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Abstract

This paper studies the dynamics of a New Keynesian DSGE model near the zero

lower bound (ZLB) on nominal interest rates. In addition to the standard targeted-

inflation equilibrium, we consider a deflation equilibrium as well as a Markov sunspot

equilibrium that switches between a targeted-inflation and a deflation regime. We

use the particle filter to estimate the state of the U.S. economy in 2008:Q4 under the

assumptions that the U.S. economy has been in either the targeted-inflation or the

sunspot equilibrium. The two equilibria provide an equally plausible description of the

observed data but have different policy implications. We consider a combination of fis-

cal policy (calibrated to the American Recovery and Reinvestment Act) and monetary

policy (that tries to keep interest rates near zero) and compute government spending

multipliers. Ex-ante multipliers (cumulative over one year) under the targeted-inflation

regime are around 0.91. A monetary policy that keeps interest rates at zero can raise

the multiplier to 1.71. The ex-post (conditioning on the realized shocks in 2009-2011)

multiplier is estimated to be 1.35. Conditional on the sunspot equilibrium the multipli-

ers are generally smaller and the scope for conventional expansionary monetary policy

is severely limited. JEL CLASSIFICATION: C5, E4, E5

KEY WORDS: DSGE Models, Government Spending Multiplier, Multiple Equilibria, Non-

linear Filtering, Nonlinear Solution Methods, ZLB
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1 Introduction

Since the beginning of 2009 the U.S. Federal Funds rate has been effectively zero. Investors’

access to money, which is an asset that in addition to providing transaction services yields

a zero nominal return, prevents nominal interest rates from falling below zero and thereby

creates a zero lower bound (ZLB). If an economy is at the ZLB, its central bank is unable

to stimulate the economy using a conventional monetary policy that reduces interest rates.

Traditionally, the ZLB has mostly been ignored in the specification of dynamic stochastic

general equilibrium (DSGE) models that are tailored toward the analysis of U.S. monetary

and fiscal policy. With the exception of a short period from 2003:Q3 to 2004:Q2 in which the

Federal Funds rate dropped to about 1%, the ZLB did not appear to be empirically relevant.

Moreover, accounting for the ZLB in a DSGE model complicates the quantitative analysis

of the model considerably.

During the Great Recession of 2008-9 the ZLB has become empirically relevant for the

U.S. and since then the literature on the analysis DSGE models with a ZLB constraint

has been growing rapidly. Our paper contributes to this literature. We solve a small-scale

nonlinear New Keynesian DSGE model with an explicit ZLB constraint using a global ap-

proximation to the agents’ decision rules. Once the ZLB is explicitly included in a monetary

model, there typically exist multiple equilibria. In addition to the widely-studied equilibrium

in the neighborhood of a steady state in which actual inflation coincides with the central

bank’s inflation target (targeted-inflation equilibrium), this paper is the first to study two

additional equilibria in a nonlinear DSGE model with a full set of structural shocks. Specif-

ically we consider a minimal-state-variable equilibrium in which the endogenous variables

fluctuate around a steady state with zero interest rates (deflation equilibrium); and an equi-

librium in which the economy alternates between a targeted-inflation regime and a deflation

regime according to the realization of a non-fundamental Markov-switching process (sunspot

equilibrium). We show analytically, in a special case, and numerically in the more general

cases, how these two equilibria behave differently than the targeted-inflation equilibrium,

especially near the ZLB.

We use our model to study the following quantitative questions: conditional on the state



This Version: March 21, 2013 2

of the U.S. economy in January 2009, what is the effect of an increase in government spending

of the size of the federal contracts, grants, and loans portion of the American Recovery and

Reinvestment Act (ARRA)? Does this effect get amplified by a monetary policy that keeps

interest rates near the ZLB for an extended period of time? To answer these questions, we

parameterize the DSGE model and use a particle filter to extract the values for the model’s

state variables from U.S. data over the period 2000:Q1 to 2008:Q4 conditional on the three

equilibria. The deflation equilibrium is empirically not viable because during most of the

last decades inflation rates were positive. Thus, conditional on filtered states for 2008:Q4 we

conduct policy experiments under the assumption that the economy is either in the targeted-

inflation or in the sunspot equilibrium. Both of these equilibria provide equally plausible

rationalizations of the observed data.

We consider two types of policy exercises, which we label as ex ante and ex post. In the

ex-ante analysis we take the states at the beginning of 2009:Q1 as given and simulate the

model economy forward, with and without the policy intervention. In the ex-post analysis

we condition on the actual filtered shocks from the years 2009 and 2010. A counterfactual

set of shocks is constructed by reducing the exogenous government spending process by

the amount of the ARRA stimulus. We find that the ex-ante cumulative fiscal multiplier

under the targeted-inflation equilibrium is about 0.9 over a one-year horizon. From an ex-

ante perspective the economy is expected to revert back to its steady state and the fiscal

expansion accelerates the rise in nominal interest rates moving the economy away from the

ZLB. The ex-post multiplier is larger, around 1.35. During 2009 and 2010 the realized

shocks pushed the economy closer to the ZLB. Once at the ZLB, the feedback portion of

the monetary policy rule is inactive and the fiscal stimulus is not accompanied by a rise

in nominal interest rates. The resulting lower real rates stimulate demand and amplify the

fiscal policy effect. This mechanism is emphasized, for instance, by Eggertsson and Woodford

(2003) and Christiano, Eichenbaum, and Rebelo (2011). However, according to our empirical

analysis it is not as strong as these authors claim.

Since in the logic of the interest-rate feedback rule the fiscal expansion has a tendency

to trigger a rise in interest rates, we combine the fiscal stimulus with a monetary policy



This Version: March 21, 2013 3

that keeps interest rates at or near the ZLB. From an ex ante perspective this leads to an

increase of the multiplier from 0.9 to 1.71. From an ex-post perspective, this leaves the

multiplier unchanged over one quarter, raises it from 1.35 to 1.52 over four quarters, and

from 1.28 to 1.96 over eight quarters. In other words, at the beginning of 2009, in the logic

of the targeted-inflation equilibrium, the U.S. central bank had not leverage to stimulate

the economy with conventional monetary policy. By the second half of 2010 the actual

monetary policy was expansionary in the sense that the model-implied feedback rule would

have predicted a positive interest rate. This expansionary monetary policy amplified the

effect of the fiscal stimulus.

Viewing the years of 2009 and 2010 through the lens of the sunspot equilibrium delivers

a more pessimistic view. The fiscal multipliers are generally smaller both from an ex-ante

and from an ex-post perspective. Moreover, the scope for an additional monetary stimulus

is severely limited because, at least, conditional on the deflation regime, which was active

in early 2009, the probability of staying at the zero lower bound even after an expansionary

fiscal policy is high. In turn, the ex post multipliers were between 0.7 and 1.0 over a one-year

horizon.

It has been well-known that monetary DSGE models with an explicit ZLB constraint

deliver multiple equilibria. This issue was discussed, for instance, by Benhabib, Schmitt-

Grohé, and Uribe (2001a,b). In a nutshell, the relationship between nominal interest rates

and inflation in a DSGE model are characterized by a consumption Euler equation which

embodies a version of the Fisher equation, and a monetary policy rule. The kink in the

monetary policy rule induced by the ZLB tends to generate two pairs of steady-state interest

and inflation rates that solve both equations. Moreover, near the deflation steady state the

so-called Taylor principle is violated because nominal interest rates cannot aggressively re-

spond to inflation. In turn, the model exhibits local indeterminacy. We discuss the properties

of stochastic equilibria that have the targeted-inflation and deflation steady states as their

steady state, respectively. Our policy analysis focuses on the targeted-inflation and a sunspot

equilibrium. A sunspot equilibrium is also discussed in Mertens and Ravn (2013). However,

unlike in our paper, the sunspot shock is the only shock driving their model. Moreover,



This Version: March 21, 2013 4

Mertens and Ravn (2013) do not attempt to fit their sunspot model to actual data.

In terms of solution method, our work is most closely related to the papers by Judd,

Maliar, and Maliar (2011), Fernández-Villaverde, Gordon, Guerrón-Quintana, and Rubio-

Ramı́rez (2012), and Gust, Lopez-Salido, and Smith (2012). All three of these papers use

global projection methods to approximate agents’ decision rules. We study a small-scale New

Keynesian DSGE model similar to theirs with two endogenous and three exogenous state

variables. The solution is based on a variant of the ergodic-set method proposed by Judd,

Maliar, and Maliar (2011). However, we consider several important modifications. First,

we use a piece-wise smooth approximation with two separate functions characterizing the

decisions when the ZLB is binding and when it is not, while the previous papers use smooth

approximations with a single function covering the whole state space. This means all our

decision rules allow for kinks at points in the state space where the ZLB becomes binding.

The location of these points is determined endogenously. This difference in methodology

proves to be very important in obtaining accurate approximations, especially for the deflation

and sunspot equilibria. Second, since we are interested in fitting U.S. data from 2000 to

2010 and since some of the observations during this period lie far in the tails of the ergodic

distribution of our model, we apply the ergodic-set method to state realizations that are

in part obtained from simulating the model and in part from applying the particle filter

to U.S. data.1 Finally, Judd, Maliar, and Maliar (2011), Fernández-Villaverde, Gordon,

Guerrón-Quintana, and Rubio-Ramı́rez (2012), and Gust, Lopez-Salido, and Smith (2012)

solely compute what we call the targeted-inflation equilibrium, whereas we use the numerical

methods to approximate two alternative equilibria.

Most of the other papers that study DSGE models with ZLB constraints take various

shortcuts in their solution methods. Braun and Körber (2011) use a variant of extended

shooting to solve a set of nonlinear equilibrium conditions. This method assumes that the

system reaches its steady state after a fixed number of periods and at any point in time

determines the agents’ decision under the assumption of perfect foresight, setting future

shocks to zero. Adam and Billi (2007) solve a linear-quadratic optimal policy problem

1This procedure is iterative: the simulated data as well as the filtered states are obtained from an initial

approximation of the model.
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with a linearized Euler equation and Phillips curve subject to a ZLB constraint. While the

model is solved nonlinearly, it only contains two exogenous state variables. Eggertsson and

Woodford (2003) consider a version of the New Keynesian DSGE model in which both the

Euler equation and the Phillips curve are log-linearized and the natural rate of interest fol-

lows a two-state Markov process. The economy hits the ZLB when the natural rate turns

negative. The subsequent exit from the ZLB is exogenous and occurs with a pre-specified

probability. A similar approach is used by Christiano, Eichenbaum, and Rebelo (2011).

Unfortunately, some of the DSGE model properties are very sensitive to the approxima-

tion technique and to implicit or explicit assumptions about the probability of leaving the

ZLB. Detailed analyses are provided in Braun and Körber (2011) and Fernández-Villaverde,

Gordon, Guerrón-Quintana, and Rubio-Ramı́rez (2012).

The effect of an increase in government spending when the economy is at the ZLB is stud-

ied by Braun and Körber (2011), Christiano, Eichenbaum, and Rebelo (2011), Fernández-

Villaverde, Gordon, Guerrón-Quintana, and Rubio-Ramı́rez (2012), and Mertens and Ravn

(2013). Christiano, Eichenbaum, and Rebelo (2011) argue that the fiscal multiplier at the

ZLB can be substantially larger than one. A rise in government spending increases output,

marginal costs, and expected inflation. If the economy operates according to the Taylor rule,

then the central bank will react to the rise in output and inflation by increasing the nominal

interest rate. If the economy is at the ZLB and the systematic part of the Taylor rule is

not operative, then the expected inflation translates into a fall in expected real rates, which

in turn triggers additional consumption in the current period and raises output further.

Thus, the government spending multiplier crucially depends on whether the expansionary

fiscal policy triggers an exit from the ZLB. In the target-inflation equilibrium of our model,

spells of zero nominal interest rates are short and an expansionary fiscal policy triggers an

immediate exit. In turn, the (short-run) fiscal multiplier is substantially less than one. In

the sunspot-equilibrium, the economy is in the deflation regime in 2009:Q1 and expected to

stay there for several quarters. Although the probability of the fiscal intervention trigger-

ing an exit from the ZLB is low the agents’ decision rules in the deflation regime imply a

government-spending multiplier that is only around 0.8.
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The remainder of the paper is organized as follows. Section 2 presents a simple two-

equation model that we use to illustrate the multiplicity of equilibria in monetary models

with ZLB constraints. We also highlight the types of equilibria studied in this paper. The

small-scale New Keynesian model that is used for the quantitative analysis is presented in

Section 3. The solution of the model is discussed in Section 4. To fix ideas we first solve

a version of the model without endogenous and exogenous persistence in which all equi-

librium conditions except for the ZLB constraint are log-linearized. We then proceed with

a description of the numerical solution algorithm for the full nonlinear model. Section 5

contains the quantitative analysis. We first illustrate the ergodic distribution of inflation

and interest rates under the three equilibria considered in this paper, present some impulse

response dynamics of the nonlinear model, and, at last, study the effects of fiscal interven-

tions. Section 6 concludes. Detailed derivations, descriptions of algorithms, and additional

quantitative results are summarized in an Online Appendix.

