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Abstract

The aim of this paper is to investigate how the capacity of an
economic system to absorb shocks depends on the specific pattern of
interconnections established among economic agents. The key issue we
would like to analyze is the trade-off between the risk-sharing benefits
to firms of becoming more highly interconnected versus the large-scale
costs resulting from an increased risk exposure. We focus on two di-
mensions of the network structure. The size of the (disjoint) compo-
nents into which the network is divided, and the “relative density” of
connections within each component. We find that when the probability
distribution of the shocks exhibits “fat tails” components should be of
the minimum possible size. In the opposite case where the probability
distribution places high enough mass on small-sized shocks, the best
configuration involves having all firms arranged in a single component.
There are, however, intermediate conditions on the shock structure for
which similarly intermediate arrangements are optimal. We also find
that there is typically a conflict between optimality and pairwise sta-
bility, derived from the fact that those components that attain the best
size will block admitting new members from a smaller components.
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1 Introduction

Recent economic events have made it clear that looking at financial entities
in isolation gives an incomplete, and possibly very misleading, impression of
the potential impact of shocks to the financial system. The aim of this paper
is to investigate how the capacity of the system to absorb shocks depends on
the specific pattern of interconnections established among economic agents
– to fix ideas, we shall think of them as financial firms. The key issue we
would like to analyze is the trade-off between risk-sharing and contagion.
Or, to be more specific, we want to shed light on the extent to which the
risk-sharing benefits to firms of becoming more highly interconnected (which
provides some sort of insurance against moderate shocks) may be offset by
the large-scale costs resulting from an increased risk exposure (which, for
large shocks, could entail a large wave of induced bankruptcies).

We analyze a model in which there is a network consisting of N nodes,
each of them interpreted as a firm For simplicity, let us postulate that all of
them have the same level of assets and liabilities but a shock may individu-
ally hit a randomly selected firm. The effect of such a shock is to decrease
the income generated by its assets, thus possibly leading to the default of
the firm if the resulting income falls short of its liabilities. Now think of
the presence of a direct link between two firms as reflecting an exchange
of their originally held assets. This asset exchange generates patterns of
mutual exposure between firms, the magnitude of such exposure decreasing
with their network distance. Thus, when a shock hits a firm, all the firms
which are directly or indirectly linked to it become affected in proportion to
their exposure to that firm. In the end, therefore, the ‘network’ structure
determines how any given shock affects different firms and what is its overall
aggregate impact on the whole system.

In order to concentrate the analysis on our basic trade-off, insurance
versus contagion, we focus on two dimensions of the network structure. One
is the size of the (disjoint) components into which the network is divided, i.e.
the degree of segmentation of the system. The other concerns the “relative
density” of connections within each component, as measured by the fraction
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of nodes that lie at different network distances.
Network density is important because, as explained, different network

distances yield different degree of exposure. In this respect, our analysis
will largely focus on contrasting two polar cases: (i) completely connected
components where there is a direct link between any pair of firms in it; (ii)
partially connected components where firms are placed on an underlying
lattice (for simplicity, a one-dimensional ring) and each of them is directly
connected only to the firms that are adjacent to it. In the first case (com-
plete components), the mutual exposure between any pair of firms in the
same component is exactly the same. Instead, in the second case (lattice
components), the reciprocal exposure between two firms is heterogenous,
falling with lattice distance.

Once a shock hits the assets a particular firm, other firms connected
to it are affected and may even default. Specifically, this will happen for
any firm whose exposure to the shock (as measured by the fraction of its
currently held assets that are affected by it) exceeds the sum of firm’s capital
and liabilities. Under these conditions, a key concern is to identify the
architecture of the system that minimizes the expected number of defaults
in the system. This involves finding both the best degree of segmentation
as well as the optimal link density within each separate component. As
explained, the objective is to strike the best compromise between risk sharing
and contagion. Naturally, the maximum extent of risk sharing obtained
when all firms form part of a single and fully connected network. But this
configuration, of course, also yields the highest exposure to a large shock,
which could lead to the extensive default across the whole system. There
are two alternative (and in some cases complementary) ways of reducing
such exposure. One is by segmentation, which isolates the firms in each
component from any shock that might hit every other component. The
second one is reducing the density of connections in each component, which
buffers the network propagation along this component of any shock that hits
one of its firms.

The paper proposes a stylized model to study the problem under a fairly
general structure of shocks. Some of our results can be summarized as fol-
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lows. First we find that when the probability distribution of the shocks
exhibits “fat tails” (i.e. attributes a high mass to large shocks), the optimal
configuration involves a maximum degree of segmentation – that is, compo-
nents should be of the minimum possible size. This reflects a situation where
the priority is to minimize contagion. Instead, in the opposite case where
the probability distribution places high enough mass on small- and medium-
sized shocks, the best configuration involves having all firms arranged in a
single component. The aim in this case is to achieve the highest level of risk
sharing. There are, however, intermediate conditions on the shock structure
for which similarly intermediate arrangements are optimal, i.e. the optimal
degree of segmentation involves medium-sized components.

It is interesting to note that all of the former conclusions hold irrespec-
tively of whether components are assumed to have either of the two polar
network structures under consideration, i.e. complete or a lattice structures.
But, as explained, an analogous trade-off between risk-sharing and conta-
gion can be attained by impinging on network structure (or density). Indeed,
our second set of results explores this alternative route. Note that, when
a certain component is completely connected, the induced symmetry of the
configuration implies that once a shock hits any firm in it, either all other
members of the component go broke or none does. The potential advantage
of a lattice configuration is that firm exposure is not uniform but decays
with network distance. Thus, if shocks are of a suitable magnitude, only a
fraction of the firms may default while all would do if they were completely
connected. A first immediate consequence of this observation is that the
lattice structure induces and optimal degree of segmentation that is lower
(or, equivalently, a component size that is larger) than in the case of the
completely connected structure. But, more importantly, we also find that it
renders the lattice structure optimal (i.e. better than any segmentation in
complete components) when the shock structure displays certain features.
This happens, for example, when the shock distribution places a high mass
on a narrow range of large shocks as well as on a wide range of small and
medium size shocks. In this case, some intermediate segmentation in com-
ponents with a internal lattice structure attains the lowest expected number
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of defaults over all configurations under consideration.
The results described so far considers structures where all agents have

the same size. We also explore an extension with asymmetric agents, which
makes it natural to study asymmetric structures, such as a star, in which a
large firms is connected to a set of smaller firms, for whom the large firm is
their only direct connection. Some of our results, like the tradeoff between
risk sharing and contagion, extend to this framework, but new phenomena
appear. For example, in a star, the center can become a sort of firebreak

that prevents contagion to extend to all the spokes, and this can be useful
for some intermediate values of the large shock.

Finally, we also address the issue of whether the requirements for over-
all optimality are compatible with individual incentives to establish links.
Formally, we model those incentives through the notion of pairwise stabil-
ity, which is often used in the network literature. Restricting our attention
to the case where agents solely determine the degree of segmentation (for
they are completely connected to all members of their component), we find
that there is typically a conflict between optimality and pairwise stability.
This conflict derives from the fact that those components that attain the
best size (and thus minimize the default probability of their members), will
block admitting new members from a smaller components. But, as it turns
out, overall optimality requires that all agents face the same risk situation
– which, in particular, demands that all components be of identical size.

The rest of the paper is organized as follows. Section 2 summarizes the
related literature. Section 3 discusses the model: first a discrete version,
then its continuum idealization. Section 4 undertakes the analysis of op-
timal financial structures under a variety of different assumptions on the
underlying structure. Section 6 addresses network formation and explores
the tension between strategic stability and optimality. Finally, Section 7
concludes with a summary and an agenda for future research. For the sake
of smooth discussion, all formal proofs of our results are relegated to an
Appendix.
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2 Related Literature

The literature on financial contagion and systemic risk is diverse and growing
fast, so we shall only discuss at some length five representative papers. The
reader is referred to Allen and Babus (2009) for a recent survey.

Allen and Gale (2000) pioneered the study of the stability of intercon-
nected financial systems. They propose a model in the Diamond and Dybvig
(1983) tradition, with shocks affecting the aggregate preference for liquid-
ity of depositors. That is, some consumers may need liquidity before the
maturation of the assets in which banks have invested their deposits. This
creates a “liquidity” problem for banks, which try to address it by holding
deposits in (i.e. establishing directed links with) each other. In general, the
liquidity needs of connected banks are balanced, so that the excess demand
of liquidity for a bank is matched by an equal excess supply of another. But
there is a state of the world where liquidity demands cannot be balanced
and, therefore, at least one bank must go bankrupt. However, the over-
all effect in this case depends on the precise pattern of connections. They
find, specifically, that both for a completely connected structure as well for
a segmented one contagion can be averted. Instead, when all banks form
part of the same component but they are not completely connected through
direct links, all banks go bankrupt in the state with high liquidity needs.
Our model explores similar issues but has less structural detail than that of
Allen and Gale (2000). We study, however, a richer shock structure and a
wider set of network arrangements, which allows us to identify a significant
trade-off between risk sharing and contagion. This then allows us to carry
out some welfare and strategic analysis in which we find that, depending
on the nature of the shocks, different degrees of segmentation and network
density are required to either meet optimality criteria or agents’ networking
incentives.

