
Crisis and Commitment:

Inflation Credibility and the Vulnerability to Sovereign

Debt Crises

Mark Aguiar Manuel Amador Emmanuel Farhi Gita Gopinath∗

April 30, 2013

Abstract

We propose a continuous time model of nominal debt and investigate the role of
inflation credibility in the potential for self-fulfilling debt crises. Inflation is costly,
but reduces the real value of outstanding debt without the full punishment of default.
With high inflation credibility, which can be interpreted as joining a monetary union
or issuing foreign currency debt, debt is essentially real. By contrast, with low inflation
credibility, sovereign debt is nominal and is vulnerable to ex post devaluation. In a debt
crisis, a government may opt to inflate away a fraction of the debt burden rather than
explicitly default. This flexibility potentially reduces the country’s exposure to self-
fulfilling crises. On the other hand, the government lacks commitment not to inflate
in the absence of crisis. This latter channel raises the cost of debt in tranquil periods
and makes default more attractive in the event of a crisis, increasing the country’s vul-
nerability. We characterize the interaction of these two forces. We show that there is
an intermediate inflation credibility that minimizes the country’s exposure to rollover
risk. On the other hand, low inflation credibility brings the worst of both worlds—high
inflation in tranquil periods and increased vulnerability to a crisis. Weak inflationary
commitment also reduces the country’s equilibrium borrowing limit. These latter re-
sults shed light on the notions of original sin and debt intolerance highlighted in the
empirical literature; that is, the fact that developing economies issue debt exclusive
in foreign currency to international investors as well as encounter solvency issues at
relatively low ratios of debt-to-GDP.

∗We thank Vincenzo Quadrini and Juan Pablo Nicolini for helpful comments.
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1 Introduction

Several countries are at or above record levels of sovereign debt to GDP. These in-

clude the U.S, Japan, Greece, Spain, Portugal, Ireland, Italy among others. Some of

these countries such as Greece, Spain, Portugal, Ireland and Italy have experienced

dramatic spikes in yields on their debt while others such as the U.S. and Japan have

not. One factor that is often held responsible for this difference in experience is that

the former group of countries have their debt in a foreign currency and is therefore

real debt that must be repaid through future real fiscal surpluses. The latter group of

countries on the other hand have their debt in home currency and can therefore repay

through real fiscal surpluses and/or the real value of the debt can be inflated away. It

is conjectured that the availability of this additional instrument for countries whose

debt is in their own currency makes them less likely to default and consequently less

susceptible to self-fulfilling debt crisis as compared to countries whose debt is in a

foreign currency. In this paper we explore the validity of this conjecture.

We develop a tractable, continuous-time model of self-fulfilling debt crises with

nominal bonds which builds on the canonical models of Calvo (1988) and Cole and

Kehoe (2000).1A benevolent government in a small open economy makes decisions

over time without commitment. In every period, it must choose inflation, a level of

borrowing, and whether to repay or default. If it chooses to default, it incurs the

cost of being permanently excluded from financial markets. There is also a utility

cost to inflation that captures any economic distortion or reputational cost associated

with inflation. We refer to this cost as the inflation commitment or credibility. In

the case where the inflation credibility is high all debt is real, proxying for foreign

currency debt. Sovereign bonds are priced by risk neutral foreign investors. The

decision to repay depends on the equilibrium interest rate raising the possibility of

self-fulfilling debt crises. The key comparative static that we examine is the effect

of varying inflation credibility on the possibility of self-fulfilling debt crises. A main

finding of the analysis is that inflation credibility—and by implication borrowing in

1The literature on self-fulfilling debt crises is large, some of which is surveyed and discussed in
Aguiar and Amador (in progress). In addition to Calvo (1988) and Cole and Kehoe (2000), our paper
is related to Da-Rocha et al. (forthcoming) which models the interplay of devaluation expectations
and default in a model in which debt is denominated in foreign goods and the government chooses
both a real exchange rate and a debt policy. Another closely related paper is Araujo et al. (2012),
which considers the welfare gains or costs from issuing debt in local versus foreign currency. They
model the costs of local currency debt as arising from an exogenous shock to inflation. Our model
focuses on the joint dynamics of debt and inflation. Recent papers exploring themes involving
currency denomination of debt or self-fulfilling crises include Jeanne (2011) and Roch and Uhlig
(2011).
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domestic versus foreign currency—has an ambiguous impact on the possibility of a

self-fulfilling debt crises and on welfare.

To provide intuition for this ambiguity, start with the case of real bonds and a

zero-one default decision. If creditors fail to roll over bonds, the government is faced

with a choice of default versus repaying the principal on all outstanding debt. For

large enough debt levels, default is preferable, and this may be the case even if the

government is willing to service interest payments rather than default, raising the

possibility of self-fulfilling debt crises. If however the debt is denominated in do-

mestic currency, the government has a third option; namely, inflate away part of the

principal and repay the rest. What is perhaps the conventional wisdom regarding

debt crises is that this third option lowers the burden of repayment and eliminates

the possibility of default, at least for a range of debt stocks. That is, adding another

policy instrument (partial default through inflation) reduces the occurrence of out-

right default. However, this conclusion must be tempered by the fact that the lack

of commitment to bond repayments also extends to inflation. If the commitment to

low inflation is weak, then high inflation will be the government’s policy even in the

absence of a crisis. This drives up interest rates on debt in the non-crisis equilibrium,

making default relatively attractive in all equilibria. This latter effect can generate

an environment in which nominal bonds are more vulnerable to self-fulfilling runs;

that is, the option for partial default makes outright default more likely.

More precisely, we establish a threshold for inflation credibility below which an

economy is more vulnerable to crises for a larger range of debt. A middle-range of

inflation credibility generates the conventional wisdom of less vulnerability. It is this

level of credibility at which the economy can best approximate the state-contingent

policy of low inflation in tranquil periods and high inflation in response to a liquidity

crisis. High inflation credibility renders nominal bonds into real bonds, recovering

the Cole and Kehoe analysis.

In terms of welfare, when inflation credibility is low issuing foreign currency (real)

bonds is preferable to domestic currency (nominal) bonds. This follows because with

domestic currency debt the vulnerability to a crisis is greater and inflation is high in all

equilibria. This rationalizes the empirical fact that emerging markets typically issue

bonds to foreign investors solely in foreign currency, so-called “original sin.” Bor-

rowing in domestic currency also reduces the country’s equilibrium borrowing limit

reminiscent of the debt intolerance highlighted in the empirical literature that emerg-

ing markets encounter solvency issues at relatively low ratios of debt-to-GDP. On

the other hand, a moderate level of inflation credibility makes nominal bonds strictly
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preferable for intermediate levels of debt, where the reduction in crisis vulnerability

is at work.

2 Environment

2.1 Preferences and Endowment

We consider a continuous-time, small-open-economy environment. There is a single,

freely-traded consumption good which has an international price normalized to 1.

The economy is endowed with y units of the good each period. We consider an

environment in which income is deterministic, and for simplicity assume that y is

independent of time. The local currency price (relative to the world price) at time t

is denoted Pt = P (t) = P (0)e
´ t
0 π(t)dt, where π(t) denotes the rate of inflation at time

t. To set a notational convention, we let π : [0,∞)→ R+ denote inflation as function

of time and let π(t) or πt denote the evaluation of π at time t. When convenient, we

use π ∈ R+ to denote a particular inflation choice. A similar convention is used for

other variables of interest, like consumption and debt.

The government has preferences over paths for aggregate consumption and do-

mestic inflation, x(t) = (c(t), π(t)) ∈ R2
+, given by:

U =

ˆ ∞
0

e−ρtv(x(t))dt =

ˆ ∞
0

e−ρt (u (c(t))− ψ(π(t))) dt. (U)

Utility over consumption satisfies the usual conditions, u′ > 0, u′′ < 0, limc↓0 u
′(c) =

∞, plus an upper bound restriction: limc→∞ u(c) ≤ ū < ∞ needed for technical

reasons. Power utility with a relative risk aversion coefficient greater than one satisfies

these conditions.

The disutility of inflation is represented by the function ψ : R+ → R+, with ψ′ > 0

and ψ′′ ≥ 0. In the benchmark model discussed in the text, we let ψ(π) = ψ0π, ψ0 ≥ 0,

and we restrict the choice of inflation to the interval π ∈ [0, π̄]. In Appendix B, we

consider a strictly convex cost of inflation, and use numerical examples to explore

the robustness of the benchmark’s analytical results. While we do not micro-found

preferences over inflation, a natural interpretation is that ψ is a reduced-form proxy

for a reputational cost to the government of inflation. A large cost represents an

environment in which the government has a relative strong incentive for (or commit-
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ment to) low inflation. The reputational cost can be augmented by real distortions

to a good that enters separably from tradable consumption. Allowing for inflation

to reduce the (instantaneous) tradable endowment as well would pose no difficulties;

for example, replacing y(t) = y with y(t) = (1 − π(t))y. The cost ψ is not state

contingent; in particular, the costs of inflation will be independent of the behavior of

creditors, although we discuss implications of relaxing this assumption in section 4.5.

The government chooses x = (c, π) from a compact set X ≡ [0, c̄] × [0, π̄]. The

upper bound on consumption c̄ is assumed to never bind.2 The upper bound on π

will bind in the benchmark case of linear cost, and as we shall see it implies a discrete

choice between low (zero) inflation or high (π̄) inflation. Let X denote admissible

controls: the set of measurable functions of time x : [0,∞)→ X.

2.2 Bond Contracts and Budget Sets

The government can trade a nominal non-contingent bond. Let Bt denote the out-

standing stock of nominal bonds, and let bt ≡ Bt/Pt denote the real value of outstand-

ing debt. The government contracts with competitive (atomistic) risk-neutral lenders

who face an opportunity cost in real terms given by the world interest rate r? = ρ.

Bonds carry an instantaneous interest rate that is conditional on the outstanding stock

of real debt. In particular, we consider stationary equilibria in which the government

faces a time-invariant interest rate schedule r : Ω→ R+, where Ω = [0, bmax] denotes

the domain of real debt permissible in equilibrium. The debt domain is characterized

by a maximal debt level bmax ∈ R+ above which the government cannot borrow. The

value of bmax will be an equilibrium object. For expositional convenience, we put a

lower bound on debt of zero; the analysis is not sensitive to allowing the economy

to accumulate a finite amount of foreign assets. As the government is the unique

supplier of its own bonds, it understands the effects of its borrowing decisions on the

cost as given by the entire function r.

