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Abstract

This paper addresses the issue of policy evaluation in a context in which policymakers

are uncertain about the e¤ects of oil prices on economic performance. I consider models

of the economy inspired by Solow (1980), Blanchard and Gali (2007), Kim and Loun-

gani (1992) and Hamilton (1983, 2005), which incorporate di¤erent assumptions on the

channels through which oil prices have an impact on economic activity. I �rst study the

characteristics of the model space and I analyze the likelihood of the di¤erent speci�ca-

tions. I show that the existence of plausible alternative representations of the economy

forces the policymaker to face the problem of model uncertainty. Then, I use the Bayesian

approach proposed by Brock, Durlauf and West (2003, 2007) and the minimax approach

developed by Hansen and Sargent (2008) to integrate this form of uncertainty into policy

evaluation. I �nd that, in the environment under analysis, the standard Taylor rule is out-

performed under a number of criteria by alternative simple rules in which policymakers

introduce persistence in the policy instrument and respond to changes in the real price of

oil.
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1 Introduction

This paper investigates issues related to the evaluation of monetary policy in the presence of

model uncertainty. In particular, the analysis focuses on environments in which the policymaker

is uncertain about the mechanism through which oil prices a¤ect economic variables. In this

context, this work aims to present a wide range of measures, based on a number of di¤erent

approaches, that can support policymakers�decision activity by providing information on the

sensitivity of di¤erent policy rules to model uncertainty.

In recent years, the literature in macroeconomics has devoted large attention to the problem

of model uncertainty in economic policy. In particular, this issue has received increasing interest,

among economists as well as policymakers, when applied to monetary policy.1 Some relevant

contributions in this area are represented by Brock, Durlauf and West (2003, 2007), Cogley

and Sargent (2005), Giannoni (2007), Hansen and Sargent (2001a, 2001b, 2008). These works

develop theoretical frameworks for policy design and evaluation in uncertain environments and

provide applications to di¤erent forms of uncertainty that commonly arise in monetary policy

decisions.2

This paper applies some of the techniques developed in the literature on model uncertainty

to a context in which the policymaker is uncertain about the e¤ects of oil prices on the economy.

Despite the number of contributions studying the response of economic variables to oil price

shocks, there is still much debate about the mechanisms through which oil prices are believed

to have an impact on economic activity. This debate originates from the fact that oil prices

can indeed a¤ect the economy in several ways. Changes in oil prices directly a¤ect the costs

of production (transportation and heating, for instance) as well as the price of goods made

with petroleum products. Moreover, oil price increases are likely to increase the general price

level, which can reduce employment if wages are rigid. Finally, oil price shocks can also lead to

reallocation of labor and capital between sectors of the economy, and induce greater uncertainty

about the future, which might reduce purchases of large-ticket consumption and investment

goods. The di¤erent contributions in this area often disagree on which of these factors should

be regarded as the main channel through which oil prices a¤ect output and other economic

variables.

The lack of consensus on the predominant mechanism through which oil prices a¤ect the

economy leads to di¤erent views about the ability of monetary policy to contrast the e¤ects of

oil price shocks. This generates a substantial disagreement over the way monetary policy should

1On the policymaking side, see Dow (2004) for a description of the methodological approach that the Bank
of England and the ECB have taken in response to the problem of model uncertainty.

2For instance, Brock, Durlauf and West (2007) present an example based on the uncertainty on the way the
public forms expectations on future economic variables, while in Cogley and Sargent (2005) policymakers are
uncertain about the speci�cation of Phillips curve to be adopted for policy decisions.
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optimally respond to changes in oil prices.3 Hence, this is a context in which the application

of the techniques developed in literature on model uncertainty seems to be quite natural, and

at the same time essential to sound policymaking.

