
A new paradigm for rating data models

Un nuovo paradigma per modelli su dati di preferenza

Domenico Piccolo

Abstract Rating data arise in several disciplines and the class of Generalized Lin-

ear Models (GLM) provides a consolidated methodology for their analysis: such

structures (and a plethora of variants) model the cumulative probabilities of or-

dinal scores as functions of subjects’ covariates. A different perspective can be

adopted when considering that discrete choices as ordinal assessments are the re-

sult of a complex interaction between subjective perception and external circum-

stances. Thus, an explicit specification of the inherent uncertainty of the data gen-

erating process is needed. This paradigm has triggered a variety of researches and

applications, conveying in the unifying framework of GEneralized Mixtures with

uncertainty (GEM) which encompasses also classical cumulative models. Some crit-

ical discussions conclude the paper.

Abstract Dati di preferenza sono presenti in differenti ambiti e la classe dei modelli

lineari generalizzati fornisce una metodologia consolidata per la loro analisi. Una

prospettiva differente deriva dal considerare le scelte discrete che producono dati

ordinali come un processo derivante da (almeno) due componenti: una percezione

soggettiva (feeling) ed una ineliminabile indecisione (uncertainty). Cosı́, una speci-

ficazione esplicita dell’indecisione nel processo generatore dei dati di preferenza

si é resa necessaria. Tale paradigma ha generato numerose varianti e sviluppi che

includono anche l’approccio piú tradizionale. Il lavoro introduce i modelli GEM e

si conclude con alcune considerazioni critiche.
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1 Introduction

Statistical models are formal tools to describe, understand and predict real phenom-

ena on the basis of some recognizable mechanism to be effectively estimated and

tested on empirical data. This approach is ubiquitous in modern research and estab-

lishes the basis to advance disputable topics in any field: a model can be falsified

and rejected to favour a more sustainable alternative, as it is for any progress in

scientific research and human knowledge.

In this perspective, the specification step of a model derives from empirical evi-

dence, rational deductions, analogy and similarities. Given a set of data and contex-

tual information, statistical methods are nowadays sufficiently developed to provide

suitable specifications: time series, longitudinal models, qualitative variables, count

data, survival measures, continuous or discrete observations, experimental design,

reliability and quality control, etc. are settings where consolidated theories and ef-

fective methods suggest consistent specifications.

These topics will be discussed in the field of ordinal data modelling, as ratings

of objects or activities, opinions towards facts, expressions of preferences, agree-

ment to sentences, judgements, evaluations of items, perceptions, subjective sen-

sations, concerns, worry, fear, anxiety, etc. All these expressions are collected as

ratings/scores by means of verbal or pseudo-verbal categories. Such data are avail-

able in different fields: Marketing researches, Socio-political surveys, Psychological

enquiries, Sensory sciences and Medicine, among others. For these analyses, several

approaches are available as log-linear and marginal models [48], contingency tables

inference [47], and so on. In fact, the leitmotif of our discussion is that observed rat-

ing data are realizations of a (genuine) discrete or of a discretized process derived

by an intrinsically continuous (latent) variable [6].

2 The classical paradigm

Emulating the approach introduced for the logistic regression, the paradigm of cu-

mulative models considers the probability of responses less or equal to a rating r as

a function of selected regressors. A convenient link is necessary to establish a one-

to-one correspondence between a 0-1 measure (the probability) and a real quantity

(the value of the regressors); as a consequence, probit, logit, complementary log-log

links, etc. are proposed to specify the corresponding models.

The vast quantity of results derived from such procedures represents the dom-

inant paradigm in theoretical and empirical literature about the statistical analysis

of rating data. The process of data generation is introduced by invoking -for each

subject- a latent variable Y ∗
i , taking values along the real line and related to the

values ttt i of p explanatory subjects’ covariates via the classical regression model:

Y ∗
i = ttt iβββ +εi, i = 1,2, . . . ,n. For a given m, the relationship with the discrete ordinal

variable Ri, defined over the discrete support {1,2, . . . ,m}, is provided by:
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αr−1 < Y ∗
i ≤ αr ⇐⇒ Ri = r , r = 1,2, . . . ,m ,

where −∞ = α0 < α1 < .. . < αm = +∞ are the thresholds (cutpoints) of the con-

tinuous scale of the latent variables Y ∗
i .