The evolution of nominal debt is governed by:

Ḃ(t) = P (t)(c(t)− y) + r(b(t))B(t).

Dividing through by P (t) and using the fact that Ḃ/B = ḃ/b+ π gives the dynamics

2As we discuss in the next sub-section, we impose and upper bound on assets (or lower bound
on debt), so an upper bound on consumption does not become an issue. The upper bound on assets
is not restrictive for the analysis.
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for real debt:

ḃ(t) = f(b(t), x(t)) ≡ c(t)− y + (r(b(t))− π(t))b(t). (1)

We are interested in environments in which r may not be a continuous function.

For technical reasons, we need to place some restrictions on the nature of these dis-

continuities.

Definition 1. Given a domain Ω = [0, bmax], the set R(Ω) consists of functions

r : Ω→ R+ such that

[(i)]

1. r is bounded and lower semi-continuous on Ω;

2. r is such that y− (r(b)− π̄)b ≥M > 0 for all b ∈ Ω; that is, it is always feasible

to have ḃ = 0 with strictly positive consumption;

3. r contains a finite number of discontinuities denoted by b1, b2, ..., bN with 0 <

bn < bn+1 < bmax for all n ∈ {1, 2, .., , N − 1};

4. r is Lipschitz continuous on sets Ωn for all n ∈ 0, ..., N , where Ω0 ≡ (0, b1);

Ωn ≡ (bn, bn+1) for n = 1, ..., N − 1; and ΩN = (bN , bmax).3

Denote the closure of Ωn as Ωn, and note that Ω = ∪Nn=0Ωn.

The debt-dynamics equation (1) implies that b(t) is always continuous; however,

f(b, x) = c + (r(b) − π)b − y may not be continuous in b. For r ∈ R(Ω), continuous

policies imply continuous dynamics except at finitely many points {b1, ..., bN}, at

which the dynamics can change discretely.

2.3 Limited Commitment

The government cannot commit to repay loans or commit to a path of inflation. At

any moment, it can default and pay zero, or partially inflate away the real value of

debt. As noted above, we model the cost of inflation with the loss in utility ψ(π). We

model outright default as follows. If the government fails to repay outstanding debt

and interest at a point in time, it has a grace period of length δ in which to repay the

bonds plus accumulated interest.During this period, it cannot issue new debt, but is

also not subject to the full sanctions of default. If it repays within the grace period,

3That is, for all n, there exists Kn < ∞ such that r(b′) − r(b′′) ≤ Kn|b′ − b′′| for all (b′, b′′) ∈
Ωn × Ωn.
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the government regains access to bond markets with no additional repercussions. If

the government fails to make full repayment within the grace period, it is punished

by permanent loss of access to international debt markets plus a potential loss to

output. We let V represent the continuation value after a default, which we assume

is independent of the amount of debt at the time of default.4 We assume that V >

u(0)/ρ, so the country prefers default to consuming zero forever. We discuss the

payoff to utilizing the grace period in section 4.1.

Modeling limited commitment in this manner has a number of advantages. First,

by separating the costs of inflation from the costs of outright default, we can consider

environments in which the two are treated differently by market participants. It may

be the case that the equilibrium costs or “punishment” of inflation may be greater or

less than the that of outright default, and the model encompasses both alternatives.

For example, the high inflation of the 1970s in the US and Western Europe eroded

the real value of outstanding bonds; however, the governments did not negotiate

with creditors or lose access to bond markets, as typically occurs in cases of outright

default. A short-coming of the analysis is we do not present a micro-founded theory

of why these costs may differ in practice; we take them as primitives, and explore the

consequences for debt and inflation dynamics.

Second, in practice countries can exit default status by repaying outstanding debt

in full. We proxy this with a grace period, which allows the government to avoid

the full punishment of default by repaying outstanding principal and interest. As we

shall see, in equilibrium the government will opt for full repayment only if the payoff

to doing so weakly dominates V . In this manner, a grace period allows a tractable,

continuous time representation such that it is feasible to repay a positive stock of

debt even if creditors do not purchase new bonds.5As with the costs of inflation and

default, we treat δ as a primitive of the environment.

3 No-Crisis Equilibria

We first characterize equilibria in which creditors can commit to (or coordinate on)

rolling over debt. In particular, we assume that the government can always trade

4For concreteness, we can define V = u((1 − τ)y)/ρ as the autarky utility, where τ ∈ [0, 1)
represents the reduction in endowment in autarky.

5An alternative formulation is the one in He and Xiong (2012) in which each debt contract has
a random maturity, which generates an explicit iid sequencing of creditors at any point in time.
Long-maturity debt poses tractability issues in solving for an equilibrium given that the interest
rate charged to new debt is a function of the inflation policy function over the bond’s maturity
horizon.
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bonds at an equilibrium schedule r with no risk of a rollover crisis. There remains

limited commitment on the part of the government with regard to inflation and de-

fault.

We solve the government’s problem under the restriction that default (with or

without subsequent repayment) is never optimal on the domain Ω. This is not re-

strictive in equilibrium.In particular, in the deterministic environment under consid-

eration in this section, the equilibrium restricts debt to a domain on which it is never

optimal to default.

For a given Ω; r ∈ R(Ω); and for all b0 ∈ Ω; the government’s value function can

be written as

V (b0) = max
x∈X

ˆ ∞
0

e−ρtv(x(t))dt, (P1)

subject to:

b(t) = b0 +

ˆ t

0

f(b(t), x(t))dt, and

b(t) ∈ Ω for all t.

Before discussing the solution to the government’s problem, we define our equi-

librium concept:

Definition 2. A Recursive Competitive Equilibrium is an interval Ω = [0, bmax], an

interest rate schedule r : Ω → R+, a consumption policy function C : Ω → [0, c̄], an

inflation policy function Π : Ω→ [0, π̄], and a value function V : Ω→ R such that

[(i)]

1. r ∈ R(Ω);

2. given (Ω, r) and for any b0 ∈ Ω, the policy functions combined with the law of

motion (1) and initial debt b0 generate sequences x(t) = (C(b(t)),Π(b(t))) that

solve the government’s problem (P1) and deliver V (b0) as a value function;

3. given C(b) and Π(b), bond holders earn a real return r?, that is, r(b) = r?+Π(b)

for all b ∈ Ω; and

4. V (b0) ≥ V for all b ∈ Ω.

The final condition imposes that default is never optimal in equilibrium. In the

absence of rollover risk, there is no uncertainty and any default would be inconsistent
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with the lender’s break-even requirement. As we shall see, condition (iv) imposes a

restriction on the domain of equilibrium debt levels.6

We solve the government’s problem using the continuous time Bellman equation.

Let H(b, q) : Ω× R→ R be defined as

H(b, q) = max
x∈X
{v(x) + qf(b, x)}

= max
(c,π)∈X

{u(c)− ψ(π) + q (c− y + (r(b)− π)b)} .

Note that H is defined conditional on an equilibrium interest rate schedule, which we

suppress in the notation. The Hamilton-Jacobi-Bellman equation is:

ρV (b)−H(b, V ′(b)) = 0. (HJB)

We proceed to show that the value function is the unique solution to (HJB). There

are two complications. The first is that r may not be continuous, so the HJB may be

discontinuous in b. The second is that the value function may not be differentiable at

all points, so its derivative, V ′(b), may not exist. Nevertheless, the value function is

the unique solution to (HJB) in the viscosity sense. We use the definition of viscosity

introduced by Bressan and Hong (2007) for discontinuous dynamics adapted to our

environment:

Definition 3. For a given Ω and r ∈ R(Ω), a viscosity solution to (HJB) is a

continuous function w ∈ C0(Ω) such that for any ϕ ∈ C1(Ω) we have:

[(i)]

1. If w − ϕ achieves a local maximum at b, then

ρw −H(b′, ϕ′(b)) ≤ 0;

2. If the restriction of w − ϕ to Ωn achieves a local minimum at b ∈ Ωn, then

ρw −H(b′, ϕ′(b)) ≥ 0,

where Ωn is defined in definition 1;

3. For b ∈ {bmin, b1, b2, ..., bmax}, ρv(b) ≥ maxπ∈{0,π̄}
u(y−(r(b)−π)b)−ψ(π)

ρ
.

6It must also be the case that the government never prefers to default and then repay within the
grace period. We postpone that discussion until section 4.1.
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We make a few remarks on these conditions. First, suppose V is differentiable

at b and r is continuous at b. In this case, a local max or min of V − ϕ implies

V ′(b) = ϕ′(b). The first two conditions then are equivalent to the classical Bellman

equation ρV −H(b, V ′(b)) = 0.

Now suppose that r is continuous at b, so that b is in the open set Ωn, but V has

a kink at b. As H(b, q) is convex in q, a few steps show the two conditions imply

that V cannot have a concave kink at b.7 That is, V is semi-convex at b, which

means the smooth portions of the function can be either concave or convex, but the

non-differentiable point must be convex.8

Finally, suppose that r jumps discretely up at bn for some n ∈ {1, . . . , N}. By

lower semi-continuity, r(bn) = lim infb→bn r(b) < limb↓bn r(b). Condition (ii) then

states that the value function is weakly less than if the government could carry over

the low interest rate into the neighboring domain. This provides a natural upper

bound on the the value function at points of discontinuity in r(b).

The government always has the option of staying put at the point of discontinuity,

and thus the value function is weakly greater than the steady state value function,

which is condition (iii). Note that condition (ii) only refers to the open sets on which

the interest rate is continuous, and thus condition (iii) provides the relevant floor on

the value function at the boundary points.

The following states that we can confine attention to the viscosity solution of

(HJB):

Proposition 1. For a given Ω and r ∈ R(Ω), the government’s value function is the

unique bounded Lipschitz-continuous viscosity solution to (HJB).

We now characterize equilibria in the no-rollover-crisis environment. We first state

that r(b) takes two values, r? and r? + π̄, and is monotone in b.

Lemma 1. In any no-crisis equilibrium, r(b) ∈ {0, π̄} and is non-decreasing for all

b ∈ Ω. In particular, in any equilibrium there exists a bπ such that r(b) = r? for

b ∈ [bmin, bπ] and r(b) = r? + π̄ for b ∈ (bπ, bmax].