In this paper I consider the problem of a policymaker who wants to explore possible courses

of action to be undertaken in response to a change in oil prices. He is uncertain about the way

oil prices a¤ect the economy, and he is particularly interested in investigating the sensitivity of

his policy decisions to this form of uncertainty. This work provides an analysis of the extent to

which monetary policies and their consequences are model dependent, and studies the policy

recommendations of Bayesian and non-Bayesian criteria. The main �nding is that, in the

described environment, the standard Taylor (1993) rule is outperformed by alternative simple

rules in which the policymaker introduces persistence in the policy instrument, and responds

to changes in the real price of oil.

The contribution of this work to the existing literature is twofold. First, I provide an analysis

of the likelihood of three main frameworks that have been proposed to explain the e¤ects of

oil prices on economic variables. For each of these frameworks, I study the consequences of

the implementation of alternative simple policy rules, and I investigate the extent to which

the optimal response to a change in the price of oil is model dependent. Second, I present an

application of a range of techniques developed in the model uncertainty literature to the speci�c

form of uncertainty under analysis in this paper.

This study is related to the literature on policy design and evaluation in uncertain envi-

ronments. In recent years, two major directions of work have emerged in this area. The �rst

one is represented by the contributions of Hansen and Sargent (2001a, 2001b, 2008). In this

approach, uncertainty is de�ned over speci�cations that lie within some distance from a base-

line framework, and preferences are assumed to follow a minimax rule with respect to model

uncertainty.4 A second direction is represented by the contributions of Brock, Durlauf and West

(2003, 2007). In this approach, the model space includes speci�cations that are not close to

each other according to some metric, and model uncertainty is introduced in the policy decision

process through the technique of Bayesian model averaging.5 Recently, Brock, Durlauf, Nason

and Rondina (2007) have proposed ways of introducing the minimax approach due to Hansen

and Sargent to contexts in which the elements of the model space do not necessarily lie within

3An example of this disagreement is the debate between Bernanke, Gertler and Watson (1997, 2004) and
Hamilton and Herrera (2004) about the role of monetary policy in the economic downturns following the oil
price shocks episodes of the postwar period.

4In more detail, the decision maker is assumed to minimizes while nature maximize losses over the set of
models in the model space. Applications of this approach to monetary policy can be found in Giannoni (2007),
Onatski and Stock (2002) and Brock and Durlauf (2004).

5The works of Cogley and Sargent (2005) and Cogley et al. (2010) are examples of applications of this
approach to the analysis of monetary policy.
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some distance from a baseline model speci�cation.

This paper is methodologically based on Brock, Durlauf and West (2003, 2007) (from now

BDW, 2003, 2007) and Brock, Durlauf, Nason and Rondina (2007) (from now BDNR). The

decision to follow these approaches was motivated by the fact that the uncertainty over the

mechanisms through which oil prices a¤ect economic performance is largely non-local. The

description of the model space in sections 4 will provide more evidence about this statement.

In addition, BDW (2007) and BDNR (2007) introduce policy evaluation techniques that move

beyond standard model averaging methods, and that are useful in providing a more extensive

and comprehensive policy analysis. More speci�cally, BDW (2007) propose a range of measures

and visual tools that supply the policymaker with more information than a simple summary

statistic in which model dependence has been integrated out. On the other hand, BDNR

introduce applications to policy evaluation of non-Bayesian approaches based on the minimax

and minimax regret criteria, which have the advantage of not requiring any previous knowledge

of the characteristics of the model space.

This work is also related to the large literature studying the impact of oil prices on economic

activity. This paper does not intend to take a position in the debate over the di¤erent models

proposed to explain the e¤ects of a change in oil prices on economic performance. Rather, I

show that di¤erent frameworks, based on di¤erent channels of transmission of oil price shocks

into the economy, are plausible alternative approximations of the true data generating process.