Then, if εi ∼ Fε(.), the probability mass function of Ri, for r = 1,2, . . . ,m, is:

Pr (Ri = r) = Pr (αr−1 < Y ∗
i ≤ αr) = Fε(αr − ttt iβββ )−Fε(αr−1 − ttt iβββ ), (1)

where Pr (Ri ≤ r|θθθ , ttt i) = Fε(αr − ttt iβββ ) for i = 1,2, . . . ,n and r = 1,2, . . . ,m.

This specification requires the knowledge of θθθ = (ααα ′, βββ ′) parameters, that is the

(m− 1) intercept values ααα = (α1, . . . ,αm−1)
′ in addition to the explicit covariate

parameters βββ = (β1, . . . ,βp)
′.

When selecting logistic random variables εi, the probability of a single rating

turns out to be:

Pr (Ri = r|θθθ , ttt i) =
1

1+ exp(−[αr − ttt iβββ ])
−

1

1+ exp(−[αr−1 − ttt iβββ ])
, (2)

for i= 1,2, . . . ,n and r = 1,2, . . . ,m. As a consequence of proportionality properties,

these models are known as proportional odds models (POM ) [1, 66].

Cumulative models have been embedded into the GLM perspective [51] and gen-

eralized in several directions: multilevel, varying choice of thresholds, multivariate

setting, conditional logits including both subjects’ and objects’ covariates [52], vari-

able effect ttt iβββ j as in stereotype models [5], or thresholds which depend on covari-

ates as in partial proportional odds models [57], and models with dispersion effects

as the location-scale models [50] or location-shift models [67].

Quite often, the interpretation of these models takes advantage of odds and log-

odds measures which are quantities easily manageable by Medicine and Biomedical

researchers; similarly, plotting devices explain the direction and the effect of signif-

icant covariates on the ordinal responses and new graphical solutions have been

recently advanced [68]. In order to anchor the estimated results to easier and more

interpretable indexes [2, 3] some difficulties have been emphasized.

Indeed, some drawbacks of the classical specification should be noticed:

• Data generating process refers to a latent variable whose unobservable distribu-

tion defines the discrete distribution for the observable ratings.

• It is difficult to accept that -in any circumstance- subjects perform choices by

considering ratings not greater than a fixed one, whereas it is more common to

consider choices as determined by the “stimulus” associated to a single category

and its surrounding values. In fact, the relationship (2) is difficult to manage for

deriving immediately the effect of a set of covariates on the categorical response.

• If ratings generated by several items have to be clustered, ranked or classified,

unconditionally from covariates, the classical setting leads to a saturated model,

which implies an arithmetic equivalence between observed and assumed distri-

butions.
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A different paradigm has been proposed for rating data [58, 28] which is substan-

tially based on the explicit modelling of the data generating process of the ordinal

observations [44].

3 A generating process for rating data

Finite mixtures have been advanced by several Authors for analysing ordinal data

(see [62] for a review) and most of them are motivated for improving fitting. They

assume a convex combinations of probability distributions belonging to the same

class of models or discretize continuous random variables to get appropriate proba-

bility mass functions for the observed ratings: in this vein, the reference to the Beta

distribution with several variants is frequent: [55, 32, 65, 31, 70], among others. A

different proposal arises from stochastic binary search algorithm [8].

In this scenario, psychological rationale related to the choice of ordinal scores

leads to the introduction of CUB models [58]. A mixture distribution is specified

to model the propensity to adhere to a meditated choice (formally described by a

shifted Binomial random variable) and to a totally random one (described by a dis-

crete Uniform distribution). Original motivations for the selection of these random

variables were mostly based on a simplicity criterion [28]. However, the Binomial

random model may be interpreted as a counting process of a sequential selection

among the m categories and accounts for the genuine feeling of the response (ap-

pendix of [43]). Then, the Uniform distribution has been introduced as the most

extreme among all discrete alternatives and accounts for the inherent uncertainty of

the choice [39, 34, 63]. Independently, a psychological support to a direct modelling

of a discrete component in the ordinal choices has been recently proposed by Allik

[4].

Then, for a known m > 3, given a matrix TTT of values for subjects’ covariates, a

CUB model for the i-th subject implies both stochastic and deterministic relation-

ships defined, respectively, as:















Pr (Ri = r | TTT ) = πi br(ξi)+(1−πi) pU
r , r = 1,2, . . . ,m;

πi = πi(βββ ) =
1

1+ e−zzziβββ
; ξi = ξi(γγγ) =

1

1+ e−wwwiγγγ
; i = 1,2, . . . ,n .