7In particular, suppose V (b) has a concave kink at b ∈ Ωn; that is, V ′(b−) > V ′(b+). This implies
that we can find ϕ such that V − ϕ has a maximum at b, with ϕ′(b) ∈ [V ′(b+), V ′(b−)]. Using the
fact that V is smooth as we approach from the left or right of b, continuity of V and r implies that
ρV (b) = H(b, V ′(b−)) = H(b, V ′(b+)). The fact that V ′(b−) > V ′(b+) implies that c(b−) > c(b+)
and π(b−) ≤ π(b−), which in turn implies that H2(b, V ′(b−)) > 0 > H2(b, V ′(b+)). Strict convexity
of H(b, q) in q then implies that H(b, q) < H(b, V ′(b−)) = ρV (b) for q ∈ (V ′(b+), V ′(b−)), which
violates condition (i).

8More precisely, w(b) is semi-concave (with linear modulus) on Ωn if there exists C ≥ 0 such that
w(b+ h) + w(b− h)− 2w(b) ≤ C|h|2, for all b, h ∈ R such that [b− h, b+ h] ∈ Ωi. A function w(b)
is semi-convex if −w(b) is semi-concave.
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The intuition for monotonicity follows from the fact that the incentives to inflate

increase with b. The one subtlety is that the incentives to inflate decrease with con-

sumption, and so the result also relies on the fact that consumption is non-increasing

in b, which is established below. Given that the costs of inflation are linear, there

may exist a debt level in which the government is indifferent between inflation rates.

Nevertheless, the requirement that r(b) be lower semi-continuous implies that the

point of indifference produces zero inflation.

The threshold bπ characterizes the equilibrium r(b). We can define an interval

which contains all possible bπ:

Definition 4. The values b̄π, bπ are given by the unique solutions to:

ψ0 = u′(y − r?b̄π)b̄π, and ψ0 = u′(Cπ(bπ))bπ

where b 7→ Cπ(b) ∈ (0, y − r?b) is defined uniquely by9

u(y − r?b)− u(Cπ(b)) + ψ0π̄ + u′(Cπ(b))(Cπ(b)− y + r?b) = 0. (2)

Note that both b̄π and bπ exist and are such that y/r? > b̄π > bπ > 0. The

threshold b̄π relates to the optimal decision of the government regarding inflation

when it faces the interest rate r? and consumes c = y − r?b. As r? = ρ, there is no

incentive to save or borrow if it has zero inflation and faces the interest r?. From

(HJB), and using the envelope condition −V ′(b) = u′(c) = u′(y−r?b), low inflation is

optimal as long as u′(y−r?b)π̄b−ψ0π̄ ≥ 0. For b > b̄π, this condition is violated. The

threshold bπ and the associated function Cπ relate to the solution of (HJB) when the

interest rate is r? + π̄. In particular, as discussed below, Cπ(bπ) denotes the optimal

consumption assuming high inflation in the neighborhood above bπ, and the condition

defining bπ ensures that optimal consumption is consistent with high inflation.

The following proposition characterizes the set of recursive competitive equilibria

and the associated equilibrium objects:

Proposition 2. All recursive competitive equilibria can be indexed by bπ ∈ [bπ, b̄π]

and are characterized as follows. For a given bπ, define the following extended value

9To see that Cπ(b) exists, fix b and consider the function G(c) = u(y−r?b)−u(c)+ψ(π̄)+u′(c)(c−
y+r?b), which is the left hand side of (2). Note that G′(c) > 0 for c < y−r?b, G(y−r?b) = ψ(π̄) > 0,
and limc↓0G(c) < 0 by the condition that limc↓0 u

′(c)→∞.
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function V̂ : (−∞, y/r?)→ R,

V̂ (b) =


u(y−r?b)

ρ
if b ≤ bπ

V̂ (bπ)− u′(Cπ(bπ))(b− bπ) if b ∈ (bπ, b
∗]

u(y−r?b)−ψ0π̄
ρ

if b ∈ (b∗, y/ρ),

where b∗ = (y − Cπ(bπ))/r?. Define b̄ = max{b ≤ y/r? |V ≤ v̂(b)}. Then for any

bmax ≤ b̄ and bmin ∈ R−, define Ω = (bmin, bmax], and the following constitutes a

recursive equilibrium:

[(i)]

1. The interest rate schedule r : Ω→ {r?, r? + π̄} defined by

r(b) =

r? if b ≤ bπ

r? + π̄ if b ∈ (bπ, bmax];

2. The value function V : Ω→ R defined by V (b) = V̂ (b) for b ∈ Ω;

3. The consumption policy function C : Ω→ R+ defined by

C(b) =

y − r?b if b ≤ bπ or b ≥ b?

Cπ(bπ) if b ∈ (bπ, b
?); and

4. The inflation policy function Π : Ω→ {0, π̄} defined by:

Π(b) =

0 if b ≤ bπ

π̄ if b ∈ (bπ, b̄].

Proposition 2 characterizes the set of possible equilibria, in which each equilibrium

is indexed by the value of bπ. That is, each equilibrium corresponds to an interest rate

function which has a jump at bπ. If bπ ≥ b̄, then inflation is zero for the entire domain

Ω as default is preferable to the consequences of inflation. More generally, each value

bπ ∈ [bπ, bπ] ∩ Ω specifies a distinct equilibrium with an interest rate function that

jumps up at bπ.

To gain some intuition for the nature of the equilibrium, note that the function

V̂ in the proposition consists of three segments. For b ≤ bπ, V̂ (b) is the steady-state

value function with low inflation when the government faces a low interest rate. As

12



noted above, low inflation is the best response to r = r? for b ≤ b̄π, given this value

function. Moreover, this value function and c = y − r?b satisfies (HJB) for b < bπ.

Similarly, the final segment of V̂ is the steady-state value function with high inflation

when the government faces a high interest rate. This function satisfies (HJB) for

b > bπ. These two functions are labelled V1 and V3, respectively, in figure 1. While

the segments satisfy (HJB) locally, they are not a viscosity solution over the entire

domain Ω. This is due to the fact that they are not equal bπ, and so stitching V1 and

V3 together is not continuous. Note that viscosity condition (i) implies that V1 is an

upper bound on the value function in the neighborhood of bπ.

The difference at bπ is equal to the discounted cost of inflation ψ0π̄
ρ

. In the neighbor-

hood above bπ, the government’s optimal response to the jump in the interest rate is

to reduce debt to bπ, and not to remain in the high-inflation zone indefinitely. It there-

fore will consume less than the steady state consumption level y−(r(b)−π̄)b = y−r?b.
Given the value function at bπ, we can solve for optimal consumption from (HJB).

The consumption that satisfies (HJB) at V̂ (bπ) is given by Cπ(bπ), introduced in def-

inition 4, which uses the envelope condition −V̂ ′(b+
π ) = limb↓bπ u

′(C(b)) = u′(Cπ(bπ)).

Note that V̂ ′(b−π ) 6= V̂ ′(b+
π ), so the value function has a kink at bπ. This kink reflects

that consumption equals y − r?b to the left of bπ, but is strictly lower to the right

given the incentive to save. To ensure that this consumption is indeed the solution

to (HJB) at bπ, high inflation must be optimal. This is the case if ψ0 < u′(Cπ(bπ))b

for b > bπ, which motivates the definition of bπ in definition 4.

As r? = ρ, there is no incentive to vary consumption while the government saves.

That is, the desire to save is in response to the discontinuity in the interest rate at

bπ, not because the current (real) interest rate is high relative to impatience. Thus

C(b) = Cπ(bπ) over the domain of active savings, and then jumps to y − r?bπ at bπ.

This is depicted as the horizontal segment of the consumption policy function depicted

in figure 1 panel (c). The domain of active savings extends to b∗, at which point

y − Cπ(bπ)b∗ = 0, and consumption is equal to the steady state consumption level.

At this level of debt, the government is indifferent to saving towards bπ or remaining

at that debt level forever. From the envelope condition, −V̂ ′(b) = u′(Cπ(bπ)) for

b ∈ (bπ, b
∗); that is, the slope of the value function is constant over this region. This

is represented by the linear portion V2(b) depicted in figure 1. Note that V2 is tangent

to V3 at b∗, as by definition Cπ(bπ) is the steady state consumption at b∗.
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Figure 1: Government’s Solution with No Crisis
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3.1 Comparative Statics

We are interested in how debt dynamics depend on the inflationary regime. Towards

this goal, consider an increase in the cost of inflation ψ0 to ψ′0 > ψ0. To characterize

what happens to the set of monotone equilibria, note that the expressions in definition

4 imply that bπ and b̄π increase. Let b′π and b̄′π denote the new thresholds, respectively.

First consider bπ ∈ [b′π, b̄π]; that is, a point of discontinuity that is consistent with

equilibrium for both ψ0 and ψ′0. The low-inflation steady state value function remain

unaffected by the increase in ψ0, while the high-inflation steady state value function

shifts down in a parallel fashion by the amount
(ψ′

0−ψ0)π̄

ρ
. From the expression for Cπ

in definition 4, Cπ(bπ) declines, which means a higher savings rate and steeper slope

associated with the linear portion of the value function. The decline in Cπ implies that

b∗ = (y−Cπ(bπ))/r? increases as well, so the domain for the linear portion increases.

The steeper slope and larger domain for the linear segment is consistent with the shift

down and strict concavity of the high-inflation steady state value function. The new

value function is strictly below the original for all b > bπ. For a given value of V , this

implies that the amount of debt that can be sustained has decreased (as long as b̄ is

higher than bπ). This is shown in panel (a) of Figure 2.

Consider now what happens to the equilibrium indexed by bπ = bπ. The fact that

bπ < b′π implies that a discontinuity at bπ is no longer consistent with equilibrium

at the increased cost of inflation ψ′0. In panel (b) of figure 2 we contrast the value

function for an initial equilibrium bπ = bπ with a new equilibrium bπ = b′π. The region

(bπ, b
′
π] shifts from being a high-interest rate zone to a low-interest rate zone. The new

optimal policy of low inflation in this zone implies higher welfare, as the government

avoids the costs of inflation. That is, the value function is now higher in that region,

and by continuity will be higher even at debt levels in which the interest rate jumps

up. This reflects the increased proximity to the low-inflation zone. However, given

that the linear portion of the value function has a steeper slope under ψ′0, eventually

the new value function intersects the original one from above (see panel (b) of figure

2). Note that depending on the level of V , the borrowing limit b̄ can shift up or down.