Finally, this paper is related to the literature investigating the response of monetary policy to

changes in oil prices. Recent contributions have focused on the role of monetary policy in the

downturns following the large oil price shocks of the postwar period (Bernanke, Gertler and

Watson 1997, 2004; Hamilton and Herrera, 2004; Leduc and Sill, 2004), and on its contribution

to the milder reaction of economic variables to oil price shocks since the mid 1980s (Blanchard

and Gali, 2007; Herrera and Pesavento, 2009; Clark and Terry, 2010). This work provides some

additional insights in this area by explicitly analyzing the extent to which the consequences of

the monetary policy response to a change in oil prices depend on the model of the economy

under consideration.

The remainder of the paper is organized as follows. Section 2 summarizes the techniques

that I will use to incorporate model uncertainty into policy evaluation. Section 3 illustrates the

main mechanisms that have been proposed to model the e¤ects of oil prices in the economy.

Section 4 characterizes the model uncertainty problem, de�nes the model space and studies

its basic properties. Section 5 reports the results of the policy evaluation exercise. Section 6

concludes.
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2 Policy evaluation under model uncertainty

In this section, I summarize the techniques developed by BDW (2003, 2007) and BDNR to

account for model uncertainty in the evaluation of alternative economic policies.6 These are

the techniques that will be employed in the exercise in section 5.

2.1 General Framework

The central idea of the approach proposed by BDW (2003, 2007) is that model uncertainty

should be considered as a component of policy evaluation. This idea has two implications.

The �rst one is that model uncertainty should not be resolved prior to the evaluation of a

policy rule through the selection of a speci�c model of the economy. The second one is that

policy evaluation should explicitly account for the lack of complete information about the true

data-generating process.

Consider the problem of a policymaker who is interested in evaluating the e¤ect of a pol-

icy rule p on an outcome �. Typically, this policy will be studied based on the conditional

probability measure:

� (� j m; p; �m) (1)

where m denotes a model and �m is a vector of parameters that indexes the model. If the

model m is known, the available data d can be used to estimate the vector of parameters �m.

In this case, (1) can be rewritten as:

� (� j m; p; d) (2)

The approach to policy evaluation in uncertain environments proposed by BDW (2003, 2007)

entails computing the probability measure � (� j d; p) from (2) by treating model uncertainty

as any other form of uncertainty a¤ecting �. This can be done by eliminating the conditioning

on m in (2). Let M be the space of possible data-generating processes, then we have:

� (� j d; p) =
X
M

� (� j m; p; d)� (m j d) (3)

where � (m j d) is the posterior probability of model m given data d. By Bayes� rule, this

measure can be characterized as follows:

� (m j d) / � (d j m)� (m) (4)

6This section only provides a brief explanation of the techniques that I will use in section 5 of the paper.
For a more thorough description of these methods, see BDW (2003, 2007) and BDNR.
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where � (d j m) is the likelihood of the data given model m and � (m) is the prior probability

assigned to model m.7

Let now consider a policymaker that evaluates policies according to the expected losses gen-

erated by a loss function l (�). The previous discussion implies that the measure incorporating

model uncertainty into the analysis is:

E (l (�) j d; p) =
Z
�

l (�)� (� j p; d) d� (5)

The empirical part of this paper will involve computation of expected losses of this form, given

a standard loss function that will be de�ned in section 4.

The model averaging approach has some attractive properties, �rst and foremost the fact

that it allows for the assessment and comparison of policies without conditioning on a given

element of the model space. However, its implementation presents several issues, mainly related

to the de�nition of the model space M and to the speci�cation of the prior probabilities for its

elements. See BDW (2003, 2007) for a more exhaustive discussion of the implementation issues

of this approach.

2.2 Outcome dispersion and action dispersion

In addition to the model averaging approach, BDW (2007) propose additional ways of commu-

nicating information about the e¤ects of di¤erent policies in an environment characterized by

model uncertainty. The introduction of these additional statistics is motivated by several con-

siderations. First, the policymaker might want to investigate aspects of the conditional density

� (� j m; p; d) that are lost in the averaging process. Second, he might be concerned about the
behavior of this conditional density only in some speci�c models rather than others. Third, he

might be interested in knowing which policies have an outcome that is relatively more stable

across the di¤erent speci�cations composing the model space.

