Concealed Carry

Andrews S., Colacito R., Croce M.M., and Gavazzoni F.

VSFX 2021

November 16, 2021

Observation #1: international investment strategies help us in identifying the distribution of risk across countries.

Observation #1: international investment strategies help us in identifying the distribution of risk across countries.

Observation #2: What do we learn from carry strategies involving <u>long-term</u> bonds?

 \hookrightarrow Heterogeneity in exposure to long-term growth and inflation risk.

Observation #1: international investment strategies help us in identifying the distribution of risk across countries.

Observation #2: What do we learn from carry strategies involving <u>long-term</u> bonds?

 \hookrightarrow Heterogeneity in exposure to long-term growth and inflation risk.

Fact: Lustig et al (2019) find no carry when targeting long-term bonds

Observation #1: international investment strategies help us in identifying the distribution of risk across countries.

Observation #2: What do we learn from carry strategies involving <u>long-term</u> bonds?

 \hookrightarrow Heterogeneity in exposure to long-term growth and inflation risk.

Fact: Lustig et al (2019) find no carry when targeting long-term bonds

 \hookrightarrow Possible interpretation: no heterogeneity over the long-run

Observation #1: international investment strategies help us in identifying the distribution of risk across countries.

Observation #2: What do we learn from carry strategies involving <u>long-term</u> bonds?

Fact: Lustig et al (2019) find no carry when targeting long-term bonds

 \hookrightarrow Possible interpretation: no heterogeneity over the long-run

In G10-country data:

▶ **Slope Carry**: borrow (invest) for 1 month in the 10y-bond of the currency with a flat (steep) yield curve

In G10-country data:

- ▶ **Slope Carry**: borrow (invest) for 1 month in the 10y-bond of the currency with a flat (steep) yield curve
 - Excess return is:
 - \hookrightarrow slightly negative before 08/2008 ($\approx -0.13\%$)

In G10-country data:

- ► Slope Carry: borrow (invest) for 1 month in the 10y-bond of the currency with a flat (steep) yield curve
 - Excess return is:

```
\hookrightarrow slightly negative before 08/2008 (\approx -0.13\%)
\hookrightarrow strongly positive after 08/2008 (\approx +6.17\%^{***})
```

In G10-country data:

- ► Slope Carry: borrow (invest) for 1 month in the 10y-bond of the currency with a flat (steep) yield curve
 - Excess return is:

```
\hookrightarrow slightly negative before 08/2008 (\approx -0.13%)

\hookrightarrow strongly positive after 08/2008 (\approx +6.17%***)

\hookrightarrow concealed unconditionally (\approx +2.62%)
```

• Portfolio composition changes before and after 08/2008

In G10-country data:

- ▶ Slope Carry: borrow (invest) for 1 month in the 10y-bond of the currency with a flat (steep) yield curve
 - Excess return is:

```
\hookrightarrow slightly negative before 08/2008 (\approx -0.13%)

\hookrightarrow strongly positive after 08/2008 (\approx +6.17%***)

\hookrightarrow concealed unconditionally (\approx +2.62%)
```

- Portfolio composition changes before and after 08/2008
- ► Traditional Carry: Average excess return shrunk sizeably over time

▶ We study an international macrofinance model to rationalize our results.

- We study an international macrofinance model to rationalize our results.
 - ► Two key dimensions:
 - 1. Heterogeneous exposure to global growth news shocks
 - \Rightarrow Explains/Drives for the Traditional Carry

- We study an international macrofinance model to rationalize our results.
 - ► Two key dimensions:
 - 1. Heterogeneous exposure to global growth news shocks
 - ⇒ Explains/Drives for the Traditional Carry
 - 2. **Heterogeneous** exposure to global inflation news shocks
 - ⇒Explains/Drives the Slope Carry

- We study an international macrofinance model to rationalize our results.
 - ► Two key dimensions:
 - 1. Heterogeneous exposure to global growth news shocks
 - ⇒ Explains/Drives for the Traditional Carry
 - 2. **Heterogeneous** exposure to global inflation news shocks
 - ⇒Explains/Drives the Slope Carry
 - lacktriangle Negative news shocks to global growth and inflation ightarrow
 - (i) traditional carry declines
 - &
 - (ii) slope carry premium increases.

Using G10-country data, we provide novel evidence:

► There exists **significant heterogeneity** in exposure to **global inflation** news shocks

Using G10-country data, we provide novel evidence:

- ► There exists **significant heterogeneity** in exposure to **global inflation** news shocks
- ▶ heterogeneous exposure to global inflation news ≠ heterogeneous exposure to global growth news

Using G10-country data, we provide novel evidence:

- ► There exists **significant heterogeneity** in exposure to **global inflation** news shocks
- ▶ heterogeneous exposure to global inflation news ≠ heterogeneous exposure to global growth news
- \triangleright 2008–2018: expectations for global growth & global inflation \downarrow

Using G10-country data, we provide novel evidence:

- There exists significant heterogeneity in exposure to global inflation news shocks
- ▶ heterogeneous exposure to global inflation news ≠ heterogeneous exposure to global growth news
- \triangleright 2008–2018: expectations for global growth & global inflation \downarrow

NOTE: we use these results to **discipline the calibration** of our model (it's an 'input' in our model).

Global Inflation: a familiar concept ...

Our Contribution: Studying Heterogeneity



Why? heterogeneous mon pol. rules and/or Phillips curves...

Literature Review

- ▶ Traditional FX Carry: among others, Lustig, Roussanov, Verdelhan (2011), Della Corte, Sarno, and Tsiakas (2011), ...
 - Here: sizable decrease in its profitability
- ► Slope FX Carry: among others, Ang and Chen (2010), Lustig, Stathopoulos, Verdelhan (2019), ...
 - Here: distinct pattern in dynamics and portfolio composition
- Macrofinance models of international finance: among others, Bansal and Shaliastovich (2013); Colacito, Croce, Gavazzoni, Ready (2018) Lewis and Liu (2014), Zviadadze (2014) ...
 - Here: Heterogeneity in the exposure to both global growth and inflation long-run risk to explain empirical evidence

FX Excess Returns

Data

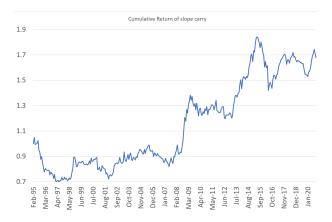
- Countries: G-10 most liquid currencies (AUS, CAN, GER, JPN, NZD, NOR, SWE, CHF, UK, US)
- Period: January 1995 May 2018
- ▶ We split the sample in July 2008
 - Results are robust to different month's selection

	1 (flat)	2	3 (steep)	$\begin{array}{c} {\bf 3}{-}{\bf 1} \\ ({\sf steep-flat}) \end{array}$
Whole Sample				
Mean	4.08	2.01	6.69	2.62 [1.17]
Sharpe Ratio	0.38	0.20	0.66	0.24

	1 (flat)	2	3 (steep)	$3-1 \ ext{(steep} - ext{flat)}$
Whole Sample				
Mean	4.08	2.01	6.69	2.62 [1.17]
Sharpe Ratio	0.38	0.20	0.66	0.24
Pre-08/2008				
Mean	6.42	3.67	6.29	-0.13 [-0.04]
Sharpe Ratio	0.67	0.37	0.58	-0.01
Recurrent countries:	UK (75%) Aus (72%)	Jpn (43%)	Jpn (55%)	

	1 (flat)	2	3 (steep)	3-1 (steep $-$ flat)
	(Hat)		(зесер)	(steep flat)
Whole Sample				
Mean	4.08	2.01	6.69	2.62
				[1.17]
Sharpe Ratio	0.38	0.20	0.66	0.24
Pre-08/2008				
Mean	6.42	3.67	6.29	-0.13
				[-0.04]
Sharpe Ratio	0.67	0.37	0.58	-0.01
Recurrent countries:	UK (75%) Aus (72%)	Jpn (43%)	Jpn (55%)	
Post-08/2008				
Mean	1.05	-0.15	7.22	6.17
				[1.86]
Sharpe Ratio	0.09	-0.01	0.79	0.58
Recurrent countries:	Aus (75%) Jpn (78%)		UK (76%)	

Slope Carry In A Chart (Cumulative Returns) •2021



Traditional Carry • Robustness

	1	2	3	3-1
	(low)		(high)	(high - low)
Whole Sample				
Mean	-2.03	-0.05	2.90	4.93 [2.36]
Sharpe Ratio	-0.24	-0.01	0.28	0.48
Pre-08/2008				
Mean	-3.24	2.44	4.88	8.12 [3.25]
Sharpe Ratio	-0.36	0.35	0.67	0.89
Recurrent countries:	Jpn (100%)	UK (34%)	Aus (90%) UK (66%)	
Post-08/2008				
Mean	-0.47	-3.28	0.32	0.79 [0.23]
Sharpe Ratio	-0.06	-0.38	0.02	0.07
Recurrent countries:	Jpn (63%)	UK (94%)	Aus (100%)	

Global News Shocks

Macro Expectations

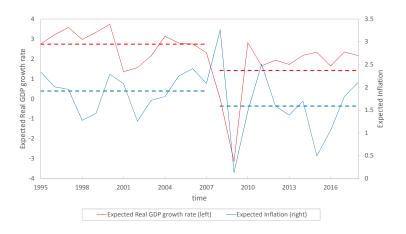
- Source:
 - 1. OECD (2020), Real GDP forecast indicator
 - 2. OECD (2020), Inflation forecast indicator
- Sample:

Real GDP: 1961-2018
 Inflation: 1991-2018

- Definition of global expectations:
 - GDP weighted average of expectations across G-10 countries

The decline in G10 macro expectations • Robustness

- Expected Global Real GDP growth: x_c
- **Expected Global Inflation**: x_{π}



Exposures

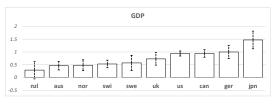
Estimate:

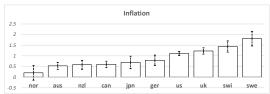
- 1. $E_t \left[\Delta GDP_{t+1}^i \right] = \mu + \frac{\beta_c^i}{c} \cdot E_t \left[\Delta GDP_{t+1}^{G10} \right] + \varepsilon_t, \quad \forall i \in G10$
- $2. \ \ \textit{E}_{\textit{t}}\left[\textit{Inflation}_{t+1}^{\textit{i}}\right] = \mu + \frac{\beta_{\pi}^{\textit{i}}}{\beta_{\pi}} \cdot \textit{E}_{\textit{t}}\left[\textit{Inflation}_{t+1}^{\textit{G10}}\right] + \varepsilon_{\textit{t}}, \quad \forall \textit{i} \in \textit{G10}$

Exposures

Estimate:

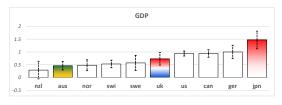
- 1. $E_t \left[\Delta GDP_{t+1}^i \right] = \mu + \frac{\beta_c^i}{c} \cdot E_t \left[\Delta GDP_{t+1}^{G10} \right] + \varepsilon_t, \quad \forall i \in G10$
- $2. \;\; \textit{E}_{\textit{t}}\left[\textit{Inflation}_{t+1}^{\textit{i}}\right] = \mu + \frac{\beta_{\pi}^{\textit{i}}}{\sigma} \cdot \textit{E}_{\textit{t}}\left[\textit{Inflation}_{t+1}^{\textit{G10}}\right] + \varepsilon_{\textit{t}}, \quad \forall \textit{i} \in \textit{G10}$

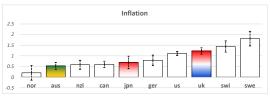




Exposures

Focus on Aus, UK, and Jpn:





Exposures

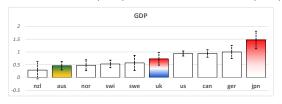
Focus on Aus, UK, and Jpn:

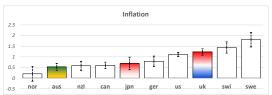
$$\Delta GDP: \quad \beta_c^{jpn} - \beta_c^{aus} = 1.01^{***}, \quad \beta_c^{jpn} - \beta_c^{uk} = 0.74^{**}$$

$$(0.21), \quad \beta_c^{uk} - \beta_c^{uk} = 0.70^{**},$$

$$(0.33), \quad \beta_{\pi}^{uk} - \beta_{\pi}^{jpn} = 0.54^{**},$$

$$(0.27)$$





Model

Preferences and Financial Markets

- N countries indexed by i
- Each country populated by a representative investor
- Preferences

$$U_{i,t} = (1 - \delta) \log C_{i,t} + \delta \theta \log E_t \exp \left\{ \frac{U_{i,t+1}}{\theta} \right\}, \quad \theta = \frac{1}{1 - \gamma} < 0$$

Financial markets are complete

Preferences and Financial Markets

- N countries indexed by i
- Each country populated by a representative investor
- Preferences

$$U_{i,t} = (1 - \delta) \log C_{i,t} + \delta \theta \log E_t \exp \left\{ \frac{U_{i,t+1}}{\theta} \right\}, \quad \theta = \frac{1}{1 - \gamma} < 0$$

Financial markets are complete

Consumption and Inflation

Country-specific exposures to expected global growth and inflation

$$\begin{array}{lcl} \Delta c_{i,t+1} & = & \mu_{i,c} + \beta_i^c \cdot x_{c,t} + \sigma_c \eta_{i,t+1}^c \\ \pi_{i,t+1} & = & \mu_{i,\pi} + \beta_i^\pi \cdot x_{\pi,t} + \sigma_\pi \eta_{i,t+1}^\pi, \end{array}$$

- Median country: $\beta_i^c=\beta_i^\pi=1$

Consumption and Inflation

Country-specific exposures to expected global growth and inflation

$$\begin{array}{rcl} \Delta c_{i,t+1} & = & \mu_{i,c} + \beta_i^c \cdot x_{c,t} + \sigma_c \eta_{i,t+1}^c \\ \pi_{i,t+1} & = & \mu_{i,\pi} + \beta_i^\pi \cdot x_{\pi,t} + \sigma_\pi \eta_{i,t+1}^\pi, \end{array}$$

- Median country: $\beta_i^c = \beta_i^\pi = 1$
- Global components co-move:

$$\underbrace{\left[\begin{array}{c} x_{\pi,t} \\ x_{c,t} \end{array}\right]}_{x_t} = \underbrace{\left[\begin{array}{cc} \rho_{\pi} & 0 \\ \rho_{c\pi} & \rho_{c} \end{array}\right]}_{K} \cdot \left[\begin{array}{c} x_{\pi,t-1} \\ x_{c,t-1} \end{array}\right] + \underbrace{\left[\begin{array}{cc} \sigma_{x,\pi} & 0 \\ 0 & \sigma_{x,c} \end{array}\right]}_{\Sigma} \left[\begin{array}{c} \varepsilon_{\pi,t} \\ \varepsilon_{c,t} \end{array}\right]$$

- $ho_{c\pi}$ governs the correlation between expected growth and inflation $(
ho_{c\pi} < 0)$

Consumption and Inflation

Country-specific exposures to expected global growth and inflation

$$\begin{array}{rcl} \Delta c_{i,t+1} & = & \mu_{i,c} + \beta_i^c \cdot x_{c,t} + \sigma_c \eta_{i,t+1}^c \\ \pi_{i,t+1} & = & \mu_{i,\pi} + \beta_i^\pi \cdot x_{\pi,t} + \sigma_\pi \eta_{i,t+1}^\pi, \end{array}$$

- Median country: $\beta_i^c = \beta_i^\pi = 1$
- Global components co-move:

$$\underbrace{\left[\begin{array}{c} x_{\pi,t} \\ x_{c,t} \end{array}\right]}_{x_t} = \underbrace{\left[\begin{array}{cc} \rho_{\pi} & 0 \\ \frac{\rho_{c\pi}}{\rho_{c}} & \rho_{c} \end{array}\right]}_{K} \cdot \left[\begin{array}{c} x_{\pi,t-1} \\ x_{c,t-1} \end{array}\right] + \underbrace{\left[\begin{array}{cc} \sigma_{x,\pi} & 0 \\ 0 & \sigma_{x,c} \end{array}\right]}_{\Sigma} \left[\begin{array}{c} \varepsilon_{\pi,t} \\ \varepsilon_{c,t} \end{array}\right]$$

- $ho_{c\pi}$ governs the correlation between expected growth and inflation $(
 ho_{c\pi} < 0)$
- $ightharpoonup \eta_{i,t}$ shocks are orthogonal within and across countries

Extended Model

In the manuscript, we also study:

- EIS \neq 1: results on carry returns improve
- Demand shock: Global inflation news shocks explain a moderate share of the variance of local yields (10%) and FX variation (25%)

▶ Results

Nominal SDF More

$$m_{i,t+1} - E_{t} \left[m_{i,t+1} \right] = \underbrace{-\underbrace{k_{\eta c}}_{>0} \sigma_{c} \eta_{i,t+1}^{c} - \underbrace{k_{\eta \pi}}_{>0} \sigma_{\pi} \eta_{i,t+1}^{\pi}}_{>0}$$

$$\underbrace{-\underbrace{k_{\eta c}}_{>0} \sigma_{c} \eta_{i,t+1}^{c} - \underbrace{k_{\eta \pi}}_{>0} \sigma_{\pi} \eta_{i,t+1}^{\pi}}_{>0}$$

$$\underbrace{-\underbrace{k_{\eta \sigma}}_{>0} \sigma_{\kappa} \eta_{i,t+1}^{\sigma} - \underbrace{k_{\eta \pi}}_{>0} \sigma_{\kappa} \eta_{i,t+1}^{\pi}}_{>0}$$

$$\underbrace{-\underbrace{k_{\eta \sigma}}_{>0} \sigma_{\kappa} \eta_{i,t+1}^{\sigma} - \underbrace{k_{\eta \pi}}_{>0} \sigma_{\kappa} \eta_{i,t+1}^{\pi}}_{>0}$$

$$\underbrace{-\underbrace{k_{\eta \sigma}}_{>0} \sigma_{\kappa} \eta_{i,t+1}^{\sigma} - \underbrace{k_{\eta \pi}}_{>0} \sigma_{\kappa} \eta_{i,t+1}^{\pi}}_{>0}$$

$$\underbrace{-\underbrace{k_{\eta \sigma}}_{>0} \sigma_{\kappa} \eta_{i,t+1}^{\sigma} - \underbrace{k_{\eta \pi}}_{>0} \sigma_{\kappa} \eta_{i,t+1}^{\pi}}_{>0}$$

$$\underbrace{-\underbrace{k_{\eta \sigma}}_{>0} \sigma_{\kappa} \eta_{i,t+1}^{\sigma} - \underbrace{k_{\eta \pi}}_{>0} \sigma_{\kappa} \eta_{i,t+1}^{\pi}}_{>0}$$

$$\underbrace{-\underbrace{k_{\eta \sigma}}_{>0} \sigma_{\kappa} \eta_{i,t+1}^{\sigma} - \underbrace{k_{\eta \pi}}_{>0} \sigma_{\kappa} \eta_{i,t+1}^{\sigma}}_{>0}}_{>0}$$

$$\underbrace{-\underbrace{k_{\eta \sigma}}_{>0} \sigma_{\kappa} \eta_{i,t+1}^{\sigma} - \underbrace{k_{\eta \sigma}}_{>0} \sigma_{\kappa} \eta_{i,t+1}^{\sigma}}_{>0}}_{>0}$$