A similar analysis holds for bπ ∈ (b̄π, b̄
′
π]. Discontinuities at b̄′π ≥ bπ > b̄π were not

consistent with equilibrium under the original ψ, but now become supportable under

ψ′0. This opens a larger potential domain for low interest rates.

The implication for savings of an increase in ψ is therefore mixed. In panel (a),

the savings rate is always weakly greater when ψ0 is higher, and strictly so for the

range (bπ, b
∗′). In panel (b), when bπ shifts up as a result of the increase in ψ0, there

is a region (bπ, b
′
π) in which the low-ψ economy is saving while the high-ψ economy
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Figure 2: The Role of Inflation Commitment Absent a Crisis: Increase in ψ
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is not. This reflects that inflation rate is higher in this region for the low-ψ economy,

and savings is the method to regain commitment to a low inflation rate. As we let

ψ0 go to infinity, the low inflation zone covers the entire space, and savings is zero

everywhere. In this limiting case, a strong commitment to low inflation is consistent

with weakly higher steady state debt levels and a higher maximal debt limit.

4 Equilibria with Rollover Crises

The preceding analysis constructed equilibria in which bonds were risk free. We

now consider equilibria in which investors refuse to purchase new bonds and the

government defaults in equilibrium. This links the preceding analysis of nominal

bonds with Cole and Kehoe (2000)’s real-bond analysis of self-fulfilling crises and

allows us to explore the role of inflation credibility in the vulnerability to debt crises.

Recall that bonds mature at every instant. If investors refuse to roll over outstand-

ing bonds, the government will be unable to repay the debt immediately. However,

the government has the option to repay within the grace period δ to avoid the full pun-

ishment of default. We first characterize the sub-problem of a government that enters

the default state but repays the debt within the grace period. We then characterize

the government’s full problem and characterize equilibria with rollover crises.
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4.1 The Grace-Period Problem

To set notation, let W (b0, r0) denote the government’s value at the start of the grace

period with outstanding real bonds b0 carrying a nominal interest rate r0. We re-

normalize time to zero at the start of the grace period for convenience. To avoid

permanent default, the government is obligated to repay the nominal balance on or

before date δ, with interest accruing over the grace period at the original contracted

rate r0. We impose the pari passu condition that all bond holders have equal standing;

that is, the government cannot default on a subset of bonds, while repaying the

remaining bondholders. Therefore, the relevant state variable is the entire stock of

outstanding debt at the time the government enters the grace period.

The function W (b0, r0) is the solution to the following problem:

W (b0, r0) = max
x∈X

ˆ δ

0

e−ρtv(x(t))dt+ e−ρδV (0), (3)

subject to :

ḃ(t) = c(t) + (r0 − π(t))b(t)− y

b(0) = b0, b(δ) = 0, ḃ(t) ≤ −π(t)b(t).

(4)

where for the grace-period problem the controls x and admissible set X refer to

measurable functions [0, δ] → X. The V (0) in the objective function represents

the equilibrium value of returning to the markets with zero debt (which is to be

determined below in equilibrium) at the end of the grace period. Note that if the

government repays before the end of the grace period, it could exit default sooner.

However, as it has no incentive to borrow again once b = 0, it is not restrictive to

impose no new debt for the entire grace period. The final constraint, ḃ(t) ≤ −π(t)b(t)

is equivalent to the constraint of no new nominal bonds, Ḃ(t) ≤ 0.

The grace period problem is a simple finite-horizon optimization with a terminal

condition for the state variable. We do not discuss the solution in depth, but highlight

a few key implications. An important feature of (3) is that W (b0, r0) is strictly

decreasing in both arguments. Moreover, for a given value of V (0), W is decreasing

in ψ0, and strictly decreasing if positive inflation is chosen for a non-negligible fraction

of the grace period. In order to repay its debt quickly, the government has an incentive

to inflate away a portion of the outstanding debt. The cost of doing so is governed

by ψ0.

Regarding a piece of unfinished business left over from the no-crisis analysis, with
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W in hand we can state explicitly why the government would never choose to enter

default in the non-crisis equilibria discussed in the previous section. In particular,

the government could always mimic the grace period policy in equilibrium. The one

caveat is that r0 is held constant in the grace period, while the equilibrium interest

rate varies with b outside of default. However, as debt is strictly decreasing and r(b)

must be monotone in any no-crisis equilibrium, this caveat works against choosing to

default.

4.2 Rollover Crises

If investors do not roll over outstanding bonds, the government will be forced to

default, but may decide to repay within the grace period to avoid V . If such an

event occurs at time t, then the government will repay within the grace period if and

only if W (bt, rt) ≥ V . The weak inequality assumes that the government repays if

indifferent.

We assume that a rollover crisis is an equilibrium possibility only if W (bt, rt) <

V . This equilibrium selection assumption is motivated as follows. Suppose that

lenders call in their bonds and the government repays within the grace period. The

outstanding bonds would carry a positive price in a secondary market and individual

lenders would be willing to purchase new bonds at the margin from the government at

a positive price. Indeed, the face value of the bonds will be paid in full. It is an artifact

of continuous time that a rollover crisis induces (temporary) default in a region of

the state space in which the government is willing to honor all nominal obligations

within the specified interval of time. Such crises would not survive in discrete-time

equilibria. In particular, a grace period of δ = 1 in a discrete time formulation with

one-period bonds would rule out all such crises (as in Cole and Kehoe (2000)). We

avoid such artificial outcomes through the equilibrium selection assumption.

On the other hand, a rollover crisis when W (bt, rt) < V has a natural interpreta-

tion. If this inequality holds and all other investors refuse to roll over their bonds, an

individual lender would have no incentive to extend new credit to the government.

Assuming each lender is infinitesimal, such new loans would not change the govern-

ment’s default decision. Moreover, as the government would not repay this new debt,

such lending would not be challenged by outstanding bondholders. Such crises would

survive in a discrete-time formulation.

Similar to Cole and Kehoe (2000) we assume that, as long as W (bt, r(bt)) < V , a

rollover crisis occurs with a Poisson arrival probability equal to λ. The value of λ will
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be taken as a primitive in the definition of an equilibrium below, as is δ, the grace

period. We can define an indicator function for the region in which outright default

is preferable to repayment within the grace period:

Definition 5. Let I : R2 → {0, 1} be defined as follows:

I(b0, r0) =

1 if W (b0, r0) < V

0 otherwise

The Poisson probability of a crisis at time t can then be expressed as λI(bt, rt).

Given an equilibrium r(b), we shall refer to the set {b ∈ Ω|I(b, r(b)) = 1} as the

“crisis zone,” and its complement in Ω as the “safe zone.”

4.3 The Government’s Problem

We now state the problem of the government when not in default. As in the

no-crisis equilibrium of section 3, we assume the government faces a bond-market

equilibrium characterized by domain Ω and a r ∈ R(Ω), as well as the parameters

δ and λ defining the duration of the grace period and the Poisson probability bonds

are called conditional on I(bt, r(bt)) = 1. Let T ∈ (0,∞] denote the first time loans

are called (i.e., a rollover crisis occurs). From the government’s and an individual

creditor’s perspective, T is a random variable with a distribution that depends on

the path of the state variable. In particular, Pr(T ≤ τ) = 1− e−λ
´ τ
0 I(b(t),r(b(t)))dt. The

realization of T is public information and it is the only uncertainty in the model. The

government’s problem is:

V (b0) = max
x∈X

{ˆ ∞
0

e−λ
´ t
0 I(b(s),r(b(s))ds−ρtv(x(t))dt (P2)

+λV

ˆ ∞
0

e−λ
´ t
0 I(b(s),r(b(s)))ds−ρtdt

}
subject to:

b(t) = b0 +

ˆ t

0

f(b(t), x(t))dt and

b(t) ∈ Ω for all t.

As in the non-crisis case, we impose the equilibrium restriction on Ω that default is
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never optimal.10

The associated Bellman equation is:

(ρ+ λIb)V (b)− λIbV = maxx∈X {v(x)− V ′(b)f(b, x)} (HJB’)

= max
(c,π)∈X

{u(c)− ψ(π)− V ′(b) (c+ (r(b)− π)b− y)} ,

where Ib is shorthand for the crisis indicator I(b, r(b)). As in the no-crisis case, the

government’s value function is the unique solution to this equation:

Proposition 3. For a given Ω and r ∈ R(Ω), the government’s value function defined

in (P2) is the unique bounded Lipschitz-continuous viscosity solution to (HJB’).

4.4 Crisis Equilibrium

We can now state the definition of equilibrium with crisis:

Definition 6. A Recursive Competitive Equilibrium with Crisis is an interval Ω =

[bmin, bmax], an interest rate schedule r, a consumption policy function C : Ω→ [0, c̄],

an inflation policy function Π : Ω→ [0, π̄], and a value function V : Ω→ R such that

[(i)]

1. r ∈ R(Ω);

2. given (Ω, r) and for any b0 ∈ Ω, the policy functions combined with the law of

motion (1) and initial debt b0 generate sequences x(t) = (C(b(t)),Π(b(t))) that

solve the government’s problem (P2) and deliver V (b0) as a value function;

3. given C(b) and Π(b), bond holders earn a real return r?, that is, r(b) = r? +

Π(b) + λI(b, r(b)) for all b ∈ Ω; and

4. V (b0) ≥ V for all b ∈ Ω.

Note that when λ = 0 this equilibrium corresponds to the equilibrium in Definition

2.

As in section 3, we can restrict attention to equilibria in which r(b) takes discrete

values:

Lemma 2. In any equilibrium with crisis, r(b) ∈ {r?, r? + π̄, r? + λ, r? + π̄ + λ} for

all b ∈ Ω.

10That is, V (b) ≥ max〈V ,W (b, r(b))〉 for all b ∈ Ω will be satisfied in any equilibrium.
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In contrast to the non-crisis case in the previous section, we can construct non-

monotone equilibria. In particular, r(b) need not be monotonic in the crisis zone.We

restrict attention to monotone equilibria; that is, equilibria in which r(b) is non-

decreasing. As W is strictly decreasing in both arguments, monotonicity in r(b)

ensures that I(b, r(b)) is non-decreasing as well, and the safe zone can be defined as

an interval [bmin, bλ] for some bλ ∈ R++. This threshold for the safe zone can be

characterized as follows. Define bλ and bλ by:

Definition 7. Let

bλ ≡ sup

{
b ≤ (1− e−r?δ)y

ρ

∣∣∣∣W (b, r? + π̄) ≥ V

}
; and

bλ ≡ sup

{
b ≤ (1− e−r?δ)y

ρe−π̄δ

∣∣∣∣W (b, r?) ≥ V

}
.

