the noise in their signal does not disappear
from the price, and the price in (27) becomes

pt =
(
αx
αp
− αs
αp

)
xt + αs

αp
(xt+1 + εst) + αn

αp
nt + ψ −Q

αp
− αs
αp
µ∆x,

where the demand coefficients are given by the system in Equations (28) through (32). Iterating
backwards this price and taking differences we have

∆pt =
(
αx
αp
− αs
αp

)
∆xt + αs

αp
∆xt+1 + αn

αp

(
∆nt + αs

αn
∆εst

)
.

Setting φ = 0, φ0 = αx
αp
− αs

αp
, φ1 = αs

αp
, and φn = αn

αp
and where ∆n̂t ≡ ∆nt + αs

αn
∆εst maps to

the process in the general framework.
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Time-varying risk-aversion interpretation Note that from Equations (28) through (32)
one can see that αht

αpt
= αht−1

αpt−1
= αh

αp
for all t and h = x, s, n, and that

ψt −Q
αpt

− ψt−1 −Q
αpt−1

= ∆γt
Var [k1 (pt+1 − xt+1) + ∆xt+1](
1− k1

(
αx
αp
− 1 + 1

k1

) τπ̂
αp
αs

τs+τu+τπ̂

)Q = ∆γt
γtαpt

Q.

In this case, the price process is

∆pt =
(
αx
αp
− αs
αp

)
∆xt + αs

αp
∆xt+1 + αn

αp

(
∆nt + αs

αn
∆εst + ∆γt

γtαnt
Q

)
,

and setting φ = 0, φ0 = αx
αp
− αs

αp
, φ1 = αs

αp
, and φn = αn

αp
, where ∆n̂t ≡ ∆nt + αs

αn
∆εst + ∆γt

γtαnt
Q,

maps to the process in the general framework. In this case, the noise in the price can come from
time-varying risk aversion.

Proof of Lemma 3 The case in which there are informed and uninformed investors and noise
traders is a special case of the model in Section 3.1 with three types of agents. In that case, the
demand for informed and uninformed investors is respectively given by

θIt ≈ αIxxt + αIsut − αIppt + ψI

θUt ≈ αUx xt + αUn n
U
t − αUp pt + ψU ,

and the demand of noise traders is given by δ. Market clearing and the SLLN imply that the
equilibrium price in Equation (12).

Taking first differences for this price process we have

∆pt ≈ φ+ φ0∆xt + φ1∆xt+1 + φn∆ñt,

where the coefficients φ = 0, φ0 = αx
αp
− αs

αp
, φ1 = αs

αp
, and φn = αn

αp
are equilibrium outcomes

and ∆ñt ≡ ∆nt + 1
αn

∆δt, which proves our claim.

A.3 Section 4: Proofs and Derivations

Proof of Proposition 2 (Identifying price informativeness when payoff and noise are
correlated) When ∆nt = µ∆n +ωut + ε∆n

t , the price process in Equation (13) can be written
as

∆pt = φ+ φ1µ∆x + φnµ∆n + (φ0 + ρφ1) ∆xt + (φ1 + φnω)ut + φnε
∆n
t . (33)
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Hence, the unbiased signal about the innovation ut contained in the price change is

πt = 1
(φ1 + φnω)

(
∆pt −

(
φ+ φ1µ∆x + φnµ∆n + (φ0 + ρφ1) ∆xt

))
= ut + φn

(φ1 + φnω)ε
∆n
t ,

and absolute price informativeness is given by τπ ≡ Var [πt|ut,∆xt]−1 =
(
φ1+φnω
φn

)2
τ∆n. The

price process can also be written as a function of ∆xt and ∆xt+1 as follows

∆pt = φ− φnωµ∆x + φnµ∆n + (φ0 − φnωρ) ∆xt + (φ1 + φnω) ∆xt+1 + φnε
∆n
t .

Comparing this equation with Regression R1 it is easy to see that β = φ − φnωµ∆x + φnµ∆n,
β0 = φ0 − φnωρ, β1 = φ1 + ωφn, and et = φnε

∆n
t with et ⊥ ∆xt,∆xt+1. Moreover, comparing

Equation (33) with Regression R2, it follows that ζ = φ + φ1µ∆x + φnµ∆n, ζ0 = φ0, and
eζt = (φ1 + φnω)ut + φnε

∆n
t with eζt ⊥ ∆xt. Then, we can recover relative price informativeness

in the same way as in the baseline model, as follows

τRπ =
R2

∆x,∆x′ −R2
∆x

1−R2
∆x

,

where the steps to recover absolute price informativeness are the same as in the baseline model.

Proof of Proposition 3 (Identifying price informativeness with public signals) When
investors have access to public signals, the equilibrium price process is given by Equation (16).

a) If the public signals are not available to the external observer, then the model with public
information can be cast in terms of having noise correlated with the payoff by replacing the
noise term in Equation (2) by

φ′n∆n′t ≡ φχ ·∆χt + φn∆nt = φnµ∆n + φχ · ωut + φχ∆εχt + φnε
∆n
t .

In this case, Proposition 2 holds.
b) If the public signals are available to the external observer, one can extend the identification

results as follows. Using that ∆xt+1 = µ∆x + ρ∆xt + ut and that ∆nt = µ∆n + ε∆n
t , we can

write the price process as

∆pt = φ+ φ1µ∆x + φnµ∆n + (φ0 + φ1ρ) ∆xt + φ1ut + φχ ·∆χt + φnε
∆n
t . (34)

Hence, the unbiased signal contained in the price for an external observer who has access to the
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public signals is

π′t ≡
1
φ1

(
∆pt −

(
φ+ φ1µ∆x + φnµ∆n + (φ0 + φ1ρ) ∆xt + φχ ·∆χt

))
= ut + φn

φ1
ε∆n
t ,

and price informativeness is τπ′ ≡ Var [π′t|ut,∆xt,∆χt]
−1 =

(
φ1
φn

)2
τ∆n. Comparing the expres-

sion for the equilibrium price in Equation (16) with Regression R1-PS, we have that β′1 = φ1 and

Var [e′t] = φ2
nτ
−1
∆n. Therefore, absolute price informativeness can be recovered as τπ′ = (β′1)

2

Var[e′t]
.

Moreover, comparing Regression R2-PS with the expression for the price process in Equation
(34) we have that eζ′t ≡ φ1ut + φnε

∆n
t . Taking the variance on both sides of Regression R2-PS

gives

1 = Var [ζ ′0∆xt + ζ ′1 ·∆χt]
Var [pt]

+ Var [e′t]
Var [pt]

(Var [φ1ut]
Var [e′t]

+ 1
)
.

Noting that Var[e′t]
Var[pt] = 1−R2

∆x,∆x′,∆χ and Var[ζ′0∆xt+ζ′1·∆χt]
Var[pt] = R2

∆x,∆χ implies

τRπ′ ≡
τπ′

τu + τπ′
=
R2

∆x,∆x′,∆χ −R2
∆x,∆χ

1−R2
∆x,∆χ

,

where R2
∆x,∆x′,∆χ and R2

∆x,∆χ are the R-squareds of Regression R1-PS and Regression R2-PS.

Proof of Proposition 4 (Identifying price informativeness about learnable compo-
nent of payoffs) When there is an unlearnable component of payoffs, the portfolio demand
of an investor i can be approximated by

θit ≈ αixxt + αiss
i
t + αinn

i
t − αippt + ψi,

where the coefficients αix, αis, αin, and αip are positive scalars that represent the individual
demand sensitivities to the contemporary payoff, the private signal, the private trading needs,
and the asset price, respectively, and ψi can be positive or negative and incorporates the risk
premium.

The market clearing condition and this approximation imply an equilibrium (log) price

pt ≈
αx
αp
xt + αs

αp
uLt + αn

αp
nt + ψ

αp
,

where αh ≡
∫
αihw

i
0di for h = {x, s, n, p} and ψ ≡

∫
ψiwi0di −Q. Using that the payoff process

is ∆xt+1 = µ∆x + uUt + uLt , the price can be written as

pt =
(
αx
αp
− αs
αp

)
xt + αs

αp

(
xt+1 − uUt

)
+ αn
αp
nt + ψ − αsµ∆x

αp
.
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Taking first differences, we find that

∆pt = φ+ φ1µ∆x + φ0∆xt + φ1u
L
t + φ1u

U
t−1 + φn∆nt.

where φ = 0, φ0 = αx
αp
− αs

αp
, φ1 = αs

αp
, and φn = αn

αp
. Then, the unbiased signal about the change

in the learnable component of the innovation contained in the price is

πLt ≡
1
φ1

(
∆pt −

(
φ+ φ1µ∆x + φnµ∆n + φ0∆xt

))
= uLt + uUt−1 + φn

φ1
ε∆n
t ,

and absolute and relative price informativeness are respectively given by

τπL ≡ Var
[
uUt−1 + φn

φ1
ε∆n
t

∣∣∣∣uLt ,∆xt]−1
=
((
τLu + τUu

)−1
+
(
φn
φ1

)2
τ−1

∆n

)−1

(35)

and

τRπL = τπL

τπL + τLu
=
(

1 + τLu
τLu + τUu

+
(
φn
φ1

)2 (τ∆n
τLu

)−1
)−1

.

When there is an unlearnable component of the payoff, the error term in regression R1 is given by
et = φnε

∆n
t −φ1∆uUt and the error term in Regression R2 is given by eζt = φnε

∆n
t +φ1u

L
t +φ1u

U
t−1.

Consequently,

Var
(
eζt

)
− Var (et)

Var
(
eζt

∣∣∣∆xt) =
Var

(
φ1u

L
t

)
− Var

(
φ1u

U
t

)
Var

(
φ1uLt

)
+ Var

(
φ1uUt−1 + φnε∆n

t

∣∣∣∆xt) = τπL

τπL + τLu

1−
Var

(
uUt

)
Var

(
uLt
)
 .

Rewriting this expression, we have

τRπL = τπL

τπL + τLu
=

Var
(
eζt

)
− Var (et)

Var
(
eζt

∣∣∣∆xt)
1

1− Var(uUt )
Var(uLt )

. (36)

Finally, using the fact that Var (ut) = Var
(
uLt

)
+ Var

(
uUt

)
, it follows that

Var
(
uUt

)
Var

(
uLt
) =

1− Var
(
eζt

)
−Var(et)

φ2
1Var(ut)

1 + Var
(
eζt

)
−Var(et)

φ2
1Var(ut)

,

where Var (ut) is the variance of the residuals in a regression of ∆xt+1 on ∆xt, which proves our
results. Note that if Var

(
uLt

)
= Var

(
uUt

)
, the expression in Equation (36) is not well defined.

In this case, we can recover relative price informativeness as τR
πL

=
φ2

1
2 Var(ut)

Var
(
eζt

∣∣∆xt) .
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Online Appendix
For Online Publication Only

Section A of this Online Appendix relates our results to existing work, in particular the
literature on predictability and the work that focuses on forecasting price efficiency, including
the work of Bai, Philippon and Savov (2016).

Section B of this Online Appendix describes in more detail the data used for the empirical
implementation of the results in Section 5.

Section C of this Online Appendix reports additional empirical results. First, we include
a series of figures that give more insight into the cross-sectional results presented in Table 2.
Second, we present the results of the model after including a set of controls (public signals).
Finally, we present cross-sectional relations using a single price informativeness estimate per
stock obtained using the largest possible window of time-series data.

Section D of this Online Appendix includes a simulation of the model with learnable and
unlearnable payoff innovations studied in Section 4.3.

A Relation to Existing Work

A.1 Predictability vs. Informativeness

As explained in the paper, price informativeness and price/return predictability are conceptually
different notions. In this section, we provide a simple illustration of the source of the bias that
would arise if one were to run Regression R3.11 We simulate the model of Section 2 using the
following parameters, chosen purely to illustrate existence of the bias: µ∆x = µn = ρ = φ =
φ0 = 0, τu = τn = 1, φ1 = 1, and φn = 1.