(3)

We set br (ξi) =
(

m−1
r−1

)

ξ m−r
i (1−ξi)

r−1
and pU

r = 1/m, r = 1,2, . . . ,m, for the shifted

Binomial and Uniform probability mass functions introduced to model feeling and

uncertainty, respectively. Here, (zzz′i,www
′
i)
′ are the values of the subjects’ covariates

extracted from the subjects’ covariates data matrix TTT . The acronym CUB stands for

Combination of a (discrete) Uniform and (shifted) Binomial distribution.

Given the parameterization (3), it should be noticed that:

• the set of values zzzi and wwwi may be coincident, overlapped or completely different;
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• whereas 1 − ξi characterize the Binomial distribution of the mixture and are

immediately related to the strength of the feeling component (they involve the

modal value of the responses), the uncertainty parameters 1 − πi are just the

weights of the Uniform distribution assumed for the indecision in the responses

(thus, they are not involved in the specification of pU
r );

• although psychological arguments are sufficient for motivating uncertainty as an

important component of an ordinal choice, it is possible to show that uncertainty

may be also generated when genuine Binomial choices manifest small variations

in the feeling parameters.

• CUB models are able to detect a possible relationship between feeling and uncer-

tainty when a common covariate is significant for those components.

Any one-to-one mapping R
p ↔ [0,1] between parameters and covariates is le-

gitimate but the logistic function is to be preferred for simplicity and robustness

properties [42]. Thus, the relationships:

logit (1−πi) = −zzziβββ ; logit (1−ξi) = −wwwiγγγ ; i = 1,2, . . . ,n . (4)

immediately relates uncertainty weights and feeling measures to subjects’ covari-

ates.

Although model (3) has been introduced with covariates, one may specify a CUB

distribution without such a constraint:

• if π = aver(πi) and ξ = aver(ξi) are some averages of the individual parameters,

the parameters (π, ξ ) can be used to compare the responses to different items;

• for a given i-th subject, the features of the implied CUB model conditional to

(zzzi, wwwi) may be investigated by letting πi = π and ξi = ξ .

In this way, a CUB probability distribution is defined as:

Pr (R = r | θθθ) = π br (ξ )+(1−π) pU
r , r = 1,2, . . . ,m. (5)

where θθθ = (π,ξ )′ ∈ Ω (θθθ) = {(π,ξ ) : 0 < π ≤ 1, 0 ≤ ξ ≤ 1} and the parameter

space Ω (θθθ) is the (open left) unit square.

A CUB model is identifiable [36] for any m > 3 whereas m = 3 implies a satu-

rated model. Not all the well-defined discrete distributions are admissible for a CUB

model as, for instance, bimodal probability functions. However, if multimodality

is a consequence of latent classes then a CUB model with an explanatory variable

related to those classes is adequately fitted according to (3).

A qualifying feature of CUB models is their visualization: given the one-to-one

correspondence between the probability mass function (5) and a single point in the

parameter space Ω (θθθ), it is immediate to compare different items in terms of feeling

and uncertainty; furthermore, by including subjects’ covariates as in (3), the effect

of each covariate on either components is visualized and response profiles can be

identified. Finally, when CUB models estimated for different clusters –specified by

time, space, circumstances and/or covariates– the changes in the responses (in terms

of feeling and uncertainty) are immediately shown in the same parameter space. In
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this respect, also more refined devices –as, for instance, Scatter Plot of Estimates

(SPE)– have been advanced [45].

Inferential issues have been solved by asymptotically efficient maximum like-

lihood methods performed by EM procedures [59] which are implemented in an

R package [45]. Residual analysis may be conducted [29]. Alternative inferential

procedures as Bayesian approaches [25] and permutation tests [9] have been also

established.

Successful applications of CUB models have been obtained in different fields and

for dissimilar objectives [21, 26, 10, 15, 11, 24, 13, 17]. In addition, formal and

empirical comparisons with cumulative models have been extensively discussed on

both real and simulated data sets [62]. Especially, the performance of the novel

class of models has been checked when heterogeneity is a heavy component: in

these circumstances, the better performance of CUB model as measured by BIC

criterion, for instance, is the consequence of parsimony. Moreover, CUB models

correctly assign heterogeneity to a possible uncertainty as related to explanatory

covariates, whereas in POM heterogeneity is scattered over the categories by means

of estimated cutpoints.