Leitner (2005) studies a situation in which linkages are ways to create
commitment to share resources in a context where individual endowments
are uncertain. Agents can choose ex-ante whether to form part of a group.
In any group of agents, a profitable project requires that every agent in it
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invests some given amount of resources. Thus, the required total investment
grows proportionally with group size. Since there is uncertainty as to ex post
level of each individual’s endowment, the commitment to share resources can
expand the investment opportunities. But it can also shrink them. For it
may well happen that not enough aggregate resources materialize to invest
on the project but a smaller group could have undertaken successfully one
at a lower-scale. Some of the considerations arising in Leitner’s model are
analogous to those underlying ours. However, one important difference is
that risk sharing in his context is undertaken at the group level. Thus, in
the end, either the whole group succeeds in carrying out the investment or
it fails. No role is played, therefore, by the structure of interaction, as in
Allen and Gale (2000) or the present paper.

Lagunoff and Schreft (2001) study a dynamic model in which forward-
looking agents invest in projects that can be hit by shocks at an initial
date. Shocks are i.i.d. and when a shock hits a project, it project fails
and the agents who invested in it lose their investment. Each agent invests
her initial wealth in two risky projects that are shared with her neighbors
(thus the network structure is modelled as a collection of one-dimensional
rings). The failure of a project leads each of the two partners to discontinue
the other project she is involved in, and hence the shock spreads causing
further failures due to insufficient funding. If the economy were to consist
of a single ring, then any shock would eventually spread and all projects
would fail. But the number of rings is uncertain. The probability distribu-
tion governing the number of prevailing rings is assumed to be such that,
as the population gets large, the probability that a shock hits any one of
them grows. This in turn leads to an earlier date at which agents decide
to discontinue their investment, thus anticipating the onset of a “financial
crisis.” Lagunoff and Schreft (2001) is essentially concerned with the spread
of shocks throughout the economy, abstracting from some of the issues that
are central to this paper, namely, what is the best network structure that
minimizes the overall impact of shocks, or whether such optimal structure
is consistent with agents’ incentives to connect to others.

Nier et al. (2007) document a surge of empirical research on the im-
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portance of interbank linkages as a channel of contagion. They model the
banking system as a (random) network, where each node represents a bank
and each link (which has probability p) between nodes i and j represents a
loan of bank i to bank j. They study the consequences of an idiosyncratic
shock hitting one of the banks in the system and relate them to the struc-
tural parameters of the system. In their model, interbank connections have
two opposing effects. On the one hand, they may act as channels through
which shocks propagate to the whole system, but also as channels through
which shocks can be shared and absorbed by other bank’s net worth. They
show, through numerical simulations, that for very low levels of connectivity
(p close to zero), an increase in connectivity reduces system resilience. This
reflects the fact that, starting from low levels, an increase in connectivity ex-
pands the channels of shock transmission. But when connectivity is already
quite high, further increases in connectivity turn out to decrease contagion.
The reason is that when the system displays a high connectivity, further
links cannot play a major effect in stimulating an already high level of con-
tagion. But, instead, additional links can strengthen the ability of banks to
withstand shocks, which is the effect that dominates in this case. Although
Nier et al. (2007) is motivated by similar concerns to ours, their method-
ology is very different. They conduct the analysis on randomly generated
networks and rely on simulations to study the effect of different parameter
changes. In our case, we focus on regular networks and study analytically
both welfare and network formation issues.

Finally, we summarize the recent paper by Carletti et al. (2009), which
is probably the closest in approach and motivation to the present paper.
This paper considers a simple six-firm context where each individual firm
faces the need to find funds for its respective investment. Since these invest-
ments are risky, firms can gain from risk diversification, which is achieved
by exchanging shares with two other firms. Thus, in the language of net-
works, the situation can be described by a (regular) network where every
node/firm has two links. The analysis of focuses on comparing two differ-
ent arrangements: one where all six firms are arranged in a ring; another
where they are divided into two equal components. The most interesting
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issues arise when firms finance themselves through short term debt, which
has to be rolled over before the maturation of the investment project. At
the intermediate point in time where such debt roll-over has to take place a
signal arrives that indicates whether at least one firm will default. Investors
learn that information and have to decide whether to roll over the debt or
not, depending on what this signals reveals about the prospects that each
firm will default. Clearly, a negative signal will not carry the same implica-
tions in each network structure. In the segmented one, (full) asset exchange
introduces (perfect) correlation in the returns experienced by firms within
each component. Therefore, bad news in this case means that at least three
firms will default. In contrast, when the network is given by a single ring,
firms’ returns are not so well correlated and thus the arrival of such bad
news is associated to a lower expected number of defaults. The implication
is that, under some circumstances (specifically, if the costs of bankruptcy
are neither too high nor low), there will be complete liquidation for the seg-
mented case but rolling-over of debt in under the ring network. This means
that the ring is a better arrangement.

Does, however, the model by Carletti et al. (2009) allow for a trade-
off between the two structures analogous as the one we find in this paper?
There indeed is this trade-off if the bankruptcy costs are high. For, in this
case, the preeminent consideration must be to minimize the probability that
a negative signal arrives (in which case, because the high penalty involved,
investors decide to liquidate under both configurations). And, naturally,
that probability is lower when the externalization of risk is highest – or,
equivalently, when the idiosyncratic component of risk is lowest. This hap-
pens in the segmented case, where every firm in each component has the
same portfolio. Thus it is this configuration that is also optimal in this case.

3 The model

3.1 The Environment

We consider an environment with N firms and a continuum of small in-
vestors. At any given point in time, each firm has an investment opportunity
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of size I. The “normal” gross return on the project is R. But the project
can be subject to shocks. For simplicity, we assume that, only one of the N
projects is hit by a shock, and every one has the same probability of being
hit by the shock. The shock can be either “small” or “big”. With a small
shock, whose probability of hitting a particular individual is denoted πs the
gross return of the project takes a single value, Rs. Instead, if the shock is
severe, its magnitude is a random variable Rb with support on

[
R,R

]
. The

main idea here is that, with some probability, a shock may come that is
sufficiently large to lead to the bankruptcy of all firms that have some share
on the investment project in question. Summarizing, we can write the gross
unit return:

R̃ =


R with prob.1− πs − πb

Rs with prob.πs
Rb with prob.πb

The resources needed to undertake the project are financed with liabilities on
which it must pay a expected return r. The investors who lend the resources
to run the project receive, in case there is no default, an endogenous unit
return M. Total payoffs to the manager are thus:

Ui =


(R−M) Iwithprob.1− πs − πb

max {(Rs −M) I, 0} with prob.πs
max {(Rb −M) I, 0} with prob.πb

We assume

1. Rs < M and Rb < M so If a firm can draw only on its own resources,
it is unable to pay depositors (and hence it must default) when either
a shock s or b hits it. Since M is endogenous, we are sure this is true
if Rs < r and Rb < r.

Default entails a large cost B for firm (loss of future opportunities).
In order to diversify risks, firms are assumed to keep an α fraction of

their shares on their own investment project and exchange the remaining
fraction for shares held by other firms (we assume α ≥ 1/2, which may be
motivated by moral hazard considerations). This implies that each firm ends
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up owning a fraction (1 − α) of assets tailored to the investment projects
carried out by other firms. From the point of view of any given firm, this
amounts to reducing the impact of a shock on its investment project to the α
shares it retains, while becoming exposed to the shock that might hit other
projects through the portfolio of (1− α) shares held from other firms. The
induced pattern of asset exchange is formalized through a network, with a
link between two firms reflecting that there is some exchange of shares on
each other’s investment project.

As we mentioned before, in order to attract investors, every firm offers
to each of them a contract that pays an amount M whenever this is feasible,
i.e. when the firm escapes default. (For simplicity, we assume that, in the
case of default, liquidation costs leave no residual for investors.) Given the
investors’ outside opportunity, we must have M ≥ r, with the inequality
being strict if there is any risk of default. In order to avoid default when a
small shock hits the firm it must be the case that:

α (Rs −M) I + (1− α) (R−M) I > 0 (1)

α <
R−M
R−Rs

This implies that, if M is close enough to r (which, as we will see,
amounts to saying that the probability of a severe shock is sufficiently small),
any firm hit a moderate shock can avert its default. For, in this case, the
amount (1−α)(R−M) that the firm obtains through the shares it holds on
other firms’ assets is enough to cover the corresponding liability α (Rs −M).
With this assumption in mind, the only case in which an investor would
not recover the investment would be if a shock is sufficiently large that
the firm goes bankrupt. This will in general depend on the structure of
connections between firms, which we denote by Γ and the probability of a
large shock πb, so we denote the probability of bankruptcy p (Γ, πb) (and
clearly p (Γ, 0) = 0). Using this we can determine the equilibrium value of
M as follows:

(1− p (Γ, πb))M = r
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so that
lim
πb→0

M = r

The former considerations justify the implicit assumption that firms want
to connect to others by exchanging assets. For, by so doing, each of them
is able to prevent default when a moderate shock (presumed to be much
more frequent than severe ones) hits it. Of course, the flip side of being
part of a network is that connections can also lead the firm into default
if a severe enough shock hits another firm. This negative effect, however,
is an unavoidable by-product of the risk sharing afforded by the network
with respect to more frequent moderate shocks. Indeed, in a nutshell, the
primary aim of this paper can be regarded as understanding what network
configurations minimize those detrimental side effects of risk-sharing.