Figure OA-1 shows the distribution of the OLS estimates of β1 in Regression R1 (equiva-
lently, φ1 in Equation (2)) when simulating the model for different time periods. As shown in
Proposition 1, the estimates of φ1 are consistent. Figure OA-1 also shows the distribution of
the OLS estimates of ϕ1 = 1

β1
in Regression R3. As described in the text, the estimates of ϕ1

are downward biased and inconsistent.
Figure OA-2 provides an alternative illustration of the bias in this scenario. The left panel

in Figure OA-2 shows a simulation of Regression R1 with 200 observations. The estimated slope
of this regression provides a consistent estimate of the estimate of φ1. The right panel in Figure
OA-2 shows a simulation of Regression R3 for the exact same simulation. The estimated slope

11Note that the bias identified here, which arises due to the presence of noise, is different from Stambaugh
(1999) bias, which arises whenever the predictive variable is persistent.
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Figure OA-1: Predictability vs. Informativeness: biased estimates (1)
Note: The left panel in Figure OA-1 shows the distribution of estimates φ1 and its true value when estimating
Regression R1 via OLS. The right panel in Figure OA-1 shows the distribution of estimates 1

ϕ1
and its true value

when running the reverse (predictive) Regression R3. In both panels, for every number of periods between 20 to
200, we simulate the model N = 1000 times, and report the mean estimate and the 5% and 95% estimates. The
dashed black lines respectively show the true values of φ1 and ϕ1. The solid blue lines show the mean of the OLS
estimates in each case, while the shaded area includes estimates within the 5% and 95% percentile.

of this regression provides a biased estimate of ϕ1 in Regression R3, as shown theoretically in
the text.

A.2 Forecasting Price Efficiency

In this section, we compare forecasting price efficiency (FPE), i.e., the unconditional variance
of the expected value of the payoff conditional on the price, with price informativeness. While
higher price informativeness will lead to higher FPE, higher FPE may not reflect an increase in
price informativeness. More specifically, we show in Equation (38) below that FPE confounds
changes in the volatility of the payoff with changes in the ability of markets to aggregate dispersed
information. Hence, FPE can increase because price informativeness increases or because the
payoff becomes more volatile and harder to predict. Alternatively, absolute price informativeness
is the precision of the unbiased signal about the payoff contained in the price. This precision is
a direct measure of the ability of financial markets to aggregate dispersed information and it is
independent of the volatility of the payoff.

To illustrate this point, we explicitly re-derive the model in Bai, Philippon and Savov (2016)
(BPS) as a special case of our general framework.12 Consistent with our approach, we abstract

12As described in the introduction, BPS estimate FPE running cross-sectional regressions at specific points
in time and report the time-series evolution of their cross-sectional estimates of FPE. This approach implicitly
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Figure OA-2: Predictability vs. Informativeness: biased estimates (2)
Note: The left panel in Figure OA-2 shows a simulation of Regression R1 with 200 observations. The estimated
slope of this regression — shown by the blue solid line — provides a consistent estimate of the estimate of φ1. The
right panel in Figure OA-2 shows a simulation of Regression R3 for the exact same simulation. The estimated
slope of this regression provides a biased estimate of ϕ1 in Regression R3. The OLS regression is represented with
a solid blue line in both panels. The dashed black line in the right panel shows the correct relation between both
variables.

from investment decisions, and exclusively focus on the role of financial markets aggregating
information. We first describe the environment in BPS using our notation to show how it is
nested in our general specification. Then, we show that while FPE is relevant for welfare, it
does not disentangle the ability of markets to aggregate information from how volatile are asset
payoffs.

Environment There are two periods, t = 0, 1. There is one asset with a payoff u ∼ N
(
u, τ−1

u

)
.

There are i = 1, ..., I informed traders who choose their demand q1i to maximize mean-variance
preferences with imperfect information about u. The asset payoff u is not observable. However,
informed investors observe a private signal

s = u+ εs

and a public signal
χ = u+ εχ,

assumes that the data generating process (including the distribution of payoffs, signals, and noise) is the same for
all stocks at a given point in time — Figure OA-3 shows that this assumption is clearly not true in the data. We
instead recover a panel of stock-specific measures of price informativeness by using rolling regressions. While they
run predictive regressions of future payoffs on current market values, we show that in order to have consistent
estimates of price informativeness, one must regress price changes on future payoffs — see the previous subsection.
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where εs ∼ N
(
0, τ−1

s

)
, εχ ∼ N

(
0, τ−1

χ

)
, and εs ⊥ επ. Note that all informed investors observe

the same set of signals. There are N noise traders whose total demand is random and given by
n ∼ N

(
0, τ−1

n

)
.

The informed traders’ problem is

max
θ1i

(E [u|s, χ]− p) θ1i −
γ

2Var [u|s, χ] θ2
1i + pθ0i,

which leads to the following demand curve:

θ1i = E [u|s, χ]− p
γVar [u|s, χ] ,

where
E [u|s, χ] = τuu+ τss+ τχχ

τu + τs + τχ
and Var [u|s, χ] = 1

τu + τs + τχ
.

Since all informed investors share the same information set, there is no learning from the price.
In an equilibrium in linear strategies, demands for informed traders and uninformed traders

are respectively given by

θI1i = αIss+ αIχχ+ αInn− αIpp+ ψI

θU1i = αUs s+ αUχχ+ αUn n− αUp p+ ψU .

Matching coefficients we have that

αIs = τs
γ
, αIχ = τχ

γ
, αIn = 0, αIp = 1

γ
(τu + τs + τχ) , ψI = τu

γ
u− θ0i,

and αUs = αUχ = αUp = ψU = 0, and αUn = 1
N .

Market clearing implies
I∑
i=1

θIsi + n = Q,

which is the same as

p = αs
αp
s+ αχ

αp
χ+ ψ

αp
+ αn
αp
n,

where αs = IαIs + NαNs . αχ = IαIχ + NαNχ , αp = IαIp + NαNp , αn = IαIn + NαNn , and
ψ = IψI +NψN −Q.
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Price informativeness and forecasting price efficiency Observing the price is equivalent
to observing the signal π,

π = αp
αs + αχ

(
p− ψ

αp

)
= u+ αs

αs + αχ
εs + αχ

αs + αχ
εχ + αn

αs + αχ
n,

where
π|u ∼ N

(
u, τ−1

π

)
,

with

τπ =
(

αs
αs + αχ

)2

τ−1
s +

(
αχ

αs + αχ

)2

τ−1
χ +

(
αn

αs + αχ

)2

τ−1
n . (37)

The precision of the price signal π, τπ in Equation (37), corresponds to our measure of absolute
price informativeness when there is a finite number of investors. There are two differences with
respect to the baseline model presented in the main text. First, there are multiple sources of
aggregate noise: the error of the private signal, εs; the error of the public signal, εχ; and the
demand of noise traders, n. Second, price informativeness is modulated by αs + αχ instead of
by αs because there are two sources of external information about the innovation to the payoff
u.

A Bayesian external observer who only observes the price learns from the price in the fol-
lowing way:

E [u|π] = τuu+ τππ

τu + τπ
.

Forecasting price efficiency (FPE) is then given by

VFPE = Var (E [u|π]) =
(

τπ
τu + τπ

)2 (
τ−1
u + τ−1

π

)
= τRπ
τu

(38)

The expression for FPE in Equation (38) is the predicted variance of cash flows u from prices.
From this equation, it is easy to see that FPE confounds two effects. FPE can increase due to
changes in the ability of prices to aggregate information, τRπ , or due to changes in the variability
of the payoff, τ−1

u . Hence, conditional on the variance of the payoff remaining constant, FPE
and price informativeness will co-move. However, without controlling for changes in payoff
volatility, one cannot make any inferences about price informativeness by looking at FPE.

Relation to Bai, Philippon and Savov (2016) There are three significant differences
between our approach and theirs. First, they aim to measure the informational content of
prices using forecasting price efficiency (FPE), a concept introduced in Bond, Edmans and
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Goldstein (2012). As we formally show in this paper, FPE does not separately identify price
informativeness from payoff volatility. That is, FPE can be high because asset payoffs have
low volatility or because asset prices are very informative. Second, they estimate FPE running
cross-sectional regressions at specific points in time. This approach implicitly assumes that the
data generating process (including the distributions of payoffs, signals, and noise) is the same
for all stocks at a given point in time — an assumption that is easily falsifiable, as we show
in this paper. We instead recover a panel of stock-specific measures of price informativeness
by using rolling regressions. Finally, while they run predictive regressions of future payoffs on
current market values, we show that one must regress price changes (endogenous) on future
payoffs (exogenous) to recover consistent estimates of price informativeness.

B Detailed Data Description

This section describes in more detail the data used for the empirical implementation of the results
in Section 5. See https://github.com/edavila/identifying_price_informativeness for additional
details and replicating files.

We obtain stock market price data from the Center for Research in Security Prices (CRSP)
for the time period between January 1, 1950 and December 31, 2019. First, we import monthly
price data from the Monthly Stock File (msf) for ordinary common shares (shrcd = 10 or 11).
Second, we import delisting prices and other delisting information from the monthly delisting
file (msedelist). Third, we import market returns from the monthly stock indicators file (msi).
Lastly, we import the start and/or end date(s) of when a stock has been part of the S&P
500 from dsp500list. We restrict our sample to securities listed on the NYSE, AMEX or the
NASDAQ (exchcd = 1, 2, or 3). We compute market capitalization by multiplying the stock
price by the number of shares outstanding. For companies with multiple securities, we sum the
market cap for all the company’s securities and keep only the permno with the highest market
capitalization. We define turnover as the ratio between trading volume and shares outstanding.

From FRED, we obtain monthly time series for Personal Consumption Expenditure (PCEPI),
1-Year and 10-Year Treasury Rates (GS1, GS10), Unemployment Rate (UNRATE), Personal
Consumption Expenditures (PCE), and Personal Income (PI).

We import firm performance data from both the COMPUSTAT Fundamentals Annual Data
& the Fundamentals Quarterly Data in the standard, consolidated, industrial format for domestic
firms (INDFMT = ’INDL’ and DATAFMT = ’STD’ and CONSOL = ’C’ and POPSRC = ’D’)
for observations between January 1, 1950 and December 31, 2019 . For future linking with
CRSP, we also import GVKEYs and permnos from the CRSP/COMPUSTAT Merged (CCM)
database, keeping the following linktypes: “LU,” “LC,” or “LS,” and for which the issue marker
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is primary (linkprim = “P” or “C”). For both the annual and quarterly data, we only keep
observations where the observation date is between the beginning and end of the period for
which the CCM link is valid.

We form book value (book) for annual[quarterly] data as shareholders equity (seq[q]) +
deferred assets plus investment tax credit (txditc[q]) - pstk[q] (preferred stock). To deal with
missing values, we replace seqq with common equity plus preferred equity (ceq[q] + pstk[q]) if
an observation of the former but not the latter is unavailable, and if both of are unavailable, we
replace with total assets minus total liability (at[q] - lt[q]). If an observation for txditc[q] and/or
pstk[q] are missing, we replace it with 0. We respectively use oiadpq and ebit as our payoff
measures in the quarterly and annual datasets. We merge for both the annual and quarterly
datasets, where in the shifted specifications, we shift CRSP respectively one quarter and one
month back. After merging the COMPUSTAT and CRSP datasets using the timing describing
in the text, we use PCEPI to deflate all nominal variables. We also discard stocks with non-finite
prices and whose payoff is always 0 or NA. We winsorize payoff and price values at the 2.5th
and 97.5th percentile to reduce the impact of outliers. We compute growth rates of payoffs as
follows: when the lagged payoff is positive, the growth rate is defined as payoff/payofft−1−1. When
the lagged payoff is negative, the growth rate is defined as payofft/|payofft−1|+ 1. We disregard the
observations (less than 0.1%) for which the lagged payoff is exactly zero.

Figure OA-3 illustrates the distribution of stock-specific standard deviation of quarterly
earnings’ growth rates in our sample of stocks with more than 40 observations. As one would
expect, the volatility of earnings across stocks varies widely in the cross section.

C Empirical Implementation: Additional Results

In this section, we report additional empirical results. First, we include a series of figures
that give more insight into the cross-sectional results presented in Table 2. Second, we present
the results of the model after including a set of controls (public signals). Third, we present
cross-sectional relations using a single price informativeness estimate per stock obtained using
the largest possible window of time-series data. Finally, we present the results using annual
observations, instead of quarterly.

C.1 Cross-sectional Relation: Graphical Illustration

Figures OA-4 through OA-8 are the counterparts of the cross-sectional results presented in Table
2. Each figure shows scatter plots of cross-sectional regressions of relative price informativeness
(in twentiles) on each of the five variables considered: size, value, turnover, return volatility, and
institutional ownership, for each of the years between 1981 and 2016. These figures make clear
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Figure OA-3: Cross-sectional standard deviation of earnings’ growth rates

Note: Figure OA-3 shows a relative-frequency histogram of the distribution across stocks of the time-series
standard deviation of earnings growth rates. This histogram features 6,803 stocks. For reference, the median and
mean of the average growth rate of earnings across the stocks represented in this figure are, respectively, 0.11 and
0.56. Section A.2 explains why this evidence invalidates the use of cross-sectional regressions.

that the positive relationships between price informativeness and size, turnover, and institutional
ownership are robust across time.