These two thresholds correspond to the maximal debt the government is willing to

repay within the grace period if the interest rate is r? + π̄ and r?, respectively. From

the government’s problem described in section 4.1, we have bλ < bλ. This follows

from the fact that W is strictly decreasing in both arguments. As we shall see, the

equilibrium threshold for a rollover crisis bλ ∈ [bλ, bλ], the exact value within this

interval being determined by optimal inflation.

We now turn to two thresholds that determine the optimal inflation policy. We know

from the analysis of section 3 that there is an indeterminacy regarding the threshold

for inflation, bπ. We consider equilibria in which the low inflation zone is as large

as possible. In the non-crisis equilibria, the maximum threshold is b̄π from definition

4, which is the maximal debt consistent with zero inflation when the government is

offered an interest rate of r?. With the possibility of a rollover crisis, we introduce

a second threshold, b̃π. This threshold concerns the best response when the interest

rate is r?+λ. As we shall see, and consistent with the no-crisis analysis, an increase in

the interest rate from r? to r? + λ provides an incentive to save and a corresponding

incentive to inflate. We define the inflation threshold b̃π to be consistent with a

discontinuity in r at bλ; we shall see that this is the relevant threshold in equilibrium.

Specifically,

Definition 8. Let b̃π be defined as:

b̃π =

{
ψ0

u′(cλ)
if cλ ≤ y − (r?+λ)ψ0

u′(cλ)
ψ0

u′(y−(r?+λ)b̃π)
otherwise,

21



where cλ ∈ (0, y − (r? + λ)bλ) is defined uniquely by

(ρ+ λ)u(y − r?bλ)
ρ

= u(cλ)− u′(cλ)(cλ − y + r?bλ) + λV .

The consumption cλ satisfies (HJB’) as we approach bλ from above if V (bλ) =

u(y− r?bλ)/ρ, r(b) = r? +λ and π = 0. At this consumption level, π = 0 is optimal if

ψ0 ≥ u′(cλ)b. If b > (y − cλ)/(r? + λ), then the government would prefer the steady-

state consumption y − (r? + λ)b to cλ, hence the second line in the expression for b̃π.

The threshold b̃π is the maximum debt when there is the possibility of a crisis and

yet the government opts for low inflation. Note that b̃π < b̄π, as cλ < y− (r?+λ)bλ <

y − r?bλ, where the last term is the steady-state consumption when r(b) = r?.

The equilibrium will depend on the relative magnitudes of these four thresholds. In

particular, the thresholds define the maximum debt levels consistent with no crisis

and/or low inflation, and so will be useful in defining the greatest domain for low

interest rates.11Before characterizing the equilibria in full, we discuss their general

properties regarding inflation and vulnerability to rollover crises.

Any monotone equilibrium r(b) will be characterized by {bπ, bλ} that determine

the edge of the low-inflation and safe zones, respectively. From the above discussion,

bπ ∈ [b̃π, b̄π] and bλ ∈ [bλ, bλ]. Figure 3 presents the four possible configurations

for the thresholds. Each panel depicts the crisis cutoffs {bλ, bλ} and the inflation

cutoffs {b̃π, b̄π}. While we know bλ < bλ and b̃π < bπ, the magnitude of the inflation

thresholds relative to the crisis thresholds depends on parameters. The four panels

of figure 3 depict four possible cases.

Case 1 is depicted in panel (a). In this case, ψ0 is low and so bπ = b̄π < bλ. In case

1, inflation is high for part of the safe zone. The relevant crisis threshold is therefore

bλ = bλ. That is, the crisis threshold is determined by W (b, r? + π̄), as inflation is

high at the relevant debt level.

Recall that the inflation cutoffs are strictly increasing in ψ0 and that the crisis

thresholds are weakly decreasing (and strictly decreasing if inflation is optimal in the

grace-period problem). As ψ0 increase, the inflation thresholds shift right, and the

crisis thresholds (at least weakly) shift left, which corresponds to the movement from

panel (a) to panel (b) in the figure. Once bλ < b̄π, r(b) = r? at bλ. Therefore, the

threshold bλ is not relevant. However, inflation jumps at bπ = b̄π. If bλ < b̄π, then

11 In section 3 we also considered bπ, the smallest domain for a low interest rate. As creditors
are indifferent and the government prefers a low interest rate, the maximal domain is weakly Pareto
superior. We focus in this section on these upper-bound thresholds, tracing out the Pareto-dominant
equilibrium interest rate function, conditional on parameters.
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Figure 3: Thresholds for Inflation and Crisis
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the associated jump in the interest rate is sufficient to generate crises. In panel (b),

we depict the case bλ < bπ < bλ, and so this jump at b̄π = bπ = bλ defines the crisis

zone. This is case (2).

For higher ψ0, b̄π > bλ. At bλ, a crisis becomes possible even if π = 0. In panel

(c), bλ = bλ defines the crisis zone. Moreover, the fact that bλ > b̃π implies that the

optimal response to being in the crisis zone involves inflation. Therefore bλ = bπ also

defines the inflation zone (case 3). However, if ψ0 is large enough, b̃π > bλ, and then

inflation is high only for b > b̃π = bπ, which is case (4) in panel (d).

The four thresholds as functions of the parameter ψ0 are depicted in figure 4. The

portions in bold refer to the equilibrium threshold for crisis b (panel (a)) and inflation

bπ (panel (b)). As noted above, the crisis thresholds are (weakly) decreasing in ψ0

with bλ < bλ, and the inflation thresholds are strictlty increasing in ψ0, with b̃π < b̄π.

There are three values of ψ0 that are of interest:

Definition 9. Define ψ1 as the cost of inflation such that b̄π = bλ; define ψ2 as the

cost of inflation such that b̄π = bλ; and define ψ3 as the cost of inflation such that
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Figure 4: Thresholds as a Function of Inflation Commitment

b̄π

b̃πbλ

bλ

ψ∗

0 ψ1 ψ2 ψ3 ψ0

bλ

(a) b as a Function of ψ0

b̄π

b̃π

bλ

bλ

0 ψ1 ψ2 ψ3 ψ0

bπ

(b) bπ as a Function of ψ0

24



b̃π = bλ.

Note that ψ1 < ψ2 < ψ3. These three values divide the parameter space into four

regions. The next four propositions characterize the equilibria in the four possible

cases. As the propositions share many similarities, we redefine notation when conve-

nient. After each proposition, we discuss the characteristics of the equilibrium before

moving to the next case.

Case 1: ψ0 ∈ [0, ψ1]

We now characterize equilibria for ψ0 < ψ1, which relates to panel (a) of figure 3:

Proposition 4. Suppose b̄π ≤ bλ (that is, ψ0 ∈ [0, ψ1]). Define cπ = Cπ(b̄π), where

Cπ(b) is as in definition 4. Define b∗π = (y − cπ)/r?. For b ≤ bλ, define V̂ (b) by12

V̂ (b) =


u(y−r?b)

ρ
if b ≤ b̄π

u(y−r?b̄π)
ρ

)− u′(cπ))(b− b̄π) if b ∈ (b̄π,min〈b∗, bλ〉)
u(y−r?b)−ψ0π̄

ρ
if b ∈ [b∗, bλ],

Define cλ ∈ (0, y − (r? + λ)bλ) as the solution to

(ρ+ λ)V̂ (bλ) = u(cλ)− ψ0π̄ − u′(cλ)(cλ + (r? + λ)bλ − y) + λV .

Let b∗λ = (y − cλ)/(r? + λ). For b > bλ, define V̂ (b) by

V̂ (b) =

V (bλ)− u′(cλ)(b− bλ) if b ∈ (bλ, b
∗
λ)

u(y−(r?+λ)b)−ψ0π̄
ρ+λ

+ λ
ρ+λ

V if b ≥ b∗λ.

Define bmax = max{b ≤ y/(r? + λ)|V ≤ V̂ (b)}. Then define Ω = [bmin, bmax] for

bmin ∈ R−, and the following constitutes a recursive equilibrium with crisis parameter

λ:

[(i)]

12In defining V̂ in each proposition, for notational ease we do not include the restrictions on debt
that ensure consumption is non-negative. As we later truncate V̂ to a domain on which consumption
is positive, this extended domain is not relevant to the equilibrium characterization.
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1. The interest rate schedule r : Ω→ {r?, r? + π̄, r? + π̄ + λ} defined by

r(b) =


r? if b ∈ [bmin, b̄π] ∩ Ω

r? + π̄ if b ∈ (b̄π, bλ] ∩ Ω

r? + π̄ + λ if b ∈ (bλ, bmax] ∩ Ω;

2. The value function V : Ω→ R defined by V (b) = V̂ (b) for b ∈ Ω;

3. The consumption policy function C : Ω→ R+ defined by

C(b) =



y − r?b if b ∈ [bmin, b̄π] ∩ Ω

cπ if b ∈ (bπ,min〈b∗, bλ〉] ∩ Ω

y − r?b if b ∈ (b∗, bλ] ∩ Ω

cλ if b ∈ (bλ, b
∗
λ] ∩ Ω

y − (r? + λ)b if b ∈ (b∗λ, bmax] ∩ Ω;

4. The inflation policy function Π : Ω→ {0, π̄} defined by:

Π(b) =

0 if ∈ b ∈ [bmin, b̄π] ∩ Ω

π̄ if b ∈ (b̄π, bmax] ∩ Ω.

The equilibrium is depicted in figure 5. In the case of b̄π < bλ, the government

has an incentive to inflate in a region in which there is no probability of a crisis,

reflecting the low level of inflationary commitment. This implies that in the region

b ≤ bλ, the analysis is the same as in section 3. For low debt, the government does not

inflate and enjoys steady-state utility. This is the first segment of the value function

depicted in figure 5. Low inflation is no longer optimal for b > b̄π, and inflation

and the interest rate respond accordingly. As in the no-crisis case of section 3, this

jump in inflation and the corresponding increase in the interest rate provides an

incentive to save. In the neighborhood above b̄π, consumption is constant at cπ as the

economy saves towards this threshold, with consumption satisfying the corresponding

Bellman equation. If the distance between b̄π and bλ is large enough (which is not

the case depicted in figure 5), there may be a high-inflation/no-crisis region where

the government sets ḃ = 0 (i.e., (b∗, bλ]). Given the high debt levels and the low

consumption, the government’s optimal policy is to inflate, rationalizing the jump in
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Figure 5: Case 1: Crisis Equilibrium if ψ0 ∈ [0, ψ1]
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the interest rate as an equilibrium.