Expected real growth and expected inflation have prices of risk with opposite signs when $\rho_{c\pi} < 0$:

$$k_{\varepsilon\pi} = rac{\delta^2 \left(1 - \gamma \right)
ho_{c\pi}}{\left(1 - \delta
ho_{\pi} \right) \left(1 - \delta
ho_{c} \right)} > 0.$$

▶ The prices of global news shocks depend only on β_i^c

Nominal SDF More

$$m_{i,t+1} - E_{t} \left[m_{i,t+1} \right] = \underbrace{-\underbrace{k_{\eta c}}_{>0} \sigma_{c} \eta_{i,t+1}^{c} - \underbrace{k_{\eta \pi}}_{>0} \sigma_{\pi} \eta_{i,t+1}^{\pi}}_{>0}$$

$$\underbrace{-\underbrace{k_{\eta c}}_{>0} \sigma_{c} \eta_{i,t+1}^{c} - \underbrace{k_{\eta \pi}}_{>0} \sigma_{\pi} \eta_{i,t+1}^{\pi}}_{>0}$$

$$\underbrace{-\underbrace{k_{\eta c}}_{>0} \sigma_{c} \eta_{i,t+1}^{c} - \underbrace{k_{\eta \pi}}_{>0} \sigma_{\pi} \eta_{i,t+1}^{\pi}}_{>0}$$

$$\underbrace{-\underbrace{k_{\eta c}}_{>0} \sigma_{c} \eta_{i,t+1}^{c} - \underbrace{k_{\eta \pi}}_{>0} \sigma_{\pi} \eta_{i,t+1}^{\pi}}_{>0}$$

$$\underbrace{-\underbrace{k_{\eta c}}_{>0} \sigma_{c} \eta_{i,t+1}^{c} - \underbrace{k_{\eta \pi}}_{>0} \sigma_{\pi} \eta_{i,t+1}^{\pi}}_{>0}$$

$$\underbrace{-\underbrace{k_{\eta c}}_{>0} \sigma_{c} \eta_{i,t+1}^{c} - \underbrace{k_{\eta \pi}}_{>0} \sigma_{\pi} \eta_{i,t+1}^{\pi}}_{>0}$$

$$\underbrace{-\underbrace{k_{\eta c}}_{>0} \sigma_{c} \eta_{i,t+1}^{c} - \underbrace{k_{\eta \pi}}_{>0} \sigma_{\pi} \eta_{i,t+1}^{\pi}}_{>0}$$

$$\underbrace{-\underbrace{k_{\eta c}}_{>0} \sigma_{c} \eta_{i,t+1}^{c} - \underbrace{k_{\eta \pi}}_{>0} \sigma_{\pi} \eta_{i,t+1}^{\pi}}_{>0}$$

$$\underbrace{-\underbrace{k_{\eta c}}_{>0} \sigma_{c} \eta_{i,t+1}^{c} - \underbrace{k_{\eta \pi}}_{>0} \sigma_{\pi} \eta_{i,t+1}^{c}}_{>0}}_{>0}$$

$$\underbrace{-\underbrace{k_{\eta c}}_{>0} \sigma_{c} \eta_{i,t+1}^{c} - \underbrace{k_{\eta \pi}}_{>0} \sigma_{\pi} \eta_{i,t+1}^{c}}_{>0}}_{>0}$$

Expected real growth and expected inflation have prices of risk with opposite signs when $\rho_{c\pi} < 0$:

$$k_{\varepsilon\pi} = \frac{\delta^2 (1 - \gamma) \rho_{c\pi}}{(1 - \delta \rho_{\pi})(1 - \delta \rho_c)} > 0.$$

- ▶ The prices of global news shocks depend only on β_i^c
- $ightharpoonup E_t[m_{i,t+1}] = \bar{m}_i^{\$} \beta_i^c x_{c,t} \beta_i^{\pi} x_{\pi,t}$, key drivers of the yield curve

Slope and Excess Return

- Affine term structure model: yields are linear $x_{c,t}$ and $x_{\pi,t}$
- Focus on infinite maturity slope:

$$slope_{i,t}^{\infty} = \overline{slope}_{i}^{\infty} - \beta_{i}^{c} \cdot x_{c,t} - \beta_{i}^{\pi} \cdot x_{\pi,t}$$

Slope and Excess Return

- ▶ Affine term structure model: yields are linear $x_{c,t}$ and $x_{\pi,t}$
- Focus on infinite maturity slope:

$$slope_{i,t}^{\infty} = \overline{slope}_{i}^{\infty} - \beta_{i}^{c} \cdot x_{c,t} - \beta_{i}^{\pi} \cdot x_{\pi,t}$$

Excess return of holding for one period the infinite maturity bond of country i (in the *base* country, $\beta_c = \beta_\pi = 1$):

$$\begin{split} \log E_t \left[RX_{i,t+1}^{\infty} \right] &= \underbrace{ \log E_t \left[RX_{i,t+1}^1 \right] }_{\text{EX Risk (Traditional Carry)}} \\ &- \underbrace{ \beta_i^c \left[\frac{k_{\varepsilon c} \sigma_{xc}^2}{1 - \rho_c} - \frac{\rho_{c\pi} k_{\varepsilon\pi} \sigma_{x\pi}^2}{(1 - \rho_c)(1 - \rho_\pi)} \right] }_{\text{Interest rate risk (Growth)}} + \underbrace{ \beta_i^{\pi} \frac{k_{\varepsilon\pi} \sigma_{x\pi}^2}{1 - \rho_\pi} }_{\text{Interest rate risk (Inflation)}} \end{split}$$

Slope and Excess Return

- Affine term structure model: yields are linear $x_{c,t}$ and $x_{\pi,t}$
- Focus on infinite maturity slope:

$$slope_{i,t}^{\infty} = \overline{slope}_{i}^{\infty} - \beta_{i}^{c} \cdot x_{c,t} - \beta_{i}^{\pi} \cdot x_{\pi,t}$$

Excess return of holding for one period the infinite maturity bond of country i (in the *base* country, $\beta_c = \beta_\pi = 1$):

$$\log E_t \left[RX_{i,t+1}^{\infty} \right] = \underbrace{\log E_t \left[RX_{i,t+1}^1 \right]}_{\text{FX Risk (Traditional Carry)}} \\ - \underbrace{\beta_i^c \left[\frac{k_{\varepsilon c} \sigma_{xc}^2}{1 - \rho_c} - \frac{\rho_{c\pi} k_{\varepsilon\pi} \sigma_{x\pi}^2}{(1 - \rho_c)(1 - \rho_\pi)} \right]}_{\text{Interest rate risk (Growth)}} + \underbrace{\beta_i^{\pi} \frac{k_{\varepsilon\pi} \sigma_{x\pi}^2}{1 - \rho_\pi}}_{\text{Interest rate risk (Inflation)}}$$

Notice: Quantitatively, the inflation risk channel dominates

▶ Consider two countries, H and L, with $(\beta_{\pi}^{H} - \beta_{\pi}^{L}) > 0$

- Consider two countries, H and L, with $(\beta_{\pi}^{H} \beta_{\pi}^{L}) > 0$
- Quantitatively, spread in slopes is driven by spread in β_{π} 's:

$$slope_{H,t}^{\infty} - slope_{L,t}^{\infty} \approx - (\beta_{\pi}^{H} - \beta_{\pi}^{L}) \cdot x_{\pi,t}$$

- ► Consider two countries, H and L, with $(\beta_{\pi}^{H} \beta_{\pi}^{L}) > 0$
- Quantitatively, spread in slopes is driven by spread in β_{π} 's:

$$slope^{\infty}_{H,t} - slope^{\infty}_{L,t} pprox - \left(eta^H_{\pi} - eta^L_{\pi}\right) \cdot x_{\pi,t}$$
 Data

 \hookrightarrow $x_{\pi,t} < 0$ (Post 08/08) \to the 'Steeper' portfolio comprises High- β_π countries

- Consider two countries, H and L, with $(\beta_{\pi}^{H} \beta_{\pi}^{L}) > 0$
- Quantitatively, spread in slopes is driven by spread in β_{π} 's:

$$slope^{\infty}_{H,t} - slope^{\infty}_{L,t} pprox - \left(eta^H_{\pi} - eta^L_{\pi}\right) \cdot x_{\pi,t}$$
 Data

- $\hookrightarrow x_{\pi,t} < 0 \; (\mathsf{Post} \; 08/08) \to \mathsf{the} \; \mathsf{`Steeper'} \; \mathsf{portfolio} \; \mathsf{comprises} \; \mathsf{High-} \beta_\pi \; \mathsf{countries}$
- $\hookrightarrow x_{\pi,t} > 0$ (Pre 08/08) \to the Steep portfolio comprises Low- β_{π} countries