C.2 Public Signals/Additional Controls

While in the body of the paper we report measures of price informativeness that do not include
additional controls — public signals, in the language of Section 4.2 — in this section we report
the results once we include several controls. Formally, the results reported here are the outcome
of running the following two regressions

∆pjt = β
j + βj0∆xjt + βj1∆xjt+1 + βc ·∆wj,qt + dj,qt + εjt ⇒ R2,j

∆x,∆x′

∆pjt = ζ
j + ζj0∆xjt + βc ·∆wj,qt + dj,qt + ε̂jt ⇒ R2,j

∆x ,

where wj,qt denotes a given set of controls/public signal. The results reported here use the
following aggregate variables as controls for all stocks: i) changes in the one- and ten-year
treasury rates, ii) changes in unemployment rates, iii) change in log consumption, and iv) changes
in log income. We obtain similar results using stock-specific controls as well.

Figure OA-9, which is the counterpart of Figure 2, shows a relative-frequency histogram of
price informativeness for a representative time period, the last quarter of 2015. Figure OA-10,
which is the counterpart of Figure 5, shows the time-series evolution of the cross-sectional mean,
median, and standard deviation of relative price informativeness. Table OA-1 and Figures OA-11
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Figure OA-4: Price informativeness and size
Note: Figure OA-4 shows year-by-year cross-sectional regressions of relative price informativeness (in twentiles)
on size, defined as the log of market capitalization — see e.g. Bali, Engle and Murray (2016). The estimate
reported in Table 2 can be interpreted as a weighted averaged of the year-by-year slope coefficient illustrated
here.
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Figure OA-5: Price informativeness and value
Note: Figure OA-5 shows year-by-year cross-sectional regressions of relative price informativeness (in twentiles)
on value, defined as the ratio between a stock’s book value and its market capitalization. The estimate reported
in Table 2 can be interpreted as a weighted averaged of the year-by-year slope coefficient illustrated here.
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Figure OA-6: Price informativeness and turnover
Note: Figure OA-6 shows year-by-year cross-sectional regressions of relative price informativeness (in twentiles)
on turnover, defined as the ratio between trading volume and shares outstanding. The estimate reported in Table
2 can be interpreted as a weighted averaged of the year-by-year slope coefficient illustrated here.
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Figure OA-7: Price informativeness and idiosyncratic return volatility
Note: Figure OA-7 shows year-by-year cross-sectional regressions of relative price informativeness (in twentiles)
on idiosyncratic volatility, define as the standard deviation over a 30 month period of the difference between the
returns of a stock and the market return. The estimate reported in Table 2 can be interpreted as a weighted
averaged of the year-by-year slope coefficient illustrated here.
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Figure OA-8: Price informativeness and institutional ownership
Note: Figure OA-8 shows year-by-year cross-sectional regressions of relative price informativeness (in twentiles)
on institutional ownership, defined as the proportion of a stock held by institutional investors. The estimate
reported in Table 2 can be interpreted as a weighted averaged of the year-by-year slope coefficient illustrated
here.
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Figure OA-9: Price informativeness: relative-frequency histogram, public signals
Note: Figure OA-9 shows a relative-frequency histogram of price informativeness for a representative time period,
the last quarter of 2015. Note that informativeness is computed over a rolling window of 40 quarters prior.

and OA-12, which are the counterparts of Table 2 and Figures 3 and 4, show the cross-sectional
properties of the distribution of price informativeness across stocks.

C.3 Price Informativeness in the Cross Section: Full Sample Results

In the body of the paper, we compute price informativeness using rolling windows of 40 quarters.
Alternatively, we can compute a single measure of price informativeness for each stock using
the largest possible window of time-series data available for each. In this case, we obtain a
single price informativeness measure per stock. The upside of this approach is that it uses all
the available information for a given stock. The main drawback of this approach is that the
recovered informativeness measures rely on observations from different time periods. Figure
OA-13 shows the cross-sectional results established in Table 2 remain valid in this case.

D Simulation: Learnable and Unlearnable Payoff

In this section, we simulate the model with an unlearnable payoff component studied in Section
4.3. This simulation is helpful to understand the sign and magnitude of the potential bias caused
by estimating the model via OLS and using an incorrect identification procedure. We use the
following parameters: τLu = τUu = 4, τ∆n = 0.15, µ∆x = µ∆n = φ = 0, and φ0 = φn = φ1 = 1.
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Table OA-1: Cross-sectional results, public signals

Estimate Std. Error t-stat

Size 0.00219 0.000144 15.25
Value -0.00203 0.000443 -4.58
Turnover 0.00028 0.000021 13.55
Idiosyncratic Volatility -0.00065 0.005998 -0.11
Institutional Ownership 0.01417 0.001200 11.80

Note: Table OA-1 reports the estimates (âc1) of panel regressions of price informativeness on cross-sectional
characteristics (in twentiles) with year fixed effects (ξt): τR,bπ,t = ac0 + ac1c

b
t + ξt + εb,t, where τR,b,tπ denotes the

average price informative per bin (twentile) in a given period, cbt denotes the value of the given characteristic
per bin (twentile) in a given period, ξt denotes a year fixed effect, ac0 and ac1 are parameters, and εb,t is an error
term. Figures OA-4 through OA-8 provide the graphical counterpart of the results in this table. Size is measured
as the natural log of stock market capitalization, value is measured as the ratio between a stock’s book value
and its market capitalization, turnover is measured as the ratio between trading volume and shares outstanding,
idiosyncratic volatility is measured as the standard deviation — over a 30 month period — of the difference
between the returns of a stock and the market return, and institutional ownership is measured as the proportion
of a stock held by institutional investors.
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Figure OA-10: Price informativeness over time, public signals

Note: The left panel in Figure OA-10 shows the time-series evolution of the cross-sectional mean and median
relative price informativeness. The right panel in Figure OA-10 shows the time-series evolution of the cross-
sectional standard deviation of price informativeness. The red dashed lines show linear trends starting in 1986.
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Figure OA-11: Cross-sectional results, public signals

Note: The left panel in Figure OA-11 shows a box plot by exchange of the residuals of a regression of relative
price informativeness on year fixed effects. The left panel in Figure OA-11 shows a box plot by S&P 500 status of
the residuals of a regression of relative price informativeness on year fixed effects. The solid middle line represents
the median. The top and bottom of the box represent the 75th and 25th percentiles. The whiskers extend up to
1.5 times the interquartile range.
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Figure OA-12: Cross-sectional results, public signals

Note: Figure OA-12 shows a box plot by one-digit SIC industry code of the residuals of a regression of relative
price informativeness on year fixed effects. The solid middle line represents the median. The top and bottom of
the box represent the 75th and 25th percentiles. The whiskers extend up to 1.5 times the interquartile range.
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Figure OA-13: Price informativeness: cross-sectional results, largest window
Note: Figure OA-13 shows cross-sectional regressions of relative price informativeness (in twentiles) on size, value,
turnover, return volatility, and institutional ownership. The estimates of price informativeness in this figure are
computed using the largest possible window for each stock.
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These parameters are chosen so that i) 50% of the payoff innovation is learnable and 50 is
unlearnable, and ii) the true value of price informativeness, computed from the theoretical
expression in Equation (43), is 3.5%.

Figure OA-14 shows the distribution of two different estimates of relative price informa-
tiveness in an environment in which the innovation to the asset payoff has a learnable and an
unlearnable component, as described in Section 4.3. The solid red line shows the mean esti-
mate of price informativeness estimated using Proposition 1 (OLS estimation of Regressions R1
and R2). The solid blue line shows the mean estimate of price informativeness estimated using
Proposition 4 (IV estimation of Regressions R1 and R2, using uLt as instrument for Regression
R2, and uLt and uLt−1 as instruments for Regression R1). The shaded areas contain the distri-
bution of estimates between the 5% and the 95% for each estimator. Note that while the OLS
estimation of informativeness using Regressions R1 and R2 are weakly positive, it is possible to
find negative estimates when using IV estimation.

In this simulation, the OLS estimates of price informativeness can be higher or lower than the
true value. Interestingly, while the OLS estimates of price informativeness are not consistent —
as the number of periods grows, the OLS estimates of informativeness tend to be lower than the
true estimate —, in this specific scenario, the OLS estimates of informativeness using Regressions
R1 and R2 are closer to the true estimate than the IV estimates using Regressions R1 and R2.
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Figure OA-14: Price informativeness: estimates with learnable and unlearnable payoff innova-
tions
Note: Figure OA-14 shows the distribution of two different estimates of relative price informativeness in an
environment in which the innovation to the asset payoff has a learnable and an unlearnable component, as
described in Section 4.3. We simulate the model of Section 4.3 with parameters: τLu = τUu = 4, τ∆n = 0.15,
µ∆x = µ∆n = φ = 0, and φ0 = φn = φ1 = 1. These parameters are chosen so that i) 50% of the payoff innovation
is learnable and 50% is unlearnable and ii) the true value of price informativeness, computed as in Equation (43),
is 3.5%. For every number of periods between 20 to 200, in intervals of 10, we simulate the model N = 1000
times, and report the mean estimate and the 5% and 95% estimates of price informativeness. The dashed black
line shows the true value of relative price informativeness. The solid red line shows the mean estimate of price
informativeness estimated using Proposition 1 (OLS estimation of Regressions R1 and R2). The solid blue line
shows the mean estimate of price informativeness estimated using Proposition 4 (IV estimation of Regressions
R1 and R2, using uLt as instrument for Regression R2, and uLt and uLt−1 as instruments for Regression R1). The
shaded areas contain the distribution of estimates between the 5% and the 95% for each estimator.
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Supplemental Appendix
For Online Publication Only

Section A of this Supplemental Appendix is the counterpart of the analysis in Section 5 using annual
data, instead of quarterly.

Section B of this Supplemental Appendix includes additional results, including an identification results
for absolute price informativeness, the derivation of the Kalman gain for an external observer, and an
extension of the model in which informativeness is defined in term of one-period ahead prices.

Section C of this Supplemental Appendix describes how to identify price informativeness starting
from assumptions on asset demands and information. This is an intermediate approach between the
approach in Section 2, which starts from a pricing equation, and the approach in Section 3, which studies
fully microfounded models.

Section D of this Supplemental Appendix considers three alternative specifications. First, we extend
our approximate results to the case in which the payoff follows a stationary AR(1) process. Second, we
develop our identification results using an exact linear formulation for the price process under difference-
stationary and stationary specifications for the payoff. Third, we also provide the respective CARA-
Normal models to microfound these exact linear formulations.

A Empirical Implementation: Annual Observations
In this section, we report results when using annual data, instead of quarterly data. These results show
that both the cross-sectional and time-series findings identified using quarterly observations remain true
when using annual data.
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Table SupApp-1: Price informativeness: year-by-year summary statistics, annual data