3.2 Financial Structures and payoffs

We have assumed that firms retain an α fraction of their shares in their own
investment while exchanging with other firms the complementary fraction
(1 − α). The way in which the latter is distributed among the remaining
N − 1 firms is determined by the financial network structure. A convenient
way of representing this structure is through a matrix A of the form

A =


α a12 · · · a1N

a21 α · · · a2N

...
...

. . .
...

aN1 aN2 · · · α

 (2)

where for each i, j (i 6= j), aij ≥ 0 denotes the fraction of shares in the
investment project run by firm i that is owned by firm j. Naturally, the
following adding-up constraint must be satisfied:∑

j 6=i
aij = 1− α (i = 1, 2...., N). (3)

Let Rb ≡ R − L. When a shock L hits the project run by some firm i, the
exposure to it of all firms in the system is given by AeiL, where ei is the i-th
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unit vector [0, .., 1, ..0]T . This implies that firm i will default in response to
such a shock when

α(R− L−M) +
∑
j 6=i

aij(R−M) < 0

αL > R−M.

While, for each k 6= i, firm k defaults whenever

α(R−M) + aki(R− L−M) +
∑
i6=j 6=k

akj(R−M) < 0

or
akiL > R−M

Suppose that, without loss of generality, we normalize R−M ≡ 1. Then, if
in view of (3) we use the notation aii ≡ α, then the condition for firm i to
default after a moderate shock hits firm j can be concisely written as

aij >
1
L
.

Notice that our assumption that α ≥ 1/2 implies that, if any firm j 6= i

defaults in response to a shock hitting the project run by i, so will happen
to firm i itself.

In what follows we assume that the objective of firms is to minimize the
probability of default, which given the symmetry we assume for all possible
structures of connections is equivalent to minimizing the number of defaults.
This assumption requires some justification to see when it is reasonable.
To see this let us look at the expected payoffs in a given period t. Let
Πs = nπs be the probability that an s shock hits some firm and Πb = nπb

the probability a b shock hits some firm. Then
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EU ti = (1−Πs −Πb) (R−M)

+Πs

 1
n

(α (Rs −M) + (1− α) (R−M)) +
1
n

n∑
j 6=i

(aij (Rs −M) + α (R−M))


+Πb

(
1
n

∫
α(R−L−M)+(1−α)(R−M)>0

(α (R− L−M) + (1− α) (R−M)) dF (Rb)

+
1
n

n∑
j 6=i

∫
aij(R−L−M)+α(R−M)>0

(aij (R− L−M) + α (R−M)) dF (Rb)



EU ti = (1−Πs −Πb) (R−M)

+πs ((Rs −M) + (1− α+ α (n− 1)) (R−M))

+πb

(∫
α(R−L−M)+(1−α)(R−M)>0

(α (R− L−M) + (1− α) (R−M)) dF (Rb)

+
n∑
j 6=i

∫
aij(R−L−M)+α(R−M)>0

(aij (R− L−M) + α (R−M)) dF (Rb)


The probability of survival for a firm i in period t is:

Pit = (1−Πb)+πb

Pr (α (R− L−M) + (1− α) (R−M) > 0) +
n∑
j 6=i

Pr (aij (R− L−M) + α (R−M) > 0)


Hence the expected value of a firm i is:

EVi =
∞∑
t=0

δt

(
t∏

s=0

Pis

)
EU ti

Given that Pit ≥ 1 − Πb and that EU ti ≥ (1−Πs −Πb) (R−M) it is
clear that

EVi ≥
∞∑
t=0

δt (1−Πb)
t (1−Πs −Πb) (R−M) =

(1−Πs −Πb) (R−M)
1− δ (1−Πb)

This means that:
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Remark 1 If Πb is sufficiently small and δ sufficiently close to zero, design-
ing the set of connections in order to maximize the probability of survival is,
in our framework, equivalent to maximizing expected profits.

Different financial structures are associated to different matrices A. In
this paper we shall focus our attention on structures varying along three
different dimensions: segmentation, connectivity, and securitization:

• By segmentation we mean the partition of the overall population into
equal groups of interconnected firms – or, in network terms, into equal-
sized components. The measure of such segmentation is given by the
number C of equal-sized components in which the population is di-
vided.

• By internal connectivity, we refer to the strength with which a typical
firm, is connected with other firms within a component. Firms can be
directly or indirectly connected. A direct connection can be achieved
by participating in the net revenue stream of other firms. An indi-
rect connection by participating in other firms which themselves have
participations in third parties. We describe in Appendix B a concrete
way to operationalize this, via a securitization process. The two main
requirements we will make on this process that are important in what
follows are that:

1. All firms in a component should be directly or indirectly related,
i.e. should have some extent of risk-sharing. For otherwise, unre-
lated firms effectively would belong to different “economic com-
ponents” and their inclusion in a common component is mislead-
ing. This amounts to requiring that aqij > 0 for all i, j, where aqij
stands for the ij-entry of the matrix Aq.

2. When all direct and indirect effects are taken into account, the
fraction of shares that each firm holds of its own investment
project should be the same across different configurations. For,
otherwise, the comparison of their performance would be vitiated
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by the consideration of, effectively, very heterogenous situations
– not just in terms of the network pattern but also in terms of
the effective risk externalization of their own investment project.
This requires that, for all i, aqii = 1−

∑
j 6=i a

q
ij = α.

3.3 The Continuum Approximation

To facilitate our analysis, we rely on a continuum version of the preceding
discrete setup that reproduces the main qualitative properties of the finite
model. There is a measure N of firms that face the risk of default upon the
arrival of a shock of uncertain magnitude. And, if a shock of magnitude L
arrives, it is taken to hit uniformly a subset of firms of measure one – thus
L is both the aggregate as well as the individual impact of the shock.

Two configurations are studied, which are to be conceived as the contin-
uum counterparts of the ring and complete interaction patterns considered
in the discrete setup. On the other hand, we also allow firms to be segmented
into a number of independent components. And, as advanced, the aim of
our analysis will be to understand what interaction structure and degree of
segmentation are optimal, in the sense of minimizing the expected number
of defaults (given a specific distribution governing the arrival of shocks).

Let us start by describing in detail the formalization of segmentation
and network structure in the present continuum setup. First, segmentation
is simply given by the number m of independent components in which the
whole population is partitioned. For any such m, the induced size of each
component is simply given by an equal measure of agents given by K + 1 ≡
N/m.

On the other hand, the pattern of connections prevailing in each com-
ponent is formalized through some real function f(·) that specifies the ex-
posure faced by the firms in it. To define this function, it is useful to index
(or arrange) firms in each component along a one-dimensional ring of length
K + 1. Then, the risk exposure of a firm i to the shock experienced by (the
investment project of) a firm j that is at ring distance d(i, j) is given by
f(d(i, j)) ∈ [0, 1], which is simply interpreted as the share of j’s investment
project in i’s portfolio.
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The complete and ring interaction structures are captured by alternative
such functions, fc, fr : [0,K/2] → [0, 1] respectively. For the complete
structure, the function fc(·) must embody the feature that, if shock hits
the component, all firms that are not directly affected by it bear the same
consequences. Thus it has to be a constant function given by

fc(d) ≡ 1− α
K

,

where the constant value 1−α
K is merely a consequence of the adding-up

constraint

2
∫ K/2

0
fc(d)dx = 1− α. (4)

This adding-up constraint merely reflects our assumption that each firm
retains an α share on its own investment project, while it externalizes the
remaining fraction. Thus, if a unit measure of firms in a component of size
K + 1 is hit by a shock, the measure K of agents not directly affected by it
must jointly absorb the fraction 1− α of it.