- Consider two countries, H and L, with $(\beta_{\pi}^{H} \beta_{\pi}^{L}) > 0$
- Quantitatively, spread in slopes is driven by spread in β_{π} 's:

$$slope_{H,t}^{\infty} - slope_{L,t}^{\infty} \approx - (\beta_{\pi}^{H} - \beta_{\pi}^{L}) \cdot x_{\pi,t}$$
 Data

- \hookrightarrow $x_{\pi,t} < 0$ (Post 08/08) \to the 'Steeper' portfolio comprises High- eta_π countries
- \hookrightarrow $x_{\pi,t}>0$ (Pre 08/08) \to the Steep portfolio comprises Low- eta_{π} countries
 - Conditional risk premium:

$$E[\operatorname{carry}^{S}|x_{\pi,t}] := \log E_{t} \left[RX_{S,t+1}^{\infty}\right] - \log E_{t} \left[RX_{F,t+1}^{\infty}\right]$$

$$\approx -\operatorname{sign}(x_{\pi,t}) \underbrace{(\beta_{\pi}^{H} - \beta_{\pi}^{L})}_{>0} \underbrace{\frac{k_{\varepsilon\pi}\sigma_{x\pi}^{2}}{1 - \rho_{\pi}}}_{>0},$$

- ► Consider two countries, H and L, with $(\beta_{\pi}^{H} \beta_{\pi}^{L}) > 0$
- Quantitatively, spread in slopes is driven by spread in β_{π} 's:

$$slope_{H,t}^{\infty} - slope_{L,t}^{\infty} \approx -\left(\beta_{\pi}^{H} - \beta_{\pi}^{L}\right) \cdot x_{\pi,t}$$
 Data

- $\hookrightarrow x_{\pi,t} < 0$ (Post 08/08) \to the 'Steeper' portfolio comprises High- eta_π countries
- \hookrightarrow $x_{\pi,t}>0$ (Pre 08/08) \to the Steep portfolio comprises Low- eta_{π} countries
 - Conditional risk premium:

$$E[\operatorname{carry}^{S}|x_{\pi,t}] := \log E_{t} \left[RX_{S,t+1}^{\infty}\right] - \log E_{t} \left[RX_{F,t+1}^{\infty}\right]$$

$$\approx -\operatorname{sign}(x_{\pi,t}) \underbrace{(\beta_{\pi}^{H} - \beta_{\pi}^{L})}_{>0} \underbrace{\frac{k_{\varepsilon\pi}\sigma_{x\pi}^{2}}{1 - \rho_{\pi}}}_{>0},$$

► Unconditional risk premium: null! (Lustig et al 2019)

Traditional Carry: Risk Free Rate and Excess Return

One-period risk free rate

$$r_{1,t}^{i} = \overline{r}_{i} + \beta_{i}^{c} x_{c,t} + \beta_{i}^{\pi} x_{\pi,t}$$

where

$$\overline{r}_i = (\mu_{i,c} + \mu_{i,\pi}) - \log \delta - \left(\frac{1}{2} - \frac{1}{\theta}\right)\sigma_c^2 - \frac{1}{2}\sigma_\pi^2$$

- We spread the unconditional level of the one-period risk free rates using country specific $\mu_{i,c}$ and $\mu_{i,\pi}$
- Excess return of holding for one period the one-period bond of country i:

$$\log E_t \left[RX_{i,t+1}^1 \right] \quad = \quad V_t \left[m_{t+1}^b \right] - \beta_c^i (k_{\varepsilon c}^2 \sigma_{xc}^2 + k_{\varepsilon \pi}^2 \sigma_{x\pi}^2)$$

• Going long in countries with low β_c is risky

Traditional Carry: Risk Free Rate and Excess Return

One-period risk free rate

$$r_{1,t}^i = \overline{r}_i + \beta_i^c x_{c,t} + \beta_i^{\pi} x_{\pi,t}$$

where

$$\overline{r}_i = (\mu_{i,c} + \mu_{i,\pi}) - \log \delta - \left(\frac{1}{2} - \frac{1}{\theta}\right)\sigma_c^2 - \frac{1}{2}\sigma_\pi^2$$

- We spread the unconditional level of the one-period risk free rates using country specific $\mu_{i,c}$ and $\mu_{i,\pi}$
- Excess return of holding for one period the one-period bond of country i:

$$\log E_t \left[RX_{i,t+1}^1 \right] \quad = \quad V_t \left[m_{t+1}^b \right] - \beta_c^i (k_{\varepsilon c}^2 \sigma_{xc}^2 + k_{\varepsilon \pi}^2 \sigma_{x\pi}^2)$$

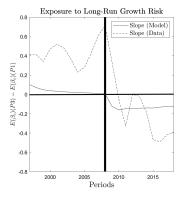
• Going long in countries with low β_c is risky

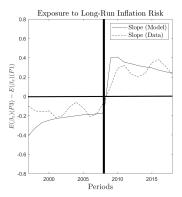
Model Simulation

- We simulate the model for 100 quarters. Consistent with the empirical evidence:
 - 1. In the first half of the sample x_c and x_{π} are above average
 - 2. At the breakpoint, x_c and x_{π} drop to the new lower average
 - 3. In the second half of the sample, x_c and x_π remain around new lower average
- lacktriangle Cross-section of eta_c and eta_π consistent with the data lacktriangle Macro Moments

Slope Carry: Portfolio Exposures

▶ Spread in portfolio betas: (P3 - P1)





Results

	Traditional Carry		Slope Carry		
	Data	Model	Data	Model	
E(carry) (Full Sample)	4.93 (2.09)	2.35	2.62 (2.24)	2.05	
<i>E</i> (<i>carry</i>) (Post-08/07)	0.79 (3.43)	0.88	6.17 (3.32)	7.36	
E(sorting var) P3 - E(sorting var) P1	4.02 (0.07)	1.85	1.52 (0.03)	1.73	
E(sorting var) P3 - E(sorting var) P1 (Post-08/08)	2.93 (0.07)	1.47	1.24 (0.04)	1.94	
$E(\Delta FX)$ P3 - $E(\Delta FX)$ P1	0.76 (0.61)	0.53	0.85 (0.59)	2.21	
$E(\Delta FX)$ P3 - $E(\Delta FX)$ P1 (Post-08/08)	-2.66 (1.02)	-0.53	3.49 (0.99)	3.80	
$E(\beta_c)$ P3 - $E(\beta_c)$ P1	-0.68	-0.16	0.14	-0.06	
$E(\beta_c)$ P3 - $E(\beta_c)$ P1 (Post-08/08)	-0.64	-0.05	-0.26	-0.20	
$E(eta_\pi)$ P3 - $E(eta_\pi)$ P1	-0.09	0.30	0.04	0.15	
$E(\beta_{\pi}) \text{ P3 - } E(\beta_{\pi}) \text{ P1 (Post-08/08)}$	-0.35	-0.04	0.27	0.55	

Conclusion

- ► The **Slope Carry** shows a distinct pattern:
 - Slightly negative before 08/08
 - Strongly positive afterwards
 - Different composition of countries per/post 2008
- ► The average excess return **Traditional Carry** shrinks after 08/08

Conclusion

- ► The **Slope Carry** shows a distinct pattern:
 - Slightly negative before 08/08
 - Strongly positive afterwards
 - Different composition of countries per/post 2008
- ► The average excess return **Traditional Carry** shrinks after 08/08
- We reconcile these facts with a macrofinance model featuring a novel dimension: heterogeneous exposure to global inflation news shocks

Thank you!

Appendix

Calibration • Back

Description	Parameter	Value	Estimate/ Moment
Subjective discount factor	δ	0.997	$\frac{Avg._i \left[E(r^f) \right]}{Avg._i \left[E(r^f) \right]}$
Risk Aversion	γ	10	E(carry 5)
Cross-country average consumption growth	$ar{\mu}_{ extsf{c}}$	0.49%	0.54% (0.05%)
Volatility of cons growth short-run shock	σ_c	0.46%	$Avg_{i}[\sigma(\Delta c)]$
Volatility of cons growth long-run shock	$\sigma_{\sf xc}$	0.11%	$Avg_{i}[ACF_{1}(\Delta c)]$
Autocorr. cons growth long-run risk	$ ho_c$	0.810	0.570 (0.110)
Cross-country average inflation growth	$ar{\mu}_{\pi}$	0.25%	0.41% (0.05%)
Volatility of inflation short-run shock	σ_{π}	0.55%	$Avg_{i}[\sigma(\pi)]$
Volatility of inflation long-run shock	$\sigma_{ imes\pi}$	0.11%	$Avg_{i}[ACF_{1}(\pi)]$
Aucocorr inflation long-run risk	$ ho_{\pi}$	0.988	0.910 (0.040)
Cons growth / inflation long-run feedback	$ ho_{c\pi}$	-0.050	-0.050 (0.030)

Macro Moments Pack

	X-sec mean			X-sec vo	I / X-sec	/ X-sec mean		
	Estimate	(s.e.)	Model	Estimate	(s.e.)	Model		
β_c	0.77	(0.06)	0.64	0.57	(0.13)	0.33		
$E(\Delta c)$	2.22	(0.14)	2.64	0.34	(0.04)	0.15		
$\sigma(\Delta c)$	1.05	(0.09)	0.97	0.26	(0.05)	0.04		
$Autocorr(\Delta c)$	0.24	(0.09)	0.42	0.17	(0.04)	0.06		
eta_{π}	1.00	(0.14)	0.99	0.51	(0.18)	0.39		
$E(\pi)$	1.70	(0.15)	0.99	0.41	(0.06)	0.39		
$\sigma(\pi)$	1.02	(0.15)	1.84	0.22	(0.04)	0.24		
$Autocorr(\pi)$	0.14	(0.11)	0.53	0.18	(0.04)	0.35		
` ,		` ′			` ′			
$\mathit{Corr}(\Delta c, \pi)$	-0.22	(0.10)	-0.11	-0.26	(0.05)	-0.25		

Average Yield Curves • Back

Table: Unconditional Levels and Slopes

Country	eta_c	β_{π}	Short Rate	Slope
AUS	0.48	0.87	4.94	1.34
CAN	0.90	0.50	3.75	1.33
GER	0.50	1.30	5.33	1.39
JPN	0.80	0.50	3.95	1.29
NOR	0.78	0.52	4.00	1.36
NZL	0.47	1.00	5.09	1.32
SWE	0.48	1.45	5.52	1.05
SWI	0.47	1.30	5.39	1.16
UK	0.50	1.50	5.53	1.15
US	1.00	1.00	4.06	3.75
A1 . T		. 1 19.1		

Notes - This table reports the unconditional mean of the short-term rate and the yield curve slope for our 10 countries.