t Median Mean SD Skew Kurt P5 P25 P75 P95 n

1980 0.0643 0.1023 0.1088 1.3051 1.1713 0.0004 0.0150 0.1570 0.3356 280
1981 0.0859 0.1238 0.1174 1.0531 0.4677 0.0015 0.0246 0.1942 0.3565 288
1982 0.0903 0.1250 0.1226 1.2963 1.3625 0.0014 0.0228 0.1900 0.3836 430
1983 0.0775 0.1185 0.1222 1.5262 2.4278 0.0012 0.0242 0.1707 0.3716 452
1984 0.0713 0.1110 0.1181 1.5360 2.2401 0.0018 0.0201 0.1590 0.3739 453
1985 0.0632 0.1036 0.1077 1.4092 1.5899 0.0008 0.0209 0.1529 0.3347 451
1986 0.0556 0.0944 0.1008 1.3941 1.5216 0.0007 0.0161 0.1451 0.2968 471
1987 0.0593 0.0946 0.1017 1.4405 1.6748 0.0004 0.0169 0.1440 0.3142 472
1988 0.0484 0.0911 0.1063 1.6457 2.6934 0.0005 0.0152 0.1310 0.3252 483
1989 0.0511 0.0910 0.1046 1.6350 2.7352 0.0005 0.0136 0.1354 0.3052 508
1990 0.0509 0.0922 0.1050 1.6846 3.3961 0.0007 0.0136 0.1422 0.3087 514
1991 0.0513 0.0915 0.1033 1.5840 2.3096 0.0008 0.0142 0.1376 0.3186 529
1992 0.0527 0.0943 0.1062 1.5677 2.1055 0.0006 0.0153 0.1371 0.3363 680
1993 0.0569 0.0954 0.1061 1.5697 2.4399 0.0005 0.0150 0.1425 0.3168 791
1994 0.0564 0.0939 0.1047 1.5570 2.1203 0.0006 0.0155 0.1352 0.3243 798
1995 0.0564 0.0960 0.1058 1.4937 1.9063 0.0009 0.0162 0.1437 0.3270 786
1996 0.0573 0.0988 0.1103 1.6053 2.7019 0.0008 0.0149 0.1490 0.3344 752
1997 0.0600 0.0986 0.1086 1.6494 3.0178 0.0016 0.0156 0.1480 0.3237 724
1998 0.0611 0.1004 0.1126 1.6294 2.7944 0.0007 0.0132 0.1498 0.3413 687
1999 0.0560 0.1013 0.1175 1.7452 3.3078 0.0009 0.0145 0.1482 0.3538 660
2000 0.0651 0.1108 0.1263 1.5673 2.1201 0.0007 0.0169 0.1649 0.3923 649
2001 0.0620 0.1050 0.1181 1.5670 2.2149 0.0007 0.0141 0.1507 0.3737 643
2002 0.0575 0.0972 0.1119 1.6551 2.6571 0.0004 0.0121 0.1413 0.3464 639
2003 0.0682 0.1040 0.1156 1.5367 2.2066 0.0005 0.0134 0.1502 0.3455 654
2004 0.0663 0.1023 0.1138 1.5297 2.3824 0.0005 0.0131 0.1522 0.3282 753
2005 0.0609 0.0978 0.1103 1.4841 1.9502 0.0004 0.0123 0.1456 0.3355 753
2006 0.0606 0.1003 0.1114 1.4421 1.7090 0.0006 0.0133 0.1498 0.3385 762
2007 0.0634 0.1070 0.1205 1.5149 2.0227 0.0005 0.0137 0.1607 0.3698 774
2008 0.0757 0.1262 0.1379 1.3379 1.1922 0.0009 0.0166 0.1952 0.4037 775
2009 0.0794 0.1363 0.1479 1.3389 1.2611 0.0007 0.0210 0.2079 0.4471 747
2010 0.0719 0.1362 0.1522 1.3449 1.1752 0.0006 0.0193 0.2117 0.4528 747
2011 0.0707 0.1383 0.1533 1.2670 0.8677 0.0005 0.0178 0.2173 0.4632 765
2012 0.0729 0.1374 0.1544 1.3146 1.0753 0.0007 0.0158 0.2176 0.4518 797
2013 0.0711 0.1362 0.1530 1.3148 1.0972 0.0005 0.0169 0.2217 0.4478 913
2014 0.0767 0.1398 0.1544 1.2922 1.0374 0.0007 0.0177 0.2266 0.4482 950
2015 0.0800 0.1398 0.1523 1.2974 1.0991 0.0009 0.0177 0.2180 0.4546 967
2016 0.0808 0.1398 0.1543 1.3185 1.0735 0.0009 0.0179 0.2159 0.4681 988

Note: Table SupApp-1 reports year-by-year summary statistics on the panel of price informativeness measures
recovered. It provides information on the median; mean; standard deviation; skewness; excess kurtosis; and 5th,
25th, 75th, and 95th percentiles of each yearly distribution, as well as the number of stocks in each year. Since
our panel of price informativeness is quarterly, we average the measures of quarterly price informativeness at
the yearly level before computing the summary statistics. We start reporting summary statistics in 1980, since
we have informativeness measures for more than 100 stocks starting on that year. Informativeness in year t is
computed over a rolling window of 40 quarters prior.
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Table SupApp-2: Cross-sectional results, annual data

Estimate Std. Error t-stat

Size 0.0085 0.000431 19.77
Value -0.0124 0.001650 -7.51
Turnover 0.0011 0.000086 12.30
Idiosyncratic Volatility -0.1777 0.019008 -9.35
Institutional Ownership 0.0718 0.004295 16.71

Note: Table SupApp-2 reports the estimates (âc1) of panel regressions of price informativeness on cross-sectional
characteristics (in twentiles) with year fixed effects (ξt): τR,bπ,t = ac0 + ac1c

b
t + ξt + εb,t, where τR,b,tπ denotes the

average price informativeness per bin (twentile) in a given period, cbt denotes the value of the given characteristic
per bin (twentile) in a given period, ξt denotes a year fixed effect, ac0 and ac1 are parameters, and εb,t is an error
term. Size is measured as the natural log of stock market capitalization, value is measured as the ratio between a
stock’s book value and its market capitalization, turnover is measured as the between trading volume and shares
outstanding, idiosyncratic volatility is measured as the standard deviation — over a 30 month period — of the
difference between the returns of a stock and the market return, and institutional ownership is measured as the
proportion of a stock held by institutional investors.
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Figure SupApp-1: Cross-sectional results, annual data

Note: The left panel in Figure SupApp-1 shows a box plot by exchange of the residuals of a regression of relative
price informativeness on year fixed effects. The left panel in Figure SupApp-1 shows a box plot by S&P 500
status of the residuals of a regression of relative price informativeness on year fixed effects. The solid middle line
represents the median. The top and bottom of the box represent the 75th and 25th percentiles. The whiskers
extend up to 1.5 times the interquartile range.
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Figure SupApp-2: Cross-sectional results, annual data

Note: Figure SupApp-2 shows a box plot by one-digit SIC industry code of the residuals of a regression of relative
price informativeness on year fixed effects. The solid middle line represents the median. The top and bottom of
the box represent the 75th and 25th percentiles. The whiskers extend up to 1.5 times the interquartile range.
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Figure SupApp-3: Price informativeness over time, annual data

Note: The left panel in Figure SupApp-3 shows the time-series evolution of the cross-sectional mean and median
relative price informativeness. The right panel in Figure SupApp-3 shows the time-series evolution of the cross-
sectional standard deviation of price informativeness. The red dashed lines show linear trends starting in 1986.
In both panels, the dots correspond to the average within a year of the price informativeness measures computed
using annual data.
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B Additional Results

B.1 Absolute Price Informativeness
Proposition 5. (Identifying absolute price informativeness) Let β, β0, and β1 denote the coef-
ficients of the following regression of log-price differences on realized and future log-payoff differences,
then

∆pt = β + β0∆xt + β1∆xt+1 + et, (R1)

where ∆pt = pt−pt−1 denotes the date t change in log-price, and ∆xt = xt−xt−1 and ∆xt+1 = xt+1−xt
respectively denote the date t and t+ 1 log-payoff differences.

Proof. By comparing Regression R1 with the structural Equation (2), it follows that β = φ + φnµ∆n,
β0 = φ0, β1 = φ1, and et = φnε

∆n
t . Consequently, σ2

e = Var [et] = (φn)2 Var
[
ε∆n
t

]
= (φn)2

τ−1
∆n.

Therefore, we can recover absolute price informativeness as follows

τπ = (β1)2

σ2
e

= (φ1)2

(φn)2
τ−1
∆n

=
(
φ1

φn

)2
τ∆n.

Given the assumptions on ut and ∆nt, it is straightforward to show that the OLS estimates of Regressions
R1 and R2 are consistent, which implies that price informativeness can be consistently estimated as

τ̂π =
(
β̂1
)2

σ̂2
e

. Formally, plim (τ̂π) = plim
((

β̂1
)2

σ̂2
e

)
=
(
φ1
φn

)2
τ∆n = τπ.

B.2 Kalman Gain for a Bayesian External Observer
The priors of a Bayesian external observer over ut (allowing here for µu 6= 0) and ∆nt are given by

ut ∼ N
(
µu, τ

−1
u

)
and ∆nt ∼ N

(
µ∆n, τ

−1
∆n
)
.

The unbiased signal contained in the price about the innovation to the payoff is

πt = ut + φn
φ1

(∆nt − µ∆n) ,

where
πt|ut ∼ N

(
ut, τ

−1
π

)
.

A standard application of Bayesian updating (Vives, 2008; Veldkamp, 2011) immediately implies that the
posterior distribution of an external observer who makes use of the price as a signal about the innovation
to the payoff is given by

µ̂t ≡ E [ut|πt] = (1−K)µt +Kπt (39)
τ̂u ≡ Var [ut|πt] = (τu + τπ)−1

, (40)

where K = τπ
τu+τπ is the Kalman gain, which represents the weight that a Bayesian observer who only

learns from the price puts on the information contained in the price. Equations (39) and (40) are
equivalent to Equation (7) in the text.

To see that the reduction in uncertainty about the innovation to the payoff for the external observer
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is given by the Kalman gain, note that

1− Var [ut|πt]
Var [ut]

= 1− (τu + τπ)−1

τ−1
u

= τπ
τu + τπ

= K.

B.3 Learning about Future Prices
In the body of the paper, we have looked at the information about the next period’s payoff that is
contained in the price. However, there are other measures that may be of interest to investors when
making decisions. For example, an external observer may want to learn about the next period’s price
from the current price. In this subsection, we adapt our analysis to price informativeness about the next
period’s price.

We assume that the price process at date t is given by

∆pt = φ+ φ0∆xt + φ1∆xt+1 + φn∆nt. (41)

Iterating this expression forward and using the process for the change in payoff we can express the current
price difference in terms of the future price difference, as follows

∆pt = φ
p + φ0∆xt + φp1∆pt+1 + ept , (42)

where φp ≡ φ− φ1
φ0+ρφ1

(
φ+ φ1µ∆x

)
, φp1 ≡

φ1
φ0+ρφ1

, and ept ≡ φn∆nt− φ1
φ0+ρφ1

(φ1ut+1 + φn∆nt+1). Hence,
the unbiased signal contained in the price about the next period’s price is

π̃t =
∆pt −

(
φ
p + φ0∆xt + Et [ept ]

)
φp1

= ∆pt+1 + 1
φp1

(ept − Et [ept ]) .

Then, absolute and relative price informativeness are respectively given by

τπ̃ = Var [ π̃t|xt,∆pt+1]−1 = Var
[

1
φp1
ept

∣∣∣∣xt,∆pt+1

]−1
and τRπ̃ ≡

τπ̃
τπ̃ + τ∆p

. (43)

From Equation (42) and the definition of ept it follows that we cannot recover price informativeness
from regressions of prices on future prices, since the error term of that regression would not be orthogo-
nal to the future price and, hence, the estimated coefficients would be biased estimates of the structural
parameters. However, using the structural mapping between the equilibrium price process and the coef-
ficients in Regressions R1 and R2 we can recover price informativeness about the next period’s price as
the proposition below shows.

Proposition 6. (Identifying price informativeness about future price) Relative price informa-
tiveness about the future price can be recovered and consistently estimated from Regressions R1 and R2
as follows:

τRπ̃ = 1

1 +
(

1−R2
∆x +

(
ζ0
β1

)2 (
1−R2

∆x,∆x′

)) .
While we focus our empirical implementation on the behavior of price informativeness about future

payoffs, there is scope to study further the behavior of price informativeness about future prices. A
similar approach can be used to identify price informativeness at different horizons.
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B.3.1 Proof of Proposition 6 (Identifying price informativeness about future prices)

Iterating Equation (41) forward and substituting, we find that

∆pt+1 = φ+ φ1∆µx + (φ0 + ρφ1) ∆xt+1 + φ1ut+1 + φn∆nt+1,

where we substituted for the process for ∆xt+2. This last equation implies that

∆xt+1 =
∆pt+1 −

(
φ+ φ1µ∆x + φ1ut+1 + φn∆nt+1

)
φ0 + ρφ1

.

Using this expression in (41) we can express the current price difference in terms of the future price
difference, as follows:

∆pt = φ− φ1

φ0 + ρφ1

(
φ+ φ1µ∆x

)
+ φ0∆xt + φ1

φ0 + ρφ1
∆pt+1 −

φ1

φ0 + ρφ1
(φ1ut+1 + φn∆nt+1) + φn∆nt.

The unbiased signal contained in the price about the next period’s price is

π̃t = ∆pt+1 −
(
φ1ut+1 + φnε

∆n
t+1
)

+ φn
φ1

φ+ρφ1

ε∆n
t .

Absolute price informativeness is given by

τπ̃ = Var [ π̃t|xt,∆pt+1]−1 =
(
Var

(
φ1ut+1 + φnε

∆n
t+1
)

+
(
φ0 + ρφ1

φ1

)2
Var

(
φnε

∆n
t+1
))−1

and relative price informativeness is τRπ̃ = τπ̂
τπ̃+τ∆p . From the structural mapping of the coefficients

in Regressions R1-PS and R2-PS, it follows that et = φnε
∆n
t and eζt = φ1ut+1 + φnε

∆n
t . Moreover,

since innovations to the noise are i.i.d., it follows that Var
(
φ1ut+1 + φnε

∆n
t+1
)

= Var
(
φ1ut+1 + φnε

∆n
t

)
.