2 A Two-Equation Example

We begin with a simple two-equation example to illustrate the types of equilibria that arise

if a ZLB constraint is imposed in a monetary DSGE model. The example is adapted from

Benhabib, Schmitt-Grohé, and Uribe (2001a) and Hursey and Wolman (2010). Suppose that

the economy can be described by the Fisher relationship

Rt = rEt[πt+1] (1)

and the monetary policy rule

Rt = max

{
1, rπ∗

(
πt
π∗

)ψ
exp[σεt]

}
, εt ∼ iidN(0, 1), ψ > 1. (2)

Here Rt denotes the gross nominal interest rate, πt is the gross inflation rate, and εt is a

monetary policy shock. The gross nominal interest rate is bounded from below by one.

Throughout this paper we refer to this bound as ZLB because it bounds the net interest

rate from below by zero. Combining (1) and (2) yields a nonlinear expectational difference



This Version: March 21, 2013 7

equation for inflation

Et[πt+1] = max

{
1

r
, π∗

(
πt
π∗

)ψ
exp[σεt]

}
. (3)

This simple model has two steady states (σ = 0), which we call targeted-inflation steady

state and deflation steady state, respectively. In the targeted-inflation steady state inflation

equals π∗ and the nominal interest rate is R = rπ∗. In the deflation steady state inflation

equals πD = 1/r and the nominal interest is RD = 1. While this paper focuses on nonlinear

solutions of DSGE models with ZLB constraints, it is instructive to first take a look at the

equilibria that arise in a linear approximation. Taking a piece-wise log-linear approximation

around the targeted-inflation steady state and denoting percentage deviation of inflation

from this steady state by π̂t = ln(πt/π∗) we obtain

Et[π̂t+1] = max

{
− ln(rπ∗), ψπ̂t + σεt

}
.

If the shock standard deviation σ is small then the ZLB is essentially non-binding:

Et[π̂t+1] ≈ ψπ̂t + σεt (4)

and the linearized rational expectations system has the unique stable solution

π̂t ≈ −
1

ψ
σεt. (5)

Alternatively, one can approximate the dynamics of the system near the deflation steady

state. Let π̃t = ln(πt/πD). Then,

Et[π̃t+1] = max

{
0, −(ψ − 1) ln(rπ∗) + ψπ̃t + σεt

}
.

Since we assumed ψ > 1, the ZLB is binding with very probability if σ is small. This leads

to

Et[π̃t+1] ≈ 0 (6)

This linear rational expectation difference equation has many stable solutions. Following

Lubik and Schorfheide (2004), we consider the set of solutions

π̃t = − 1

ψ
(1 +M)σεt + ζt, (7)
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where M is some constant and ζt is a sunspot shock. Setting M = 1 and ζt = 0 highlights that

there is an approximate deflation equilibrium that mimics the fluctuations of the targeted-

inflation equilibrium.

The multiplicity of solutions to piece-wise linear approximations of the difference equa-

tion (3) suggests that the nonlinear difference equation itself also has multiple stable solu-

tions. It is beyond the scope of this paper to consider all of the solutions that arise in DSGE

models with ZLB constraints. Instead, we focus on solutions that mimic the fluctuations

near the targeted-inflation steady state. Two such solutions are given by

π
(∗)
t = π∗γ∗ exp

[
− 1

ψ
σεt

]
, γ∗ = exp

[
σ2

2(ψ − 1)ψ2

]
(8)

and

π
(D)
t = π∗γD exp

[
− 1

ψ
σεt

]
, γD =

1

π∗r
exp

[
− σ2

2ψ2

]
. (9)

Notice that

ln
π
(∗)
t

π∗γ∗
= ln

π
(D)
t

π∗γD
= − 1

ψ
σεt

and equals the term on the right-hand-side of (5). Moreover, for small values of σ the

constants π∗γ∗ ≈ π∗ and π∗γD ≈ 1/r∗. Thus, we refer to π
(∗)
t as the targeted-inflation

equilibrium and π
(D)
t as the deflation equilibrium associated with (3).

In addition to the equilibria (8) and (9) we also consider a equilibria in which a sunspot

st triggers moves from targeted-inflation to deflation and vice versa:

π
(s)
t = π∗γ(st) exp

[
− 1

ψ
σεt

]
. (10)

The sunspot shock st ∈ {0, 1} evolves according to a two-state discrete Markov switching

process. The constants γ(0) and γ(1) depend on the transition probabilities of the Markov

switching process. The fluctuations of π
(s)
t around π∗γ(st) are identical to the fluctuations

in the targeted-inflation and deflation equilibria. The sunspot process could either evolve

independently from the fundamental shock or it could be correlated with εt.
2 For instance,

conditional on st−1 = 1 (targeted-inflation regime), suppose that st = 0, i.e., the economy

2We thank Mike Woodford for the suggestion to explore equilibria in which the sunspot is triggered by

fundamentals.
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Figure 1: Inflation Dynamics in the Two-Equation Model

transitions to the deflation regime, if a large negative shock occurs: εt < ε1. Similarly, the

economy exits the deflation regime, if a large positive shock occurs: εt > ε2.

A numerical illustration is provided in Figure 1. The upper-left panel depicts the evo-

lution of the shock εt. The upper-right panel compares the paths of net inflation under

the targeted-inflation equilibrium and the deflation equilibrium. The difference between the

inflation paths is the level shift due to the constants ln γ∗ versus ln γD. The bottom panel

shows two sunspot equilibria with visible shifts from the targeted-inflation regime to the

deflation regime and back. In the right panel the sunspot evolves exogenously, whereas on

the left it is endogenous in the sense that it gets triggered by extreme realizations of εt,

which are marked by circles in the top-left panel.

Before proceeding with a more complicated New Keynesian DSGE model we briefly

comment on the treatment of fiscal policy in this paper. We will assume that fiscal policy

is passive and that lump-sum taxes are used to balance revenues and outlays. Using the

convention that Bt denotes the stock of nominal government bonds at the end of period t, a
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stylized government budget constraint of the two-equation model is given by

Rt−1Bt−1 = Bt + Tt.

Dividing both sides by the price level Pt and denoting real government debt by bt = Bt/Pt

and real lump-sum taxes by ϑt = Tt/Pt we obtain

bt−1
Rt−1

πt
= bt + ϑt.

A concern might be that in the deflation equilibrium the real value of government debt keeps

growing. However, notice that the ex-post real return on government bonds is given by

Rt−1

π
(D)
t

= r exp

[
σ2

2ψ2
+

1

ψ
σεt

]
Thus, a stationary lump-sum tax process ϑ = b∗Rt−1/π

(D)
t will keep the real value of gov-

ernment debt at the level b∗.

There exist many other solutions to (3). For instance, one can use the logic of (7) to

construct alternative deflation equilibria. Moreover, Benhabib, Schmitt-Grohé, and Uribe

(2001a) studied solutions in which the economy transitions from the targeted-inflation regime

to a deflation regime and remains in the deflation regime permanently in continuous-time

perfect foresight monetary models. Some of these equilibria are discussed further in the

Online Appendix. In the remainder of this paper we will focus on equilibria of a small-scale

New Keynesian DSGE model that are akin to π
(∗)
t , π

(D)
t , and π

(s)
t with exogenously evolving

sunspot shock.

3 A Prototypical New Keynesian DSGE Model

The DSGE model we consider is the small-scale New Keynesian model studied in An

and Schorfheide (2007). The model economy consists of perfectly competitive final-goods-

producing firms, a continuum of monopolistically competitive intermediate goods producers,

a continuum of identical households, and a government that engages in active monetary

and passive fiscal policy. This model has been widely studied in the literature and many
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of its properties are discussed in the textbook by Woodford (2003). To keep the dimension

of the state space manageable we abstract from capital accumulation and wage rigidities.

We describe the preferences and technologies of the agents in Section 3.1, summarize the

equilibrium conditions in Section 3.2, and characterize the steady states of the model in

Section 3.3.

3.1 Preferences and Technologies

Households. Households derive utility from consumption Ct relative to an exogenous habit

stock and disutility from hours worked Ht. We assume that the habit stock is given by the

level of technology At, which ensures that the economy evolves along a balanced growth path

despite the quasi-linear preferences. We also assume that the households value transaction

services from real money balances, detrended by At, and include them in the utility function.

The households maximize

Et

[
∞∑
s=0

βs
(

(Ct+s/At+s)
1−τ − 1

1− τ
−Ht+s + χV

(
Mt

PtAt

))]
, (11)

subject to budget constraint

PtCt + Tt +Mt +Bt = PtWtHt +Mt−1 +Rt−1Bt−1 + PtDt + PtSCt.

Here β is the discount factor, 1/τ is the intertemporal elasticity of substitution, and Pt is

the price of the final good. The households supply labor services to the firms, taking the

real wage Wt as given. At the end of period t households hold money in the amount of

Mt. They have access to a bond market where nominal government bonds Bt that pay gross

interest Rt are traded. Furthermore, the households receive profits Dt from the firms and

pay lump-sum taxes Tt. SCt is the net cash inflow from trading a full set of state-contingent

securities.

Real money balances enter the utility function in an additively separable fashion. An

empirical justification of this assumption is provided by Ireland (2004). As a consequence,

the equilibrium has a block diagonal structure under the interest-rate feedback rule that

we will specify below: the level of output, inflation, and interest rates can be determined
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independently of the money stock. We assume that the marginal utility V ′(m) is decreasing

in real money balances m and reaches zero for m = m̄, which is the amount of money held

in steady state by households if the net nominal interest rate is zero. Since the return on

holding money is zero, it provides the rationale for the ZLB on nominal rates. The usual

transversality condition on asset accumulation applies.

Firms. The final-goods producers aggregate intermediate goods, indexed by j ∈ [0, 1], using

the technology:

Yt =

(∫ 1

0

Yt(j)
1−νdj

) 1
1−ν

.

The firms take input prices Pt(j) and output prices Pt as given. Profit maximization implies

that the demand for inputs is given by

Yt(j) =

(
Pt(j)

Pt

)−1/ν
Yt.

Under the assumption of free entry into the final-goods market, profits are zero in equilibrium

and the price of the aggregate good is given by

Pt =

(∫ 1

0

Pt(j)
ν−1
ν dj

) ν
ν−1

. (12)

We define inflation as πt = Pt/Pt−1.

Intermediate good j is produced by a monopolist who has access to the following pro-

duction technology:

Yt(j) = AtHt(j), (13)

where At is an exogenous productivity process that is common to all firms and Ht(j) is the

firm-specific labor input. Labor is hired in a perfectly competitive factor market at the real

wage Wt. Intermediate-goods-producing firms face quadratic price adjustment costs of the

form

ACt(j) =
φ

2

(
Pt(j)

Pt−1(j)
− π̄

)2

Yt(j),

where φ governs the price stickiness in the economy and π̄ is a baseline rate of price change

that does not require the payment of any adjustment costs. In our quantitative analysis we
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set π̄ = 1, that is, it is costless to keep prices constant. Firm j chooses its labor input Nt(j)

and the price Pt(j) to maximize the present value of future profits

Et

[
∞∑
s=0

βsQt+s|t

(
Pt+s(j)

Pt+s
Yt+s(j)−Wt+sHt+s − ACt+s

)]
. (14)

Here, Qt+s|t is the time t value to the household of a unit of the consumption good in period

t+ s, which is treated as exogenous by the firm.

Government Policies. Monetary policy is described by an interest rate feedback rule of

the form

Rt = max

1,

[
rπ∗

(
πt
π∗

)ψ1
(

Yt
γYt−1

)ψ2
]1−ρR

RρR
t−1e

σRεR,t

 . (15)

Here r is the steady state real interest rate, π∗ is the target-inflation rate, and εR,t is a

monetary policy shock. The key departure from much of the New Keynesian DSGE literature

is the use of the max operator to enforce the ZLB. Provided the ZLB is not binding, the

central bank reacts to deviations of inflation from the target rate π∗ and deviations of output

growth from γ.

The government consumes a stochastic fraction of aggregate output and government

spending evolves according to

Gt =

(
1− 1

gt

)
Yt. (16)

The government levies a lump-sum tax Tt (or provides a subsidy if Tt is negative) to finance

any shortfalls in government revenues (or to rebate any surplus). Its budget constraint is

given by

PtGt +Mt−1 +Rt−1Bt−1 = Tt +Mt +Bt. (17)

Exogenous shocks. The model economy is perturbed by three exogenous processes. Ag-

gregate productivity evolves according to

lnAt = ln γ + lnAt−1 + ln zt, where ln zt = ρz ln zt−1 + σzεz,t. (18)

Thus, on average the economy grows at the rate γ and zt generates exogenous fluctuations

of the technology growth rate. We assume that the government spending shock follows the

AR(1) law of motion

ln gt = (1− ρg) ln g∗ + ρg ln gt−1 + σgεg,t. (19)
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The monetary policy shock εR,t is assumed to be serially uncorrelated. We stack the three

innovations into the vector εt = [εz,t, εg,t, εr,t]
′ and assume that εt ∼ iidN(0, I).