At debt greater than bλ, the economy is vulnerable to a rollover crisis. The interest

rate jumps again to r?+ π̄+λ. This provides the government with a greater incentive

to save, and reflects the kink at bλ, after which the value function declines more

rapidly. The corresponding consumption level is cλ < cπ, which satisfies the Bellman

equation at bλ. Note that consumption is discretely lower at bλ, so inflation is weakly

greater, verifying that π̄ is optimal in the crisis zone as well. The equilibrium behavior

of the government therefore is to save in a neighborhood above bλ to eliminate the

possibility of a crisis as well as reduce inflation; at bλ, it may continue to save at a

slower rate in order to reduce inflation, eventually reaching b̄π.

Case 2: ψ0 ∈ (ψ1, ψ2]

Proposition 5. Suppose b̄π ∈ (bλ, bλ] (that is, ψ0 ∈ (ψ1, ψ2]). Define cπ ∈ (0, y−r?b̄π)

as the solution to

(ρ+ λ)u(y − r?b̄π)

ρ
= u(cπ)− ψ0π̄ − u′(cπ)(cπ + (r? + λ)b̄π − y) + λV .

Let b∗ = (y − cπ)/(r? + λ). Define V̂ (b) by

V̂ (b) =


u(y−r?b)

ρ
if b ≤ b̄π

u(y−r?b̄π)
ρ

− u′(cπ)(b− b̄π) if b ∈ (b̄π, b
∗)

u(y−(r?+λ)b)−ψ0π̄
ρ+λ

+ λ
ρ+λ

V if b ≥ b∗.

Define bmax = max{b ≤ y/(r? + λ)|V ≤ V̂ (b)}. Then define Ω = [bmin, bmax] for

bmin ∈ R−, and the following constitutes a Recursive Equilibrium with Crisis:

[(i)]

1. The interest rate schedule r : Ω→ {r?, r? + π̄ + λ} defined by

r(b) =

r? if b ∈ [bmin, b̄π] ∩ Ω

r? + π̄ + λ if b ∈ (b̄π, bmax] ∩ Ω;

2. The value function V : Ω→ R defined by V (b) = V̂ (b) for b ∈ Ω;
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3. The consumption policy function C : Ω→ R+ defined by

C(b) =


y − r?b if b ∈ [bmin, b̄π] ∩ Ω

cπ if b ∈ (b̄π, b
∗] ∩ Ω

y − (r? + λ)b if b ∈ (b∗, bmax] ∩ Ω;

4. The inflation policy function Π : Ω→ {0, π̄} defined by:

Π(b) =

0 if b ∈ [bmin, b̄π] ∩ Ω

π̄ if b ∈ (bπ, bmax] ∩ Ω.

In this case, the economy has low inflation at bλ, so this is not the relevant thresh-

old for the safe zone. However, inflation may be high in equilibrium at bλ, making this

an irrelevant threshold as well. We have instead that the equilibrium threshold for a

crisis is bλ = b̄π, so the jump in the interest rate due to high inflation creates room

for a crisis. The government’s value function is depicted in figure 6. The government

is at a low inflation steady state for b ≤ b̄π = bλ. At b ∈ (bλ, bλ + ε) for some ε > 0

the economy saves towards the low inflation/safe zone, setting π = π̄. Consumption

is cπ with π = π̄ and V (bλ) = u(y−r?bλ)
ρ

.

Case 3: ψ0 ∈ (ψ2, ψ3]

Proposition 6. Suppose b̄π > bλ ≥ b̃π (that is, ψ0 ∈ (ψ2, ψ3]). Define cλ ∈ (0, y −
r?bλ) as the solution to

(ρ+ λ)u(y − r?bλ)
ρ

= u(cλ)− ψ0π̄ − u′(cλ)(cλ + (r? + λ)bλ − y) + λV .

Let b∗ = (y − cλ)/(r? + λ). Define V̂ (b) by

V̂ (b) =


u(y−r?b)

ρ
if b ≤ bλ

u(y−r?bλ)
ρ

− u′(cλ)(b− bλ) if b ∈ (bλ, b
∗)

u(y−(r?+λ)b)−ψ0π̄
ρ+λ

+ λ
ρ+λ

V if b ≥ b∗.

Define bmax = max{b ≤ y/(r? + λ)|V ≤ V̂ (b)}. Then define Ω = [bmin, bmax] for

bmin ∈ R−, and the following constitutes a Recursive Equilibrium with Crisis:

[(i)]
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Figure 6: Case 2: Crisis Equilibrium if ψ0 ∈ (ψ1, ψ2]
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1. The interest rate schedule r : Ω→ {r?, r? + π̄ + λ} defined by

r(b) =

r? if b ∈ [bmin, bλ] ∩ Ω

r? + π̄ + λ if b ∈ (bλ, b̄] ∩ Ω;

2. The value function V : Ω→ R defined by V (b) = V̂ (b) for b ∈ Ω;

3. The consumption policy function C : Ω→ R+ defined by

C(b) =


y − r?b if b ∈ [bmin, bλ] ∩ Ω

cλ if b ∈ (bλ, b
∗] ∩ Ω

y − (r? + λ)b if b ∈ (b∗, bmax] ∩ Ω;

4. The inflation policy function Π : Ω→ {0, π̄} defined by:

Π(b) =

0 if b ∈ [bmin, bλ] ∩ Ω

π̄ if b ∈ (bλ, bmax] ∩ Ω.

This case is the mirror-image of case 2. In particular, the equilibrium crisis thresh-

old and the inflation threshold are equivalent, but the reason is reversed. That is,

the government increases inflation at bλ because it faces a rollover crisis and wishes

to reduce debt quickly. Therefore, the jump in interest rate due to a crisis leads the

government to high inflation, rather than vice versa, as was the situation in case 2.

Given this symmetry, the value function and policy functions in case 3 (figure 7) take

the same form as those in case 2.

Case 4: ψ0 > ψ3

Proposition 7. Suppose b̃π > bλ (that is, ψ > ψ3). Define cλ ∈ (0, y − (r? + λ)bλ)

as the unique solution to:

(ρ+ λ)u(y − r?bλ)
ρ

= u(cλ)− u′(cλ)(cλ − y + r?bλ) + λV .
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Figure 7: Case 3: Crisis Equilibrium if ψ ∈ (ψ2, ψ3]
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Define b∗λ = (y − cλ)/(r? + λ). For b ≤ b̃π, define V̂ (b) by

V̂ (b) =


u(y−r?b)

ρ
if b ≤ bλ

u(y−r?bλ)
ρ

− u′(cλ)(b− bλ) if b ∈ (bλ,min〈b∗λ, b̃π〉)
u(y−(r?+λ)b)

ρ+λ
+ λ

ρ+λ
V if b ∈ [b∗λ, b̃π].

Define cπ ∈ (0, y − (r? + λ)b̃π) as the solution to

(ρ+ λ)V̂ (b̃π) = u(cπ)− ψ0π̄ − u′(cπ)(cπ + (r? + λ)b̃π − y) + λV .

Let b∗π = (y − cπ)/(r? + λ). For b > b̃π, define V̂ (b) by

V̂ (b) =

V (b̃π)− u′(cπ)(b− b̃π) if b ∈ (b̃π, b
∗
π)

u(y−(r?+λ)b)−ψ0π̄
ρ+λ

+ λ
ρ+λ

V if b ≥ b∗π.

Define bmax = max{b ≤ y/(r? + λ)|V ≤ V̂ (b)}. Then define Ω = [bmin, bmax] for

bmin ∈ R−, and the following constitutes a Recursive Equilibrium with Crisis:

[(i)]

1. The interest rate schedule r : Ω→ {r?, r? + λ, r? + π̄ + λ} defined by

r(b) =


r? if b ∈ [bmin, bλ] ∩ Ω

r? + λ if b ∈ (bλ, b̃π] ∩ Ω

r? + π̄ + λ if b ∈ (b̃π, bmax] ∩ Ω;

2. The value function V : Ω→ R defined by V (b) = V̂ (b) for b ∈ Ω;

3. The consumption policy function C : Ω→ R+ defined by

C(b) =



y − r?b if b ∈ [bmin, bλ] ∩ Ω

cλ if b ∈ (bλ,min〈b∗λ, b̃π〉] ∩ Ω

y − (r? + λ)b if b ∈ (b∗λ, b̃π] ∩ Ω

cπ if b ∈ (b̃π, b
∗
π] ∩ Ω

y − (r? + λ)b if b ∈ (b∗π, bmax] ∩ Ω;
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4. The inflation policy function Π : Ω→ {0, π̄} defined by:

Π(b) =

0 if ∈ b ∈ [bmin, b̃π] ∩ Ω

π̄ if b ∈ (b̃π, bmax] ∩ Ω.

Case 4 is an environment with a strong commitment to low inflation. It is optimal

to set inflation to zero even in part of the crisis zone (b ∈ (bλ, b̃π]), despite the strong

incentive to reduce debt in the neighborhood of bλ. As ψ0 →∞, b̃π →∞, and there

is zero inflation over the entire domain Ω and in response to a rollover crisis. This

corresponds to the environment of Cole and Kehoe (2000) in which debt is real, both

on and off the equilibrium path. The value and policy functions depicted in figure 8

indicate the typical incentives to save at each increase in the interest rate, with the

value function being linear in these regions.

4.5 Inflation Commitment and Crisis Vulnerability

An important result depicted in figure 4 is that the extent of the safe zone is non-

monotonic in ψ0. In particular, the bold portion of panel (a) depicts the equilibrium

bλ; that is, the threshold for debt above which a rollover crisis can occur in equilibrium.