Moreover, β1 = φ1 and ζ0 = φ0 + ρφ1. Then

τπ̃ =
(
Var

[
eζt

]
+
(
ζ0
β1

)2
Var [et]

)−1

. (44)

Using Equation (44), we have that

τ∆p
τπ̃

=
Var

[
eζt

]
+
(
ζ0
β1

)2
Var [et]

Var [∆p] .

Then, since Var[eζt ]
Var[∆p] = 1−R2

∆x and Var[et]
Var[∆p] = 1−R2

∆x,∆x′ , it follows that

τRπ̃ = 1

1 +
(

1−R2
∆x +

(
ζ0
β1

)2 (
1−R2

∆x,∆x′

)) .
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C Asset Demand Model

C.1 Environment and Results
Here, we show that one can directly specify investors’ asset demand and information structure, along
with a payoff process, to identify price informativeness. This is an intermediate approach between using
a fully specified model, as in Sections 3.1 to 3.3, and directly postulating an equilibrium pricing equation,
as in Section 2.

Consider a discrete time environment with a continuum of investors, indexed by i ∈ I, who trade a
risky asset in fixed supply at a (log) price pt each date t = 0, 1, . . . ,∞. Assume that the (log) payoff of
the risky asset in period t+ 1, xt+1, is given by the following stationary AR(1) process in differences:

∆xt+1 = µ∆x + ρ∆xt + ut,

where µ∆x is a scalar, |ρ| < 1, and where the innovations to the payoff, ut, have mean zero, finite
variance, and are independently distributed. Investors trade in period t with imperfect information
about the innovation to the payoff, ut, which is realized at the beginning of the period and observed at
the end of the period. When trading in period t + 1, the contemporaneous payoff ut has already been
realized and is common knowledge to all investors.

Each period t, an investor i observes a private signal sit of the innovation to the payoff ut.13 Investors
have an additional motive for trading the risky asset that is orthogonal to the asset payoff. We denote
by nit investor i’s additional trading motive in period t. These additional trading motives are private
information of each investor and are random in the aggregate.

We rederive the main result of the paper under two assumptions. The first assumption imposes
an additive informational structure and guarantees the existence of second moments, while the second
assumption imposes a linear structure for investors’ equilibrium asset demands. In general, linear demands
can be interpreted as a first-order approximation to other forms of asset demands, so one may expect our
results to approximately hold in a larger class of models. Both assumptions facilitate the aggregation of
individual demands in order to yield a linear equilibrium pricing function.

Assumption 1. (Additive noise) Each period t, every investor i receives an unbiased private signal
sit about the innovation to the payoff, ut, of the form

sit = ut + εist,

where εist for all t and all i, are random variables with mean zero and finite variances, whose realizations
are independent across investors and over time. Each period t, every investor i has a private trading need
nit, of the form

nit = nt + εint,

where ∆nt is a random variable with finite mean, denoted by µ∆n, and finite variance, and where εint
for all t and all i, are random variables with mean zero and finite variances, whose realizations are
independent across investors and over time.

Assumption 1 imposes restrictions on the noise structure in the signals about the innovation to
the payoff ut and on all other sources of investors’ private trading needs by making them additive and

13Assuming that investors observe private signals about the payoff, xt+1, or its innovation, ut, is formally
equivalent, since xt is known to investors when trading in period t.
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independent across investors. This assumption does not restrict the distribution of any random variable
beyond the existence of finite first and second moments. Our second assumption describes the structure
of the investors’ demands for the risky asset θit.

Assumption 2. (Linear asset demands) Investors’ asset demands satisfy

θit = αiss
i
t + αixxt + αinn

i
t − αippt + ψi,

where αis, αix, αin, αip, and ψi are individual demand coefficients, determined in equilibrium.

Assumption 2 imposes a linear structure on the individual investors’ net asset demand for the risky
asset. More specifically, it imposes that an individual investor’s demand is linear in his signal about the
payoff and his private trading needs, as well as in the asset price pt and the current payoff realization xt.
It also allows for an individual specific invariant component ψi. All the models explored in Section 3 are
consistent with Assumptions 1 and 2.

Lemma 4. The price process assumed in Equation (2) in the general framework in Section 2 can be
obtained endogenously when Assumptions 1 and 2 are satisfied.

Note that these assumptions allow for rich cross-sectional heterogeneity among investors. In particu-
lar, it accommodates heterogeneity in investors’ risk aversion, in the precision of their information, and in
the distribution of their idiosyncratic trading motives. As the applications above show, our assumptions
can accommodate models with informed and uninformed traders, which can be mapped to environments
in which one set of agents does not observe any private signal, and those with classic noise traders, which
can be mapped to environments in which one set of agents trades fixed amounts regardless of the price
or other features of the environment. Given that linear asset demands can be interpreted as an approx-
imation to more general models, Lemma 4 implies that our results should be valid more broadly in an
approximate sense.

C.2 Proof of Lemma 4
From Assumption 2 and market clearing it follows that

Q =
∫
αiss

i
tw

i
0di+

∫
αixw

i
0dixt +

∫
αinn

i
tw

i
0di−

∫
αipw

i
0dipt +

∫
ψiwi0di.

Using Assumption 1, we have

Q =
∫
αis
(
ut + εist

)
wi0di+ αxxt +

∫
αin
(
nt + εint

)
wi0di− αppt +

∫
ψiwi0di.

Using the Strong Law of Large Numbers, since the sequence of independent random variables
{
αihw

i
0τ
−1
h

}
has uniformly bounded variance and finite means for h = {s, n}, we have the following equilibrium price

pt = αx
αp
xt + αs

αp
ut + αn

αp
nt + ψ

αp
.

Taking differences gives
∆pt = φ+ φ0∆xt + φ1∆xt+1 + φn∆nt,

where φ = 0, φ0 = αx
αp
− ραsαp , φ1 = αs

αp
, and φn = αn

αp
. This proves our result.
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D Alternative Modeling Frameworks
Our identification results extend to any linear or log-linear setup. In this section, we illustrate how to
extend our results in the context of three different specifications. First, we extend our approximate results
to the case in which the payoff follows a stationary AR(1) process. Second, we develop our identification
results using an exact linear formulation for the price process under difference-stationary and stationary
specifications for the payoff. Third, we also provide the respective CARA-Normal models to microfound
these exact linear formulations.

D.1 Log-Linear Model in Levels

General framework and identification

We consider a discrete time environment with dates t = 0, 1, 2, . . . ,∞, in which investors trade a risky
asset in fixed supply at a (log) price pt at each date t. We assume that the (log) payoff of the risky asset
at date t+ 1, xt+1, follows a stationary AR(1) process

xt+1 = µx + ρxt + ut, (45)

where µx is a scalar, |ρ| < 1, and where the innovations to the payoff, ut, have mean zero, a finite
variance denoted by Var [ut] = σ2

u = τ−1
u , and are identically and independently distributed over time.14

We assume that the equilibrium price is given by

pt = φ+ φ0xt + φ1xt+1 + φnnt, (46)

where φ, φ0, φ1, and φn are parameters and where nt represents the aggregate component of investors’
trading motives that are orthogonal to the asset payoff, given by nt = µn + εnt , where E [εnt ] = 0 and
Var [εnt ] = σ2

n = τ−1
n . For simplicity, we assume that ut and nt are independent.

In this environment, the unbiased signal of the innovation to future payoffs ut contained in the price
level, which we denote by π̃t, is given by

π̃t ≡
pt −

(
φ+ φ1µx + φnµn + (φ0 + ρφ1)xt

)
φ1

= ut + φn
φ1

(nt − µn)

and absolute and relative price informativeness are respectively given by

τπ̃ ≡ (Var [ π̃t|xt+1, xt])−1 =
(
φ1

φn

)2
τn and τRπ̃ ≡

τπ̃
τπ̃ + τu

.

Proposition 7. (Identifying price informativeness: log-linear case)
a) Absolute price informativeness. Let β, β0, and β1 denote the coefficients of the following regression

of log-prices on realized and future log-payoffs:

pt = β + β0xt + β1xt+1 + et, (R1-LL)

where pt denotes the date t log-price, xt and xt+1 respectively denote the dates t and t+ 1 log-payoff, and
where σ2

e = Var [et] denotes the variance of the error. Then, absolute price informativeness, τπ, can be
14As in the body of the paper, we index the innovation to the date t + 1 payoff ut by t — instead of t + 1 —

because investors may be able to learn about it at date t.
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recovered by

τπ̃ = β2
1
σ2
e

.

The OLS estimation of Regression R1-LL yields consistent estimates of β1 and σ2
e .

b) Relative Price Informativeness. Let R2
x,x′ denote the R-squared of Regression R1-LL. Let R2

x, ζ,
and ζ0 respectively denote the R-squared and the coefficients of the following regression of log-price on
log-payoff,

pt = ζ + ζ0xt + eζt . (R2-LL)

Then, relative price informativeness, τRπ̃ , can be recovered by

τRπ̃ =
R2
x,x′ −R2

x

1−R2
x

.

The OLS estimation of Regressions R1-LL and R2-LL yields consistent estimates of R2
x,x′ and R2

x.

Proof. a) By comparing Regression R1-LL with the structural Equation (46), it follows that β = φ+φnµn,
β0 = φ0, β1 = φ1, and et = φnε

n
t . Consequently, σ2

e = Var [et] = (φn)2 Var [εnt ] = (φn)2
τ−1
n . Therefore,

we can recover absolute price informativeness as follows:

τπ̃ = (β1)2

σ2
e

=
(
φ1

φn

)2
τn.

Given Equations (45) and (46), as well as the assumptions on ut and nt, it is straightforward to show that
the OLS estimates of Regressions R1-LL and R2-LL are consistent, which implies that price informative-

ness can be consistently estimated as τ̂π̃ =
(
β̂1
)2

σ̂2
e

. Formally, plim (τ̂π̃) = plim
((

β̂1
)2

σ̂2
e

)
=
(
φ1
φn

)2
τn = τπ.

b) Note that the R-squareds of Regressions R1-LL and R2-LL can be expressed as follows

R2
x,x′ = 1− Var (et)

Var (pt)
and R2

x = Var (ζ0xt)
Var (pt)

.

After substituting Equation (45) in Regression R1-LL, the following relation holds

pt = φ+ φ1µx + φnµn + (φ0 + ρφ1)xt + φ1ut + φnε
n
t . (47)

By comparing Regression R2-LL with the structural Equation (47), it follows that ζ = φ+φ1µx +φnµn,
ζ0 = φ0 + ρφ1, and εζt = φ1ut + φnε

n
t .

From Equation (47), the following variance decomposition must hold

Var (pt) = Var (ζ0xt) + Var (φ1ut + φnε
n
t )

= Var (ζ0xt) + (φ1)2 Var (ut) + Var (et) ,

which can be rearranged to express τπ̃
τu

as follows:

1 = Var (ζ0xt)
Var (pt)︸ ︷︷ ︸

R2
x

+ Var (et)
Var (pt)︸ ︷︷ ︸
1−R2

x,x′

 (φ1)2

Var (et)
Var (ut)︸ ︷︷ ︸

τπ̃
τu

+1

⇒ τπ̃
τu

=
R2
x,x′ −R2

x

1−R2
x,x′

.
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Therefore, relative price informativeness can be written as

τRπ̃ = τπ̃
τπ̃ + τu

= 1
1 + 1

τπ̃
τu

=
R2
x,x′ −R2

x

1−R2
x

.

Microfoundation

Time is discrete, with dates denoted by t = 0, 1, 2, . . . ,∞. The economy is populated by a continuum
of investors, indexed by i ∈ I, who live for two dates. An investor born at date t has well-behaved
expected utility preferences over terminal wealth wi1, with flow utility given by Ui

(
wi1
)
, where U ′i (·) > 0

and U ′′i (·) < 0.
There are two long-term assets in the economy: a risk-free asset in perfectly elastic supply, with gross

return Rf > 1, and a risky asset in fixed supply Q, whose date t (log) payoff is xt = ln (Xt) and which
trades at a (log) price pt = ln (Pt). The process followed by xt is given by

xt+1 = µx + ρxt + ut,

where ∆xt+1 = xt+1 − xt, µx is a scalar, |ρ| < 1, and x0 = ∆x0 = 0. The realized payoff xt is common
knowledge to all investors before the price pt is determined. The realized payoff at date t + 1, xt+1, is
only revealed to investors at date t+ 1.