3.2 Equilibrium Conditions

Since the exogenous productivity process has a stochastic trend, it is convenient to charac-

terize the equilibrium conditions of the model economy in terms of detrended consumption

and output: ct = Ct/At and yt = Yt/At. The consumption Euler equation is given by

1 = βEt

[(
ct+1

ct

)−τ
1

γzt+1

Rt

πt+1

]
. (20)

We define

Et = IEt

[
c−τt+1

γzt+1πt+1

]
, (21)

which will be useful in the computational algorithm. In a symmetric equilibrium in which

all firms set the same price Pt(j) the price-setting decision of the firms leads to the condition

1 =
1

ν
(1− cτt ) + φ(πt − π̄)

[(
1− 1

2ν

)
πt +

π̄

2ν

]
(22)

−φβEt

[(
ct+1

ct

)−τ
yt+1

yt
(πt+1 − π̄)πt+1

]

The aggregate resource constraint can be expressed as

ct =

[
1

gt
− φ

2
(πt − π̄)2

]
yt. (23)

It reflects both government spending as well as the resource cost (in terms of output) caused

by price changes. Finally, we reproduce the monetary policy rule

Rt = max

1,

[
rπ∗

(
πt
π∗

)ψ1
(

yt
yt−1

zt

)ψ2
]1−ρR

RρR
t−1e

σRεR,t

 . (24)

Before exploring the equilibrium dynamics of the stochastic system, it is instructive to con-

sider the steady states of the model.
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3.3 Steady States

As the two-equation model in Section 2, the New Keynesian model with ZLB constraint has

two steady states, which we refer to as targeted-inflation and deflation steady state. In the

targeted-inflation steady state inflation equals π∗. The real interest rate, nominal interest

rate output, and consumption are given by

r = γ/β, R∗ = rπ∗, y∗ =
c∗[

1
g∗
− φ

2
(π∗ − π̄)2

] (25)

c∗ =

[
1− v − φ

2
(1− 2λ)

(
π∗ −

1− λ
1− 2λ

π̄

)2

+
φ

2

λ2

1− 2λ
π̄2

]1/τ
,

where λ = ν(1 − β). In the deflation steady state the nominal interest rate is at the ZLB,

that is, RD = 1, and provided that R∗ > 1 and ψ1 > 1:

r = γ/β, πD = β/γ, yD =
cD[

1
g∗
− φ

2
(πD − π̄)2

] (26)

cD =

[
1− v − φ

2
(1− 2λ)

(
πD −

1− λ
1− 2λ

π̄

)2

+
φ

2

λ2

1− 2λ
π̄2

]1/τ
.

If the real rate r > 1 then the economy experiences deflation, which is why we label the

steady state as deflation steady state.

The relative consumption and welfare in the two steady states depends on the discrepancy

between π̄ and steady state inflation. If π̄ = 1 and the target-inflation rate π∗ is substantially

greater than one, then consumption and welfare may be higher in the deflation steady state.

If, on the other hand, π̄ = π∗ then the targeted-inflation steady state is associated with higher

welfare. In the next section, we turn to the analysis of equilibrium dynamics. As in the two-

equation model of Section 2, we will construct a targeted-inflation equilibrium in which the

economy fluctuates around the targeted-inflation steady state; a deflation equilibrium in

which the economy fluctuations near the deflation steady state; and an sunspot equilibrium

with a targeted-inflation regime and a deflation regime.



This Version: March 21, 2013 16

4 Solving the Model Subject to the ZLB Constraint

Most of the existing literature focuses on what we call the targeted-inflation equilibrium. In

this equilibrium households choose time t consumption as a function of the exogenous state

variables zt, gt, and εR,t and the endogenous state variables Rt−1 and yt−1. Moreover, firms

set prices such that time t inflation depends on the same endogenous and exogenous state

variables. As illustrated in the example of Section 2, there exist many equilibria in which

the economy enters extended periods of deflation. We consider one equilibrium in which

consumption and inflation depend on the same set of state variables as in the targeted-

inflation equilibrium. Moreover, we consider an equilibrium in which the agents’ decision

rules also depend on a Markov-switching sunspot st. In sum, the goal is to construct functions

πt = fπ(Rt−1, yt−1, zt, gt, εR,t, st)

ct = fc(Rt−1, yt−1, zt, gt, εR,t, st)

and so on, such that the equilibrium conditions (20) to (24) as well as the laws of motion for

the exogenous processes (and the transversality conditions) are satisfied. In general, there

exist other, more complex functions fπ(·) and fc(·) that satisfy the equilibrium conditions.

We are focusing on “minimal” state-variable solutions. In Section 4.1 we begin by con-

structing a solution for a piece-wise log-linear approximation of the equilibrium conditions.

The numerical procedure to solve the full model without taking linear approximations is

presented in Section 4.2.

4.1 Piece-wise Linear Dynamics Near Steady States

We begin by taking log-linear approximations near the targeted-inflation and the deflation

steady state. To simplify the exposition we impose the following restrictions on the DSGE

model parameters: τ = 1, γ = 1, π̄ = π∗, ψ1 = ψ, ψ2 = 0, ρR = 0, ρz = 0, and ρg = 0. A

general approximation of the equilibrium conditions (20) to (24) is presented in the Online

Appendix.
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Approximating the Targeted-Inflation Equilibrium. Under the parameter restriction

π̄ = π∗ the steady states of consumption and output are given by c∗ = 1− ν and y∗ = c∗g∗.

If we let κ∗ = c∗/(νφπ
2
∗), then we obtain the familiar linear system:

R̂t = max

{
− ln(rπ∗), ψπ̂t + σRεR,t

}
ĉt = Et[ĉt+1]− (R̂t − Et[π̂t+1]) (27)

π̂t = βEt[π̂t+1] + κ∗ĉt,

where for each variable x̂t = ln(xt/x∗). The law of motion for output is given by

ŷt = ĉt + σgεg,t. (28)

It is well known that if the shocks are small enough such that the ZLB is non-binding, the

linearized system has a unique stable solution for ψ > 1. Since the exogenous shocks are iid

and the simplified system has no endogenous propagation mechanism, consumption, output,

inflation, and interest rates will also be iid and can be expressed as a function of εR,t and

εg,t.

We are interested in the case in which the shocks are large enough such that the ZLB

is binding with non-negligible probability. In this case the system (27) exhibits piece-wise

linear dynamics:

R̂t(εR,t) = max

{
− ln(rπ∗),

1

1 + κψ

[
ψ(κ+ β)µ∗π + κψµ∗c + σRεR,t

]}

ĉt(εR,t) =


1

1+κψ

[
(1− ψβ)µ∗π + µ∗c − σRεR,t

]
if R̂t ≥ − ln(rπ∗)

ln(rπ∗) + µ∗c + µ∗π otherwise

(29)

π̂t(εR,t) =


1

1+κψ

[
(κ+ β)µ∗π + κµ∗c − κσRεR,t

]
if R̂t ≥ − ln(rπ∗)

κ ln(rπ∗) + (κ+ β)µ∗π + κµ∗c otherwise

.

The constants µ∗c and µ∗π are the unconditional expectations of ĉt and π̂t. They can be

determined by taking expectations of (29) on both sides of the equalities and solving a

nonlinear system of equations.

Approximating a Deflation Equilibrium. In the deflation equilibrium the steady state

inflation rate is πD = β. The log-linearization is more cumbersome because of additional
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terms that arise from πD 6= π̄. To ease the expositions assume that |πD − π̄| is small and

ignore the additional terms from our log-linear approximation. Denote percentage deviations

of a variable xt from its deflation steady state by x̃t = ln(xt/xD). If we let κD = cD/(νφβ
2)

and using the steady state relationship r = 1/β

R̃t = max

{
0, −(ψ − 1) ln(rπ∗) + ψπ̃t + σRεR,t

}
c̃t = Et[c̃t+1]− (R̃t − Et[π̃t+1]) (30)

π̃t = βEt[π̃t+1] + κDc̃t.

Provided that ψ > 1, the ZLB is binding with high probability if the shock standard deviation

σR is small. In this case R̃t = 0. It is well-known that if the central bank does not (or is not

able to) react to inflation movements the rational expectation system is indeterminate and

has many stable solutions. Throughout this paper we focus on the so-called minimum state

variable solution, which, in the context of this simple illustrative model, is the solution in

which all variables are iid in equilibrium. Taking into account that for some shock realizations

the ZLB is not binding we can obtain a deflation equilibrium by adjusting the constants

in (29):

R̃t(εR,t) = max

{
0,

1

1 + κψ

[
ψ(κ+ β)µDπ + κψµDc − (ψ − 1) ln(rπ∗) + σRεR,t

]}

c̃t(εR,t) =


1

1+κψ

[
(1− ψβ)µDπ + µDc + (ψ − 1) ln(rπ∗)− σRεR,t

]
if R̃t ≥ 0

µDc + µDπ otherwise

(31)

π̃t(εR,t) =


1

1+κψ

[
(κ+ β)µDπ + κµDc + κ(ψ − 1) ln(rπ∗)− κσRεR,t

]
if R̃t ≥ 0

(κ+ β)µDπ + κµDc otherwise

.

Discussion. In the simplified model the government spending shock does not affect interest

rates, consumption, and inflation. It simply shifts output according to (28). Moreover,

technology growth innovations have no effect on interest rates, inflation, and detrended model

variables. A shock εz,t simply generates a permanent increase in the levels of consumption

Ct and Yt.

The consumption of the household and the pricing decision of the firms depend on the

monetary policy shock εR,t. In this simple model, the decision rules have a kink at the point
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in the state space where the two terms in the max operator of the interest rate equation

are equal to each other. In the targeted-inflation equilibrium this point in the state space is

given by

ε̄∗R =
1

σR

[
− (1 + κψ) ln(rπ∗)− (κ+ β)ψµ∗π − κψµ∗c

]
,

whereas in the deflation equilibrium it is

ε̄DR =
1

σR

[
(ψ − 1) ln(rπ∗)− (κ+ β)ψµDπ − κψµDc

]
,

Once εR,t falls below the threshold value ε̄∗R or ε̄DR , its marginal effect on the endogenous

variables is zero. To the extent that ε̄DR > 0 > ε̄∗R, it takes a positive shock in the deflation

equilibrium to move away from the ZLB, whereas it takes a large negative monetary shock in

the targeted-inflation equilibrium to hit the ZLB. The kink in the decision rules implies that

the impulse responses of the endogenous variables to the monetary policy shock εR,t are highly

nonlinear. Motivated by the results so far, when we construct a numerical approximation

to the decision rules for the more general DSGE model in Section 4.2, we use a piece-wise

smooth approximation to separate approximations for the regions of the state space in which

Rt = 1 and the region in which Rt > 1.

4.2 Nonlinear Solution

This section discusses the numerical techniques that we use to solve the model described in

Section 3.2. The goal is to characterize the various solutions to the system

ξ (ct, πt, yt) = φβIEt

[
(ct+1)

−τ yt+1(πt+1 − π̄)πt+1

]
(32)

c−τt = βRtEt (33)

yt =

[
1

gt
− φ

2
(πt − π̄)2

]−1
ct (34)

Rt = max

1,

[
r∗π∗

(
πt
π∗

)ψ1
(

yt
yt−1

zt

)ψ2
]1−ρR

RρR
t−1e

εR,t

 (35)

where Et was defined in (21) and ξ(.) is defined as

ξ (c, π, y) = c−τy

{
1

ν
(1− cτ ) + φ(π − π̄)

[(
1− 1

2ν

)
π +

π̄

2ν

]
− 1

}
. (36)
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To that end we utilize a global approximation using Chebyshev polynomials following Judd

(1992) where all decision rules, c(.), π(.), R(.)., y(.) and E(.) are assumed to be functions of

the minimum set of state variables (Rt−1, yt−1, gt, zt, εR,t) and the sunspot variable st, where

applicable, which we collectively label as St. The full solution algorithm is relegated to

Section C of the Online Appendix.

The solution algorithm amounts to specifying a grid of points G = {S1, . . . ,SM} in the

model’s state space and solving for the vector Θ such that the sum of squared residuals

associated with (21) and (32) are minimized for St ∈ G. By construction, (33)-(35) hold

exactly. Since the collocation methods, which require the solution to be accurate on a fixed

grid typically obtained by the Kronecker product of grids in each dimension, become exceed-

ingly difficult to implement as the number of state variable go above three, we build on the

ergodic-set method discussed in Judd, Maliar, and Maliar (2011). This method requires an

iteration between solving and simulating the solved model and the approximation is expected

to be accurate only over a set of points that characterizes the model’s ergodic distribution of

St. Since our goal is to fit the model to data from the 2008-09 recession and since explaining

these data with our model requires realizations of the states that lie far in the tails of the

model-implied ergodic distribution, we combine draws from the ergodic distribution with

filtered exogenous state variables3 based on data on output growth, inflation, and interest

rates from 2000 to 2012 to generate the grid G. This ensures that our approximation remains

accurate in the area of the state space that is relevant for the empirical analysis.