For all of these reasons, it could be useful to enrich the policy evaluation exercise by including

additional measures that are able to o¤er a broader picture of the e¤ects of a policy under

alternative representations of the economy. BDW (2007) introduce two measures that provide

a characterization of the extent to which monetary policies and their consequences are model

dependent. These measures are outcome dispersion and action dispersion.

Outcome dispersion measures the variation in loss that occurs when di¤erent models are

considered, given a �xed policy rule. In other words, this measure describes how the losses

associated with a speci�c policy rule are model dependent, thus providing information on the

7See BDW (2007) for an interesting discussion of some interpretations of the role of model uncertainty in
policy evaluation that can be inferred from this derivation.
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robustness of the selected policy rule over di¤erent models. Action dispersion, on the other

hand, measures how the optimal policy di¤ers across alternative models. A distinct optimal

policy can be computed for any given model, so that a range of di¤erent policies can be obtained

from the elements of a model space. The analysis of action dispersion provides information on

the sensitivity of the optimal policy rule to model choice.

2.3 Minimax and minimax regret

In addition to the outcome dispersion and action dispersion measures, I will also consider non-

Bayesian approaches based on the minimax and minimax regret criteria. These approaches

are based on the idea that policymakers might be interested in obtaining information about

policy rules that are not optimal, but that work well in some other directions or aspects of

the policy analysis. In particular, these criteria address a concern for controlling the maximum

losses that can be incurred under alternative policies in an environment characterized by model

uncertainty.

The minimax approach has been largely used by Hansen and Sargent (2001a, 2001b, 2008) as

the basis for robustness analysis in macroeconomics. In the policy evaluation exercise performed

in section 5, I will follow BDNR and de�ne the minimax policy choice as the one solving:

min
p2P

max
m2M

E (l (�) j p; d;m) (6)

Because it always assumes the worst possible scenario in assessing alternative policies, the

minimax criteria has been criticized for being extremely conservative. To avoid this issue, the

literature has introduced the concept of minimax regret, which is based on the relative (rather

than absolute) loss associated with a given policy. Following again BDNR, the minimax regret

policy rule will be obtained as the solution to the following problem:

min
p2P

max
m2M

R (p; d;m) (7)

where R (p; d;m) is the regret function de�ned as:

R (p; d;m) = E (l (�) j p; d;m)�min
p2P

E (l (�) j p; d;m) (8)

Given a model, the regret function measures the loss su¤ered by a policy relative to the loss

under the optimal policy for that speci�c model. The de�nition of the regret function illustrates

how this criterion is able to avoid the problems associated with models that comport relatively

high losses regardless of the choice of the policy rule.
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BDNR o¤er a more comprehensive exposition of the properties of the minimax and minimax

regret criteria and describe some applications that have been proposed in the literature.

3 Modeling the e¤ects of oil prices on the economy

This section provides a brief review of the most relevant contributions on the e¤ects of oil prices

on economic activity.8

The literature in economics has proposed many di¤erent mechanisms through which oil

prices can a¤ect economic performance. Some early studies, such as Solow (1980) and Pindyck

(1980) focus on the demand-side e¤ects of changes in oil prices. In these frameworks, the direct

and immediate consequence of a change in oil prices is a change in the overall price level, which

in turn has an e¤ect on employment and other real variables due to the Keynesian assumption

of rigid wages. Thus, wage rigidity is the main channel through which oil price variations a¤ect

output in these models. A similar explanation has been proposed by Blanchard and Gali (2007),

which assume price rigidities in addition to wage rigidities.

A second strand of literature considers the supply-side e¤ects of changes in oil prices. These

works are usually based on a production function in which energy is one of the inputs, so that

an exogenous change in the price of oil a¤ects output directly by changing productivity, and

employment through a change in the wage level. Some contributions based on this mechanism

are Rasche and Tatom (1977) and Kim and Loungani (1992). This way of explaining the

e¤ect of oil prices on output seems to be quite natural in the context of a standard neoclassical

economic model. Other contributions have considered departures from the standard neoclassical

framework that are able to explain additional indirect e¤ects of an oil price shock on output.