We assume that investors receive private signals about the innovation to the risky asset payoff.
Formally, each investor receives a signal about the payoff innovation ut given by

sit = ut + εist with εist ∼ N
(
0, τ−1

s

)
,

where εist ⊥ ε
j
st for all i 6= j, and ut ⊥ εist for all t and all i.

We also assume that investors also have private trading motives that arise from random heterogeneous
priors that are random in the aggregate. Formally, each investor i born at date t has a prior over ut given
by

ut ∼i N
(
nit, τ

−1
u

)
,

where
nit = nt + εint with εint

iid∼ N
(
0, τ−1

n

)
,

and
nt = µn + εnt with εnt ∼ N

(
0, τ−1

n

)
,

where µn is a scalar, and where εnt ⊥ εint for all t and all i. The variable nt, which can be interpreted
as the aggregate sentiment in the economy, is not observed and acts as a source of aggregate noise,
preventing the asset price from being fully revealing.

Each investor i born at date t is endowed with wealth wi0, and optimally chooses a portfolio share in
the risky asset, denoted by θit, to solve

max
θit

Eit
[
Ui
(
wi1
)]

(48)
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subject to a wealth accumulation constraint

wi1 =
(
Rf + θit

(
Xt+1 + Pt+1

Pt
−Rf

))
wi0, (49)

where the information set of an investor i in period t is given by Iit =
{
sit, n

i
t, {xs}s≤t , {ps}s≤t

}
.

The optimality condition of an investor who maximizes Equation (48) subject to the wealth accumu-
lation constraint in Equation (49) is given by

E
[
U ′i
(
wi1
)(Xt+1 + Pt+1

Pt
−Rf

)∣∣∣∣ Iit] = 0. (50)

We approximate an investor’s first-order condition in three steps.
First , we take a first-order Taylor expansion of an investor’s future marginal utility U ′

(
wi1
)
around

the current date t wealth level wi0. Formally, we approximate U ′
(
wi1
)
as follows

U ′
(
wi1
)
≈ U ′

(
wi0
)

+ U ′′
(
wi0
)

∆wi1,

which allows us to express Equation (50) as

U ′
(
wi0
)
Ei
[
Xt+1 + Pt+1

Pt
−Rf

]
+ U ′′

(
wi0
)
wi0Ei

[((
Rf − 1

)
+ θit

(
Xt+1 + Pt+1

Pt
−Rf

))(
Xt+1 + Pt+1

Pt
−Rf

)]
≈ 0.

Second, we impose that terms that involve the product of two or more net interest rates are negligible.
In continuous time, these terms would be of order (dt)2. Formally, it follows that

(
Rf − 1

)
Eit
[
Xt+1 + Pt+1

Pt
−Rf

]
≈ 0 and

(
Eit
[
Xt+1 + Pt+1

Pt
−Rf

])2
≈ 0,

which allows us to express Equation (50) as

U ′
(
wi0
)
Eit
[
Xt+1 + Pt+1

Pt
−Rf

]
+ U ′′

(
wi0
)
wi0θ

i
tVarit

[
Xt+1 + Pt+1

Pt

]
≈ 0.

Therefore, we can express an investor’s risky portfolio share θit as

θit ≈
1
γi

Eit
[
Xt+1+Pt+1

Pt
−Rf

]
Varit

[
Xt+1+Pt+1

Pt

] , (51)

where γi ≡ −w
iU ′′(wi)
U ′(wi) denotes the coefficient of relative risk aversion.

Third, as in Campbell and Shiller (1988), we take a log-linear approximation of returns around a
predetermined dividend-price ratio. Formally, note that

Xt+1 + Pt+1

Pt
= e

ln

((
1+

Pt+1
Xt+1

)
Xt+1
Xt

Pt
Xt

)
,

and
ln
(
Xt+1 + Pt+1

Pt

)
= ln

(
1 + ept+1−xt+1

)
+ ∆xt+1 − (pt − xt) ,
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where we define rf = lnRf . Following Campbell and Shiller (1988), we approximate the first term around
a point PX = ep−x, to find that

ln
(
1 + elnPt+1−lnXt+1

)
≈ ln (1 + PX) + PX

PX + 1 (pt+1 − xt+1 − p− x)

= k0 + k1 (pt+1 − xt+1) ,

where k1 = PX
PX+1 and k0 = ln (1 + PX)− k1 (p− x).

Therefore, starting from Equation (51), we have that the risky asset demand of an investor i can be
approximated as

θit ≈
1
γi
k0 + k1Eit [pt+1 − xt+1] + Eit [∆xt+1]− (pt − xt)− rf

Var
[
k1 (pt+1 − xt+1) + ∆xt+1|Iit

] , (52)

where we define rf ≡ lnRf and we used that ey ≈ 1 + y.
In order to characterize the equilibrium it is necessary to characterize investors’ expectations. We

conjecture and subsequently verify that k1Eit [pt+1 − xt+1]+Eit [∆xt+1] is linear in sit, nit, and xt and that
Var [k1 (pt+1 − xt+1) + ∆xt+1] is a constant, which we denote by V . Under this conjecture, θit is a linear
function of sit, xt, and nit, and it is given by

θit ≈ αixxt + αiss
i
t + αinn

i
t − αippt + ψi.

Using this expression and the market clearing condition
∫
θitw

i
0di = Q implies

pt = αx
αp
xt + αs

αp
ut + αn

αp
nt + ψ

αp
.

This expression can also be written as

pt =
(
αx
αp
− αs
αp
ρ

)
xt + αs

αp
xt+1 + αn

αp
nt +

(
ψ

αp
− αs
αp
µx

)
.

Investors in the model learn from the price. The information contained in the price for an investor in the
model is

π̂t = αp
αs

(
pt −

(
αx
αp
xt + αn

αp
µn −

ψ

αp

))
which has a precision

τπ̂ ≡ Var [ π̂t|ut, xt]−1 =
(
αs
αn

)2
τn.

Then,

Eit [ut] = E
[
ut|sit, nit, pt

]
= τss

i
t + τun

i
t + τπ̂π̂t

τs + τu + τπ̂
=
τss

i
t + τun

i
t + τπ̂

αp
αs

(
pt − αx

αp
xt − αn

αs
µn − ψ

αp

)
τs + τu + τπ̂

and
Var

[
ut|Iit

]
= (τs + τu + τπ̂)−1

.
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Note that these two expressions imply that our conjectures above are satisfied. To see this note that

k1Eit [pt+1 − xt+1] + Eit [∆xt+1] = k1Eit

[
αx
αp
xt+1 + αs

αp
ut+1 + αn

αp
nt+1 + ψ

αp
− xt+1

]
+ Eit [µx + (ρ− 1)xt + ut]

= k1

(
Eit

[(
αx
αp
− 1
)
xt+1 + αs

αp
ut+1

]
+ αn
αp
µn + ψ

αp

)
+ (ρ− 1)xt + µx + Eit [ut]

= k1

((
αx
αp
− 1
)(

µx + Eit [ut]
)

+
(
αx
αp
− 1
)
ρxt + αn

αp
µn + ψ

αp

)
+ (ρ− 1)xt + µx + Eit [ut]

= k1

((
αx
αp
− 1 + 1

k1

)(
µx + Eit [ut]

)
+
((

αx
αp
− 1
)
ρ+ (ρ− 1)

k1

)
xt + αn

αp
µn + ψ

αp

)
where we used that Eit [ut+1] = 0 and that Eit

[
εnt+1

]
= 0. Moreover,

Var
[
k1 (pt+1 − xt+1) + ∆xt+1|Iit

]
= Var

[
k1

((
αx
αp
− 1
)
xt+1 + αs

αp
ut+1 + αn

αp
nt+1

)
+ ut|Iit

]
= k2

1

(
αx
αp
− 1 + 1

k1

)2
Var

[
ut|Iit

]
+ k2

1

(
αs
αp

)2
Var

[
ut+1|Iit

]
+ k2

1

(
αn
αp

)2
Var

[
εnt |Iit

]
= k2

1

(
αx
αp
− 1 + 1

k1

)2
(τs + τu + τπ̂)−1 + k2

1

(
αs
αp

)2
τ−1
u + k2

1

(
αn
αp

)2
τ−1
n .

Using these expressions in the first-order condition and matching coefficients gives

αix = 1
κi
k1

(
−
(
αx
αp
− 1 + 1

k1

)
τπ

αx
αs

τs + τu + τπ̂
+
(
αx
αp
− 1 + 1

k1

)
ρ

)

αis = 1
κi
k1

(
αx
αp
− 1 + 1

k1

)
τs

τs + τu + τπ̂

αin = 1
κi
k1

(
αx
αp
− 1 + 1

k1

)
τu

τs + τu + τπ̂

αip = 1
κi

(
k1

(
αx
αp
− 1 + 1

k1

)
τπ

αp
αs

τs + τu + τπ̂
− 1
)

ψi = 1
κi

(
k0 + k1

(
−
(
αx
αp
− 1 + 1

k1

)(
τπ

αp
αs

τs + τu + τπ̂
− µx

)
+ 1
)

+
(
αn
αp
µn + ψ

αp

)
− rf

)

where κi ≡ γiVar
[
k1 (pt+1 − xt+1) + ∆xt+1|Iit

]
.

In this equilibrium, our guess in Equation (52) is verified and the equilibrium price is linear and can
be expressed as in Equation (46).

D.2 An Exact CARA-Normal Formulation
In an earlier version of this paper, we developed our identification results using an exact linear formulation,
motivated by the use of a CARA-Normal framework, which is the workhorse model in the learning
literature, see e.g., Vives (2008) and Veldkamp (2011). In this section, we reproduce our identification
results using these exact linear formulations in the case of difference-stationary and stationary linear
payoffs, and we provide microfoundations in the context of CARA-Normal models.
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D.2.1 Difference-stationary linear payoff

General framework and identification We consider a discrete time environment with dates
t = 0, 1, 2, . . . ,∞, in which investors trade a risky asset in fixed supply at a price Pt at each date t. We
assume that the payoff of the risky asset at date t+1, Xt+1, follows a difference-stationary AR(1) process

∆Xt+1 = µ∆X + ρ∆Xt + ut, (53)

where µ∆X is a scalar, |ρ| < 1, and where the innovations to the payoff, ut, have mean zero, a finite
variance denoted by Var [ut] = σ2

u = τ−1
u , and are identically and independently distributed over time.

We assume that the equilibrium price difference is given by

∆Pt = φ+ φ0∆Xt + φ1∆Xt+1 + φn∆nt, (54)

where φ, φ0, φ1, and φn are parameters and where nt represents the aggregate component of investors’
trading motives that are orthogonal to the asset payoff, given by ∆nt = µ∆n + ε∆n

t , where E
[
ε∆n
t

]
= 0

and Var
[
ε∆n
t

]
= σ2

n = τ−1
∆n. For simplicity, we assume that ut and ∆nt are independent.

In this case, the unbiased signal of the innovation to the change in the future payoff ut contained in
the price, which we denote by Πt, is given respectively by

Πt ≡
∆Pt −

(
φ+ φ1µ∆X + φnµ∆n + (φ0 + ρφ1) ∆Xt

)
φ1

= ut + φn
φ1

(∆nt − µ∆n)

and absolute and relative price informativeness are given by

τΠ ≡ (Var [Πt|∆Xt+1,∆Xt])−1 =
(
φ1

φn

)2
τ∆n and τRΠ ≡

τΠ
τΠ + τu

.

Proposition 8. (Identifying price informativeness: difference-stationary linear case)
a) Absolute price informativeness. Let β, β0, and β1 denote the coefficients of the following regression

of prices on realized and future payoffs:

∆Pt = β + β0∆Xt + β1∆Xt+1 + et, (R1-Linear-Diff)

where ∆Pt denotes the date t price change, ∆Xt and ∆Xt+1 respectively denote the dates t and t+1 payoff
change, and where σ2

e = Var [et] denotes the variance of the error. Then, absolute price informativeness,
τΠ, can be recovered by

τΠ = β2
1
σ2
e

.

The OLS estimation of Regression R1-Linear-Diff yields consistent estimates of β1 and σ2
e .

b) Relative Price Informativeness. Let R2
∆X,∆X′ denote the R-squared of Regression R1-Linear-Diff.

Let R2
∆X , ζ, and ζ0 respectively denote the R-squared and the coefficients of the following regression of

price differences on payoff differences,

∆Pt = ζ + ζ0∆Xt + eζt . (R2-Linear-Diff)
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Then, relative price informativeness, τRΠ , can be recovered by

τRΠ =
R2

∆X,∆X′ −R2
∆X

1−R2
∆X

.

The OLS estimation of Regressions R1-Linear-Diff and R2-Linear-Diff yields consistent estimates of
R2

∆X,∆X′ and R2
∆X .