Unlike Judd, Maliar, and Maliar (2011), Fernández-Villaverde, Gordon, Guerrón-Quintana,

and Rubio-Ramı́rez (2012) and Gust, Lopez-Salido, and Smith (2012), we use a piece-wise

smooth approximation of the functions π(St) and E(St) by postulating

πt = π(St; Θ) = ζtf
1
π(St; Θ) + (1− ζt)f 2

π(St; Θ)

Et = E(St; Θ) = ζtf
1
E (St; Θ) + (1− ζt)f 1

E (St; Θ)

where ζt = I{R(St; Θ) > 1} is an indicator that shows the ZLB is slack. The functions

f ij are linear combinations of a complete set of Chebyshev polynomials up to fourth order,

3See Section 5.3 for a detailed explanation of the filtering procedure
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where the weights are given by a vector Θ. Conditional on π(St) and E(St), the decision

rules for consumption, output, and interest rates can be obtained recursively from (33), (34),

and (35). Our method is flexible enough to allow for a kink in all decision rules and not

just Rt which has a kink by its construction. In our experience this flexibility yields much

higher accuracy in the approximated decision rules, especially the inflation decision rule.

To demonstrate this, Figure 2 shows a slide of the decision rules where we set Rt−1 = 1,

yt−1 = y∗, z = 0 and εR,t = 0 and vary gt in a wide range. We show results from three

schemes: our piece-wise smooth benchmark, solved using filtered states as explained in

Appendix C, an approximation that assumes πt and Et are smooth functions and a variation

of the piece-wise smooth approximation that is only valid on the ergodic distribution. The

gray shading shows the 95% coverage of the ergodic distribution. While it may seem like

much of the action is significantly away from the ergodic distribution, as we discuss below,

this is a region that is visited in 2009 and later, according to our filtered estimates. For value

of g smaller than 0.11 the economy hits the ZLB. When approximated smoothly, the decision

rules fail to capture the kinks that are apparent in the piece-wise smooth approximation.

The decision rule for output illustrates that the (marginal) government-spending multiplier

is sensitive to the ZLB - it is noticeably larger in the area of the state space where the ZLB

binds, which is not captured by the smooth approximation. This figure shows an example

where using filtered states and a piece-wise smooth approximation yields a much superior,

and economically different, decision rules.4

5 Quantitative Analysis

The quantitative analysis consists of four parts. In Section 5.1 we estimate the parameters

of the DSGE model under the assumption that the economy was in the targeted-inflation

equilibrium from 1984 to 2007. These parameter estimates are the starting point for the

subsequent analysis. In Section 5.2 we compare the ergodic distribution of inflation and

4The piece-wise smooth decision rules solved using just the ergodic distribution has no information about

what should happen when the ZLB binds and they simply revert to the respective steady states. This is

why the dashed line in Figure 2 is constant when the ZLB binds.
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Figure 2: Sample Decision Rules
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Notes: The gray shading show 95% coverage of the ergodic distribution in the targeted-

inflation equilibrium.

interest rates under the three equilibria. Moreover, we examine impulse responses to a

monetary policy shock in the targeted-inflation and the deflation equilibrium. In Section 5.3

we use the model to estimate a sequence of historical states for the period 2000:I to 2010:III

based on output growth, inflation, and interest rate data. Conditional on the estimated

states during the great recession of 2008-09, Section 5.4 assesses the effect of fiscal and

monetary policy interventions in the targeted-inflation and the sunspot equilibria.
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Table 1: DSGE Model Parameters

τ = 1.50 r = 1.0070 γ = 1.0048 ν = 0.1

g∗ = 1/0.85 φ = 75.75 π∗ = 1.0063 π̄ = 1

ψ1 = 1.36 ψ2 = 0.80 ρR = 0.65 σR = 0.0021

ρg = 0.86 σg = 0.0078 ρZ = 0.11 σz = 0.0103

5.1 Estimation under Targeted-Inflation Equilibrium

The parameter values for the subsequent analysis are obtained by estimating the DSGE

model described in Section 3 under the assumption that the economy is in the targeted-

inflation equilibrium. Since the ZLB was not binding during this period we replaced the

global approximation discussed in Section 4.2 by a second-order perturbation method. In

the area of the state-space that is empirically relevant for our estimation sample, the deci-

sion rules obtained under these two solution methods are virtually identical. The data for

the estimation was extracted from the FRB St. Louis FRED database (2012-11 vintage).

Output growth is defined as real GDP (GDPC96) growth converted into per capita terms.

Our measure of population is Civilian Noninstitutional Population (CNP16OV). We com-

pute population growth rates as log differences and apply an eight-quarter backward-looking

moving average filter to the growth rates to smooth out abrupt changes in the population

growth series. Inflation is defined as the log difference in the GDP deflator (GDPDEF) and

the interest rate is the average effective federal funds rate (FEDFUNDS) within each quar-

ter. The estimation period for the DSGE model is 1984:Q1 to 2007:Q4. We used Bayesian

techniques described in detail in An and Schorfheide (2007) and report posterior mean esti-

mates in Table 1. These estimates are in line with estimates for small-scale New Keynesian

DSGE models that have been reported elsewhere in the literature and will be used through-

out the subsequent analysis. A detailed description of the prior distribution underlying this

estimation is provided in Appendix D.
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5.2 Equilibrium Dynamics

In order to evaluate the ergodic distributions associated with the targeted-inflation, the

deflation, and the sunspot equilibria, we simulate a long sequence of draws from each of the

equilibria. The left column of Figure 3 depicts contour plots of the ergodic distributions

of the three equilibria. The ergodic distribution of the targeted-inflation equilibrium is

approximately centered at the state values, which are 2.5% inflation and an interest rate of

5.3% annually. The contours for the deflation equilibrium are concentrated near the ZLB

and peak at an inflation rate of about -1.5%. This inflation rate is larger than the steady

state value of -2.8%. By construction, the sunspot equilibrium generates a bimodal ergodic

distribution of inflation and interest rates. However, this bimodal distribution is not simply a

mixture of the distributions associated with the target-inflation and the deflation equilibria.

Since agents expect regime changes to occur in the future the decision rules in the two regimes

of the sunspot equilibrium are different from the decision rules in the pure equilibria.

The right column of Figure 3 shows simulated paths of interest rates, inflation rates,

and output growth for the three equilibria, using the same shock innovations. The shaded

areas correspond to periods in which the deflation regime is active in the sunspot equilibrium.

Given our parameter estimates the probability of hitting the ZLB under the targeted-inflation

equilibrium is very low. As mentioned above, the estimation sample ranges from 1984 to

2007, which is a period of above-zero interest rates and low macroeconomic volatility. In

the deflation regime the interest rate frequently hits the ZLB and may stay at zero for

multiple periods. While inflation is mostly positive in the targeted-inflation regime it is

always negative in the deflation regime. The simulated paths from the sunspot equilibrium

alternate between periods of low interest rates coupled with deflation and periods of high

interest and inflation rates. The regime switch induced by the sunspot shock triggers a strong

adjustment of the nominal variables. While the time paths of output growth are very similar

in the targeted-inflation and deflation equilibrium output appears to be slightly higher in

the sunspot equilibrium.

Next, we turn to impulse response functions for monetary policy shocks. While the

primary focus of this paper is on government spending shocks we will use monetary policy
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Figure 3: Ergodic Distribution and Simulated Paths
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shocks in Section 5.4 to assess the effect of an expansionary fiscal policy if it is combined

with a monetary policy that keeps interest rates close to zero. Due to the nonlinearity of our

model, there are a number of alternative ways of computing impulse response. We compute

impulse responses as the difference between a baseline simulation path in which all shocks

are drawn from εt ∼ N(0, I) and an alternative path in which the time t = 1 monetary

policy shock is shifted by δ and all other shocks are identical to their baseline values. The

procedure that is used to compute the impulse responses is summarized in Algorithm 2

in Appendix C. It leads to a distribution of impulse responses that can be summarized
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by pointwise medians and credible bands. For a linear model, the algorithm produces the

standard impulse responses, which are invariant to the size δ of the shock and identical for

each simulated path.

Figure 4: Responses to a Negative Monetary Policy Shocks: Targeted-Inflation versus De-

flation Equilibrium
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The panels of Figure 4 overlay the responses of the economy to an expansionary monetary

policy shock under the targeted-inflation equilibrium and the deflation equilibrium. In the

former interest rates fall by about 25 basis points (bp) annualized, inflation rises by 50bp

and output grows by about 30bp. The impulse responses exhibit no apparent nonlinearities

and none of the simulated trajectories hits the ZLB. The impulse response dynamics in the



This Version: March 21, 2013 27

deflation equilibrium, on the other hand, are highly nonlinear and our simulations yield to a

distribution of responses summarized by pointwise medians and bands. The median response

of the interest rate is slightly smaller than the response in the targeted-inflation regime and

reverts back to zero after the initial impact of the shock. More interesting than the median

response is the band. Along some trajectories, namely those at which the other shocks push

the interest rate to the ZLB, the negative monetary policy shock has no effect on the interest

rate because a further reduction is not possible. On other trajectories, the pre-intervention

interest rate is positive and the monetary policy shock can lead to a reduction of up to 60bp.

Even if the economy is not at the ZLB in the initial period, an expansionary monetary

policy shock increases the probability of hitting the ZLB in the future. The presence of the

ZLB leads to a reduction in the expected future nominal interest rate movements compared

to an unconstrained environment. Thus, after an expansionary monetary policy intervention

agents expect smaller real rate drops in the future. In turn, the increase in consumption in the

initial period is lower, because the Euler equation implies that consumption is approximately

equal to the discounted sum of expected future real rates. The muted consumption response

leads to a muted inflation response via the Phillips curve. Overall, neither inflation nor

consumption and output react to the interest rate cut as much as in the targeted-inflation

equilibrium. The dampened output and inflation response implies via the interest rate

feedback that the interest rate falls more strongly in the deflation equilibrium than in the

targeted-inflation equilibrium. Overall, the expansionary monetary policy is less effective in

the deflation equilibrium.

5.3 Extracting Historical Shocks

We now use the DSGE model to determine the sequence of shocks that lead to the Great Re-

cession in 2008-09. The filtered state variables for 2009:Q1 will provide the initial conditions

for the policy experiments in Section 5.4. We extract two sequences of shocks and states:

one sequence is obtained under the assumption that the U.S. economy was in the targeted-

inflation equilibrium, whereas the other sequence was obtained assuming that the sunspot

equilibrium prevailed since 2000:Q1. Because the U.S. has never experienced a prolonged
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period of deflation since 1960, the deflation equilibrium is empirically implausible and not

considered in the subsequent analysis.

The DSGE model can be represented as a state space model. Let yt be the 3× 1 vector

of observables consisting of output growth, inflation, and nominal interest rates. The vector

xt stacks the continuous state variables which are given by xt = [Rt, yt, yt−1, zt, gt, At]
′ and

st ∈ {0, 1} is the Markov-switching process.

yt = Ψ(xt) + νt

P{st = 1} =

 (1− p00) if st−1 = 0

p11 if st−1 = 1
(37)

xt = Fst(xt−1, εt)

The first equation in (37) is the measurement equation, where νt ∼ N(0,Σν) is a vector of

measurement errors. The second equation represents law of motion of the Markov-switching

process. The third equation corresponds to the law of motion of the continuous state vari-

ables. The vector εt ∼ N(0, I) stacks the innovations εz,t, εg,t, and εR,t. The functions

F0(·) and F1(·) are generated by the model solution procedure. We set p00 and p11 equal to

0.95, which implies that the two regimes are fairly persistent. Under the targeted-inflation

equilibrium the state-transition equation xt = F (xt−1, εt) is time-invariant and the Markov

switching process st does not affect outcomes.

The state vector xt is extracted from the observables using a particle filter, also known

as sequential Monte Carlo filter. Gordon and Salmond (1993) and Kitagawa (1996) made

early contributions to the development of particle filters. In the economics literature the

particle filter has been applied to analyze stochastic volatility models, e.g., Pitt and Shep-

hard (1999), and nonlinear DSGE models following Fernández-Villaverde and Rubio-Ramı́rez

(2007). Surveys of sequential Monte Carlo filtering are provided, for instance, in the engineer-

ing literature by Arulampalam, Maskell, Gordon, and Clapp (2002) and in the econometrics

literature by Giordani, Pitt, and Kohn (2011). A detailed description of the particle filter

used in the subsequent quantitative analysis is provided in the Online Appendix.