On the other hand, the continuum counterpart of the ring network must
capture the key feature that firms in the component are all interconnected
but at a strength that decays gradually with ring distance. This motivates
positing that the function fr(·) satisfies the following boundary constraints:

fr(0) = α (5)

fr(K/2) = 0 (6)

together with the adding-up constraint

2
∫ K/2

0
fr(x)dx = 1− α, (7)

that is the analogue of (4). Among the functions consistent with (5)-(6)
and (7), we want to consider those of the simplest form. This motivates our
restriction to piece-wise linear functions uniquely characterized by the point
(H,H) that lies in the bisectrix. This amounts to the following specification:

fr(d) = α− α−H
H d ford ≤ H

= HK
K−2H −

2H
K−2H d forH ≤ d ≤ K/2

= 0 ford ≥ K/2
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where H is to be determined as the unique value that satisfies (7). Thus,
from

2
∫ K/2

0
fr(x)dx = 2

(
(α−H)H

2
+H2 +

H (K/2−H)
2

)
= 2

(
αH

2
− H2

2
+H2 +

HK

4
− H2

2

)
we arrive at:

H

(
α+

K

2

)
= 1− α

hence
H =

2(1− α)
K + 2α

.

As explained, the function fr(.) must be monotonically decreasing. In
order for this requirement to hold, we need: (i) α ≥ H and (ii) K/2 ≥ H.
Hence we arrive at the following pair of parameter restrictions:

α ≥ 2(1− α)
K + 2α

K

2
≥ 2(1− α)

K + 2α

which will be maintained in what follows. They require that the component
size K not be too small relative to 1− α, the degree of risk externalization.
Note that for the more demanding case in this respect given by α = 1/2,
this condition simply requires that K ≥ 1, i.e. the component must involve
as many firms as those (of unit measure) that are hit by a shock. Finally,
also note that the function fr(.) is continuous at H, while it is concave or
convex depending on whether, respectively, K is small or large relative to
1− α – specifically, on whether K is smaller or larger than 2(1− α)/α.

Given the component size K and pattern of exposure described by the
function fc and fr, let us now determine the extent of default induced by
any given shock of magnitude L in each case. Recall the assumption that,
when such a shock arrives, it hits uniformly a unit mass of firms. Whether
these directly affected firms default or not is independent of the underlying
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configuration (i.e. component size or interaction structure). For they will
default in every case if, and only if,

L >
1
α
.

If this inequality is not met, then neither these firms will default nor any
other in the corresponding component. This simply follows from the fact
that α ≥ 1/2 and f(d) ≤ α for any d ≥ 0. But if those directly affected do
default, what happens to all the others in the component naturally depends
on the size K + 1 of the component and on its interaction pattern – i.e. on
whether fc or fr applies.

In the case where the interaction pattern is complete, the implied symme-
try leads to the following straightforward conclusion. All the firms indirectly
affected in the component (i.e. not directly hit by the shock) will jointly
default if

L >
K

1− α
whereas none of those will default otherwise. Thus, if we let gc(L) stand for
the number of defaults among those firms not directly hit by the shock, it
is given by the following step function:

gc(L) =

{
0 ifL ≤ K

1−α
K ifL > K

1−α

Of course, when the component is connected through a ring interaction
structure (as captured by fr), the conclusion is generally not so extreme.
For, in this case, whether a firm in the component defaults or not depends
on its ring distance to those firms that have been directly affected. The
threshold that marks the relevant “default range” is given by the distance
d̂ such that

fr(d̂)L = 1

so that a firm defaults if, and only if, its distance d to the set of firms directly
hit by the shock is such that

d < f−1
r (1/L).
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Under a ring structure, therefore, the effect of shocks on the number of
defaults is not extreme and discontinuous as under complete (direct) inter-
action. Rather, as the magnitude L of the shock increases, the number of
defaults among the firms indirectly affected by it grows gradually, as deter-
mined by the function gr(L) ≡ 2f−1

r (1/L). This function is easily seen to be
as follows (see an illustration in Figure ?? for K = 20 and α = 0.5):

gr(L) =


0 for L ≤ 1

α
2αH
α−H −

2H
α−H

1
L for 1

α ≤ L ≤
1
H

K − K−2H
H

1
L for L ≥ 1

H

. (8)

[[
Definition of the function gr

f(L,K,α) =


K
2 −

K−2H(K,α)
2H(K,α)

1
L if 1

L ≤ H(K,α)
αH(K,α)
α−H(K,α) −

H(K,α)
α−H(K,α)

1
L if H(K,α) ≤ 1

L ≤ α
0 if 1

L ≥ α
H(K,α) = 2(1−α)

K+2α

g(L) = f(L, 20, 0.5)
g(L)
]]fhFUX4.4996in3in0ptThe function g(L) specifying the expected num-

ber of firms that default in a component that displays a ring structure.Function
grPlot

4 Optimal Financial Structures

Given the continuum setup just described, our objective now is to address a
design question. We want, that is, to identify the optimal financial structures
that minimize the expected number of defaults. The key presumption here
is that averting default is the preeminent consideration of any firm – and, for
that matter, of a putative designer as well. Such “lexicographic” preferences
can be based on the large direct costs associated to default (e.g. asset
liquidation) or, as our preferred option, as a reflection of the long string of
future returns that default irreversibly forgoes.
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To find the optimal such structure amounts to determining the best ex-
tent of segmentation, as well as the pattern of connections to be had within
each component. Concerning segmentation, the issue is simply to the deter-
mine the optimal size of components. Concerning the connection pattern,
on the other hand, most of our discussion will focus on the comparison of
the two polar cases considered so far: the ring and the completely con-
nected structures. Later, however, we shall briefly discuss how matters can
be extended to other intermediate arrangements.

We organize the analysis in three parts. First, in Subsection 4.1 we
identify specially clear-cut conditions under which the optimal segmentation
is one of the two polar extremes, maximal or minimal, and the interaction
structure must be complete. Then, in Subsection 4.2 we extend the analysis
to contexts where intermediate levels of segmentation are optimal. Finally,
in Subsection 4.3 we identify scenarios where not only intermediate levels of
segmentation but also incomplete connectivity is optimal for some parameter
values.

4.1 Polarized segmentation

In order to get a sharp understanding of the forces at work, we shall start
by assuming that the magnitude of the shocks (the severe ones) is Pareto
distributed with support [1,∞) and density γ/Lγ+1. By modulating the
decay parameter γ, this formulation already allows the discussion of many
questions of interest – e.g. the contrast between fat or thin tails . But, as we
shall see, it yields the conclusion that the optimal degree of segmentation
is always extreme (i.e. maximal or minimal). Later, we shall extend our
analysis to other more general setups where a wider range of issues can be
studied and the conclusions for segmentation are not extreme.

Our aim here, therefore, is to find how γ affects the optimal degree of
segmentation (as described by K) for the ring and the completely connected
component. Then, we shall compare the two. First, if the interaction struc-
ture is that of the ring, the expected (additional)1 mass of firms defaulting

1Note that the firms hit directly by the shock default or not independently of the

arrangement. (This follows from our normalization constraint that has every firm holding
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when the system is divided into rings of size K + 1 is given by:

Dr(α,K, γ) = 2
∫∞

0 gr(L) dL

= 2
∫∞

1/H

(
K
2 −

K−2H
2H

1
L

) γ
Lγ+1 dL+ 2

∫ 1/H
1/α

(
αH
α−H −

H
α−H

1
L

)
γ

Lγ+1 dL

= 2γ
[
−K

2
1
γyγ + K−2H

2H
1

(γ+1)yγ+1

]∞
1/H

+ 2γ
[
− αH
α−H

1
γyγ + H

α−H
1

(γ+1)yγ+1

]1/H

1/α

which is in turn equal to

Dr(α,K, γ) = 2γ
[
K
2
Hγ

γ −
K−2H

2H
Hγ+1

(γ+1)

]
+2γ

[
− αH
α−H

Hγ

γ + H
α−H

Hγ+1

(γ+1) + αH
α−H

αγ

γ −
H

α−H
αγ+1

(γ+1)

]
= 2

[(
K
2

(
1

γ+1

)
+
(

2(1−α)
K+2α

γ
γ+1

)
− 2(1−α)

Kα+2α2−2(1−α)

(
α− γ

γ+1
2(1−α)
K+2α

))]
×
(

2(1−α)
K+2α

)γ
+ 2

[
2(1−α)

Kα+2α2−2(1−α)
αγ+1

(γ+1)

]
(9)

Studying the behavior of the derivative of the above expression w.r.t. K
we can derive the optimal degree of segmentation for the case of the ring.
For simplicity we focus our attention on the case α = 1/2; in this case, as
recalled above the minimal admissible value of K is 1 and its maximal value
is N − 1.

Proposition 2 Assume α = 1/2. When the shock has a Pareto distribu-
tion, the optimal degree of segmentation for the ring structure is maximal
(i.e. the optimal value of K is 1) if γ < 1 and is minimal (the optimal K is
N − 1) if γ > 1.

Proof : See the Appendix.