Proof. a) By comparing Regression R1-Linear-Diff with the structural Equation (54), it follows that
β = φ + φnµ∆n, β0 = φ0, β1 = φ1, and et = φnε

∆n
t . Consequently, σ2

e = Var [et] = (φn)2 Var
[
ε∆n
t

]
=

(φn)2
τ−1
∆n. Therefore, we can recover absolute price informativeness as follows:

τΠ = (β1)2

σ2
e

=
(
φ1

φn

)2
τ∆n.

Given Equations (53) and (54), as well as the assumptions on ut and nt, it is straightforward to show that
the OLS estimates of Regressions R1-Linear-Diff and R2-Linear-Diff are consistent, which implies that

price informativeness can be consistently estimated as τ̂Π =
(
β̂1
)2

σ̂2
e

. Formally, plim (τ̂Π) = plim
((

β̂1
)2

σ̂2
e

)
=(

φ1
φn

)2
τ∆n = τΠ.

b) Note that the R-squareds of Regressions R1-Linear-Diff and R2-Linear-Diff can be expressed as
follows:

R2
∆X,∆X′ = 1− Var (et)

Var (∆Pt)
and R2

∆X = Var (ζ0∆Xt)
Var (∆Pt)

.

After substituting Equation (53) in Regression R1-Linear-Diff, the following relation holds:

∆Pt = φ+ φ1µ∆X + φnµ∆n + (φ0 + ρφ1) ∆Xt + φ1ut + φnε
∆n
t . (55)

By comparing Regression R2-Linear-Diff with the structural Equation (55), it follows that ζ = φ +
φ1µ∆X + φnµ∆n, ζ0 = φ0 + ρφ1, and εζt = φ1ut + φnε

∆n
t .

From Equation (55), the following variance decomposition must hold:

Var (∆Pt) = Var (ζ0∆Xt) + Var
(
φ1ut + φnε

∆n
t

)
= Var (ζ0∆Xt) + (φ1)2 Var (ut) + Var (et) ,

which can be rearranged to express τΠ
τu

as follows:

1 = Var (ζ0xt)
Var (∆Pt)︸ ︷︷ ︸

R2
∆X

+ Var (et)
Var (∆Pt)︸ ︷︷ ︸
1−R2

∆X,∆X′

 (φ1)2

Var (et)
Var (ut)︸ ︷︷ ︸

τΠ
τu

+1

⇒ τΠ
τu

=
R2

∆X,∆X′ −R2
∆X

1−R2
∆X,∆X′

.

Therefore, relative price informativeness can be written as

τRΠ = τΠ
τΠ + τu

= 1
1 + 1

τΠ
τu

=
R2

∆X,∆X′ −R2
∆X

1−R2
∆X

.
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Microfoundation Time is discrete, with periods denoted by t = 0, 1, 2, . . . ,∞. Each period t, there
is a continuum of investors, indexed by i ∈ I. Each generation lives two periods and has exponential
utility over its last period wealth. An investor born at time t has preferences given by

Ui (wt+1) = −e−γiwt+1 ,

where γ is the coefficient of absolute risk aversion and wt+1 is the investor’s wealth in his final period.
There are two long-term assets in the economy: A risk-free asset in perfectly elastic supply, with return
R > 1, and a risky asset in fixed supply Q that trades at a price Pt in period t.15 The process for the
payoff of the risky asset each period t is given by

∆Xt+1 = µ∆X + ut,

where ∆Xt = Xt −Xt−1,µ∆X is a scalar and X0 = 0. The payoff Xt is realized and becomes common
knowledge at the end of period t − 1. The innovation in the payoff process, ut, and, hence, Xt+1 are
realized and observed at the end of period t. The innovations to the payoff are independently distributed
over time.

To preserve tractability, we assume that investors’ private trading needs arise from random hetero-
geneous priors — see Dávila and Parlatore (2020) for a thorough analysis of this formulation. Formally,
each investor i in generation t has a prior over the innovation at time t given by

ut ∼i N
(
nit, τ

−1
u

)
,

where
nit = nt + εint with εint

iid∼ N
(
0, τ−1

n

)
and ∆nt = µ∆n+ε∆n

t with ε∆n
t ∼ N

(
0, τ−1

∆n
)
. The term nt can be interpreted as the aggregate sentiment

in the economy, where nt ⊥ εint for all t and all i. The aggregate sentiment nt is not observed and acts as
a source of aggregate noise in the economy, preventing the price from being fully revealing. For simplicity
we assume nt ⊥ ut+s for all t and all s. Moreover, we assume investors think of their prior as the correct
one and do not learn about the aggregate sentiment from it.16

Each investor i in generation t receives a signal about the innovation in the asset payoff ut given by

sit = ut + εist with εist ∼ N
(
0, τ−1

s

)
and εist ⊥ ε

j
st for all i 6= j, and ut ⊥ εist for all t and all i.

The asset demand submitted by investor i born in period t is given by the solution to the following
problem

max
Qit

(
E
[
Xt+1 +R−1pt+1|Iit

]
− Pt

)
Qit −

γi

2 Var
[
Xt+1 +R−1Pt+1|Itt

] (
Qit
)2
,

where Iit =
{
Xt, s

i
t, n

i
t, Pt

}
is the information set of an investor i in period t.

The optimality condition for an investor i in period t satisfies

Qit =
E
[
Xt+1 +R−1Pt+1|Iit

]
− Pt

γiVar
[
Xt+1 +R−1Pt+1|Iit

] .
15To simplify notation, we denote the risk-free rate by R, instead of Rf as we did in the body of the paper.
16Dávila and Parlatore (2020) show that the equilibrium structure is preserved if this assumption is relaxed.

SupApp-18



In a stationary equilibrium in linear strategies, we assume and subsequently verify that the equilibrium
demand of investor i can be expressed as

Qit = αiXXt + αiss
i
t + αinn

i
t − αiPPt + ψi, (56)

where αiθ, αis, αin, αip, and ψi are individual equilibrium demand coefficients. Market clearing and the
Strong Law of Large Numbers (SLLN) allows us to express the equilibrium price in period t as

Pt = αX
αP

Xt + αs
αP

ut + αn
αP

nt + ψ

αP
,

where we define cross-sectional averages αX =
∫
αiXdi, αs =

∫
αisdi, αP =

∫
αiP di, and ψ =

∫
ψidi−Q.

The unbiased signal of the innovation in the payoff contained in the price is

Πt = αP
αs

(
Pt −

αn
αs
µ∆n −

αX
αP

Xt −
ψ

αP

)
= ut + αn

αs
(nt − µ∆n) ,

where
Πt|Xt+1, Xt ∼ N

(
ut, τ

−1
Π
)
,

with price informativeness given by

τΠ = (Var [Πt|Xt+1, Xt])−1 =
(
αs
αn

)2
τ∆n.

Given our guesses for the demand functions and the linear structure of prices we have

Xt+1 +R−1Pt+1 = Xt+1 +R−1αX
αP

Xt+1 +R−1 αs
αP

ut+1 +R−1 αn
αP

nt+1 +R−1 ψ

αP
,

E
[
Xt+1 +R−1Pt+1|Iit

]
=
(

1 +R−1αX
αP

)
E
[
Xt+1|Iit

]
+R−1 αs

αP
E [ut+1] +R−1 αn

αP
E [nt+1] +R−1 ψ

αP

=
(

1 +R−1αX
αP

)(
Xt + E

[
ut|Iit

])
+R−1αs

αp
E [ut+1] +R−1 αn

αP
µ∆n +R−1 ψ

αP
,

and

Var
[
Xt+1 +R−1Pt+1|Iit

]
=
(

1 +R−1αX
αP

)2
Var

[
Xt+1|Iit

]
+
(
R−1 αs

αP

)2
Var [ut+1] +

(
R−1 αn

αP

)2
Var [nt+1]

=
(

1 +R−1αX
αP

)2
Var

[
ut|Iit

]
+
(
R−1 αs

αP

)2
Var [ut+1] +

(
R−1 αn

αP

)2
Var [nt+1] .

Moreover, given the Gaussian structure of the signals in the information set, Bayesian updating implies

E
[
ut|sit, nit, Pt

]
= τss

i
t + τun

i
t + τΠΠt

τs + τu + τΠ
=
τss

i
t + τ∆nn

i
t + +τΠ αP

αs

(
Pt − αn

αs
µ∆n − αX

αP
Xt − ψ

αP

)
τs + τu + τΠ

,

and
Var

[
ut|Iit

]
= Var

[
tt|sit, nit, Pt

]
= (τs + τu + τΠ)−1

.
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Then, the first-order condition is given by

Qit = 1
γi

(
1 +R−1 αX

αP

) (
Xt + Var

[
ut|Iit

] (
τss

i
t + τun

i
t + τΠΠ

))
+R−1 αs

αP
E [ut+1] +R−1 αn

αP
µ∆n +R−1 ψ

αP
− Pt(

1 +R−1 αX
αP

)2
Var [ut|Iit] +

(
R−1 αs

αP

)2 Var [ut+1] +
(
R−1 αn

αP

)2
τ−1
∆n

.

Matching coefficients we have

αis =

(
1 +R−1 αX

αP

)
κi

Var
[
ut|Iit

]
τs (57)

αin =

(
1 +R−1 αX

αP

)
κi

Var
[
ut|Iit

]
τη

αiX =

(
1 +R−1 αX

αP

)
κi

(
1− Var

[
ut|Iit

]
τΠ
αX
αs

)
αiP = 1

κi

(
1−

(
1 +R−1αX

αP

)
Var

[
ut|Iit

]
τΠ
αp
αs

)
ψi = − 1

κi

((
1 +R−1αX

αP

)
Var

[
ut|Iit

]
τΠ

(
αn
αs
µ∆n + ψ

αs

)
−R−1

(
αn
αP

µ∆n + ψ

αP

))
,

where

κi ≡ γi
((

1 +R−1αX
αP

)2
Var

[
ut|Iit

]
+
(
R−1 αs

αP

)2
Var [ut+1] +

(
R−1 αn

αP

)2
τ−1
∆n

)
,

since Var
[
ut|Iit

]
= (τs + τu + τΠ)−1 for all i.

Then, an equilibrium in linear strategies exists if the system above has a solution. In this equilibrium,
our guess in Equation (56) is verified and the equilibrium price is linear and can be expressed as in
Equation (59).

Note that the if the investors are ex-ante identical, the demand sensitivities are the same for all i.
Then, there exists a unique solution to the system in Equations (57) given by

αis = 1
κ

1
1−R−1

τs
τu + τs + τΠ

, αin = 1
κ

1
1−R−1ρ

τη
τu + τs + τΠ

αiX = 1
κ

ρ

1−R−1
τs

τs + τΠ
, αiP = 1

κ

τs
τs + τΠ

, and

ψi = −
1
κ

1
1−R−1

((
1−R−1) τΠ −R−1τs

)
τu

τu+τs+τΠ̂
µ∆n

1 + (1−R−1) τΠ −R−1τs
,

where τΠ =
(
τs
τu

)2
τ∆n, and

κ = γ

((
1

1−R−1

)2 1
τu + τs + τΠ

+
(
R−1 1

1−R−1
τs + τΠ

τu + τs + τΠ

)2
τ−1
u +

(
R−1

1−R−1
τs + τΠ

τu + τs + τΠ

τu
τs

)2

τ−1
∆n

)
.

D.2.2 Stationary linear payoff

General framework and identification Consider a discrete time environment with dates t =
0, 1, 2, . . . ,∞, in which investors trade a risky asset in fixed supply at a price Pt at each date t. We
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assume that the payoff of the risky asset at date t+ 1, Xt+1, follows a stationary AR(1) process

Xt+1 = µX + ρXt + ut, (58)

where µX is a scalar, |ρ| < 1, and where the innovations to the payoff, ut, have mean zero, a finite
variance denoted by Var [ut] = σ2

u = τ−1
u , and are identically and independently distributed over time.

We assume that the equilibrium price is given by

Pt = φ+ φ0Xt + φ1Xt+1 + φnnt, (59)

where φ, φ0, φ1, and φn are parameters and where nt represents the aggregate component of investors’
trading motives that are orthogonal to the asset payoff, given by nt = µn + εnt , where E [εnt ] = 0 and
Var [εnt ] = σ2

n = τ−1
n . For simplicity, we assume that ut and nt are independent.