Figure 5 depicts the data described in Section 5.1 (top row) and the time-path of shocks

extracted conditional on the two equilibria (bottom row). Interest rates have been essentially
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Figure 5: Data and Extracted Shocks
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zero since 2009, output growth fell considerably in the second half of 2008 and GDP deflator

inflation was below 50bp (annualized) at the beginning of 2009 as well as in late 2011 and

early 2012. The filtered states as of 2009:Q1 provide the initial conditions for the subsequent

policy analysis and the grey shaded area in the plots indicates the time period for which we

analyze the effect of fiscal and monetary policy interventions. Under the sunspot equilibrium

the economy was in the targeted-inflation regime until 2008:Q4, switched for a short period

in the beginning of 2009 to the deflation regime, reverted back to the targeted-inflation

regime until 2011:Q3 when another switch to the deflation regime occurred.

Output deviations from the model-implied stochastic trend mirror the path of the demand

shock and are marked by a large drop in the second half of 2008, which generates the

fall in output growth in the actual data. While the extracted demand shocks under the

targeted-inflation equilibrium and the targeted-inflation regime are qualitatively similar,

they are quantitatively different. As evident from Figure 3, holding parameters fixed the

mean of the ergodic distribution under the targeted-inflation equilibrium is slightly different

from the corresponding regime-conditional mean under the sunspot equilibrium. Likewise,

conditioning on the same shocks the time paths of output, inflation, and interest rates in the
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two equilibria are also different. After 2008, the sunspot equilibrium requires slightly smaller

shocks than the targeted-inflation equilibrium to rationalize the observations as the regime

switches in the sunspot equilibrium provide additional flexibility to explain this episode of

low interest and inflation rates.

5.4 Policy Experiments

Taking the filtered states from 2008:Q4 (t = T∗) as given, we now study the effects of policy

interventions during the Great Recession. In particular we consider an increase in government

spending that is potentially combined with an expansionary monetary policy. To make the

experiment more realistic, the fiscal policy intervention is calibrated to a portion of the

American Recovery and Reinvestment Act (ARRA) of February 2009. ARRA consisted

of a combination of tax cuts and benefits; entitlement programs; and funding for federal

contracts, grants, and loans. We focus on the third component because it can be interpreted

as an increase in gt. We will model the ARRA spending as a one-period shock δARRA to the

demand shock process, where δARRA = 0.011. Since ĝt is serially correlated the effect of the

shock in the h’th period on the level of ĝt is given by ρh−1g δARRA. In Section F of the Online

Appendix we describe how we use data on the disbursement of ARRA funds to determine

δARRA for our model. While the actual path of the received funds is not perfectly monotone,

the calibrated intervention in the DSGE model roughly matches the actual intervention both

in terms of magnitude and decay rate.

We consider ex-ante and ex-post policy exercises. For the ex-ante analysis we simulate

the model economy forward with and without policy intervention. Along the baseline path

the demand shock evolves according to

ĝt = ρgĝt−1 + σgεg,t,

whereas along the post-intervention path the demand shock is given by

ĝIt = ĝt + ρt−T∗−1g δARRA. (38)

For the ex-post policy analysis we use the particle filter to obtain estimates of the exogenous

shock processes for the years 2009 and 2010. Since the actual path of the demand shock



This Version: March 21, 2013 31

contains the effect of fiscal expansion we define a counterfactual path as

ĝCt|t = ĝt|t − ρt−T∗−1g δARRA, (39)

where ĝt|t denotes the filtered demand shock.

Fiscal Policy Intervention (Ex Ante). The effect of the fiscal intervention is com-

puted with an algorithm that is similar to the one used to construct the impulse response

functions in Section 5.2. The main difference is that we start from the filtered values of

(RT∗ , yT∗ , zT∗ , gT∗) and sT∗+1 computed with the particle filter.

Figure 6 overlays the effects of the fiscal expansion for the targeted-inflation equilibrium

and the sunspot equilibrium. Recall that these effects are computed as the differences of

output, inflation, and interest rates along the simulated intervention paths, denoted by an

I superscript, and the corresponding baseline paths. The figure shows (pointwise) median

responses as well as upper and lower 20% percentiles of the distribution of the intervention

effects XI−X. The effects in the targeted-inflation equilibrium mirror a “standard” response

to a government spending shock in a New Keynesian DSGE model. Both output and inflation

increase and in response the central bank raises interest rates. Output increases by 80bp and

monotonically reverts back to the no-intervention level, whereas the response of inflation is

hump-shaped and peaks at about 30bp. Since the nonlinearities under the targeted-inflation

equilibrium are, weak the bands that characterize the distribution of responses are very

narrow.

Since we are conditioning on the filtered sT∗+1 = 1 for the sunspot equilibrium, agents

expect the economy to be in the deflation regime for the subsequent periods. The local

dynamics in the sunspot regime differ from the targeted-inflation regime, in part because

downward-adjustments of the nominal interest rates are constrained by the ZLB and because

the marginal resource costs of price adjustments are larger given the convex adjustment cost

schedule. As a result the interest rate response is only 50bp and the fiscal intervention causes

inflation to fall. This response is consistent with the simulated paths depicted in Figure 3

which shows that inflation rates in the targeted-inflation and sunspot equilibrium move in

opposite directions whenever the sunspot shock signals the deflation regime. The lower right
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Figure 6: Fiscal Policy Intervention in Targeted-Inflation and Sunspot Equilibrium

Notes: Figure compares intervention effects from targeted-inflation equilibrium (blue) and

sunspot equilibrium (green): pointwise medians (solid); 20%-80% percentiles (shaded area).

panel of Figure 6 shows that due to the intervention and the resulting rise in interest rates

the economy moves temporarily away from the ZLB but slowly reverts back to it over the

next six quarters as the deflation regime is persisting with high probability.

Based on the impulse response functions we can calculate government spending multipli-
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Table 2: Multipliers

Intervention Targeted-Inflation Sunspot

1Q 4Q 8Q st Path 1Q 4Q 8Q

Ex Ante Policy Analysis – Conditional on 2008:Q4 States

Fiscal 0.80 0.91 0.97 0.76 0.86 0.91

Fiscal + Monetary 1.22 1.71 2.16 0.99 1.22 1.37

Ex Post Policy Analysis – Conditional on 2009:Q1 - 2011:Q4 Shocks

Fiscal 1.44 1.35 1.28
01111111 0.54 1.06 1.09

00000000 0.54 0.72 0.75

Fiscal + Monetary 1.44 1.52 1.96
01111111 0.54 1.20 1.68

00000000 0.54 0.78 1.29

ers that measure the effect of the fiscal intervention on output relative to the overall increase

in government spending. We consider a multiplier defined as

µ =

∑H
τ=1(Y

I
τ − Yτ )∑H

τ=1(G
I
τ −Gτ )

.

Our measure is cumulative over the lifetime of the intervention and tabulated for various

types of policy interventions in Table 2. The multipliers for the ex-ante policy exercise

underlying the impulse response functions in Figure 6 are reported in the fourth row of the

table, labeled “Fiscal.” Under the targeted-inflation equilibrium the multipliers range from

0.8 (H = 1) to 0.97 (H = 8). For the sunspot equilibrium the multipliers are slightly smaller,

ranging from 0.76 to 0.91.

Combined Fiscal and Monetary Policy Intervention (Ex Ante). Since a fiscal expan-

sion creates an upward pressure on the nominal interest rates via the feedback mechanism

of the interest rate rule, in principle there is scope for amplifying the effect of the fiscal

stimulus by a monetary policy that keeps interest rates near zero. Thus, we now consider

a combination of expansionary fiscal and monetary policy. The central bank intervention

is assumed to last for eight quarters and is implemented using a sequence of unanticipated

monetary policy shocks εR,t. A detailed discussion about the advantages and disadvantages

of using unanticipated versus anticipated monetary policy shocks to generate predictions
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conditional on an interest rate path is provided in Del Negro and Schorfheide (2012). We

consider a monetary intervention that is designed to keep interest rates at or near zero for

eight quarters.

The DSGE model has the implication that along some of the trajectories interest rates

quickly rise. In this case, keeping them at zero through an anticipated monetary policy shock

corresponds to an implausibly large intervention. To avoid implausibly large interventions,

we constrain the size of the monetary shocks as follows. We choose the shocks such that

the difference between the interest rate the obtains with monetary policy intervention does

not fall by more than 100bp below the interest rate that would obtain in the absence of a

monetary intervention. Thus, we implicitly assume that the FOMC would reneg on a policy

to keep interest rates near zero for an extended period of time in states of the world in which

output growth and or inflation turn out to be high. The sequence of monetary policy shocks

to achieve the ZLB is computed for each simulated trajectory separately. Details on the

algorithm to compute the effect of the policy intervention are reported in Appendix C.

Results for the targeted inflation equilibrium are shown in Figure 7. We we overlay the

responses to a pure fiscal stimulus, discussed previously. In the targeted-inflation equilibrium

interest rates tend to rise fast without the monetary intervention because steady state interest

rates are high. Thus, there is a lot of scope for monetary policy interventions because the

ZLB poses hardly a constraint. The central bank is able to reduce the interest rate by about

70bp in the first period of the intervention (relative to just the fiscal intervention), reaching

about a 150bp decrease by the fourth period. This very large monetary intervention leads to

an extra 1.5% increase in output and an almost 2% increase in inflation.

Impulse responses for a combined fiscal and monetary stimulus under the sunspot equi-

librium are depicted in Figure 8. The median interest rate with just the fiscal intervention

is about 1.5% on impact. After two periods, the monetary intervention is able to reduce

the interest rate all the way to the ZLB for almost all of the simulated trajectories and

keep it there for a total of seven quarters. As a result, the output response increases from

about 80bp on impact to about 120bp. This increase persists for the duration of the mon-

etary intervention. After the eight quarter period, however, the additional effect from the



This Version: March 21, 2013 35

Figure 7: Fiscal and Monetary Policy Intervention in Targeted-Inflation Equilibrium

Notes: Figure depicts pointwise medians (solid); 20%-80% percentiles (shaded area) for fiscal

intervention (green) and combined fiscal and monetary intervention (blue).

expansionary monetary intervention dies out quickly. Compared to the targeted-inflation

equilibrium the additional boost in output due to the expansionary monetary policy that

keeps interest rates near the ZLB is smaller in the sunspot equilibrium because the baseline

interest rates are substantially lower. Thus, the scope for stimulating the economy is much
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Figure 8: Fiscal and Monetary Policy Intervention in Sunspot Equilibrium

Notes: Figure depicts pointwise medians (solid); 20%-80% percentiles (shaded area) for fiscal

intervention (green) and combined fiscal and monetary intervention (blue).

smaller. The spending multipliers, reported in Table 2, for the combined policy intervention

range from 0.99 to 1.37 in the sunspot equilibrium, whereas they increase to 1.22 to 2.16 in

the targeted-inflation equilibrium.

Ex-Post Policy Analysis. So far, we took an ex-ante perspective in that we simulated
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the path of the exogenous shocks from 2009:Q1 onwards. Now, we will take an ex-post

perspective and condition on the filtered path of the exogenous processes. Since the actual

data in 2009-2011 contain the ARRA intervention, we reverse the calculation of the coun-

terfactual path as follows. Rather than adding (ρt−T∗−1g δARRA) to the filtered ĝt as in (39),

we subtract (ρt−T∗−1g δARRA) to construct a counterfactual no-intervention path. We can then

calculate ex-post government spending multipliers based on the actual and counterfactual

level of output.

The resulting multipliers are tabulated in the bottom panel of Table 2. Under the scenario

labeled “Fiscal” we simply remove the ARRA intervention from the filtered ĝt process. Under

the targeted-inflation equilibrium, this leads to ex-post multipliers ranging from 1.44 (1

Quarter) to 1.28 (8 Quarters). The ex-post multipliers are larger than the ex-ante multipliers

because the filtered shocks pushed the economy toward the ZLB. Once the economy is at the

ZLB, the expansionary fiscal policy is less likely to be accompanied by a rise in interested

because the feedback portion of the policy rule tends to predict negative interest rates.

Without a rising nominal interest rate, real rates tend to be lower and stimulate current-

period demand which amplifies the positive effect on output. This mechanism operates very

strongly in, for instance, Christiano, Eichenbaum, and Rebelo (2011). While our ex-post

analysis does deliver fiscal multipliers that are greater than one, they never exceed 1.5.

Conditional on the sunspot equilibrium, the ex-post fiscal multipliers are considerably

smaller. Since there is uncertainty about the realization of the sunspot shock, we consider two

extreme scenarios for the st process: one in which the economy was in the deflation regime

from 2009 to 2011 (denoted by 00000000 in Table 2) and another one in which the economy

switched back to the targeted-inflation regime in 2009:Q2. Under the former scenario the

cumulative multiplier rises from 0.54 to 0.75, whereas under the latter scenario it rises to

1.09 since in the targeted-inflation regime the stimulating effect of an increase in government

spending is larger than in the sunspot regime.