Thus, for the ring structure, when the distribution of the shocks exhibits
fat tails, defaults are minimized by minimizing links, that is, by breaking
the system into disjoint components of minimal size. Otherwise it is optimal
to have a single ring component.

the same share of its own investment project.) Thus, in comparing different structures, it

is enough to focus on how the shock affects those firms that are indirectly affected by it.
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Next, we turn to studying the analogous question for the case where the
components are completely connected. In this case, the expected mass of
firms defaulting when the components are of size K + 1 is:

Dc(α,K, γ) = K Pr
(
L ≥ K

1− α

)
= K

(
1− α
K

)γ
. (10)

Hence
∂Dc

∂K
= − (γ − 1)

(
1− α
K

)γ
which is monotone and readily implies that the optimal degree of segmen-
tation is the same as for the ring. Thus we have:

Proposition 3 When the shock has a Pareto distribution, the optimal de-
gree of segmentation for the completely connected structure is maximal if
γ < 1 and is minimal if γ > 1.

Finally, given γ, it remains to compare the expected mass of defaults
with the ring and the completely connected structures at the respective
optimal values ofK to identify the optimal structure. We will show (again by
focusing our attention for simplicity on α = 1/2) that the optimal structure
is always completely connected, be it at maximal or minimum segmentation.

Proposition 4 When the shock has a Pareto distribution, if N is large
enough, the completely connected structure (weakly) dominates the ring struc-
ture for all values of γ.

Proof : See the Appendix.

4.2 Intermediate Degrees of Segmentation

The findings in Propositions (2) and (3) show that there is indeed a trade-off
between risk sharing and contagion. When the distribution of the shocks
has the simple Pareto structure and thus it either has, or does not have, fat
tails, the optimal degree of segmentation is always extreme, i.e. maximal or
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minimal. We show next that this is no longer true when the distribution of
the shocks is less clear-cut, as for instance when it is given by the mixture
of two Pareto distributions.

Proposition 5 Suppose that the shock is distributed with probability p as
a Pareto distribution with parameter γ > 1 and with probability 1 − p as a
Pareto distribution with parameter γ′ < 1. Then, there are values p0 and p1

with 0 < p0 < p1 < 1 such that, if p ∈ (p0, p1), the optimal degree of segmen-
tation for a completely connected component is attained at an intermediate
level K∗, with1 < K∗ < N − 1.

Proof : See the Appendix.

The previous result establishes that an intermediate level of segmentation
is optimal among completely connected structures when the shock distribu-
tion involves a mixture with positive probabilities of displaying both fat and
thin tails. A similar conclusion arises when the components display a ring
structure, although a close-form solution in this case is hard to obtain. We
illustrate matters, therefore, through the following example.

Example 6 Set again α = 0.5, and let γ = 2, γ′ = 0.5 and p = 0.95.
For these values we find that for the ring structure the optimal degree of
segmentation obtains at K̂ = 7.76, at which value the expected mass of
defaults reaches its minimum given by 0.145. In contrast, we find that the
optimal degree of segmentation among completely connected components is
reached at K̃ = 5.65, and the expected mass of defaults is 0.126. This
implies that, if N is large enough (so that the population can be segmented
in equal-size components of almost any desired size), a completely connected
structure is optimal. It is interesting to observe that K̃ < K̂, which can
be heuristically understood as a reflection of the fact that, when arranged
optimally, ring components compensate for a connectivity lower than for
complete ones though an increase in size.
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4.3 Sparse Connections

Let us consider now the case where the shock is the mixture of a Pareto
distribution and a Dirac distribution, putting all the probability mass on a
single shock realization L̄, larger than (N − 1)/(1−α). Thus even if K is at
its maximum feasible size of N −1, such a shock will cause the default of all
firms in the component. In this case we show that the completely connected
structure component is dominated by the ring when 1 < γ < 2 and K̄ is
sufficiently large.

Proposition 7 Let α = 1/2 and assume that, with probability p, the shock
follows a Pareto distribution with parameter 2 > γ > 1 and with probability
1− p it equals L̄ = 2(N − 1) + 1. In addition, suppose that

(1− p)
p

< (γ − 1)
(

1
2(N − 1)

)γ
. (11)

Then, for all values of N such that

N > 1 +

(
1

2γ−1
+

1
2γ−1

1
(γ+1)

(γ − 1) 1
2γ+1 + 1

2γ −
1

γ+1

) 1
2−γ

(12)

the optimal financial structure is a single ring with no segmentation.

Proof : See the Appendix.

The previous result shows that there are simple shock scenarios where
the optimal arrangement includes taking advantage of the limited connectiv-
ity afforded by the ring structure. In those cases, the ring provides a suitable
compromise between the extent of risk sharing allowed by extensive indi-
rect connectivity (i.e. minimal segmentation) and the limits to wide risk
contagion resulting from sparse direct connection (i.e. a low node degree).

But, in general, such a trade-off between risk sharing and risk contagion
that is at the heart of our model can be captured though less polarized struc-
tures than the ring and complete ones. The next remark briefly discusses one
simple possibility in this respect, obtained by interpolating between those
two extremes in a way that is tractable and intuitive.
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Remark 8 Consider a piece-wise linear interpolation between the polar cases
of the ring and the complete network. This interpolation can be obtained by
linearly shifting the “kink” (x, y) along the segment joining the kinks in the
two polar cases, i.e. along the segment defined by the points (H,H) and
(K2 ,

1−α
K ). Since we want to maintain that all the firms in the component

are at least indirectly connected with each other – that is, all have a posi-
tive degree of exposure to each other – the horizontal intercept for all these
functions must continue to be at the point (K/2, 0). Thus, the only degree
of freedom left is the vertical intercept (0, z), which must be determined to
satisfy the adding-up constraint

2
∫ ∞

0
f(d;x,K) dd = 1− α (13)

Figure ?? illustrates the construction. The closer x is to K/2, the closer is
f(·) to the exposure function of the complete structure, while as it approaches
H it tends to that of the ring structure.

fhFU4.075in2.7717in0ptLinear interpolation between the complete and
ring structures in the continuum version of the model.InterpolationFigure

5 Asymmetric structures

So far we have concentrated the discussion on groups of firms where all
of them are exactly identical. Although this allows us to obtain analytical
results and to gather intuition, the real world contains firms of very different
sizes, so it is useful to see how our framework extends when firms are different
in size.

Consider a situation with two kinds of firms. One type is exactly as the
ones we have been considering so far. The othe one has size β > 1, or more
precisely, its returns when there are no shock are those of the other type
multiplied by β. The distribution of shocks is the same for both kinds of
firms, and they have the same distribution as we have been considering so
far. The only difference is that the probability of a shock hitting a large firm
is β times the probability it hits the other type of firm. In a sense one can
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view large firms as one of the completely connected components we have
considered until now, but complete integration lifts the requirement that
each “unit” of the composite needs to keep responsibility of a proportion α

of its own revenue stream.
Having different kinds of firms allows us to study new types of structures.

We concentrate our attention on “stars” where a large firm of type β is con-
nected directly to a number of smaller firms. The structure of connections
without securitization, taking into account that the values of exchanged
assets has to the same for every pair, is:

A =


δ (1− δ)/β (1− δ)/β · · · (1− δ)/β

(1− δ) δ 0 · · · 0
...

...
...

...
...

(1− δ) 0 0 · · · δ


Once firms do a further round of securitization to guarantee that requirement
1 of section 3.2 is met we have:

A2 =


δ2 + (1− δ)2 2δ(1− δ)/β (1− δ)/β · · · (1− δ)/β

2δ(1− δ) δ2 + (1− δ)2 /β (1− δ)2 /β · · · (1− δ)2 /β
...

...
...

...
...

2δ(1− δ) (1− δ)2 /β (1− δ)2 /β · · · δ2 + (1− δ)2 /β


and in order to guarantee that the all firms have an exposure to themselves
at least equal to the minimum α we make α = δ2 + (1− δ)2 /β and then
the large firm a larger exposure to itself α′ = δ2 + (1− δ)2 > α so that
requirement 2 of section 3.2 is met. Noting α′−α = (1− δ)2 (β − 1) /β, this
means we can rewrite

A2 =


α′ (1− α′) /β (1− α′) /β · · · (1− α′) /β

1− α′ α (α′ − α) / (β − 1) · · · (α′ − α) / (β − 1)
...

...
...

...
...

1− α′ (α′ − α) / (β − 1) (α′ − α) / (β − 1) · · · α


As in previous sections, a firm defaults (and so loses all future output)

provide its exposure to the firm where the shock hits is bigger than its rents.
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Formally a firm i fails when a shock hits j in the same component if aijL > 1
for a regular firm and if aijL > β for a large firm.