Traditional Carry: Risk Free Rate and Excess Return

One-period risk free rate

$$r_{1,t}^i = \overline{r}_i + \beta_i^c x_{c,t} + \beta_i^{\pi} x_{\pi,t}$$

where

$$\overline{r}_i = (\mu_{i,c} + \mu_{i,\pi}) - \log \delta - \left(\frac{1}{2} - \frac{1}{\theta}\right) \sigma_c^2 - \frac{1}{2}\sigma_\pi^2$$

- We spread the unconditional level of the one-period risk free rates using country specific $\mu_{i,c}$ and $\mu_{\pi,c}$
- Excess return
- We set

$$\mu_{i,c} = \overline{\mu}_c + \overline{\mu}_c (1 - \beta_c^i)$$

$$\mu_{\pi,c} = \overline{\mu}_\pi - \overline{\mu}_\pi (1 - \beta_\pi^i)$$

- ▶ High β_c^i countries usually have **low** risk-free rates
- ▶ High β_{π}^{i} countries usually have **high** risk-free rates

Extended Model Back

Panel A: International Moments							
	Traditional Carry			9	Slope Carry		
Demand shock	yes	yes	no	yes	yes	no	
Demand shock downward jump	yes	no	_	yes	no	_	
E(carry) (Full Sample)	1.17	1.17	1.63	1.08	1.08	4.12	
E(carry) (Post-08/07)	0.09	0.09	0.35	5.63	5.63	9.61	
E(sorting var) P3 - E(sorting var) P1	1.69	1.69	1.75	1.65	1.65	1.80	
E(sorting var) P3 - E(sorting var) P1	1.39	1.39	1.39	1.82	1.82	2.18	
(Post-08/08)							
$E(\Delta FX)$ P3 - $E(\Delta FX)$ P1	-0.50	-0.50	-0.10	1.66	1.66	2.15	
$E(\Delta FX)$ P3 - $E(\Delta FX)$ P1 (Post-08/08)	-1.27	-1.27	-1.02	2.70	2.70	3.44	
Panel B: Local Moments Share of volatility due to inflation	hpr^{∞}		Slope	Δ	FX		
With demand shock		9.5%		60%	25%		
Without demand shock		79%		82%	28	3%	

Utility:

$$\textit{U}_{i,t} = \left\{ (1-\delta) \textcolor{red}{ \textcolor{blue}{ \Lambda_t C_{i,t}^{1-\frac{1}{\psi}} + \delta \textit{E}_t \left[\textit{U}_{i,t+1}^{1-\gamma} \right]^{\frac{1-\frac{1}{\psi}}{1-\gamma}}} \right\}^{\frac{1}{1-\frac{1}{\psi}}}$$

Demand shock:

$$\Delta \lambda_{t+1} := \log(\Lambda_{t+1}/\Lambda_t) = x_{d,t} = \rho_d x_{d,t-1} + \sigma_{x,d} \varepsilon_{d,t}$$

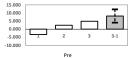
► SDF:

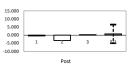
$$m_{i,t+1}^{ ext{real}} = heta \log \delta + heta \Delta \lambda_{t+1} - rac{ heta}{\psi} \Delta c_{i,t+1} + (heta-1) r_{i,t+1}^c$$

 We are agnostic about the exposure of each country to global demand shocks

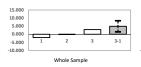
Traditional Carry Robustness Back

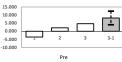
a) Gross returns, 7/2008 breakpoint

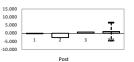




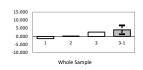
b) Gross returns, 1/2008 breakpoint

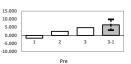


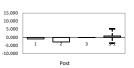




c) Gross returns, equal-weighted portfolios

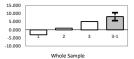


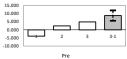


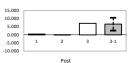


Traditional Carry Robustness Pack

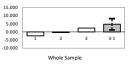
d) Gross returns, 10% winsorization

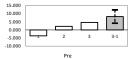


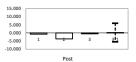




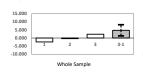
e) Loa returns, 7/2008 breakpoint



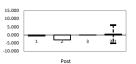




f) Log returns, 1/2008 breakpoint

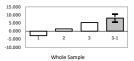


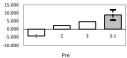


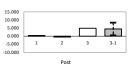


Traditional Carry Robustness Back

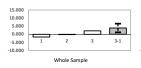
g) Log returns, 10% winsorization

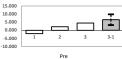


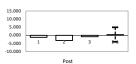




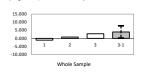
h) Loa returns, equal-weighted portfolios

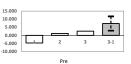


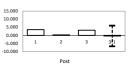




i) Log returns, Euro base currency

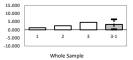


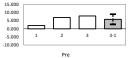


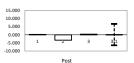


Traditional Carry Robustness Back

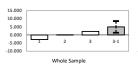
i) Loa returns, Japanese ven base currency

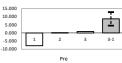


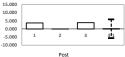




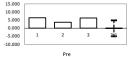
k) Log returns. British pound base currency

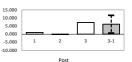




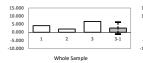


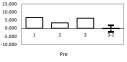
a) Gross returns, 7/2008 breakpoint

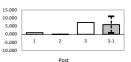




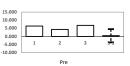
b) Gross returns, 1/2008 breakpoint

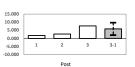




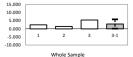


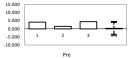
c) Gross returns, equal-weighted portfolios

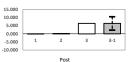




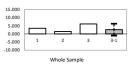
d) Gross returns, 10% winsorization

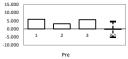


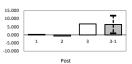




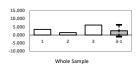
e) Loa returns, 7/2008 breakpoint

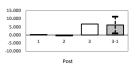




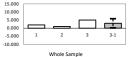


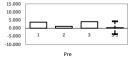
f) Log returns, 1/2008 breakpoint

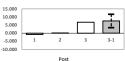




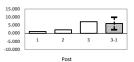
g) Log returns, 10% winsorization



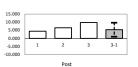




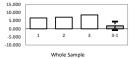
h) Log returns, equal-weighted portfolios

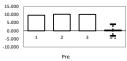


i) Log returns, Euro base currency, equal-weighted portfolios



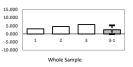
i) Loa returns, Japanese ven base currency, equal-weighted portfolios

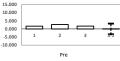




Post

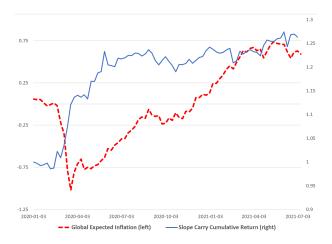
k) Log returns. British pound base currency, equal-weighted portfolios







Slope Carry Robustness (Cumulative Returns) Back



The decline is not limited to 2008-2009 •Back

	95-07	08-18	09-18	10-18	11-18
Expected GDP (G10)	2.74	1.42	1.57	2.09	2.00
(change relative to 95-07)	_	(-1.32)	(-1.17)	(-0.65)	(-0.74)
Expected Inflation (G10)	1.92	1.59	1.43	1.57	1.58
(change relative to 95-07)	_	(-0.33)	(-0.49)	(-0.35)	(-0.34)

- ► Substantial decline even after excluding 2008-2009
- ▶ Persistent decline in expected inflation is remarkable, given that most G10 countries have an inflation target of 2%

Alternative Measures of Global News Pack

Highly correlated results when we consider:

- 1. AR model (Core/Headline)
- 2. Unit-root model (Core/Headline)
- 3. Phillips curve (Core/Headline): use past unemployment and inflation

as opposed to the OECD forecasts. All models are estimated at the country-level.