The safe zone for government is b ≤ bλ. For low costs of inflation, in the regions

surrounding ψ1, the safe zone is strictly smaller than if ψ0 = ∞. That is, issuing

nominal bonds enlarges the range in which a rollover crises is possible relative to

foreign currency bonds. The intuition is that the commitment to low inflation is so

weak that the country faces a high nominal interest rate. This reduces the usefulness

of inflating away debt in response to a crisis, as inflation is already priced in, making

default more attractive. If ψ0 is low but positive, the country still pays the cost

of inflation in responding to a crisis, but gets no benefit relative to the equilibrium

interest rate. This is why bλ is declining in ψ0 for ψ0 ∈ [0, ψ1]. The downward sloping

curve traces out bλ, which reflects that W is decreasing in ψ0 when the government

inflates in the grace period.13

The negative relationship between bλ and ψ0 is reversed once b̄π = bλ (i.e.,

ψ0 = ψ1). At this debt level, the safe zone starts expanding with inflation com-

13If the grace period is long enough and ψ0 high enough, the government may not inflate during
the grace period. In this parameter space, bλ and bλ have slope zero. Figure 4 depicts the case
in which the thresholds are decreasing at the points of intersection with the inflation cutoffs. The
crisis thresholds are strictly decreasing at ψ0 = 0, as inflation will always be optimal for low enough
costs. The eventual flattening out of the crisis thresholds as ψ0 → ∞ is implied as bλ converges to
the horizontal dashed line in panel (a).
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Figure 8: Case 4: Crisis Equilibrium if ψ0 > ψ3
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mitment. This reflects the fact that the temptation to inflate absent a crisis creates

the vulnerability to a crisis. The stronger the commitment to inflation in tranquil

periods, the less vulnerable the economy is to a rollover crisis. At some threshold

ψ∗, nominal bonds generate a larger safe zone. This is the happy medium in which

inflation is not high in normal times, but the option to increase inflation in response

to a crisis provides insurance. For ψ0 above ψ∗, therefore, the economy can approxi-

mate state-contingent inflation relatively well. The safe zone peaks when ψ0 = ψ3, at

which point the safe zone begins to shrink again. In this region, the costs of inflation

not only reduce inflation in tranquil periods, but also make responding to a rollover

crisis with inflation very costly. As ψ0 becomes very large, the cost of inflation is so

great that the government will not inflate even in a crisis. In the limit, the size of

the safe zone converges to that of ψ0 = 0, as in both cases the real value of bonds is

independent of the arrival of a crisis.

This non-monotonicity of the safe zone with respect to inflation commitment is not

due to the discreteness (or linear costs) of inflation choices. In numerical examples

with strictly convex costs of inflation, the non-monotonicity in regard to the costs

of inflation is verified. These simulations will be added in an appendix in a future

version.

Moreover, the depiction makes clear that the slopes of bλ and bλ depend on the

assumption that ψ0 is independent of the arrival of a crisis. However, b̄π depends on

the non-crisis ψ0. Therefore, even if bλ and bλ were independent of ψ0 (that is, they

depended on a crisis-specific cost of inflation), the fact remains that the equilibrium

interest rate determines whether bλ or bλ is the relevant threshold, and this depends

on the non-crisis ψ0 implicit in b̄π.

A second question is whether an economy is better off issuing nominal or real

debt. We depict two cases in figure 9. In each panel, the dashed line is the value

function for ψ0 =∞, which corresponds to issuing foreign currency bonds. The solid

line is the value from issuing nominal debt, where the two panels differ by the costs

of inflation. All lines coincide for low b as inflation is zero and there is no risk of a

crisis in this region.

Panel (a) is such that ψ0 ≤ ψ∗, so the safe zone is smaller with nominal bonds.

In particular, bπ, the point at which the economy begins inflating, is within the safe

zone. At this point, the nominal bond economy becomes worse off due to the inability

to deliver low inflation. At bλ, the economy becomes vulnerable to a rollover crisis,

while the crisis threshold is b′λ for the foreign currency bond scenario. The safe zone

is smaller with nominal bonds as debt carries with it the burden of inflation, making
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Figure 9: Government Welfare as a Function of Inflation Commitment
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default relatively attractive. In this case, the economy is always strictly better off

with foreign currency debt. The incentive to inflate is high in equilibrium, lowering

welfare without reducing the exposure to a rollover crisis. Most emerging markets rely

solely on foreign currency debt for international bond issues. The analysis rationalizes

this so-called “original sin” as the optimal response to a weak inflationary regime,

with or without self-fulfilling debt crises.

Panel (b) depicts a case in which ψ0 > ψ∗. That is, nominal bonds reduce the

exposure to a rollover crisis, but at the expense of higher equilibrium inflation for very

large debt levels. This makes nominal bonds optimal for intermediate stocks of debt,

but sub-optimal for high levels of debt. The closer ψ0 is to the peak-safe-zone level

ψ3, the greater the range for which domestic currency debt strictly dominates. Thus

governments that have a moderate degree of inflation commitment strictly prefer

domestic currency debt over a non-negligible interval of debt. For extremely high

levels of debt, the economy will inflate (and face a crisis), and so the commitment to

zero inflation in this region is preferable.

5 Conclusion

In this paper we explored the role inflation commitment plays in vulnerability to a

rollover crisis. We confirmed that for an intermediate level of inflationary commit-

ment, an economy is less vulnerable to a crisis with nominal bonds. The intermediate

37



commitment provides the missing state contingency, delivering low inflation in tran-

quil periods but high inflation in response to a crisis. Extreme commitment to low

inflation eliminates the option to inflate in a crisis. In the model, strong commit-

ment can be seen as equivalent to issuing foreign currency debt; such commitment

may also arise by being a small member of a monetary union subject to idiosyncratic

rollover risk. On the other hand, weak commitment to inflation renders an economy

more vulnerable to a rollover crisis if it issues domestic currency bonds. This ratio-

nalizes the exclusive issuance of foreign currency bonds to international investors by

governments with limited inflation credibility.
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Appendices

A Proofs

Under Construction: All proofs are preliminary.

A.1 Proof of Proposition 1

Proof. Our model is a particular case of the general environment studied by Bres-

san and Hong (2007) (henceforth, BH). The proof therefore involves ensuring the

hypotheses in BH are satisfied. We alter some of the BH notation to be consistent

with our text, and translate the minimization of cost problem considered by BH into

a maximization of utility. BH restrict attention to non-negative costs (non-positive

utility), which we incorporate by re-defining v(x) = v(x)− ū for all x ∈ X, where ū is

the upper bound on utility from consumption. BH consider the state space over the

entire real line. We extend our problem to this larger domain by assigning the steady

state utility to b < bmin and some utility u ≥ ρV for b > bmax, where u is chosen to

ensure continuity of the value function at bmax. On these extended domains, we as-

sume f(b, x) = 0 for all x = X, so there are no debt dynamics regardless of policy.We

choose u to ensure continuity of the value function at bmax. As these domains have

trivial decisions and dynamics, we do not explicitly discuss them in the verification

of BH’s hypotheses in what follows other than to include bmin and bmax as boundary

points of discontinuous dynamics.

BH decompose the state space (R in our case) into M < ∞ disjoint manifolds

(intervals in our case): R =M1∪M2∪...∪MM . In our environment, this corresponds

to the points of discontinuity {bmin, b1, ..., bN , bmax} as well as the intervening open

sets, (−∞, bmin), (bmin, b1), ..., (bmax,∞). These satisfy the BH conditions: if j 6= k,

thenMj ∩Mk = ∅; and ifMj ∩Mk 6= ∅, thenMj ∈Mk. Let i(b) denote the index

of the interval that contains b.

Following BH, define a subset of controls Xi ⊂ X for each interval Mi that

produce tangent trajectories. That is,

Xi ≡
{
x ∈ X

∣∣∣∣limh→0

infb′∈Mi
|b+ f(b, x)h− b′|

h
= 0 ,∀b ∈Mi

}
.

Let TMi
(b) denote the set of feasible tangent trajectories for b ∈Mi. For the open sets

between points of discontinuity, all admissible controls produce tangent trajectories,

and so Xi = X and TMi
(b) = [minx∈X f(b, x),maxx∈X f(b, x)]. For the boundaries,
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{bmin, b1, ..., bmax}, we have the steady state controls: Xi = {x|f(bn, x) = 0} if Mi =

{bn} and TMi
(bn) = {0}. BH consider the following sets. Define

F̂ (b) ≡
{

(h,w)
∣∣h = f(b, x), w ≤ v(b, x), x ∈ Xi(b)

}
⊂ R2.

This is the set of feasible tangent trajectories f(b, x), x ∈ Xi paired with the payoff

interval (−∞, v(b, x)]. For a point b, we consider the convex combinations of tangent

trajectories and associated utility in the neighborhood of b. In particular, let coS

denote the convex hull of a set S. Define

G(b) ≡
⋂
ε>0

co
{

(h, l) ∈ F̂ (b′) ||b′ − b| < ε
}
⊂ R2.

BH define the Hamilton-Jacobian-Bellman equation as:

ρV (b)− H̃(b, V ′(b)) = 0 (BH:HJB)

where H̃(b, q) ≡ sup
(h,w)∈G(b)

{w + qh} .

We now map the (BH:HJB) equation into our equation (HJB). Recall that

f∗(b, a) ≡ x− (r? + π)b− y + lim inf
b′→b

r(b′)b′.

Similarly, define

f ∗(b, a) ≡ x− (r? + π)b− y + lim sup
b′→b

r(b′)b′,

as the worst-case dynamics. Let H(b) ≡ [minx∈X f∗(b, x),maxx∈X f
∗(b, x)] as the

relevant interval of debt dynamics for x ∈ X. Given b, and for h ∈ H(b), define

Ŵ (h, b) = max
x∈X

v(b, x),

subject to f∗(b, a) ≤ h. Ŵ (h, b) represents the maximum utility of generating debt

dynamics less than or equal to h. The function h 7→ Ŵ (h, b) is non-decreasing and

concave. We also have:

G(b) =
{

(h,w)
∣∣∣h ∈ H(b), w ≤ Ŵ (h, b)

}
.
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Moreover, for q ≤ 0, we have

H̃(b, q) = sup
(h,w)∈G(b)

w + qh = max
x∈X

v(b, x) + qf∗(b, x) = H∗(b, q),

where H∗ was defined in (??). With this equivalence, the definition of a viscosity

solution given in the text corresponds to that used in BH.14

Given this mapping from our environment into that of BH, we now verify the BH

assumptions. The definition of the set R ensure that conditions H1 in BH hold on Ω,

and our extension to the entire real line also satisfies the conditions on the extended

domain. BH assumption H2 holds in our environment as the tangent trajectories are

either all trajectories (on the open sets of continuity) or the steady-state dynamics on

the points of discontinuity. Condition H3 in BH requires a weaker form of continuity

than Lipschitz continuity, so our requirement of Lipschitz continuity for the viscosity

solution satisfies this condition. ConditionH4 of BH requires that V (b) is globally

bounded. This is satisfied in our environment as ū
ρ
≥ V (b) ≥ V for all b. Finally,

equation (46) in BH requires that the flow utility function be Lipschitz continuous

with respect to b. As v(x) is independent of b in our environment, this is satisfied

trivially. Under these conditions, Corollary 1 in BH states that the value function is

the unique viscosity solution to (HJB) satisfying these regularity properties.