We now compare two types of arrangements. In both of them we have
4β firms. One arrangement, which we call the star structure, is composed
of two stars, each one with a β firm in the center and β spokes of unit size.
The other arrangement, which we call the symmetric structure, is composed
of two complete components. One of them has two firms of size β, and the
other one has 2β firms of unit size. We can show that:

Proposition 9 When δ > 1/3, the star structure has a higher number ex-
pected number of defaults than the symmetric structures whenever

β

α′
≤ L ≤ β

α
,

β

1− α′
≤ L ≤ 2β − 1

1− α

the star structure has a lower number expected number of defaults than the
symmetric structures whenever

β

1− α
≤ L ≤ β

1− α′
,
2β − 1
1− α

≤ L ≤ β − 1
α′ − α

When δ ≤ 1/3, the star structure has a higher number expected number of
defaults than the symmetric structures whenever

β

α′
≤ L ≤ β

α
,
β − 1
α′ − α

≤ L ≤ 2β − 1
1− α

the star structure has a lower number expected number of defaults than the
symmetric structures whenever

β

1− α
≤ L ≤ β − 1

α′ − α
,
2β − 1
1− α

≤ L ≤ β

1− α′

The relative dominance of the symmetric structure in the range

β

α′
≤ L ≤ β

α

is easy to explain. The star forces the center to hold more of its own assets
(α′ versus α) than the symmetric structire, to exchange with the smaller
spokes and keep the moral hazard constraint. This, in turn makes the risk
sharing smaller, which is bad against relatively small shocks. On the other
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hand this protects her against large shocks, which is why it dominates in
the

β

1− α
≤ L ≤ β

1− α′
range. What happens in the ranges

β

1− α′
≤ L ≤ 2β − 1

1− α
,
2β − 1
1− α

≤ L ≤ β − 1
α′ − α

is a bit more subtle. There we have situations where a shock is large enough
to kill everyone in the symmetric structure, but is kept “contained” in the
center when it arises at the spokes because of the larger size and internal
exposure of the center, which acts as a sort of firebreak.

6 Stability and optimality

In this section we want to examine the relationship between overall opti-
mality of the pattern of connections and the individual incentives to form
those connections. We restrict our attention to the case where complete con-
nections within a component are both efficient and individually optimal. In
this situation the only possible issue that arises is the size of the components
that firms would want to create.

Formally, we model the individual incentives through the notion of bi-
lateral equilobrium, which is often used in the network literature (see e.g.
Goyal and Vega Redondo 2007).

Definition 10 A strategy profile s∗ is a bilateral equilibrium (BE) if the
following conditions hold:

1. For any i ∈ N and every si ∈ Si, EUi (s∗) ≥ EUi
(
si, s

∗
−i
)

2. For any pair of players i, j ∈ N and every strategy pair (si, sj),

EUi
(
si, sj , s

∗
−i−j

)
> EUi

(
s∗i , s

∗
j , s
∗
−i−j

)
=⇒ EUj

(
si, sj , s

∗
−i−j

)
< EUj

(
s∗i , s

∗
j , s
∗
−i−j

)
We now can state our result.

29



Proposition 11 Suppose that the shock L is distributed with probability p

as a Pareto distribution with parameter γ > 1 and with probability 1− p as
a Pareto distribution with parameter γ′ < 1 and p and (1− p) are such that
the optimal segmentation obtains at a strictly interior level K∗ ∈ (1, N).
Then, the optimal structure is (generically) not a bilateral equilibrium.

Proof : See the Appendix.

In words, we find that there is typically a conflict between group opti-
mality and individual incentives. This conflict derives from the structure
of the socially optimal configuration and an externality in the formation of
the network. Social optimality requires that all components be of identi-
cal size, a size which is (generically) smaller than the group-optimal one.
Then if the components were all of optimal size, individual members of each
group would have an incentive to join other groups, which would thus be-
come larger and closer to the optimal size. These actions while beneficial
to the firms seceding and to the admitting groups, create a externality on
those which remain behind. Once groups of optimal size (the one minimiz-
ing the default probability of their members) are formed, its members would
block admitting new members from a smaller components, hence generating
a socially inferior bilateral equilibrium.

7 Conclusion

We have proposed a stylized model to study the problem that arises when
firms need to share resources to weather shocks that can threaten their sur-
vival, but are then exposed to risk coming from those same connections that
help them in the time of need. We have found that when large shocks are
likely firms would like to stay in very small groups, but that large groups
are desirable when most shocks are of moderate size. Intermediate structure
arise when the weight is more balanced between very large and moderate
shocks. Some distributions also make it desirable some internal “detach-
ment” within groups as well. We have additionally studied asymmetric
structures where a “central” agent can have useful properties as a firebreak.
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Finally, we find that there is typically a conflict between individual and so-
cial optimality, arising from the fact that those components that attain the
best size (and thus minimize the default probability of their members), will
block admitting new members from a smaller components.

There are many issues that this paper did not study in depth. Although
we have explored some conditions under which asymmetries and loose in-
ternal connections are best, we do not have a general theorem that explains
the likely circumstances under which different topologies will be optimal.
Since our work has identified a disparity between efficiency and equilibrium
outcomes, it would also be interesting to do some work with distributions
of shocks that mimic those observed in reality. In that way we can have
an idea for whether those disparities are severe enough to warrant policy
measures that modify incentives for business group formation.

8 Appendix A

Proof of Proposition 3: It is enough to show that

∂Dr(1/2,K, γ)
∂K

≷ 0⇔ γ ≶ 1 (14)

at all K > 1. From the expression (9) that gives the expected number of
defaults under a ring structure we obtain, making α = 1/2, the following
expression:

Dr(1/2,K, γ) =
(
K

(
1

γ + 1

)
− 2
K − 1

1
γ + 1

)(
1

K + 1

)γ
+

1
K − 1

1
(γ + 1)

(
1
2

)γ−1

.

and hence

∂Dr(1/2,K,γ)
∂K = − 1

(K−1)2
1

(γ+1)

(
1
2

)γ−1

+
(
K
(
−γ
γ+1

)
1

K+1 + 2
K−1

1
K+1

γ
γ+1 +

(
1

γ+1

)
+ 2

(K−1)2
1

γ+1

)(
1

K+1

)γ (15)

Now note that the inequality ∂Dr(1/2,K, γ)/∂K > 0 is equivalent to:

2 (K − 1)
K + 1

γ + (K − 1)2 + 2 > (K + 1)
(
K + 1

2

)γ−1

+ γK
(K − 1)2

K + 1
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or
(K − 1)2

(
1− γK

K + 1

)
+ 2

(
1 + γ

K − 1
K + 1

)
> (K + 1)γ

1
2γ−1

which can be rewritten as

(K − 1)2 + 2 + γ (K − 1) (2−K) > (K + 1)γ
1

2γ−1
. (16)

So, using the identities

(K − 1)2 + 2 + (K − 1) (2−K) = K + 1

and
(K + 1)γ

1
2γ−1

= 2
(
K + 1

2

)γ
we can equivalently write (16) as follows

K + 1
2
−
(
K + 1

2

)γ
>

1
2

(1− γ) (K − 1) (2−K) .

Define the function ϕ(K, γ) by

ϕ(K, γ) =
K + 1

2
−
(
K + 1

2

)γ
− 1

2
(1− γ) (K − 1) (2−K)

so that the desired conclusion can be stated as follows:

ϕ(K, γ) ≷ 0⇔ γ ≶ 1.

Note that ϕ(K, 1) ≡ 0 for all K. Therefore, it follows from the fact that, for
all K > 1,

∂(K, γ)
∂γ

= −
(
K + 1

2

)γ
ln
K + 1

2
+

1
2

(K − 1) (2−K)

< − ln
K + 1

2
+

1
2

(K − 1) (2−K) < 0.

This completes the proof.

Proof of Proposition 4: From the particularization to α = 1/2 of (9)
and (10) we have:

Dc(1/2,K, γ)−Dr(1/2,K, γ) (17)

=
(

1
2

)γ ( 1
K

)γ−1

−K
(

1
γ + 1

)(
1

K + 1

)γ
+

2
K − 1

1
γ + 1

((
1

K + 1

)γ
−
(

1
2

)γ)
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Hence, again using l’Hôpital,

lim
K→1

(Dc(1/2,K, γ)−Dr(1/2,K, γ))

=
(

1
2

)γ [
1−

(
1

γ + 1

)]
+ lim
K→1

1
K − 1

2
(γ + 1)

[(
1

K + 1

)γ
−
(

1
2

)γ]
=

(
1
2

)γ ( γ

γ + 1

)
+

−γ2γ

(γ + 1) 4γ
= 0.

This implies that the two structures are equivalently optimal when γ < 1,
since in this case a maximal segmentation (K = 1) minimizes the expected
number of defaults under both the ring and the completely connected struc-
tures

Consider now the case γ > 1, for which minimal segmentation (K =
N − 1) is optimal. For large enough population size we can approximate
(17) by

lim
K→∞

(Dc(1/2,K, γ)−Dr(1/2,K, γ)) = lim
K→∞

[(
1
2

)γ ( 1
K

)γ−1

−K
(

1
γ + 1

)(
1

K + 1

)γ]

which is negative if, and only if,

(γ + 1) < 2γ lim
K→∞

(
K

K + 1

)γ
that indeed holds as long as γ > 1. This completes the proof.