In this class of models, feeling causes no interpretation problem since it is im-

mediately related to the attraction towards the item (modal values of the distribution

and feeling parameters are strictly related); on the contrary, some doubts concern

the nature of the uncertainty component [33], especially when no subjects’ covari-

ates are introduced. Surely, the measure conveyed by 1−π includes at least three

meanings:

• subjective indecision: the measure 1−πi is related to the personal indecision of

the i-th respondent;

• heterogeneity: for CUB model without covariates, 1−π summarizes heterogene-

ity of the responses with respect to a given item [12, 16];

• predictability: in case of predicting ordinal outcomes, π is a direct measure of

predictability of the model with respect to two extremes: a discrete Uniform

(π → 0) and shifted Binomial (π = 1) distributions.

Indeed, the special mixture proposed for ordinal data allows for a single rating to

convey information on both feeling and uncertainty parameters:

i) the observed r is directly related to ξ since the probability of high/low values

of r may increase or decrease with 1−ξ ;

ii) the observed r has also a bond with π since, for each score r, it increases or

decreases the relative frequencies of:
∣

∣Pr (R = r)−
1

m

∣

∣ ∝ π . Then, modifying the

distance from the Uniform situation, each response modifies also the information

concerning the uncertainty.
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4 The family of CUB models

Previous models have been generalized in several directions to adequately fit rating

data and exploit parsimony in different contexts. Among the many variants, we men-

tion the inclusion of shelter effect [37], also with covariates (GeCUB ) [43], the cases

when almost one dominant preference is expressed (CUSH ) [16] or some proposal

with varying uncertainty (as VCUB [34] and CAUB [63] for response style effects)

and also by including random effects in the components (HCUB [38] and RCUB [64])

and connections with fuzzy analysis of questionnaires [30].

Then, CUB models have been usefully applied in presence of “don’t know” an-

swers (DK-CUB [54, 41]), for detecting latent classes (LC-CUB [35]), for managing

missing values in ordered data [24], for considering a MIMIC jointly with a CUB

model [19] and for implementing model-based trees [18]. Noticeable is the discus-

sion of similarities with log-linear models [56].

Further significant issues are the multi-items treatments, when also objects’ char-

acteristics are considered [61], and some genuine and promising multivariate pro-

posals [7, 22, 23, 20].

An important advancement considers overdispersion as a further component to be

examined. Thus, the feeling parameter is interpreted as a random variable specified

by a Beta distribution: so, a (shifted) Beta-Binomial distribution is considered for the

feeling component and CUBE models are introduced [39, 60, 46]. This class is truly

general since it includes several previous specifications (as IHG [27], for instance);

in addition, it adds higher flexibility to CUB models with an extra parameter. Since

CUB are nested into CUBE models, relative testing is immediate.

The importance to take explicitly uncertainty into account in designing statistical

models for rating data has received an increasing consideration (as in CUP models:

[69]); indeed, the inclusion of classical approach in the emerging paradigms is a

desirable opportunity.

In fact, due to the complex functioning of decision making process, two com-

ponents are definitely dominant: i) a primary attraction/repulsion towards the item

which is related to the personal history of the subject and his/her beliefs with respect

to the item; ii) an inherent indecision derived by the circumstances surrounding the

choice. This argument is grounded on empirical evidence since any choice is a hu-

man decision, where taste, emotion, sentiment are substantial issues which manifest

themselves as a random component denoted as feeling. Moreover, choice changes

over time, with respect to the environment, the modality (verbal, visual, numerical,

etc.) and the tool (face-to-face response, telephone, questionnaire, online, etc.) by

which data are collected: these circumstances cause an inherent indecision denoted

as uncertainty.

Then, each respondent provides observations which are realizations of a choice

Ri generated by mixing the feeling Xi and the uncertainty Vi. Formally, let m be the

number of categories and ttt
(X)
i ∈ TTT , ttt

(V )
i ∈ TTT , where TTT includes the values of the

selected covariates to explain feeling and uncertainty, respectively.
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For any well-defined discrete distributions for feeling Xi and uncertainty Vi, re-

spectively, a GEneralized Mixture model with uncertainty (GEM) is defined as fol-

lows:

Pr (Ri = r | θθθ) = πi Pr
(

Xi = r | ttt
(X)
i ,ΨΨΨ

)

+ (1−πi)Pr (Vi = r) , (6)

for i = 1, . . . ,n and r = 1, . . . ,m. Here, πi = π(ttt(V )
i ,βββ ) ∈ (0, 1] are introduced to

weight the two components and ΨΨΨ includes all the parameters necessary for a full

specification of Xi. The probability distribution of the uncertainty component Vi is

assumed known over the support {1, . . . ,m} on the basis of a priori assumptions.