Proof of Lemma 1 and Proposition 2

We begin with the first claim in lemma 1:

Claim. In any equilibrium, r(b) ∈ {r?, r? + π̄}.

Proof. Suppose not. Then there exists an open set (b′, b′′) such that r(b) ∈ (r?, r? +

π̄) for all b ∈ (b1, b2). This follows from the lower semi-continuity requirement of

equilibrium r.15Equilibrium requires that Π(b) ∈ (0, π̄) for b ∈ (b′, b′′). As V is

Lipschitz continuous, it is differentiable almost everywhere. The optimization step in

the Hamilton-Jacobi-Bellman equation implies that −V ′(b)b = u′(c)b = ψ0 for almost

all b ∈ (b′, b′′). Therefore C(b) is increasing a.e. on (b′, b′′), which implies C(b) 6=
y − r?b a.e., which in turn implies that f(b, (C(b),Π(b))) 6= 0, a.e. for b ∈ (b′, b′′).

That is, debt and consumption are not constant over time outside a set of measure

14BH define the concept of a viscosity solution in the context of a cost minimization problem. We
redefine their definition to conform to a utility maximization problem.

15In particular, suppose the set A ≡ {b|r? < r(b) < r? + π̄} contained no open set; that is,
it consisted of a finite set of points {b1, b2, ..., bN}, then the set {b|r(b) > r?} would be closed,
contradicting lower semi-continuity.
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zero for b ∈ (b′, b′′). Recall as well that r(b) is continuous almost everywhere. For

some initial b ∈ (b′, b′′), we can thus find a non-negligible interval of time [0, τ ] such

that c(t) is not constant, r(b(t)) is continuous, but r(b(t)) − π(t) = ρ, a violation of

optimality. Therefore, the candidate r(b) cannot be an equilibrium.

The second part of lemma 1 concerns monotonicity:

Claim. All equilibria are monotone. That is, r(b) is non-decreasing in b.

Proof. We proceed by considering a non-monotone r(b), impose the equilibrium choice

of inflation implied by r(b), and solve for the government’s optimal consumption. We

then show that this generates a contradiction if r(b) is not monotone.

Consider a non-monotone r(b) with domain Ω. Specifically, let I ≡ {i|r(b) =

r? + π̄,∀b ∈ Ωi}, denote the intervals for which r(b) = r? + π̄. Equilibrium requires

that r(b) ∈ {r?, r? + π̄} for all b ∈ Ω. Lower-semicontinuity of r ∈ R implies that

high-interest domains are open sets. It is straightforward to show that Π(b) = 0 for

b ≤ 0 in any equilibrium, and so we can rule out 0 ∈ I. Therefore, any non-monotone

equilibria has 1 ∈ I, implying that I is the set of odd integers less than or equal to

N .

The proof proceeds by first characterizing the value function and consumption

policy function on Ωi, i ∈ I, imposing equilibrium conditions regarding the inflation

policy function. We then derive a contradiction regarding optimal inflation policy. Let

V denote our candidate equilibrium value function, and Π and C the corresponding

policy functions. We impose that Π(b) = π̄ for all b ∈ Ωi, i ∈ I, and that Π(b) = 0

otherwise. This is a requirement of equilibrium.

We construct a candidate V as follows. Let V (b) = u(y − r?b)/ρ for all b ∈ Ωj,

j /∈ I. That is, when r(b) = r? = ρ, the optimal consumption policy is to set ḃ = 0.

For i ∈ I, we construct the value function piecewise on the domain Ωi = (bi, bi+1). We

consider the case of i < N first; that is, intervals of high interest that do no include

the upper bound debt m. This case is depicted in figure A1.

Starting from the upper end point of (bi, bi+1), let c−i+1 > y − r?bi+1 solve

ρV (bi+1) = u(c−i+1)− ψ0π̄ − u′(c−i+1)
(
c−i+1 + r?bi+1 − y

)
.

The “−” reflects that we are considering a neighborhood to the left of bi+1. Note that

V (bi+1) is the low-interest, low-inflation steady state, and the HJB that defines c−i+1

imposes the equilibrium condition π = π̄. Define Vi+1(b) = V (bi+1)−u′(c−i+1)(b−bi+1)

for b ∈ [(y−c−i+1)/r?, bi+1) and Vi+1(b) = (u(y−r?b)−ψ0π̄)/ρ for b ∈ (bi, (y−c−i+1)/r?).
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Let Ci+1(b) be the consumption policy function associated with Vi+1. Note that by

construction c−i+1 satisfies the HJB at bi+1 with π = π̄. In particular, it is the solution

that implies borrowing towards the low-interest zone Ωi+1. This function is depicted

as Vi+1 in figure A1, panel (a), in the case that there is no steady state between bi

and bi+1. The consumption policy function c−i+1 is depicted as in panel (c).

Turning to the neighborhood above bi, let c+
i ∈ (0, y − r?bi) solve

ρV (bn) = u(c+
i )− ψ0π̄ − u′(c+

i )
(
c+
i + r?bi − y

)
.

The “+” reflects that this will be optimal consumption in the neighborhood above

bn. Define Vi(b) = V (bi) − u′(c−i )(b − bi) for b ∈ (bi, (y − c+
i )/r?] and Vi(b) = (u(y −

r?b)−ψ0π̄)/ρ for b ∈ ((y−c+
i )/r?, bi+1). Let Ci(b) be the consumption policy function

associated with Vi. Note that by construction c+
i satisfies the HJB at bi with π = π̄.

In particular, it is the solution that implies saving towards the low-interest zone Ωi−1.

(See Vi in figure A1 panel (a) and c+
1 in panel (c)).

Note that V ′i (b) < V ′i+1(b). Moreover, there exists b̃ ∈ Ωi such that Vi(b̃) =

Vi+1(b̃). To see this, note that Vi(bi) = u(y − r?bi)/ρ. Moreover for b ∈ Ωi,

V ′i (b) = −u′(Ci(b)) ≤ u′(y − r?b), as Ci(b) ≤ y − r?b, with the inequality strict

in the neighborhood of bi. This implies that Vi(bi+1) < V (bi+1) = Vi+1(bi+1). Sim-

ilarly, Ci+1(b) ≥ y − r?b for b ∈ Ωi. This implies that V ′i+1(b) ≥ u′(y − r?b), with

the inequality strict in the neighborhood of bi+1. As Vi+1(bi+1) = u(y− r?bi+1)/ρ, we

have that Vi+1(bi) < V (bi) = Vi(bi). By continuity, the two curves Vi and Vi+1 must

intersect in the interior of Ωi.

Our candidate value function becomes V (b) = Vi(b) for b ∈ (bi, b̃] and V (b) =

Vi+1(b) for b ∈ (b̃, bi+1). The consumption policy function is defined accordingly. We

can repeat these steps for all i ∈ I such that i < N . That is, for all high-interest

zones excluding (bN ,m], where m is the upper bound on equilibrium debt.

If N ∈ I, that is, the final segment (bN ,m] is also a high-interest rate zone, we

proceed as follows. c−N+1 is the solution to the HJB at b = m replacing V (m) with

(u(y − r?m) − ψ0π̄)/ρ, the high-inflation, high-interest steady state value function.

The segment vN+1(b) is constructed accordingly. The segment vN(b) is constructed

as before, by picking the saving solution to the HJB at b = bN . However, there

is no guarantee that vN(m) ≤ vN+1(m), as the latter is the high-inflation steady

state value function and it may be optimal to save towards bN from all b ∈ ΩN . If

vN(m) ≤ vN+1(m), there exists an intersection point b̃ and we proceed as before. If

not, then V (b) = vN(b) for all b ∈ (bN ,m].
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The value function V (b) so constructed is a viscosity solution to HJB,assuming

the policy function Π = r(b)−r? implied by equilibrium is indeed optimal. It is there-

fore the only possible value function consistent with equilibrium. The contradiction

arises as follows. Note that C(bi+1) = y − r?bi+1, for i ∈ I and i < N , consistent

with the low-interest, low-inflation steady state value at the end point of a high in-

flation zone. Optimality of inflation requires that u′(y − r?bi+1)bi+1 ≤ ψ0. However,

limb↑bi+1
C(b) = c−i+1 > y−r?bi+1, the latter inequality following from the definition of

c−i+1 as the borrowing solution to the HJB at bi+1. Optimality of high inflation as we

approach bi+1 from below requires that u′(c−i+1)bi+1 < ψ0. The combined implication

that ψ0 ≤ u′(y − r?bi+1)bi+1 < u′(c−i+1)bi+1 < ψ0 generates the contradiction.

The proof of proposition 2:

Proof. The proposition characterizes by construction all equilibria with bπ ∈ [bπ, bπ].

Equilibria for bπ outside this interval can be ruled out using the definition of the

intervals. In particular, equilibrium requires that Π(b) = r(b) − r?. Impose this

condition on the government’s problem and solve for optimal consumption. At bπ,

implied inflation is zero and r(b) = r? = ρ. The government’s optimal policy response

is to set C(bπ) = y − r?bπ, so that ḃ = 0 and V (bπ) = u(y − r?b)/ρ. We now check

whether consumption is consistent with implied inflation using the HJB equation at

bπ. Optimal consumption in the neighborhood above bπ is given by Cπ(bπ) from equa-

tion (2). If bπ < bπ, this consumption is inconsistent with high inflation, violating the

equilibrium requirement to the right of bπ. Conversely, if bπ > b̄π, then zero inflation

is inconsistent with the steady state consumption at bπ, violating the equilibrium

requirement that Π(bπ) = 0.

Proof of Proposition 3

Proof. The proof follows directly from Bressan and Hong (2007). See the proof of

Proposition 1 for details.

Proof of Lemma 2

Proof. The proof of this lemma is the same as the proof of the part of lemma 1.

Namely, Π(b) = {0, π̄}.

44



Appendix Figure A1: Government’s Solution with No Crisis: Non-Monotone r(b)
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Proofs of Propositions 4, 5, 6 and 7

Proof. These propositions follow by construction.

B Convex Inflation Costs
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