Zero Lower Bound PBack

Setup. We assume that the payoff of a one-period bond is

$$\mathit{FV}_{t+1} = 1 \cdot \mathbb{I}_{\left\{r_t^{\mathit{U}} \geq \underline{r}\right\}} + \exp\left\{-k_t \cdot (m_{t+1} + \alpha_t)\right\} \cdot \mathbb{I}_{\left\{r_t^{\mathit{U}} < \underline{r}\right\}}$$

where r_t^u is the unconstrained risk-free rate in the absence of a lower bound, \underline{r} denotes the lower bound on the interest rate, and

$$k_t = \frac{\underline{r} - r_t^u}{V_t \left[m_{t+1} \right]} \ge 0, \quad \alpha_t = -E_t \left[m_{t+1} \right] + \frac{1}{2} \left(\underline{r} - r_t^u \right).$$

It is straightforward to show that:

$$E_t\left[FV_{t+1}|r_t^u<\underline{r}\right]=E_t\left[FV_{t+1}|r_t^u\geq\underline{r}\right]=1.$$

Price of a one-period bond. The price of the one period bond is

$$P_t^1 = E_t \left[\exp \left\{ m_{t+1} \right\} FV_{t+1} \right]$$

which depends on the current state of the economy:

$$P_t^1 = \left\{ \begin{array}{l} \exp\left\{-r_t^u\right\}, & \text{if } r_t^u \geq \underline{r} \\ \exp\left\{(1-k_t)\mathcal{E}_t\left[m_{t+1}\right] + \frac{1}{2}(1-k_t)^2V_t\left[m_{t+1}\right] - k_t\alpha_t\right\}, & \text{if } r_t^u < \underline{r}. \end{array} \right.$$

The log-expected return on the one period bond is

$$r_t^1 = \left\{ \begin{array}{ll} r_t^u, & \text{if } r_t^u \geq \underline{r} \\ \underline{r}, & \text{if } r_t^u < \underline{r}. \end{array} \right.$$

Traditional Carry with ZLB

$$\log E_{t} \left[RX_{il,t+1}^{1} \right] - \log E_{t} \left[RX_{is,t+1}^{1} \right] = \left(\beta_{c}^{s} - \beta_{c}^{l} \right) \left[k_{\varepsilon c}^{2} \sigma_{xc}^{2} + k_{\varepsilon \pi}^{2} \sigma_{x\pi}^{2} \right]$$

$$+ \left(actual - shadow \right) r_{t}^{l}$$

$$- \left(actual - shadow \right) r_{t}^{s}$$

- 1. Same FX premium as away from ZLB
- 2. Additional premium if investment currency is at ZLB (†)
- 3. Additional premium if funding currency is at ZLB (\downarrow)

Traditional Carry with ZLB

$$\log E_{t} \left[RX_{il,t+1}^{1} \right] - \log E_{t} \left[RX_{is,t+1}^{1} \right] = \left(\beta_{c}^{s} - \beta_{c}^{l} \right) \left[k_{\varepsilon c}^{2} \sigma_{xc}^{2} + k_{\varepsilon \pi}^{2} \sigma_{x\pi}^{2} \right] - \left(actual - shadow \right) r_{t}^{s}$$

Funding currency is usually at ZLB

Traditional Carry with ZLB

$$\log E_{t} \left[RX_{il,t+1}^{1} \right] - \log E_{t} \left[RX_{is,t+1}^{1} \right] = \left(\beta_{c}^{s} - \beta_{c}^{l} \right) \left[k_{\varepsilon c}^{2} \sigma_{xc}^{2} + k_{\varepsilon \pi}^{2} \sigma_{x\pi}^{2} \right] - \left(actual - shadow \right) r_{t}^{s}$$

- Funding currency is usually at ZLB
- Traditional carry declines

$$E_t \left[RX_{\$k,t+1}^{\infty} \right] \quad = \quad E_t \exp \left\{ -r_{\$,t} + hpr_{k,t+1}^{\infty,zlb} + \left(m_{k,t+1}^T + m_{k,t+1}^P \right) - m_{\$,t+1} \right\}$$

$$E_t\left[RX_{\$k,t+1}^{\infty}\right] = E_t \exp\left\{-r_{\$,t} + hpr_{k,t+1}^{\infty,zlb} + \left(-hpr_{k,t+1}^{\infty,unc} + m_{k,t+1}^{P}\right) - m_{\$,t+1}\right\}$$

$$E_t \left[RX_{\$k,t+1}^{\infty} \right] \quad = \quad E_t \exp \left\{ -r_{\$,t} + \left(\frac{hpr_{k,t+1}^{\infty,z/b} - hpr_{k,t+1}^{\infty,unc}}{hpr_{k,t+1}^{\infty,unc}} \right) + m_{k,t+1}^P - m_{\$,t+1} \right\}$$

$$E_t \left[RX_{\$k,t+1}^{\infty} \right] \quad = \quad E_t \exp \left\{ -r_{\$,t} + \left(\frac{hpr_{k,t+1}^{\infty,zlb} - hpr_{k,t+1}^{\infty,unc}}{hpr_{k,t+1}^{\infty,unc}} \right) + m_{k,t+1}^P - m_{\$,t+1} \right\}$$

Can we make the argument that the two hpr's cancel out?

$$\begin{array}{rcl} \Delta c_{i,t+1} & = & \mu_{i,c} + \beta_i^c \cdot x_{c,t} + \sigma_c \eta_{i,t+1}^c \\ \pi_{i,t+1} & = & \mu_{i,\pi} + \beta_i^\pi \cdot x_{\pi,t} + \sigma_\pi \eta_{i,t+1}^\pi, \end{array}$$

where

$$\begin{bmatrix} x_{\pi,t} \\ x_{c,t} \end{bmatrix} = \begin{bmatrix} \rho_{\pi} & 0 \\ \rho_{c\pi} & \rho_{c} \end{bmatrix} \cdot \begin{bmatrix} x_{\pi,t-1} \\ x_{c,t-1} \end{bmatrix} + \begin{bmatrix} \sigma_{x,\pi} & 0 \\ 0 & \sigma_{x,c} \end{bmatrix} \begin{bmatrix} \varepsilon_{\pi,t} \\ \varepsilon_{c,t} \end{bmatrix}$$

▶ Real SDF depends on shocks to real expected growth

$$\Delta c_{i,t+1} = \mu_{i,c} + \beta_i^c \cdot x_{c,t} + \sigma_c \eta_{i,t+1}^c$$

$$\pi_{i,t+1} = \mu_{i,\pi} + \beta_i^\pi \cdot x_{\pi,t} + \sigma_\pi \eta_{i,t+1}^\pi,$$

where

$$\begin{bmatrix} x_{\pi,t} \\ x_{c,t} \end{bmatrix} = \begin{bmatrix} \rho_{\pi} & 0 \\ \rho_{c\pi} & \rho_{c} \end{bmatrix} \cdot \begin{bmatrix} x_{\pi,t-1} \\ x_{c,t-1} \end{bmatrix} + \begin{bmatrix} \sigma_{x,\pi} & 0 \\ 0 & \sigma_{x,c} \end{bmatrix} \begin{bmatrix} \varepsilon_{\pi,t} \\ \varepsilon_{c,t} \end{bmatrix}$$

- ▶ Real SDF depends on shocks to real expected growth
- **Exposure** depends on β_c^i

$$\Delta c_{i,t+1} = \mu_{i,c} + \beta_i^c \cdot x_{c,t} + \sigma_c \eta_{i,t+1}^c$$

$$\pi_{i,t+1} = \mu_{i,\pi} + \beta_i^\pi \cdot x_{\pi,t} + \sigma_\pi \eta_{i,t+1}^\pi,$$

where

$$\begin{bmatrix} x_{\pi,t} \\ x_{c,t} \end{bmatrix} = \begin{bmatrix} \rho_{\pi} & 0 \\ \rho_{c\pi} & \rho_{c} \end{bmatrix} \cdot \begin{bmatrix} x_{\pi,t-1} \\ x_{c,t-1} \end{bmatrix} + \begin{bmatrix} \sigma_{x,\pi} & 0 \\ 0 & \sigma_{x,c} \end{bmatrix} \begin{bmatrix} \varepsilon_{\pi,t} \\ \varepsilon_{c,t} \end{bmatrix}$$

- ▶ Real SDF depends on shocks to real expected growth
- \triangleright Exposure depends on β_c^i
- Nominal SDF: $m_{i,t+1} = m_{i,t+1}^{real} \pi_{i,t+1}$
 - \hookrightarrow MPR does not depend on β^i_π

$$\Delta c_{i,t+1} = \mu_{i,c} + \beta_i^c \cdot x_{c,t} + \sigma_c \eta_{i,t+1}^c$$

$$\pi_{i,t+1} = \mu_{i,\pi} + \beta_i^{\pi} \cdot x_{\pi,t} + \sigma_{\pi} \eta_{i,t+1}^{\pi},$$

where

$$\begin{bmatrix} x_{\pi,t} \\ x_{c,t} \end{bmatrix} = \begin{bmatrix} \rho_{\pi} & 0 \\ \rho_{c\pi} & \rho_{c} \end{bmatrix} \cdot \begin{bmatrix} x_{\pi,t-1} \\ x_{c,t-1} \end{bmatrix} + \begin{bmatrix} \sigma_{x,\pi} & 0 \\ 0 & \sigma_{x,c} \end{bmatrix} \begin{bmatrix} \varepsilon_{\pi,t} \\ \varepsilon_{c,t} \end{bmatrix}$$