For instance, Finn (2000) focuses on the impact of changing capacity utilization rates, while

Rotemberg and Woodford (1996) consider a model characterized by imperfect competition, in

which additional e¤ects on output originate from changes in business markups.

Finally, one last group of contributions has focused on the e¤ects of oil price shocks on

short-run economic performance as the consequence of allocative disturbances. Some examples

of this literature are Bernanke (1983) and Hamilton (1988). These studies have the relevant

feature of suggesting a nonlinear relation between oil prices and output. A rise in oil prices will

decrease demand for some goods, but possibly increase it for others. As a consequence, if it is

costly to reallocate labor or capital between sectors, then an oil shock will be contractionary

in the short run. However, an oil price decrease would require the same type of reallocative

process, and for this reason it could be contractionary as well in the short run.

8Extensive reviews of the di¤erent mechanisms that have been proposed to explain the impact of oil prices
on the economy are provided by Mork (1994), Hamilton (2005), Segal (2007) and Kilian (2008).
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4 Model Uncertainty

I consider the problem of a policymaker who wants to investigate possible policy responses to

changes in the price of oil. He knows that many di¤erent mechanisms have been proposed in

the economic literature to explain the e¤ects of oil prices on economic activity. In particular,

he believes that the true model of the economy might be one of the following three frameworks:

� Solow (1980) (from now on denoted as S), in which the most relevant e¤ect of a change

in oil prices is a change in the overall price level, which in turn a¤ects employment and

real variables due to the assumption of nominal wage rigidities. Therefore, in this model

the main channel through which oil prices have an impact on output is nominal wage

rigidities.

� Blanchard and Gali (2007) (from now on denoted as BG), in which the central e¤ect of a
change in oil prices is a change in the overall price level, which in turn a¤ects employment

and real variables due to the assumption of price and real wage rigidities. This is a new

Keynesian type of model, and price rigidities are introduced in the economy through the

assumption of Calvo pricing. In this framework, the channel through which oil prices

have an impact on economic activity is real wage and price rigidities.

� Kim and Loungani (1992) and Hamilton (2005) (from now on denoted as H), in which

changes in the price of oil a¤ect output directly by changing productivity and have an

impact on employment through a change in the wage level. This is a standard neoclassical

type of model, characterized by perfect competition and �exible prices and wages.

Given his beliefs on the possible true data generating process, the policymaker considers

three di¤erent approximating frameworks that incorporate the main features of each one of

these representations of the economy. These frameworks are in the spirit of the empirical

literature on monetary policy, along the lines of King, Stock and Watson (1995), Rudebusch

and Svensson (1999), Cogley and Sargent (2005) and Primiceri (2006). Each framework consists

of two equations, one for the output gap and one for the in�ation rate, and includes the following

variables: the output gap (yt), core CPI in�ation (�t), the interest rate (it), which is the policy

instrument, and real oil price changes (st).9

The S approximating model is described by the following equations:

yt = �
S
y (L) yt�1 + �

S
� (L) [�t�1 � Et�2 (�t�1)] + �Ss (L) st�1 + !Sy;t (9)

�t = �
S
� (L)�t�1 + �

S
y (L) yt�1 + �

S
i (L) it�1 + �

S
s (L) st�1 + !

S
�;t (10)

9The use of core CPI in�ation follows Blanchard and Gali (2007) and Clark and Terry (2010).
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where the e¤ects of oil prices on output through nominal wage rigidities are captured by the

unanticipated in�ation term in the output equation. This econometric model can be interpreted

as an example of a standard setup in which nominal wages are set in advance (a thorough

description of this type of setup can be found in Woodford, 2003).