GEM models (6) are a very flexible class of models to interpret and fit rat-

ing data since they may specify: main flavour of the responses and their uncer-

tainty/heterogeneity, overdispersion in respondents’ feeling, presence of a possible

inflated category and different probability distributions for given covariates: a dis-

tribution function for a latent variable to be discretized (classical approach); a prob-

ability mass function (novel approach). Both of them may include uncertainty in

their specification for better fitting and interpretation.

Thus, GEM is the new paradigm since it is an inclusive class of models for ordinal

data which encompasses both classical and mixture models in a unique representa-

tion where distributions are not compelled to belong to the exponential family.

5 Occam’s razor: believe it or not

Occam’s razor refers to one of the first principle in scientific research: “Non sunt

multiplicanda entia sine necessitate” (Entities are not to be multiplied without ne-

cessity).

Cumulative models without covariates are saturated and this circumstance causes

logical problems which have not been considered too much in the literature. The

point is that estimable thresholds act as frequency parameters to perfectly fit the ob-

served distribution; the introduction of explanatory variables modifies this perfect fit

by adding variability to data. The paradox is that the starting point is a deterministic

model and this structure becomes a stochastic one by adding further information.

Now, let E(M | A) be the measure of the explicative power of a model M when

the information set is A: it may be log-likelihood, pseudo-R2, fitting measure, diver-

gence, BIC, deviance, etc. Then, let us denote by E(M | A∪B) the same quantity

when the information set is enlarged by a not-empty set B disjoint with A. Of course,

A⊂ (A∪B) and E(M |A)<E(M |A∪B) for any informative data set B. According

to Occam’s razor principle, a statistician should prefer a model based on (A∪B) if

and only if the enlarged information improves the explicative power of A, otherwise

B is a “multiplicanda entia sine necessitate”.

In the class M of cumulative models, let A be the information set consisting of

observed ratings and B the set of values of explanatory variables. Then, E(M | A∪
B)<E(M | A) since any explicative power measure will reach its maximum in case
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of perfect coincidence of predictions and observations. Thus, under this perspective,

the application of these models might appear controversial.

These considerations favour the novel paradigm since in the parametric mixture

models modelling it is possible to fit and interpret data by splitting the explicative

power of the probability structure from the added contribution given by explanatory

covariates. This approach starts with a stochastic model and improves its perfor-

mance by adding genuine information.

6 Conclusions

The core of the paper is to underline the paradigmatic nature of the modelling ap-

proach to rating data. According to Kuhn [49], a paradigm includes “the practices

that define a scientific discipline at a certain point in time”. Indeed, changes in

paradigms have been recently proposed in order to better comprehend the subjective

mechanism of a discrete selection out of a list of ordinal categories. The crisis of the

established approach is more evident for clustering of items, visualization and inter-

pretation purposes, especially in the big data era. Simulated and real data analysis

support the usefulness of the chosen mixture modelling approach as a prominent

alternative, thus fostering an integrated rationale.

Although some of them are useful, “all models are substantially wrong” and this

aphorism is valid also for a novel paradigm. The substantive problem is to establish

the starting point for further advances in order to achieve better models which should

ever be improved. As statisticians, we must be aware of the role and importance of

uncertainty in human decisions and CUB models may be considered as building

blocks of more complex statistical specifications; above all, they act as a benchmark

for more refined analyses.

An open-minded research process implies that a new paradigm is to be contrasted

by the current one, being able to pursue all previous commitments and even solve

new challenges. A convincing proposal easily captures new followers; it may be

applied in different circumstances and former paradigms may be more and more

critically considered. Unfortunately, since models are questionable by definition and

given that human mind has inertial attitude towards novelties (it is a heavy effort to

assume a new paradigm in consolidated procedures), the breaking point is often

deferred in time.

Probably, time is not ripe yet for a paradigm shift. Nevertheless, a comprehensive

family of models with appealing interpretation and parsimony features, a number of

published papers supporting the new approach in different fields, an increasing dif-

fusion of models which include uncertainty with a prominent role, the availability

of a free software which effectively performs inferential procedures and graphical

analysis are convergent signals that the prospective paradigm is slowly emerging.
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