To assess the effect of the combined fiscal and monetary policy interventions we set the

filtered monetary policy shocks, which are negative over the period from 2009 to 2011, equal

to zero on the counterfactual path. Removing these monetary policy shocks tends to increase
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output along the counterfactual path and raises the policy multipliers. For instance, in the

targeted inflation equilibrium, the multiplier increases from 1.35 to 1.52 after four quarters,

whereas it rises from 1.28 to 1.96 after eight quarters. Conditional on the sunspot regime and

assuming that the economy was in the targeted-inflation regime after 2009:Q2 the ex-post

monetary policy effect is similar, whereas it is lower under the assumption that the economy

was in the deflation regime throughout 2009 and 2010.

6 Conclusion

We solve a small-scale New Keynesian DSGE model subject to a ZLB constraint on nominal

interest rates, considering three equilibria: the standard targeted-inflation equilibrium, a

minimum-state-variable deflation equilibrium, and a sunspot equilibrium. We study the

characteristics of these three equilibria. In terms of its ability to fit U.S. output growth,

inflation, and interest rate data between 2000 and 2009, the deflation equilibrium is the

least compelling, and the targeted-inflation and sunspot equilibria are equally compelling.

However, the policy implications are different from both an ex-ante and ex-post perspective.

The scope for fiscal stimulus and expansionary monetary policy is much smaller under the

sunspot equilibrium view of the world.
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Raḿırez (2012): “Nonlinear Adventures at the Zero Lower Bound,” National Bureau of

Economic Research Working Paper.

Fernández-Villaverde, J., and J. F. Rubio-Raḿırez (2007): “Estimating Macroeco-
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Appendix to “Macroeconomic Dynamics Near the

ZLB: A Tale of Two Equilibria”

A Solving the Two-Equation Model

The model is characterized by the nonlinear difference equation

Et[πt+1] = max

{
1

r
, π∗

(
πt
π∗

)ψ
exp[εt]

}
. (A.1)

We assume that rπ∗ ≥ 1 and ψ > 1.

The Targeted-Inflation Equilibrium and Deflation Equilibrium. Consider a solution

to (A.1) that takes the following form

πt = π∗γ exp[λεt]. (A.2)

We now determine values of γ and λ such that (A.1) is satisfied. We begin by calculating

the following expectation

Et[πt+1] = π∗γ
1√

2πσ2

∫
exp[λε] exp

[
− 1

2σ2
ε2
]
dε

= π∗γ
1√

2πσ2
exp

[
1

2
λ2σ2

] ∫
exp

[
− 1

2σ2
(ε− λσ2)2

]
dε

= π∗γ exp

[
1

2
λ2σ2

]
.

Combining this expression with (A.1) yields

γ exp[λ2σ2/2] = max

{
1

rπ∗
, γψ exp[(ψλ+ 1)εt]

}
. (A.3)

By choosing λ = −1/ψ we ensure that the right-hand-side of (A.3) is always constant. Thus,

(A.3) reduces to

γ exp[σ2/(2ψ2)] = max

{
1

rπ∗
, γψ

}
(A.4)

Depending on whether the nominal interest rate is at the ZLB (Rt = 1) or not, we obtain

two solutions for γ by equating the left-hand-side of (A.4) with either the first or the second

term in the max operator:

γD =
1

rπ∗
exp

[
− σ2

2ψ2

]
and γ∗ = exp

[
σ2

2(ψ − 1)ψ2

]
. (A.5)
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The derivation is completed by noting that

γψD =
1

rπ∗
exp

[
− σ

2

2ψ

]
≤ 1

rπ∗

γψ∗ = exp

[
σ2

2(ψ − 1)ψ

]
≥ 1 ≥ 1

rπ∗
.

A Sunspot Equilibrium. Let st ∈ {0, 1} denote the Markov-switching sunspot process.

Assume that the system is in the targeted-inflation regime if st = 1 and that it is in the

deflation regime if st = 0 (the 0 is used to indicate that the system is near the ZLB). The

probabilities of staying in state 0 and 1, respectively, are denoted by ψ00 and ψ11. We

conjecture that the inflation dynamics follow the process

π
(s)
t = π∗γ(st) exp[−εt/ψ] (A.6)

In this case condition (A.4) turns into

Et[πt+1|st = 0]/π∗ =
(
ψ00γ(0) + (1− ψ00)γ(1)

)
exp[σ2/(2ψ2)] =

1

rπ∗
Et[πt+1|st = 1]/π∗ =

(
ψ11γ(1) + (1− ψ11)γ(0)

)
exp[σ2/(2ψ2)] = [γ(1)]ψ.

This system of two equations can be solved for γ(0) and γ(1) as a function of the Markov-

transition probabilities ψ00 and ψ11. Then (A.6) is a stable solution of (A.1) provided that

[γ(0)]ψ ≤ 1

rπ∗
and [γ(1)]ψ ≥ 1

rπ∗
.

Sunspot Shock is Correlated with Fundamentals. As before, let st ∈ {0, 1} be a

Markov-switching sunspot process. However, now assume that a state transition is triggered

by certain realizations of the monetary policy shock εt. In particular, if st = 0, then suppose

st+1 = 0 whenever εt+1 ≤ ε0, such that

ψ00 = Φ(ε0),

where Φ(·) is the cumulative density function of a N(0, 1). Likewise, if st = 1, then let

st+1 = 0 whenever εt+1 > ε0, such that

ψ11 = 1− Φ(ε1).
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To find the constants γ(0) and γ(1), we need to evaluate

1√
2πσ2

∫ ε

−∞
exp

[
− 1

2σ2
(ε+ σ2/ψ)2

]
dε

= P
{
ε+ σ2/ψ

σ
≤ ε+ σ2/ψ

σ

}
= Φ

(
ε+ σ2/ψ

σ

)
.

Thus, condition (A.4) turns into

1

rπ∗
=

[
γ(0)Φ(ε0)Φ

(
ε0 + σ2/ψ

σ

)
+ γ(1)(1− Φ(ε0))

(
1− Φ

(
ε0 + σ2/ψ

σ

))]
exp[σ2/(2ψ2)]

γψ(1) =

[
γ(1)(1− Φ(ε1))

(
1− Φ

(
ε1 + σ2/ψ

σ

))
+ γ(0)Φ(ε1)Φ

(
ε1 + σ2/ψ

σ

)]
exp[σ2/(2ψ2)].

This system of two equations can be solved for γ(0) and γ(1) as a function of the thresholds

ε0 and ε1. Then (A.6) is a stable solution of (A.1) provided that

[γ(0)]ψ ≤ 1

rπ∗
and [γ(1)]ψ ≥ 1

rπ∗
.

Benhabib, Schmitt-Grohé, and Uribe (2001a) Dynamics. BSGU constructed equilib-

ria in which the economy transitioned from the targeted-inflation equilibrium to the deflation

equilibrium. Consider the following law of motion for inflation

π
(BGSU)
t = π∗γ∗ exp[−εt/ψ] exp

[
− ψt−t0

]
. (A.7)

Here, γ∗ was defined in (A.5) and −t0 can be viewed as the initialization period for the

inflation process. We need to verify that π
(BGSU)
t satisfies (A.1). From the derivations that

lead to (A.4) we deduce that

γ∗Et+1

[
exp[−εt+1/ψ]

]
= γψ∗ .

Since

exp
[
− ψt+1−t0

]
=
(
exp

[
− ψt−t0

])ψ
,

we deduce that the law of motion for π
(BGSU)
t in (A.7) satisfies the relationship

Et[πt+1] = π∗

(
πt
π∗

)ψ
exp[εt].

Moreover, since ψ > 1 the term exp
[
− ψt−t0ψ

]
−→ 0 as t −→ ∞. Thus, the economy will

move away from the targeted-inflation equilibrium and at some suitably defined t∗ reach the
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deflation equilibrium and remain there permanently. Overall the inflation dynamics take the

form

πt = π∗

 γ∗ exp[−εt/ψ] exp
[
− ψt−t0

]
if t ≤ t∗

γD exp[−εt/ψ] otherwise
, (A.8)

where γ∗ and γD were defined in (A.5).

Alternative Deflation Equilibria. Around the deflation steady state the system is lo-

cally indeterminate. This suggests that we might be able to construct alternative solutions

to (A.1). Consider the following conjecture for inflation

πt = π∗γmin
{

exp[−c/ψ], exp[−ε/ψ]
}
, (A.9)

where c is a cutoff value. The intuition for this solution is the following. Large positive shocks

ε that could push the nominal interest rate above one, are off-set by downward movements

in inflation. Negative shocks do not need to be off-set, because they push the desired gross

interest rate below one and the max operator in the policy rule keeps the interest rate at

one. Formally, we can compute the expected value of inflation as follows:

Et[πt+1] = π∗γ

[
1√

2πσ2

∫ c

−∞
exp[−c/ψ] exp

[
− 1

2σ2
ε2
]
dε (A.10)

1√
2πσ2

∫ ∞
c

exp[−ε/ψ] exp

[
− 1

2σ2
ε2
]
dε

= π∗γ

[
exp[−c/ψ]Φ(c/σ) + exp

[
σ2

2ψ2

] ∫ ∞
c

1√
2πσ2

exp

[
− 1

2σ2
(ε+ σ2/ψ)2

]
dε

]
= π∗γ

[
exp[−c/ψ]Φ(c/σ) + exp

[
σ2

2ψ2

](
1− Φ

(
c

σ
+
σ

ψ

))]
Here Φ(·) denotes the cdf of a standard Normal random variable. Now define

f(c, ψ, σ) =

[
exp[−c/ψ]Φ(c/σ) + exp

[
σ2

2ψ2

](
1− Φ

(
c

σ
+
σ

ψ

))]
.

Then another solution for which interest rates stay at the ZLB is given by

γ̄ =
1

r∗π∗f(c, ψ, σ)

It can be verified that for c small enough the condition

1

r∗π∗
≥ γ̄ψ min

{
exp[−c+ ε], 1

}
is satisfied.
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B Model Solution

The equilibrium conditions (in terms of detrended variables, i.e., ct = Ct/At and yt = Yt/At)

take the form

1 = βEt

[(
ct+1

ct

)−τ
1

γzt+1

Rt

πt+1

]
(A.11)

1 =
1

ν
(1− cτt ) + φ(πt − π̄)

[(
1− 1

2ν

)
πt +

π̄

2ν

]
(A.12)

−φβEt

[(
ct+1

ct

)−τ
yt+1

yt
(πt+1 − π̄)πt+1

]

ct =

[
1

gt
− φ

2
(πt − π̄)2

]
yt (A.13)

Rt = max

1,

[
rπ∗

(
πt
π∗

)ψ1
(

yt
yt−1

zt

)ψ2
]1−ρR

RρR
t−1e

σRεR,t

 . (A.14)

B.1 Approximation Near the Targeted-Inflation Steady State

Steady State. Steady state inflation equals π∗. Let λ = ν(1− β), then

r = γ/β

R∗ = rπ∗

c∗ =

[
1− v − φ

2
(1− 2λ)

(
π∗ −

1− λ
1− 2λ

π̄

)2

+
φ

2

λ2

1− 2λ
π̄2

]1/τ
y∗ =

c∗[
1
g∗
− φ

2
(π∗ − π̄)2

] .
Log-linearization. We omit the hats from variables that capture deviations from the

targeted-inflation steady state. The linearized consumption Euler equation (A.11) is

ct = Et[ct+1]−
1

τ
(Rt − Et[πt+1 + zt+1]).

The price setting equation (A.12) takes the form

0 = −τc
τ
∗
ν
ct + φπ∗

[(
1− 1

2ν

)
π∗ +

π̄

2ν

]
πt + φπ∗(π∗ − π̄)

(
1− 1

2ν

)
πt

−φβπ∗(π∗ − π̄)

(
τct − yt − Et[τct+1 − yt+1] + E[πt+1]

)
− φβπ2

∗Et[πt+1].
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Log-linearizing the aggregate resource constraint (A.12) yields

ct = yt −
1/g∗

1/g∗ − φ(π∗ − π̄)2
gt −

φπ∗(π∗ − π̄)

1/g∗ − φ(π∗ − π̄)2
πt

Finally, the monetary policy rule becomes

Rt = max

{
− ln(rπ∗), (1− ρR)ψ1πt + (1− ρR)ψ2(yt − yt−1 + zt) + ρRt−1 + σRεR,t

}
.

B.2 Approximation Near the Deflation Steady State

Steady State. As before, let λ = ν(1−β). The steady state nominal interest rate is RD = 1

and provided that β/(γπ∗) < 1 and ψ1 > 1:

r = γ/β

πD = β/γ

cD =

[
1− v − φ

2
(1− 2λ)

(
πD −

1− λ
1− 2λ

π̄

)2

+
φ

2

λ2

1− 2λ
π̄2

]1/τ
yD =

cD[
1
g∗
− φ

2
(πD − π̄)2

] .
Log-linearization. We omit the tildes from variables that capture deviations from the

deflation steady state. The linearized consumption Euler equation (A.11) is

ct = Et[ct+1]−
1

τ
(Rt − Et[πt+1 + zt+1]).