- Real SDF depends on shocks to real expected growth
- \triangleright Exposure depends on β_c^i
- Nominal SDF: $m_{i,t+1} = m_{i,t+1}^{real} \pi_{i,t+1}$ \rightarrow MPR does not depend on β_{π}^{i}
- $lackbox{ Only } E_t\left[m_{i,t+1}
 ight] = ar{m} eta_c^i x_{c,t} eta_\pi^i x_{\pi,t} \ ext{depends on both } eta_\pi^i \ ext{and } eta_c^i$

- ► Complete markets: $\Delta e_{us-j,t+1} = m_{j,t+1} m_{us,t+1}$
 - \hookrightarrow when $m_{i,t+1}$ is high, country j's currency appreciates

- ► Complete markets: $\Delta e_{us-j,t+1} = m_{j,t+1} m_{us,t+1}$ \hookrightarrow when $m_{i,t+1}$ is high, country j's currency appreciates
- FX return: $\log E_t \left[RX_{us-i,t+1}^1 \right] = V_t \left[m_{us,t+1} \right] - cov_t \left[m_{us,t+1}, m_{j,t+1} \right]$ \hookrightarrow safe currency: appreciates $(m_{i,t+1} \uparrow)$ in bad times $(m_{us,t+1} \uparrow)$

- ► Complete markets: $\Delta e_{us-j,t+1} = m_{j,t+1} m_{us,t+1}$ \hookrightarrow when $m_{i,t+1}$ is high, country j's currency appreciates
- FX return: $\log E_t \left[RX_{us-i,t+1}^1 \right] = V_t \left[m_{us,t+1} \right] - cov_t \left[m_{us,t+1}, m_{i,t+1} \right]$ \hookrightarrow safe currency: appreciates $(m_{i,t+1} \uparrow)$ in bad times $(m_{us,t+1} \uparrow)$
- Nominal SDFs:

$$\begin{array}{lcl} m_{i,t+1} - E_t \left[m_{i,t+1} \right] & = & -k_{\eta c} \sigma_c \eta_{i,t+1}^c - k_{\eta \pi} \sigma_\pi \eta_{i,t+1}^\pi \\ & & -\beta_i^c k_{\varepsilon c} \sigma_{x c} \underline{\varepsilon}_{c,t+1} + \beta_i^c k_{\varepsilon \pi} \sigma_{x \pi} \underline{\varepsilon}_{\pi,t+1} \end{array}$$

 \hookrightarrow global shocks only depend on β_i^c

- ► Complete markets: $\Delta e_{us-j,t+1} = m_{j,t+1} m_{us,t+1}$ \hookrightarrow when $m_{i,t+1}$ is high, country j's currency appreciates
- FX return: $\log E_{t} \left[RX_{us-i \ t+1}^{1} \right] = V_{t} \left[m_{us,t+1} \right] - cov_{t} \left[m_{us,t+1}, m_{j,t+1} \right]$ \hookrightarrow safe currency: appreciates $(m_{i,t+1} \uparrow)$ in bad times $(m_{us,t+1} \uparrow)$
- Nominal SDFs:

$$\begin{array}{lcl} m_{i,t+1} - E_t \left[m_{i,t+1} \right] & = & -k_{\eta c} \sigma_c \eta_{i,t+1}^c - \beta_{\pi}^i k_{\eta \pi} \sigma_{\pi} \eta_{i,t+1}^{\pi} \\ & & -\beta_i^c k_{\varepsilon c} \sigma_{x c} \varepsilon_{c,t+1} + \beta_i^c k_{\varepsilon \pi} \sigma_{x \pi} \varepsilon_{\pi,t+1} \end{array}$$

- \hookrightarrow global shocks only depend on β_i^c
- \hookrightarrow FX return would depend on β_{π}^{i} if
 - (i) country-specific vol of short-run inflation risk
 - (ii) $\eta_{i,t+1}^{\pi}$ correlated across country or with global shocks

- ► Complete markets: $\Delta e_{us-j,t+1} = m_{j,t+1} m_{us,t+1}$ \hookrightarrow when $m_{i,t+1}$ is high, country j's currency appreciates
- FX return: $\log E_t \left[RX_{us-i,t+1}^1 \right] = V_t \left[m_{us,t+1} \right] - cov_t \left[m_{us,t+1}, m_{i,t+1} \right]$ \hookrightarrow safe currency: appreciates $(m_{i,t+1} \uparrow)$ in bad times $(m_{us,t+1} \uparrow)$
- Nominal SDFs:

$$m_{i,t+1} - E_t [m_{i,t+1}] = -k_{\eta c} \sigma_c \eta_{i,t+1}^c - \beta_{\pi}^i k_{\eta \pi} \sigma_{\pi} \eta_{i,t+1}^{\pi} - \beta_i^c k_{\varepsilon c} \sigma_{x c} \varepsilon_{c,t+1} + \beta_i^c k_{\varepsilon \pi} \sigma_{x \pi} \varepsilon_{\pi,t+1}$$

- \hookrightarrow global shocks only depend on β_i^c
- \hookrightarrow FX return would depend on β_{π}^{i} if
 - (i) country-specific vol of short-run inflation risk
 - (ii) $\eta_{i,t+1}^{\pi}$ correlated across country or with global shocks
- → Effect quantitatively small

Why do eta_c and eta_π have opposite signs in slope carry? •Back

$$r_{i,t}^n = \bar{r}_i^n + \beta_i^c \cdot \frac{1 - \rho_c^n}{n(1 - \rho_c)} \cdot x_{c,t} + \left(\beta_i^{\pi} + \beta_i^c \frac{\rho_{c\pi}}{1 - \rho_c}\right) \cdot \frac{1 - \rho_{\pi}^n}{n(1 - \rho_{\pi})} \cdot x_{\pi,t}$$

$$r_{i,t}^n = \bar{r}_i^n + \beta_i^c \cdot \frac{1 - \rho_c^n}{n(1 - \rho_c)} \cdot x_{c,t} + \left(\beta_i^\pi + \beta_i^c \frac{\rho_{c\pi}}{1 - \rho_c}\right) \cdot \frac{1 - \rho_\pi^n}{n(1 - \rho_\pi)} \cdot x_{\pi,t}$$

1. Negative real growth shock $(x_{c,t}\downarrow)$:

$$r_{i,t}^n = \bar{r}_i^n + \beta_i^c \cdot \frac{1 - \rho_c^n}{n(1 - \rho_c)} \cdot x_{c,t} + \left(\beta_i^\pi + \beta_i^c \frac{\rho_{c\pi}}{1 - \rho_c}\right) \cdot \frac{1 - \rho_\pi^n}{n(1 - \rho_\pi)} \cdot x_{\pi,t}$$

1. Negative real growth shock $(x_{c,t}\downarrow)$: SDF \uparrow ,

$$r_{i,t}^n = \bar{r}_i^n + \beta_i^c \cdot \frac{1 - \rho_c^n}{n(1 - \rho_c)} \cdot x_{c,t} + \left(\beta_i^\pi + \beta_i^c \frac{\rho_{c\pi}}{1 - \rho_c}\right) \cdot \frac{1 - \rho_\pi^n}{n(1 - \rho_\pi)} \cdot x_{\pi,t}$$

1. Negative real growth shock $(x_{c,t}\downarrow)$: SDF \uparrow , yield \downarrow ,

$$r_{i,t}^n = \bar{r}_i^n + \beta_i^c \cdot \frac{1 - \rho_c^n}{n(1 - \rho_c)} \cdot x_{c,t} + \left(\beta_i^\pi + \beta_i^c \frac{\rho_{c\pi}}{1 - \rho_c}\right) \cdot \frac{1 - \rho_\pi^n}{n(1 - \rho_\pi)} \cdot x_{\pi,t}$$

1. Negative real growth shock $(x_{c,t}\downarrow)$: SDF \uparrow , yield \downarrow , HPR \uparrow

$$r_{i,t}^n = \bar{r}_i^n + \beta_i^c \cdot \frac{1 - \rho_c^n}{n(1 - \rho_c)} \cdot x_{c,t} + \left(\beta_i^\pi + \beta_i^c \frac{\rho_{c\pi}}{1 - \rho_c}\right) \cdot \frac{1 - \rho_\pi^n}{n(1 - \rho_\pi)} \cdot x_{\pi,t}$$

1. Negative real growth shock $(x_{c,t}\downarrow)$: SDF \uparrow , yield \downarrow , HPR \uparrow \hookrightarrow Investing in high β_i^c currencies is safe

$$r_{i,t}^n = \bar{r}_i^n + \beta_i^c \cdot \frac{1 - \rho_c^n}{n(1 - \rho_c)} \cdot x_{c,t} + \left(\beta_i^\pi + \beta_i^c \frac{\rho_{c\pi}}{1 - \rho_c}\right) \cdot \frac{1 - \rho_\pi^n}{n(1 - \rho_\pi)} \cdot x_{\pi,t}$$

- 1. Negative real growth shock $(x_{c,t}\downarrow)$: SDF \uparrow , yield \downarrow , HPR \uparrow \hookrightarrow Investing in high β_i^c currencies is safe
- 2. Positive inflation shock $(x_{\pi,t} \uparrow)$:

$$r_{i,t}^n = \bar{r}_i^n + \beta_i^c \cdot \frac{1 - \rho_c^n}{n(1 - \rho_c)} \cdot x_{c,t} + \left(\beta_i^\pi + \beta_i^c \frac{\rho_{c\pi}}{1 - \rho_c}\right) \cdot \frac{1 - \rho_\pi^n}{n(1 - \rho_\pi)} \cdot x_{\pi,t}$$