Proof of Proposition 5: The expected mass of the firms defaulting
when the shock follows a mixture of a Pareto distribution with parameter
γ and a Pareto distribution with parameter γ′, with weights respectively p
and 1− p, is:

Dc(α,K, γ, γ′, p) = pK

(
1− α
K

)γ
+ (1− p)K

(
1− α
K

)γ′
Hence

∂Dc

∂K
= −p (γ − 1)

(
1− α
K

)γ
− (1− p)

(
γ′ − 1

)(1− α
K

)γ′
.
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Since we assume that γ > 1 and γ′ < 1, we have ∂Dc
∂K > 0 iff:

(1− p)
(
1− γ′

)(1− α
K

)γ′
> p (γ − 1)

(
1− α
K

)γ
or

K >

(
p (γ − 1)

(1− p) (1− γ′)

) 1
γ−γ′

(1− α)

which implies that the function is minimized at an strictly interior point:

K∗(p) =
(

p (γ − 1)
(1− p) (1− γ′)

) 1
γ−γ′

(1− α)

provided this point is admissible, i.e. K∗(p) ∈ [1, N − 1]. This condition
is satisfied for some suitably chosen intermediate range p ∈ [p0, p1] since
K∗(p) = 0 for p = 0 and K∗(p)→∞ as p→ 1. This completes the proof.

Proof of Proposition 7: With L̄ = 2(N − 1) + 1, the expected mass
of defaults in the case of completely connected components – now denoted
by Dc(1/2,K, γ, p) – is given by:

Dc(1/2,K, γ, p) = (1− p)K + pK

(
1

2K

)γ
. (18)

Taking the derivative with respect to K yields

(1− p)− (γ − 1) p
(

1
2K

)γ
which is always negative as long as (11) is satisfied. This establishes that
the optimal degree of segmentation in the case of the completely connected
structure is minimal, that is obtains at the maximal value of K, given by
N − 1.
Next, noting that when α = 1/2

H =
1

K + 1
.

and
g(L) =

K

2
− K − 2/(K + 1)

2/ (K + 1)
1
L
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for K + 1 ≤ L, we see that the expected mass of defaults in the case of the
ring structure is:

Dr(1/2,K, γ.p) = (1− p) 2
(
K
2 −

K−2/(K+1)
2/(K+1)

1
2K̄+1

)
+2p

[(
K
2

(
1

γ+1

)
+
(

1
K+1

γ
γ+1

)
− 2

K−1

(
1
2 −

γ
γ+1

1
K+1

))(
1

K+1

)γ]
+2p

[
2

K−1
1

2γ+1
1

(γ+1)

]
It suffices then to show that, when K = N − 1 (the optimal value for the
completely connected structure), the expected defaults are smaller for the
ring than for the completely connected structure. Hence we set K = N − 1.
The expected defaults are larger for the complete than for the ring when
the following inequality is satisfied:

Dc(1/2, N − 1, γ.p) > Dr(1/2, N − 1, γ.p)⇔
(1− p) (N − 1) + p (N − 1)

(
1

2K

)γ
> (1− p) 2

(
N−1

2 − (N−1)−2/N
2/N

1
2(N−1)+1

)
+

p2
[(

(N−1)
2

(
1

γ+1

)
+
(

1
N

γ
γ+1

)
− 2

N−2

(
1
2 −

γ
γ+1

1
N

)) (
1
N

)γ]+ p2
[

2
N−2

1
2γ+1

1
(γ+1)

]
or, using (11),

(γ − 1)
(

1
2(N−1)

)γ
2
[

(N−1)2+N−1−2
2

1
2(N−1)+1

]
= (1−p)

p 2
[

(N−1)2+(N−1)−2
2

1
2(N−1)+1

]
> − (N − 1)

(
1

2(N−1)

)γ
+ 2

[(
(N−1)

2

(
1

γ+1

)
− 1

γ+1

(
1

N−2

)) (
1
N

)γ]+ 2
[

2
N−2

1
2γ+1

1
(γ+1)

]
or equivalently

(γ − 1)
(

1
2(N−1)

)γ
2
(

(N−1)2+(N−1)−2
2

1
2(N−1)+1

)
+ (N − 1)

(
1

2(N−1)

)γ
−2
((

(N−1)
2

(
1

γ+1

)
− 1

γ+1

(
1

N−2

)) (
1
N

)γ)
−
(

1
N−2

1
2γ−1

1
(γ+1)

)
> 0

35



Notice that for N > 5

(γ − 1)
(

1
2 (N − 1)

)γ
2

(
(N − 1)2 +N − 3

2
1

2 (N − 1) + 1

)
+ (N − 1)

(
1

2 (N − 1)

)γ
−2
(

(N − 1)
2

(
1

γ + 1

)
− 1
γ + 1

(
1

N − 2

))(
1
N

)γ
−
(

1
N − 2

1
2γ−1

1
(γ + 1)

)
> (γ − 1)

(
1

2 (N − 1)

)γ
2

(
(N − 1)2

4 (N − 1)

)

+ (N − 1)
(

1
2 (N − 1)

)γ
−
(
N − 1
γ + 1

)(
1

N − 1

)γ
−
(

1
N − 3

1
2γ−1

1
(γ + 1)

)
=

1
(N − 1)γ−1

(
(γ − 1)

1
2γ+1

+
1
2γ
− 1
γ + 1

)
− 1
N − 2

(
1

2γ−1

1
(γ + 1)

)
,

which is bigger than zero for N large enough so that

N − 2
(N − 1)γ−1 > (N − 1)2−γ − 1

2γ−1
>

1
2γ−1

1
(γ+1)

(γ − 1) 1
2γ+1 + 1

2γ −
1

γ+1

A sufficient condition for this to hold is that (12) holds, which establishes
the desired conclusion and completes the proof.

Proof of Proposition 9 In order to prove the result we need to describe
the losses for different kinds of shocks. First, we look at the losses when a
shock hits the center. But before we do that we show

Lemma 12 In this ranking we use

β − 1
α′ − α

>
β

1− α′
⇐⇒ δ > 1/3 (19)

Proof.

β − 1
α′ − α

>
β

1− α′

(β − 1)
(
1− α′

)
> β

(
α′ − α

)
= β

β − 1
β

(1− δ)2

2 (1− δ) δ > (1− δ)2

2δ > 1− δ ⇐⇒ δ > 1/3
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Now, when δ > 1/3

Ec(L) =


0 for L ≤ 1

α

1 for 1
α ≤ L ≤

β
1−α′

1 + β for β
1−α′ ≤ L ≤

β−1
α′−α

2β for L ≥ β−1
α′−α

when δ ≤ 1/3

E′c(L) =


0 for L ≤ 1

α

1 for 1
α ≤ L ≤

β−1
α′−α

β for β−1
α′−α ≤ L ≤

β
1−α′

2β for L ≥ β
1−α′

the difference lying in whether the center or the rest of the periphery dies
earlier

Now when a shock hits a peripheric firm

Ep(L) =


0 for L ≤ 1

α

β for β
α′ ≤ L ≤

β
1−α′

2β for L ≥ β
1−α′

So overall

Estar(L) =



0 for L ≤ 1
α

1
2 × 1 + 1

2 × 0 for 1
α ≤ L ≤

β
α′

1
2 × 1 + 1

2 × β for β
α′ ≤ L ≤

β
1−α′

1
2 × (1 + β) + 1

2 × 2β for β
1−α′ ≤ L ≤

β−1
α′−α

2β for L ≥ β−1
α′−α

(20)

E′star(L) =



0 for L ≤ 1
α

1
2 × 1 + 1

2 × 0 for 1
α ≤ L ≤

β
α′

1
2 × 1 + 1

2 × β for β
α′ ≤ L ≤

β
1−α′

1
2 × β + 1

2 × 2β for β
1−α′ ≤ L ≤

β−1
α′−α

2β for L ≥ β−1
α′−α

(21)

An alternative to a star arrangement is to place two β players together
and 2β regular players together in complete components. In that case, since
there is no asymmetry within component, every player keeps α of his revenue
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stream. The shock reaches with probability 1/2 each of the components, and
hence the expected losses are

Esymm(L) =



0 for L ≤ 1
α

1
2 × 1 + 1

2 × 0 for 1
α ≤ L ≤

β
α

1
2 × 1 + 1

2 × β for β
α ≤ L ≤

β
1−α

1
2 × 1 + 1

2 × 2β for β
1−α ≤ L ≤

2β−1
1−α

2β for L ≥ 2β−1
1−α

(22)

This allows us to compare the two kinds of structures. Notice that

Lemma 13
2β − 1
1− α

>
β

1− α′
⇐⇒ δ > 1/3 (23)

Proof.