The price setting equation (A.12) takes the form

0 = −τc
τ
D

ν
ct + φβ

[(
1− 1

2ν

)
β +

π̄

2ν

]
πt + φβ(β − π̄)

(
1− 1

2ν

)
πt

−φβ2(β − π̄)

(
τct − yt − Et[τct+1 − yt+1] + E[πt+1]

)
− φβ3Et[πt+1].

Log-linearizing the aggregate resource constraint (A.12) yields

ct = yt −
1/g∗

1/g∗ − φ(β − π̄)2
gt −

φβ(β − π̄)

1/g∗ − φ(β − π̄)2
πt

Finally, the monetary policy rule becomes

Rt = max

{
0, −(1− ρR) ln(rπ∗)− (1− ρR)ψ1 ln(π∗/β)

+(1− ρR)ψ1πt + (1− ρR)ψ2(yt − yt−1 + zt) + ρRt−1 + σRεR,t

}
.
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B.3 Targeted-Inflation Equilibrium in Simplified Model

After imposing the parameter restrictions discussed in the main text we obtain the system

(omitting hats)

Rt = max

{
− ln(rπ∗), ψπt + σRεR,t

}
(A.15)

ct = Et[ct+1]− (Rt − Et[πt+1])

πt = βEt[πt+1] + κct

Since the conjectured law of motion is iid, the conditional expectations of inflation and

consumption equal their unconditional means which we denote by µπ and µc, respectively.

In turn, the Euler equation in (A.15) simplifies to the static relationship

ct = −Rt + µc + µπ. (A.16)

Similarly, the Phillips curve in (A.15) becomes

πt = κct + βµπ. (A.17)

Combining (A.16) and (A.17) yields

πt = −κRt + (κ+ β)µπ + κµc. (A.18)

We now can use (A.18) to eliminate inflation from the monetary policy rule:

Rt = max

{
− ln(rπ∗), −κψRt + (κ+ β)ψµπ + κψµc + σRεR,t

}
(A.19)

Define

R
(1)
t = − ln(rπ∗) and R

(2)
t =

1

1 + κψ

[
(κ+ β)ψµπ + κψµc + σRεR,t

]
.

Let ε̄R,t be the value of the monetary policy shock for which Rt = − ln(rπ∗) and the two

terms in the max operator of (A.19) are equal

σRε̄R,t = −(1 + κψ) ln(rπ∗)− (κ+ β)ψµπ − κψµc.
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To complete the derivation of the equilibrium interest rate it is useful to distinguish the

following two cases. Case (i): suppose that εR,t < ε̄R,t. We will verify that Rt = R
(1)
t is

consistent with (A.19). If the monetary policy shock is less than the threshold value, then

(κ+ β)ψµπ + κψµc + σRε̄R,t < −(1 + κψ) ln(rπ∗).

Thus,

−κψR(1)
t + (κ+ β)ψµπ + κψµc + σRεR,t < −κψR(1)

t − (1 + κψ) ln(rπ∗) = − ln(rπ∗),

which confirms that (A.19) is satisfied.

Case (ii): suppose that εR,t > ε̄R,t. We will verify that Rt = R
(2)
t is consistent with (A.19).

If the monetary policy shock is greater than the threshold value, then

(κ+ β)ψµπ + κψµc + σRε̄R,t > −(1 + κψ) ln(rπ∗).

In turn,

−κψR(2)
t + (κ+ β)ψµπ + κψµc + σRεR,t

= − κψ

1 + κψ

[
(κ+ β)ψµπ + κψµc + σRεR,t

]
+ (κ+ β)ψµπ + κψµc + σRεR,t

=
1

1 + κψ

[
(κ+ β)ψµπ + κψµc + σRεR,t

]
> − ln(rπ∗),

which confirms that (A.19) is satisfied.

We can now deduce that

Rt = max

{
− ln(rπ∗),

1

1 + κψ

[
ψ(κ+ β)µπ + κψµc + σRεR,t

]}
. (A.20)

Combining (A.16) and (A.20) yields equilibrium consumption

ct =


1

1+κψ

[
(1− ψβ)µπ + µc − σRεR,t

]
if Rt ≥ − ln(rπ∗)

ln(rπ∗) + µc + µπ otherwise

. (A.21)

Likewise, combining (A.17) and (A.20) delivers equilibrium inflation

πt =


1

1+κψ

[
(κ+ β)µπ + κµc − κσRεR,t

]
if Rt ≥ − ln(rπ∗)

κ ln(rπ∗) + (κ+ β)µπ + κµc otherwise

. (A.22)
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Equations (A.20), (A.21), and (A.22) appear in the main text.

If X ∼ N(µ, σ2) and C is a truncation constant, then

E[X|X ≥ C] = µ+
σφN(α)

1− ΦN(α)
,

where α = (C − µ)/σ, φN(x) and ΦN(α) are the probability density function (pdf) and the

cumulative density function (cdf) of a N(0, 1). Define the cutoff value

C = −(1 + κψ) ln(rπ∗)− (κ+ β)ψµπ − κψµc. (A.23)

Using the definition of a cdf and the formula for the mean of a truncated Normal random

variable, we obtain that

P[εR,t ≥ C/σR] = 1− ΦN(Cy/σR)

E[εR,t | εR,t ≥ C/σR] =
σRφN(C/σR)

1− ΦN(C/σR)
.

Thus,

µc =
1− ΦN(Cy/σR)

1 + κψ

[
(1− ψβ)µπ + µc

]
− σRφN(Cy/σR)

(1 + κψ)(1− ΦN(Cy/σR))
(A.24)

+ΦN(Cy/σR)

[
ln(rπ∗) + µc + µπ

]
µπ =

1− ΦN(Cy/σR)

1 + κψ

[
(κ+ β)µπ + κµc

]
− κσRφN(Cy/σR)

(1 + κψ)(1− ΦN(Cy/σR))
(A.25)

+ΦN(Cy/σR)

[
κ ln(rπ∗) + (κ+ β)µπ + κµc

]
The constants C, µc and µπ can be obtained by solving the system of nonlinear equations

comprised of (A.23) to (A.25).

C Computational Details

C.1 Model Solution Algorithm

Algorithm 1 (Solution Algorithm) 1. Start with a guess for Θ. For the targeted-

inflation equilibrium, this guess is obtained from a linear approximation around the
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inflation target. For the deflation equilibrium, it is obtained by assuming constant

decision rules at the deflation steady state. For the sunspot equilibrium it is obtained

by letting the st = 1 decision rules come from the targeted-inflation equilibrium and the

st = 0 decision rules come from the deflation equilibrium.

2. Given this guess, simulate the model for a large number of periods.

3. Given the simulated path, obtain the grid for the state variables over which the approxi-

mation needs to be accurate. Label these grid points as {S1, ...,SM}. For a fourth-order

approximation, we use M = 130. For the targeted-inflation equilibrium, 79 of these grid

points come from the ergodic distribution, obtained using a cluster-grid algorithm as in

Judd, Maliar, and Maliar (2011). The remaining 51 come from the filtered exogenous

state variables from 2000Q1 to 2012Q3. 5

4. Solve for the Θ by minimizing the sum of squared residuals obtained following the steps

below, using a variant of a Newton algorithm.

(a) For a generic grid point Si, and the current value for Θ, compute f 1
π(Si; Θ),

f 2
π(Si; Θ), f 1

E (Si; Θ) and f 2
E (Si; Θ).

(b) Assume ζi ≡ I{R(Si,Θ) > 1} = 1 and compute πi, Ei, as well as yi and ci using

(33) and (34), substituting in (35).

(c) If Ri that follows from (35) using πi and yi obtained in (b) is greater than unity,

then ζi is indeed equal to one. Otherwise, set ζi = 0 (and thus Ri = 1) and

recompute all other objects.

(d) The final step is to compute the residual functions. There are four residuals,

corresponding to the four functions being approximated. For a given set of state

variables Si, only two of them will be relevant since we either need the constrained

decision rules or the unconstrained ones. Regardless, the relevant residual func-

5For the deflation equilibrium, we use a time-separated grid algorithm which suits the behavior of this

equilibrium better since there are many periods where the economy is on the “edge” of the ergodic distribution

at the ZLB. For the sunspot equilibrium, we use the same time-separated grid algorithm.
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tions will be given by

R1(Si) = Ei −
[∫ ∫ ∫

c(S ′)−τ

γz′π(S ′)
dF (z′) dF (g′) dF (ε′R)

]
(A.26)

R2(Si) = f (ci, πi, yi)−φβ
∫ ∫ ∫

c(S ′)−τy(S ′) [π(S ′)− π̄] π(S ′)dF (z′) dF (g′) dF (ε′R)

(A.27)

Note that this step involves computing π(S ′), y(S ′), c(S ′) and R(S ′) which is

done following steps (a)-(c) above for each value of S ′. We use a non-product

monomial integration rule to evaluate these integrals.

(e) The objective function to be minimized is the sum of squared residuals obtained in

(d).

5. Repeat steps 2-4 sufficient number of times so that the ergodic distribution remains

unchanged from one iteration to the next. For the targeted-inflation equilibrium, we

also iterate between solution and filtering to make sure the filtered states used in the

solution grid remain unchanged.

We start our solution from a second-order approximation and move to a third- and

fourth-order approximation by using the previous solution. We use analytical derivatives

of the objection function which speeds up the solution by two orders of magnitude. As a

measure of accuracy, we compute the approximation errors from A.26 and A.27, converted

to consumption units. For the targeted-inflation equilibrium, these are in the order of 10−6.

For the deflation and sunspot equilibria they are higher at 10−4, but still very reasonable

given the complexity of the model.

Figure A-1 shows the solution grid for the targeted-inflation equilibrium. For each panel

we have Rt−1 on the x axis and the other state variables on the y axis. The red dots are the

grid points that represent the ergodic distribution, the green points are the filtered states

from 2000:Q1 to 2008:Q3 and the blue points are the filtered state for the period after

2008:Q3. It is evident that the filtered states lie in the tails of the ergodic distribution of

the targeted-inflation equilibrium, which assigns negligible probability to zero interest rates

and the exogenous states that push interest rates toward the ZLB.
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Figure A-1: Solution Grid for the Targeted-Inflation Equilibrium
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C.2 Impulse Responses

Algorithm 2 (Scaled Impulse Responses) For j = 1 to j = nsim repeat the following

steps:

1. Draw initial values (R
(j)
0 , y

(j)
0 , z

(j)
0 , g

(j)
0 ) from ergodic distribution.

2. Generate baseline trajectories based on the innovation sequence {ε(j)t }Ht=1, where ε
(j)
t =

[ε
(j)
z,t , ε

(j)
g,t , ε

(j)
R,t]
′ ∼ N(0, I).

3. Generate counterfactual trajectories based on the innovation sequence

ε
I(j)
z,t = ε

(j)
z,t and ε

I(j)
g,t = ε

(j)
g,t for t = 1, . . . , H;

εIR,1 = δ + εR,1; εIR,t = εR,t for t = 2, . . . , H

4. Conditional on (R
(j)
0 , y

(j)
0 , z

(j)
0 , g

(j)
0 ) compute {R(j)

t , y
(j)
t , π

(j)
t }Ht=1 and {RI(j)

t , y
I(j)
t , π

I(j)
t }Ht=1

based on {ε(j)t } and {εI(j)t }, respectively, and for a generic variable x, let

IRF
(j)
δ (xt|εR,1) = (ln x

I(j)
t − lnx

(j)
t )/|δ|. (A.28)
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Compute the mean of IRF
(j)
δ (xt|εR,1) across j:

IRFδ(xt|εR,1) =
1

nsim

nsim∑
j=1

IRF
(j)
δ (xt|εR,1).� (A.29)

or any percentile.

Algorithm 3 (Effect of Combined Fiscal and Monetary Policy Intervention) For j =

1 to j = nsim repeat the following steps:

1. Initialize the simulation by setting (R
(j)
0 , y

(j)
0 , z

(j)
0 , g

(j)
0 ) equal to the mean estimate ob-

tained with the particle filter.

2. Generate baseline trajectories based on the innovation sequence {ε(j)t }Ht=1 by letting

[ε
(j)
z,t , ε

(j)
g,t ]
′ ∼ N(0, I) and setting εR,t = 0.

3. Generate the innovation sequence for the counterfactual trajectories according to

ε
I(j)
g,1 = δARRA + ε

(j)
g,1; ε

I(j)
g,t = ε

(j)
g,t for t = 2, . . . , H;

ε
I(j)
z,t = ε

(j)
z,t for t = 1, . . . , H;

ε
I(j)
R,t = ε

(j)
R,t = 0 for t = 9, . . . , H;

In periods t = 1, . . . , 8, conditional on {εI(j)g,t , ε
I(j)
z,t }4t=1, determine ε

I(j)
R,t by solving for the

smallest ε̃R,t such that it is less than 2σR that yields either

R
I(j)
t (ε

I(j)
R,t = ε̃R,t) = 1 or 400 ln

(
R
I(j)
t (ε

I(j)
R,t = 0)−RI(j)

t (ε
I(j)
R,t = ε̃R,t)

)
= 1.