In this case, the unbiased signal of the innovation to the change in the future payoff ut contained in
the price, which we denote by Πt, is given by

Π̂t ≡
Pt −

(
φ+ φ1µX + φnµn + (φ0 + ρφ1)Xt

)
φ1

= ut + φn
φ1

(nt − µn)

and absolute and relative price informativeness are given respectively by

τΠ̂ ≡
(
Var

[
Π̂t

∣∣∣Xt+1, Xt

])−1
=
(
φ1

φn

)2
τn and τRΠ̂ ≡

τΠ̂
τΠ̂ + τu

.

Proposition 9. (Identifying price informativeness: difference-stationary linear case)
a) Absolute price informativeness. Let β, β0, and β1 denote the coefficients of the following regression

of prices on realized and future payoffs,

Pt = β + β0Xt + β1Xt+1 + et, (R1-Linear)

where Pt denotes the date t price, Xt and Xt+1 respectively denote the dates t and t + 1 payoff, and
where σ2

e = Var [et] denotes the variance of the error. Then, absolute price informativeness, τΠ̂, can be
recovered by

τΠ̂ = β2
1
σ2
e

.

The OLS estimation of Regression R1-Linear yields consistent estimates of β1 and σ2
e .

b) Relative Price Informativeness. Let R2
X,X′ denote the R-squared of Regression R1-Linear. Let

R2
X , ζ, and ζ0 respectively denote the R-squared and the coefficients of the following regression of price

differences on payoff differences,
∆Pt = ζ + ζ0∆Xt + eζt . (R2-Linear)

Then, relative price informativeness, τRΠ̂ , can be recovered by

τRΠ̂ =
R2
X,X′ −R2

X

1−R2
X

.

The OLS estimation of Regressions R1-Linear and R2-Linear yields consistent estimates of R2
X,X′ and

R2
X .

Proof. a) By comparing Regression R1-Linear with the structural Equation (46), it follows that β =
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φ + φnµn, β0 = φ0, β1 = φ1, and et = φnε
n
t . Consequently, σ2

e = Var [et] = (φn)2 Var [εnt ] = (φn)2
τ−1
n .

Therefore, we can recover absolute price informativeness as follows

τΠ̂ = (β1)2

σ2
e

=
(
φ1

φn

)2
τn.

Given Equations (58) and (59), as well as the assumptions on ut and nt, it is straightforward to show
that the OLS estimates of Regressions R1-Linear and R2-Linear are consistent, which implies that price

informativeness can be consistently estimated as τ̂Π̂ =
(
β̂1
)2

σ̂2
e

. Formally, plim (τ̂Π) = plim
((

β̂1
)2

σ̂2
e

)
=(

φ1
φn

)2
τn = τΠ̂.

b) Note that the R-squareds of Regressions R1-Linear and R2-Linear can be expressed as follows

R2
X,X′ = 1− Var (et)

Var (Pt)
and R2

X = Var (ζ0Xt)
Var (Pt)

.

After substituting Equation (58) in Equation (59), the following relation holds

Pt = φ+ φ1µX + φnµn + (φ0 + ρφ1)Xt + φ1ut + φnε
n
t . (60)

By comparing Regression R2-Linear with the structural Equation (60), it follows that ζ = φ + φ1µX +
φnµn, ζ0 = φ0 + ρφ1, and εζt = φ1ut + φnε

n
t .

From Equation (60), the following variance decomposition must hold

Var (Pt) = Var (ζ0Xt) + Var (φ1ut + φnε
n
t )

= Var (ζ0Xt) + (φ1)2 Var (ut) + Var (et) ,

which can be rearranged to express τΠ̂
τu

as follows

1 = Var (ζ0xt)
Var (Pt)︸ ︷︷ ︸

R2
X

+ Var (et)
Var (Pt)︸ ︷︷ ︸
1−R2

X,X′


(φ1)2

Var (et)
Var (ut)︸ ︷︷ ︸

τΠ̂
τu

+1

⇒
τΠ
τu

=
R2
X,X′ −R2

X

1−R2
X,X′

.

Therefore, relative price informativeness can be written as

τRΠ̂ =
τΠ̂

τΠ̂ + τu
= 1

1 + 1
τΠ̂
τu

=
R2
X,X′ −R2

X

1−R2
X

.

Microfoundation Time is discrete, with periods denoted by t = 0, 1, 2, . . . ,∞. Each period t, there
is a continuum of investors, indexed by i ∈ I. Each generation lives two periods and has exponential
utility over its last period wealth. An investor born at time t has preferences given by

Ui (wt+1) = −e−γ
iwt+1 ,
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where γ is the coefficient of absolute risk aversion and wt+1 is the investor’s wealth in his final period.
There are two long-term assets in the economy: A risk-free asset in perfectly elastic supply, with return
R > 1, and a risky asset in fixed supply Q that trades at a price Pt in period t. The payoff of the risky
asset each period t is given by

Xt+1 = µX + ρXt + ut,

where µX is a scalar, |ρ| < 1, and X0 = 0. The payoff Xt is realized and becomes common knowledge at
the end of period t− 1. The innovation in the payoff, ut, and, hence, Xt+1 are realized and observed at
the end of period t. The innovations to the payoff are independently distributed over time.

To preserve tractability, we assume that investors’ private trading needs arise from random hetero-
geneous priors — see Dávila and Parlatore (2020) for a thorough analysis of this formulation. Formally,
each investor i in generation t has a prior over the innovation at time t given by

ut ∼i N
(
nit, τ

−1
u

)
,

where
nit = nt + εint with εint

iid∼ N
(
0, τ−1

n

)
,

and nt = µn + εnt with εnt ∼ N
(
0, τ−1

n

)
. Note that nt can be interpreted as the aggregate sentiment in

the economy, where nt ⊥ εint for all t and all i. The aggregate sentiment nt is not observed and acts as a
source of aggregate noise in the economy, preventing the price from being fully revealing. For simplicity
we assume nt ⊥ ut+s for all t and all s. Moreover, we assume investors think of their prior as the correct
one and do not learn about the aggregate sentiment from it.17

Each investor i in generation t receives a signal about the innovation in the asset payoff ut given by

sit = ut + εist with εist ∼ N
(
0, τ−1

s

)
,

and εist ⊥ ε
j
st for all i 6= j, and ut ⊥ εist for all t and all i.

Definition. The asset demand submitted by investor i born in period t is given by the solution to the
following problem:

max
Qit

(
E
[
Xt+1 +R−1pt+1|Iit

]
− Pt

)
Qit −

γi

2 Var
[
Xt+1 +R−1Pt+1|Itt

] (
Qit
)2
,

where Iit =
{
sit, n

i
t, {Xs}s≤t , {Ps}s≤t

}
is the information set of an investor i in period t.

The optimality condition for an investor i in period t satisfies

Qit =
E
[
Xt+1 +R−1Pt+1|Iit

]
− Pt

γiVar
[
Xt+1 +R−1Pt+1|Iit

] .
In a stationary equilibrium in linear strategies, we assume and subsequently verify that the equilibrium
demand of investor i can be expressed as

∆Qit = αiXXt + αiss
i
t + αinn

i
t − αiPPt + ψi, (61)

where αiθ, αis, αin, αip, and ψi are individual equilibrium demand coefficients. Market clearing and the

17Dávila and Parlatore (2020) show that the equilibrium structure is preserved if this assumption is relaxed.
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Strong Law of Large Numbers allows us to express the equilibrium price in period t as

Pt = αX
αP

Xt + αs
αP

ut + αn
αP

nt + ψ

αP
,

where we define cross-sectional averages αX =
∫
αiXdi, αs =

∫
αisdi, αP =

∫
αiP di, and ψ =

∫
ψidi−Q.

The unbiased signal of the innovation in the payoff contained in the price is

Π̂t = αP
αs

(
Pt −

αn
αs
µn −

αX
αP

Xt −
ψ

αP

)
= ut + αn

αs
(nt − µn) ,

where
Π̂t|Xt+1, Xt ∼ N

(
ut, τ

−1
Π̂

)
,

with price informativeness given by

τΠ̂ =
(
Var

[
Π̂t|Xt+1, Xt

])−1
=
(
αs
αn

)2
τn.

Given our guesses for the demand functions and the linear structure of prices we have

Xt+1 +R−1Pt+1 = Xt+1 +R−1αX
αP

Xt+1 +R−1 αs
αP

ut+1 +R−1 αn
αP

nt+1 +R−1 ψ

αP
,

E
[
Xt+1 +R−1Pt+1|Iit

]
=
(

1 +R−1αX
αP

)
E
[
Xt+1|Iit

]
+R−1 αs

αP
E [ut+1] +R−1 αn

αP
E [nt+1] +R−1 ψ

αP

=
(

1 +R−1αX
αP

)(
ρXt + E

[
ut|Iit

])
+R−1αs

αp
E [ut+1] +R−1 αn

αP
µn +R−1 ψ

αP
,

and

Var
[
Xt+1 +R−1Pt+1|Iit

]
=
(

1 +R−1αX
αP

)2
Var

[
Xt+1|Iit

]
+
(
R−1 αs

αP

)2
Var [ut+1] +

(
R−1 αn

αP

)2
Var [nt+1]

=
(

1 +R−1αX
αP

)2
Var

[
ut|Iit

]
+
(
R−1 αs

αP

)2
Var [ut+1] +

(
R−1 αn

αP

)2
Var [nt+1] .

Moreover, given the Gaussian structure of the signals in the information set, Bayesian updating implies

E
[
ut|sit, nit, Pt

]
=
τss

i
t + τun

i
t + τΠ̂Π̂t

τs + τu + τΠ̂
=
τss

i
t + τnn

i
t + +τΠ̂

αP
αs

(
Pt − αn

αs
µn − αX

αP
Xt − ψ

αP

)
τs + τu + τΠ̂

,

and
Var

[
ut|Iit

]
= Var

[
ut|sit, nit, Pt

]
= (τs + τu + τΠ)−1

.

Then, the first-order condition is given by

Qit = 1
γi

(
1 +R−1 αX

αP

)(
ρXt + Var

[
ut|Iit

] (
τss

i
t + τun

i
t + τΠ̂Π̂t

))
+R−1 αs

αP
E [ut+1] +R−1 αn

αP
µn +R−1 ψ

αP
− Pt(

1 +R−1 αX
αP

)2
Var [ut|Iit] +

(
R−1 αs

αP

)2
Var [ut+1] +

(
R−1 αn

αP

)2
τ−1
n

.
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Matching coefficients we have

αis =

(
1 +R−1 αX

αP

)
κi

Var
[
ut|Iit

]
τs (62)

αin =

(
1 +R−1 αX

αP

)
κi

Var
[
ut|Iit

]
τη

αiX =

(
1 +R−1 αX

αP

)
κi

(
ρ− Var

[
ut|Iit

]
τΠ̂
αX
αs

)
αiP = 1

κi

(
1−

(
1 +R−1αX

αP

)
Var

[
ut|Iit

]
τΠ̂
αp
αs

)
ψi = − 1

κi

((
1 +R−1αX

αP

)
Var

[
ut|Iit

]
τΠ̂

(
αn
αs
µn + ψ

αs

)
−R−1

(
αn
αP

µn + ψ

αP

))
,

where

κi ≡ γi
((

1 +R−1αX
αP

)2
Var

[
ut|Iit

]
+
(
R−1 αs

αP

)2
Var [ut+1] +

(
R−1 αn

αP

)2
τ−1
n

)
,

since Var
[
ut|Iit

]
=
(
τs + τu + τΠ̂

)−1 for all i.
Then, an equilibrium in linear strategies exists if the system above has a solution. In this equilibrium,

our guess in Equation (61) is verified and the equilibrium price is linear and can be expressed as in
Equation (59).

Note that when investors are ex-ante identical, the demand sensitivities are the same for all i. Then,
there exists a unique solution to the system in Equations (62), that is given by

αis = 1
κ

1
1−R−1ρ

τs
τu + τs + τΠ̂

, αin = 1
κ

1
1−R−1ρ

τη
τu + τs + τΠ̂

αiX = 1
κ

ρ

1−R−1ρ

τs
τs + τΠ̂

, αiP = 1
κ

τs
τs + τΠ̂

, and

ψi = −
1
κ

1
1−R−1ρ

((
1−R−1) τΠ̂ −R−1τs

)
τu

τu+τs+τΠ̂
µn

1 + (1−R−1) τΠ̂ −R−1τs
,

where τΠ̂ =
(
τs
τu

)2
τn and

κ = γ

((
1

1−R−1ρ

)2 1
τu + τs + τΠ̂

+
(
R−1 1

1−R−1ρ

τs + τΠ̂
τu + τs + τΠ̂

)2
τ−1
u +

(
R−1

1−R−1ρ

τs + τΠ̂
τu + τs + τΠ̂

τu
τs

)2

τ−1
n

)
.
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