- 1. Negative real growth shock $(x_{c,t}\downarrow)$: SDF \uparrow , yield \downarrow , HPR \uparrow \hookrightarrow Investing in high β_i^c currencies is safe
- 2. Positive inflation shock $(x_{\pi,t} \uparrow)$: SDF \uparrow

$$r_{i,t}^n = \bar{r}_i^n + \beta_i^c \cdot \frac{1 - \rho_c^n}{n(1 - \rho_c)} \cdot x_{c,t} + \left(\beta_i^\pi + \beta_i^c \frac{\rho_{c\pi}}{1 - \rho_c}\right) \cdot \frac{1 - \rho_\pi^n}{n(1 - \rho_\pi)} \cdot x_{\pi,t}$$

- 1. Negative real growth shock $(x_{c,t}\downarrow)$: SDF \uparrow , yield \downarrow , HPR \uparrow \hookrightarrow Investing in high β_i^c currencies is safe
- 2. Positive inflation shock $(x_{\pi,t} \uparrow)$: SDF \uparrow $2.1 \beta_i^{\pi}$:

$$r_{i,t}^n = \bar{r}_i^n + \beta_i^c \cdot \frac{1 - \rho_c^n}{n(1 - \rho_c)} \cdot x_{c,t} + \left(\beta_i^\pi + \beta_i^c \frac{\rho_{c\pi}}{1 - \rho_c}\right) \cdot \frac{1 - \rho_\pi^n}{n(1 - \rho_\pi)} \cdot x_{\pi,t}$$

- 1. Negative real growth shock $(x_{c,t}\downarrow)$: SDF \uparrow , yield \downarrow , HPR \uparrow \hookrightarrow Investing in high β_i^c currencies is safe
- 2. Positive inflation shock $(x_{\pi,t} \uparrow)$: SDF \uparrow 2.1 β_i^{π} : yield \uparrow ,

$$r_{i,t}^n = \bar{r}_i^n + \beta_i^c \cdot \frac{1 - \rho_c^n}{n(1 - \rho_c)} \cdot x_{c,t} + \left(\beta_i^\pi + \beta_i^c \frac{\rho_{c\pi}}{1 - \rho_c}\right) \cdot \frac{1 - \rho_\pi^n}{n(1 - \rho_\pi)} \cdot x_{\pi,t}$$

- 1. Negative real growth shock $(x_{c,t}\downarrow)$: SDF \uparrow , yield \downarrow , HPR \uparrow \hookrightarrow Investing in high β_i^c currencies is safe
- 2. Positive inflation shock $(x_{\pi,t} \uparrow)$: SDF \uparrow 2.1 β_i^{π} : yield \uparrow , HPR \downarrow

$$r_{i,t}^n = \bar{r}_i^n + \beta_i^c \cdot \frac{1 - \rho_c^n}{n(1 - \rho_c)} \cdot x_{c,t} + \left(\beta_i^\pi + \beta_i^c \frac{\rho_{c\pi}}{1 - \rho_c}\right) \cdot \frac{1 - \rho_\pi^n}{n(1 - \rho_\pi)} \cdot x_{\pi,t}$$

- 1. Negative real growth shock $(x_{c,t}\downarrow)$: SDF \uparrow , yield \downarrow , HPR \uparrow \hookrightarrow Investing in high β_i^c currencies is safe
- 2. Positive inflation shock $(x_{\pi,t} \uparrow)$: SDF \uparrow
 - 2.1 β_i^{π} : yield \uparrow , HPR \downarrow
 - \hookrightarrow Investing in high β_i^{π} currencies is risky

$$r_{i,t}^{n} = \bar{r}_{i}^{n} + \beta_{i}^{c} \cdot \frac{1 - \rho_{c}^{n}}{n(1 - \rho_{c})} \cdot x_{c,t} + \left(\beta_{i}^{\pi} + \beta_{i}^{c} \frac{\rho_{c\pi}}{1 - \rho_{c}}\right) \cdot \frac{1 - \rho_{\pi}^{n}}{n(1 - \rho_{\pi})} \cdot x_{\pi,t}$$

- 1. Negative real growth shock $(x_{c,t}\downarrow)$: SDF \uparrow , yield \downarrow , HPR \uparrow \hookrightarrow Investing in high β_i^c currencies is safe
- 2. Positive inflation shock $(x_{\pi,t} \uparrow)$: SDF \uparrow
 - 2.1 β_i^{π} : yield \uparrow , HPR \downarrow
 - \hookrightarrow Investing in high β_i^{π} currencies is risky
 - $2.2 \beta_{:}^{c}$:

$$r_{i,t}^{n} = \bar{r}_{i}^{n} + \beta_{i}^{c} \cdot \frac{1 - \rho_{c}^{n}}{n(1 - \rho_{c})} \cdot x_{c,t} + \left(\beta_{i}^{\pi} + \beta_{i}^{c} \frac{\rho_{c\pi}}{1 - \rho_{c}}\right) \cdot \frac{1 - \rho_{\pi}^{n}}{n(1 - \rho_{\pi})} \cdot x_{\pi,t}$$

- 1. Negative real growth shock $(x_{c,t}\downarrow)$: SDF \uparrow , yield \downarrow , HPR \uparrow \hookrightarrow Investing in high β_i^c currencies is safe
- 2. Positive inflation shock $(x_{\pi,t} \uparrow)$: SDF \uparrow
 - 2.1 β_i^{π} : yield \uparrow , HPR \downarrow
 - \rightarrow Investing in high β_i^{π} currencies is risky
 - 2.2 β_i^c : expect lower growth at t+1 ($\rho_{c\pi} < 0$),

$$r_{i,t}^n = \bar{r}_i^n + \beta_i^c \cdot \frac{1 - \rho_c^n}{n(1 - \rho_c)} \cdot x_{c,t} + \left(\beta_i^\pi + \beta_i^c \frac{\rho_{c\pi}}{1 - \rho_c}\right) \cdot \frac{1 - \rho_\pi^n}{n(1 - \rho_\pi)} \cdot x_{\pi,t}$$

- 1. Negative real growth shock $(x_{c,t}\downarrow)$: SDF \uparrow , yield \downarrow , HPR \uparrow \hookrightarrow Investing in high β_i^c currencies is safe
- 2. Positive inflation shock $(x_{\pi,t} \uparrow)$: SDF \uparrow
 - 2.1 β_i^{π} : yield \uparrow , HPR \downarrow \rightarrow Investing in high β_i^{π} currencies is risky
 - 2.2 β_i^c : expect lower growth at t+1 ($\rho_{c\pi} < 0$), yield \downarrow ,

$$r_{i,t}^{n} = \bar{r}_{i}^{n} + \beta_{i}^{c} \cdot \frac{1 - \rho_{c}^{n}}{n(1 - \rho_{c})} \cdot x_{c,t} + \left(\beta_{i}^{\pi} + \beta_{i}^{c} \frac{\rho_{c\pi}}{1 - \rho_{c}}\right) \cdot \frac{1 - \rho_{\pi}^{n}}{n(1 - \rho_{\pi})} \cdot x_{\pi,t}$$

- 1. Negative real growth shock $(x_{c,t}\downarrow)$: SDF \uparrow , yield \downarrow , HPR \uparrow \hookrightarrow Investing in high β_i^c currencies is safe
- 2. Positive inflation shock $(x_{\pi,t} \uparrow)$: SDF \uparrow
 - 2.1 β_i^{π} : yield \uparrow , HPR \downarrow \rightarrow Investing in high β_i^{π} currencies is risky
 - 2.2 β_i^c : expect lower growth at t+1 ($\rho_{c\pi}<0$), yield \downarrow , HPR \uparrow

$$r_{i,t}^{n} = \bar{r}_{i}^{n} + \beta_{i}^{c} \cdot \frac{1 - \rho_{c}^{n}}{n(1 - \rho_{c})} \cdot x_{c,t} + \left(\beta_{i}^{\pi} + \beta_{i}^{c} \frac{\rho_{c\pi}}{1 - \rho_{c}}\right) \cdot \frac{1 - \rho_{\pi}^{n}}{n(1 - \rho_{\pi})} \cdot x_{\pi,t}$$

- 1. Negative real growth shock $(x_{c,t}\downarrow)$: SDF \uparrow , yield \downarrow , HPR \uparrow \hookrightarrow Investing in high β_i^c currencies is safe
- 2. Positive inflation shock $(x_{\pi,t} \uparrow)$: SDF \uparrow
 - 2.1 β_i^{π} : yield \uparrow , HPR \downarrow \hookrightarrow Investing in high β_i^{π} currencies is risky
 - 2.2 β_i^c : expect lower growth at t+1 ($\rho_{c\pi} < 0$), yield \downarrow , HPR \uparrow \hookrightarrow Investing in high β_i^c currencies is safe

We estimate this equation using the slopes of our 10 countries:

$$y_{i,120,t} - y_{i,3,t} = \begin{pmatrix} -0.068 + 0.090 \cdot \beta_{i,y} \end{pmatrix} \cdot E_t \left[\Delta y_{g10,t} \right] + \begin{pmatrix} -0.267 - \frac{0.100}{***} \cdot \beta_{i,\pi} \end{pmatrix} \cdot E_t \left[\Delta \pi_{g10,t} \right] + \xi_{i,t},$$

Main results:

- 1. In the time-series, inflation news are quantitatively dominant
- 2. In the cross section, heterogenous exposure to inflation news $(\beta_{i,\pi})$ dominates