4. Conditional on (R
(j)
0 , y

(j)
0 , z

(j)
0 , g

(j)
0 ) compute {R(j)

t , y
(j)
t , π

(j)
t }Ht=1 and {RI(j)

t , y
I(j)
t , π

I(j)
t }Ht=1

based on {ε(j)t } and {εI(j)t }, respectively, and let

IRF (j)(xt|εg,1, εR,1:8) = (ln x
I(j)
t − lnx

(j)
t ). (A.30)

Compute medians and percentile bands based on IRF (j)(xt|εg,1, εR,1:8), j = 1, . . . , nsim. �



This Version: March 21, 2013 A-14

D Estimation of 2nd-Order Approximated DSGE Model

Table A-1 summarizes the prior and posterior distribution from the Bayesian estimation of

the 2nd-order approximated version of the DSGE model. The estimation sample is 1984:Q1

to 2007:Q4. The parameter φ that is used in the main text is related to the parameter κ

(Phillips curve slope of a linearized version of the DSGE model) according to φ = τ(1−ν)
(νπ2κ)

.

The parameters r∗, π∗, and γ are fixed at the sample means of the ex-post real rate, the

inflation rate, and output growth. We assume that π̄ = 1, meaning that any price change is

costly.
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Table A-1: Posterior Estimates for DSGE Model Parameters

Prior Posterior

Parameter Density Para 1 Para2 Mean 90% Interval

τ Gamma 2.00 0.25 1.50 [1.14, 1.89]

κ Gamma 0.30 0.10 0.17 [0.05, 0.30]

ψ1 Gamma 1.50 0.10 1.36 [1.27, 1.43]

ρr Beta 0.50 0.20 0.64 [0.55, 0.72]

ρg Beta 0.80 0.10 0.86 [0.82, 0.91]

ρz Beta 0.20 0.10 0.11 [0.03, 0.24]

100σr Inv Gamma 0.30 4.00 0.21 [0.17, 0.26]

100σg Inv Gamma 0.40 4.00 0.78 [0.66, 0.93]

100σz Inv Gamma 0.40 4.00 1.03 [0.83, 1.32]

400(r∗ − 1) Fixed 2.78

400(π∗ − 1) Fixed 2.52

100(γ − 1) Fixed 0.48

π Fixed 1.00

ψ2 Fixed 0.80

ν Fixed 0.10

1
g

Fixed 0.85

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta and

Gamma; and s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.

The effective prior is truncated at the boundary of the determinacy region. Estimation

sample is 1984:Q1 to 2007:Q4. As 90% credible interval we are reporting the 5th and 95th

percentile of the posterior distribution.
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E Particle Filter

The particle filter is used to extract information about the state variables of the model from

data on output growth, inflation, and nominal interest rates over the period 2000:Q1 to

2010:Q4. Throughout this section we focus on the particle filter for the sunspot equilib-

rium because it involves an additional state variable. The analysis for the targeted-inflation

equilibrium and the deflation equilibrium is a special case in which the discrete state st is

constant.

E.1 State-Space Representation

Let yt be the 3× 1 vector of observables consisting of output growth, inflation, and nominal

interest rates. The vector xt stacks the continuous state variables which are given by xt =

[Rt, yt, yt−1, zt, gt, At]
′ and st ∈ {0, 1} is the Markov-switching process.

yt = Ψ(xt) + νt (A.31)

P{st = 1} =

 (1− p00) if st−1 = 0

p11 if st−1 = 1
(A.32)

xt = Fst(xt−1, εt) (A.33)

The first equation is the measurement equation, where νt ∼ N(0,Σν) is a vector of mea-

surement errors. The second equation represents law of motion of the Markov-switching

process. The third equation corresponds to the law of motion of the continuous state vari-

ables. The vector εt ∼ N(0, I) stacks the innovations εz,t, εg,t, and εR,t. The functions F0(·)

and F1(·) are generated by the model solution procedure. We subsequently use the densities

p(yt|st), p(st|st−1), and p(xt|xt−1, st) to summarize the measurement and the state transition

equations.

Let zt = [x′t, st]
′ and Yt0:t1 = {yt0 , . . . , yt1}. The distribution p(zt|Y1:t) is approximated

by a set of pairs {(z(i)t , π
(i)
t )}Ni=1, where z

(i)
t is the i’th particle, π

(i)
t is its weight, and N is

the number of particles. The particles z
(i)
t are generated from some proposal density and the
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π
(i)
t ’s correspond to normalized weights in an importance sampling approximation:

E[f(zt)|Y1:t] =

∫
zt

f(zt)
p(yt|zt)p(zt|Y1:t−1)

p(yt|Y1:t−1)
dzt

=

∫
zt−1:t

f(zt)
p(yt|zt)p(zt|zt−1)p(zt−1|Y1:t−1)

p(yt|Y1:t−1)
dzt−1:t

≈

∑N
i=1 f(z

(i)
t )

(
1
N

p(yt|z(i)t )p(z
(i)
t |z

(i)
t−1)p(z

(i)
t−1|Y1:t−1)

g(z
(i)
t−1:t|Y1:t)

)
∑N

j=1

(
1
N

p(yt|z(j)t )p(z
(j)
t |z

(j)
t−1)p(z

(j)
t−1|Y1:t−1)

g(z
(j)
t−1:t|Y1:T )

)
=

N∑
i=1

f(z
(i)
t )

π̃
(i)
t∑N

j=1 π̃
(j)
t

=
N∑
i=1

f(z
(i)
t )π

(i)
t ,

where the un-normalized and normalized probability weights are given by

π̃
(i)
t =

1

N

p(yt|z(i)t )p(z
(i)
t |z

(i)
t−1)p(z

(i)
t−1|Y1:t−1)

g(z
(i)
t−1:t|Y1:T )

and π
(i)
t =

π̃
(i)
t∑N

j=1 π̃
(j)
t

,

respectively, and the z
(i)
t−1:t’s are drawn from a probability distribution with a density that is

proportional to g(z
(i)
t−1:t|Y1:t). In particular, we adopt an approach known as auxiliary particle

filtering, e.g. Pitt and Shephard (1999), and consider proposal densities of the form

g(zt−1:t|Y1:t) ∝ p(zt−1|Y1:t−1)q(zt|zt−1, yt)

such that

π̃
(i)
t =

1

N

p(yt|z(i)t )p(z
(i)
t |z

(i)
t−1)

q(z
(i)
t |z

(i)
t−1, yt)

. (A.34)

Since our model has discrete and continuous state variables, we write

p(zt|zt−1) =

 p0(xt|xt−1, st = 0)P{st = 0|st−1} if st = 0

p1(xt|xt−1, st = 1)P{st = 1|st−1} if st = 1

and consider proposal densities of the form

q(zt|zt−1, yt) =

 q0(xt|xt−1, yt, st = 0)λ(zt−1, yt) if st = 0

q1(xt|xt−1, yt, st = 1)(1− λ(zt−1, yt)) if st = 1
,

where λ(xt−1, yt) is the probability that st = 0 under the proposal distribution.
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E.2 Filtering

The particle filter generates the importance sampling approximation of p(zt|Y1:t) sequentially

for t = 1, . . . , T .

Initialization. To generate the initial set of particles {(z(i)0 , π
(i)
0 }Ni=1, for each i simulate

the DSGE model for T0 periods, starting from the targeted-inflation steady state, and set

π
(i)
0 = 1/N .

Sequential Importance Sampling. For t = 1 to T :

1. {z(i)t−1, π
(i)
t−1}Ni=1 is the particle approximation of p(zt−1|Y1:t−1). For i = 1 to N :

(a) Draw z
(i)
t conditional on z

(i)
t−1 from q(zt|z(i)t−1, yt).

(b) Compute the unnormalized particle weights π̃
(i)
t . Period t − 1 particles were

effectively sampled with probability 1/N instead of drawn from the mixture

p̂(zt−1|Y1:t−1) =
N∑
j=1

π
(j)
t−1δ(zt−1 − z

(j)
t−1),

where δ(x) is the dirac function with the properties δ(0) = ∞, δ(x) = 0 if x 6= 0

and
∫
δ(x)dx = 1. Thus, (A.34)needs to be adjusted by π

(i)
t−1:

π̃
(i)
t =

1

N

p(yt|z(i)t )p(z
(i)
t |z

(i)
t−1)

q(z
(i)
t |z

(i)
t−1, yt)

π
(i)
t−1.

2. Compute the normalized particle weights π
(i)
t and the effective sample size ESSt =

1/
∑N

i=1(π
(i)
t )2.

3. Resample the particles via deterministic resampling (see Kitagawa (1996)). Reset

weights to be π
(i)
t = 1/N and approximate p(zt|Y1:t) by {(z(i)t , π

(i)
t )}ni=1.

E.3 Tuning of the Filter

In the empirical analysis we set T0 = 50 and N = 1e6.

Targeted-Inflation Equilibrium. Since the discrete state st is irrelevant in this equilib-

rium, let zt = xt. Due to the nonlinear state transition it is difficult to evaluate p(zt|zt−1)
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directly. Recall that xt = F (xt−1, εt). Let pε(εt) be the DSGE model-implied density of

the innovation distribution, which is εt ∼ N(0, I). Conditional on x
(i)
t−1 and yt we apply

the Kalman-filter updating equations to a log-linearized version of the DSGE model to ob-

tain a preliminary estimate ε̂t|t. We then generate a draw from ε
(i)
t ∼ N(ε̂t|t, I), denoting

the density associated with this distribution by qε(εt) and let x
(i)
t = F (x

(i)
t−1, ε

(i)
t ). In slight

abuse of notation (ignoring that the dimension of xt is larger than the dimension of εt and

that its distribution is singular), we can apply the change of variable formula to obtain a

representation of the proposal density

q(x
(i)
t |x

(i)
t−1) = qε(F

−1(x
(i)
t |x

(i)
t−1))

∣∣∣∣∣∂F−1(x(i)t |x(i)t−1)∂xt

∣∣∣∣∣
Using the same change-of-variable formula, we can represent

p(x
(i)
t |x

(i)
t−1) = pε(F

−1(x
(i)
t |x

(i)
t−1))

∣∣∣∣∣∂F−1(x(i)t |x(i)t−1)∂xt

∣∣∣∣∣
By construction, the Jacobian terms cancel and the ratio that is needed to calculate the

unnormalized particle weights for period t in (A.34) simplifies to

p(x
(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
t−1)

=
pε(ε

(i)
t )

qε(ε
(i)
t )

.

Sunspot Equilibrium. Discuss choice of λ(zt−1, yt).

F Calibration of the Policy Experiment

Table A-2 summarizes the award and disbursements of funds for federal contracts, grants,

and loans. We translate the numbers in the table into a one-period location shift of the

distribution of εg,t. In our model total government spending is a fraction ζt of aggregate

output, where ζt evolves according to an exogenous process:

Gt = ζtYt; ζt = 1− 1

gt
; ln(gt/g∗) = ρg ln(gt−1/g∗) + σgεg,t

For the subsequent calibration of the fiscal intervention it is convenient to define the per-

centage deviations of gt and ζt from their respective steady states: ĝt = ln(gt/g∗) and
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ζ̂t = ln(ζt/ζ∗). According to the parameterization of the DSGE model in Table 1 ζ∗ = 0.15

and g∗ = 1.177. Thus, government spending is approximately 15% of GDP. We assume that

the fiscal expansion approximately shifts ζ̂t to ζ̂It = ζ̂t + ζ̂ARRAt .

We construct ζ̂ARRAt as follows. Let GARRA
t correspond to the additional government

spending stipulated by ARRA. Since we focus on received rather than awarded funds, GARRA
t

corresponds to the third column of Table A-2. The size of the fiscal expansion as a fraction

of GDP is

ζARRAt = GARRA
t /Yt,

where Yt here corresponds to the GDP data reported in the last column of Table A-2. We

then divide by ζ∗ to convert it into deviations from the steady state level: ζ̂ARRAt = ζARRAt /ζ∗.

Taking a log-linear approximation of the relationship between gt and ζt leads to

ĝARRAt = 0.177 ·GARRA
t /(ζ∗Yt).

In Figure A-2 we compare ĝARRAt constructed from the data in Table A-2 to (ĝIt − ĝt),

where δARRA = 0.011.6 While the actual path of the received funds is not perfectly monotone,

the calibrated intervention in the DSGE model roughly matches the actual intervention both

in terms of magnitude and decay rate.

6Recall that σg = 0.0078



This Version: March 21, 2013 A-21

Table A-2: ARRA Funds for Contracts, Grant, and Loans

Awarded Received Nom. GDP

2009:3 158 36 3488

2009:4 17 18 3533

2010:1 26 8 3568

2010:2 16 24 3603

2010:3 33 26 3644

2010:4 9 21 3684

2011:1 4 19 3704

2011:2 4 20 3751

2011:3 8 17 3791

2011:4 0 12 3830

2012:1 3 9 3870

2012:2 0 8 3899

Source: www.recovery.org.

Figure A-2: Calibration of Fiscal Policy Intervention
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