2β − 1
1− α

>
β

1− α′
(β − 1)

(
1− α′

)
+ β

(
1− α′

)
> β (1− α)

(β − 1)
(
1− α′

)
> β

(
α′ − α

)
β − 1
α′ − α

>
β

1− α′

so the result is then true by (19).
The result now follows by comparing the ranges and values of the sym-

metric structures in equation (22) with those of the star in equations (20)
and (21).

Proof of Proposition 11: In the proof of proposition (5) we have es-
tablished that the function Dc (.) is convex in K, and under our assumptions
it has a unique interior maximum.. Let then K∗ ∈ (1, N−1) be the solution
to the problem

min
K

Dc(α,K, γ, γ′, p).

That is, the level of segmentation minimizing defaults within a complete
component. We now establish

A A bilateral equilibrium cannot have a completely connected cluster C
with K > K∗. This is true because for any i ∈ C its payoff from
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deleting any link (selling any participation in another firm) will lead
to an increased payoff since by convexity

Dc(α,K − 1, γ, γ′, p) > Dc(α,K, γ, γ′, p)

and this would violate part 1 of the definition of bilateral equilibrium.

B A bilateral equilibrium cannot have two clusters C1 and C2 with K1 < K∗

and K2 < K∗. This is true because a pair i, j where i ∈ C1 and j ∈ C2

can buy a participation in each other (and simultaneously reduce the
participations in all other members of their respective components).
In this way, and using again convexity their respective payoff satisfy

Dc(α,K1 + 1, γ, γ′, p) > Dc(α,K1, γ, γ
′, p)

Dc(α,K2 + 1, γ, γ′, p) > Dc(α,K2, γ, γ
′, p)

and this would violate part 2 of the definition of bilateral equilibrium.

Let Q = int
(

N
K∗+1 .

)
. By A and B above, the only candidate for a

bilateral equilibrium then has: Q (complete) clusters of size K∗+ 1 and one
(complete) cluster of size N −Q(K∗+ 1) (the remainder). Such a structure
is in fact a bilateral equilibrium as members of the clusters of size K∗ do
not want to change. And members of the remainder will not be accepted in
any other component.

In contrast, the socially optimal structure solves

minKi,n
∑n

i=1
Ki+1
N Dc(α,Ki, γ, γ

′, p)
s.t.
∑n

i=1
Ki+1
N = 1

The first order conditions for this problem (which given the concavity of
Dc are sufficient for optimality) require that for any pair of clusters with
Ki 6= Kj :

1
N
Dc(α,Ki, γ, γ

′, p)+
∂Dc(α,Ki, γ, γ

′, p)
∂Ki

Ki + 1
N

=
1
N
Dc(α,Kj , γ, γ

′, p)+
∂Dc(α,Kj , γ, γ

′, p)
∂Kj

Kj + 1
N

Since ∂Dc(α,Ki,γ,γ
′,p)

∂Ki

∣∣∣
Ki=K∗

= 0, a necessary condition for efficiency of the

stable structure is:
1
N
Dc(α,K∗, γ, γ′, p) =

1
N
Dc(α,N−Q(K∗+1), γ, γ′, p)+

∂Dc(α,Kj , γ, γ
′, p)

∂Kj

∣∣∣∣
Kj=N−Q(K∗+1)

N −Q(K∗ + 1) + 1
N
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which cannot be true by the strict convexity of Dc(.) to the left of K∗. This
completes the proof.

9 Appendix B

As mentioned in section 3.2, we can generate different financial structures
within a component via a securitization process, by which we indicate the
(possibly iterative) procedure through which connected firms exchange shares
on their whole array of prevailing asset holdings. By subsequent rounds of
securitization, firms’ portfolios may include assets of distant firms on the
underlying network.

More precisely, the extent of segmentation can be identified with the
number C of equal-sized components in which the population is divided.
And, then, given any such C, if K + 1 ≡ N/C stands for the number of
firms in each component (for simplicity, we assume C divides N), two polar
cases will be considered: the ring component where z = 2; the complete com-
ponent where z = K. These embody the extreme cases of partial and full
connectivity consistent with our framework and therefore are the starkest
manifestations of the main forces at work. In terms of the matrix represen-
tation introduced above, A would be a block matrix with identical square
submatrices along the main diagonal respectively given by:

AK,c =


α (1− α)/K (1− α)/K · · · (1− α)/K

(1− α)/K α (1− α)/K · · · (1− α)/K
...

...
...

...
...

(1− α)/K (1− α)/K (1− α)/K · · · α


for the complete components and

AK,r =


α (1− α)/2 0 · · · (1− α)/2

(1− α)/2 α (1− α)/2 · · · 0
...

...
...

...
...

(1− α)/2 (1− α)/2 0 · · · α


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for the ring components, where the dimensions of these matrices is K + 1,
the size of the components. But the above matrices implicitly presumes that
there is just one round of securitization, i.e. an exchange of assets between
directly connected firms. This, in effect, limits substantially the risk-sharing
possibilities in the ring since the burden of every shock hitting any firm i is
only shared by the two firms directly connected to it. The situation can be
much improved by successive rounds of securitization. To explain precisely
what they entail, let q = 1, 2, ... index such securitization rounds and denote
by

A1 =


a1

11 a1
12 · · · a1

1N

a1
21 a1

22 · · · a1
2N

...
...

. . .
...

a1
N1 a1

N2 · · · a1
NN


the matrix that prevails after the first round – i.e. A1 equals either AK,c or
AK,r, depending on the size K of the component and the pattern of direct
connections prevailing in it (complete or ring). Then, if a subsequent round
of asset exchange takes place, the induced pattern of asset shares can be
computed by simply composing A1 with itself. This gives rise to the matrix
A2 = A1 ×A1 and, in general, to the the matrix Aq = (A1)q after q rounds,
where the last superindex denotes q-fold composition. It is easy to see that,
starting from any A1 (i.e. irrespectively of the initial pattern of shares), an
unlimited number of securitization rounds yields the matrix

lim
q→∞

Aq =


1

K+1
1

K+1 · · · 1
K+1

1
K+1

1
K+1 · · · 1

K+1
...

...
. . .

...
1

K+1
1

K+1 · · · 1
K+1


where all firms in the component share the same conditions, both ex-ante
and ex-post – i.e. they are exact “clones” and risk-sharing (but also risk-
exposure) is maximal.2

2The essence of the argument is as follows. The matrix A is

(i) stochastic, for all its rows sum up to 1;
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It is worth emphasizing that the preceding limit conclusion applies inde-
pendently of the initial matrix A1 and, therefore, of the underlying network
of direct connections. This underscores the need to impose certain limita-
tions on the number q of securitization rounds – not only for the sake of
being realistic, but also for the theoretical reason of escaping a trivial anal-
ysis. A natural way of anchoring the model at a suitable value of q derives
from the following two-fold requirement:

1. All firms in a component should be directly or indirectly related, i.e.
should have some extent of risk-sharing. For otherwise, unrelated firms
effectively would belong to different “economic components” and their
inclusion in a common component is misleading. This amounts to
requiring that aqij > 0 for all i, j, where aqij stands for the ij-entry of
the matrix Aq.

2. When all direct and indirect effects are taken into account, the frac-
tion of shares that each firm holds of its own investment project should
be the same across different configurations. For, otherwise, the com-
parison of their performance would be vitiated by the consideration
of, effectively, very heterogenous situations – not just in terms of the
network pattern but also in terms of the effective risk externaliza-
tion of their own investment project. This requires that, for all i,
aqii = 1−

∑
j 6=i a

q
ij = α.

In light of 1. and 2., when we compare components of a certain size K+1
that have different network architectures (i.e. complete and ring networks),
the value of q must be set as follows. In the case of a complete component
(i.e. A1 = AK,c), condition (i) is non-binding, so we can choose any value of
q such that aq11 = α. Thus, for simplicity, we choose q = 1 and assume – in

(ii) aperiodic, since the main-diagonal entries are all positive;

(iii) and strongly connected since the entries of AN are all positive.

Then, it is well known by standard theory of Markov chains that limq→∞A
q = A∗ and

that there exists some µ∗ ∈ ∆N−1 such that µA∗ = µ∗ for all µ ∈ ∆N−1. This obviously

implies that all rows of A∗ must be identical, which in view of the symmetry of all nodes

in the underlying network implies that all entries in A∗ must be identical.
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order to meet (ii) – that a1
11 = α. On the other hand, for a ring component,

condition (i) requires that q ≥ K/2. So, again for simplicity, we choose the
lowest value q = K/2 (we assume K is even) that meets that constraint.
This then implies that A1 = AK,r must be such that the diagonal entries of
AK/2 ≡ (A1)K/2 satisfy aK/2ii = 1−

∑
j 6=i a

K/2
ij = α for each i = 1, 2, ...,K+1.

Also note, for future reference, that, after any finite rounds of securitization,
the entries aK/2ij are decreasing in the distance d(i, j) between firms i and j

in the underlying ring, i.e. d(i, j′) > d(i, j)⇒ a
K/2
ij′ < a

K/2
ij .
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