The BG approximating model is described by the following equations:

yt = �
BG
y (L) yt�1 + �

BG
i (L) [it�1 � Et�1 (�t)] + �BGs (L) st�1 + !

BG
y;t (11)

��t = �
BG
� (L)��t�1 + �

BG
y (L) yt�1 + �

BG
s (L) st�1 + !

BG
�;t (12)

This is a new Keynesian type of framework, similar to the model used in Rudebusch and

Svensson (1999) under the assumption of backward expectations, with the only di¤erence being

the inclusion of real oil price changes. The speci�c form of equation (12) enforces that the sum

of the coe¢ cients on core CPI in�ation is equal to one. This assumption is common in the new

Keynesian literature, and follows from the theory on a vertical long run Phillips curve.

Finally, the H approximating model is described by the following equations:

yt = �
H
y (L) yt�1 + �

H
s (L) st�1 + !

H
y;t (13)

�t = �
H
y (L) yt�1 + �

H
� (L)�t�1 + �

H
i (L) it�1 + �

H
s (L) st�1 + !

H
�;t (14)

This econometric framework re�ects the theory on the independence of real variables from

money and in�ation, and represents an example of a Sidrauski-Brock type of model, or of a

model with perfect competition and complete �nancial markets (see again Woodford, 2003, for

an exhaustive treatment). Equations similar to (13) have been frequently used by Hamilton

(1983, 2003, 2005) to estimate the e¤ects of oil prices on output.

Each approximating model is completed with the speci�cation of a process for the real price

of oil and with the de�nition of a policy rule for the interest rate it. These are common to all

frameworks and are de�ned next.

4.1 The process for the real price of oil

Equations (9) - (14) include the variable st, real oil price changes, de�ned as:

st = ps;t � ps;t�1

where ps;t is the level of the real price of oil at time t. I assume that this variable follows the

exogenous AR(1) process:

ps;t = �t + �ps;t�1 + ot (15)
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in which the intercept �t is allowed to change over time according to:

�t = �t�1 + "�;t (16)

The shocks ot and "�;t are assumed to be uncorrelated over time and with each other, and

to have zero mean and variances �2o and �
2
"�
respectively. Notice that while ot represents a

transitory oil price shock, "�;t permanently a¤ects the level of the real price of oil.

The mean shifting representation described by (15)� (16) aims to capture the nonlinearities
that seem to characterize the behavior of the real price of oil.10 This process is similar to the

one adopted by Kim and Loungani (1992), in which the intercept � is constant but the shock

ot is allowed to be correlated over time, and is a generalization of the representation used in

Blanchard and Gali (2007), which simply set �t = 0 for any time t.

From the de�nition of the process for ps;t, we have that:

st = �st�1 + �t (17)

where �t = ("�;t + ot � ot�1) has zero mean and variance �2� =
�
2�2o + �

2
"�

�
: The parameters

of the representation in (15) � (16) can be jointly estimated using MCMC methods. For the
policy evaluation exercise conducted in this work, the policymaker only needs to know the

values of �2o, �
2
"�
and �, while the entire history of �t is not necessary. I estimated the process

in (15)� (16) using U.S. postwar data in a previous paper (Rondina, 2010). Therefore, in the
empirical analysis I will simply use the values obtained therein; the reader is encouraged to

refer to Rondina (2010) for a detailed description of the estimation procedure.

In this paper, I follow Kim and Loungani (1992) and Blanchard and Gali (2007) and assume

that the real price of oil follows an exogenous process. This assumption might seem quite

restrictive, especially in regards to the changes in oil prices that happened during the last

decade. However, the speci�c process described by (15) � (16) allows for a certain degree of
�exibility, which reduces the limits imposed by the assumption of exogeneity. See Rondina

(2010) for a more extensive discussion of this issue.

4.2 The policy rule

I assume that the policymaker employs a simple nominal interest rate rule in the form:

it = g��t + gyyt + giit�1 + gsst (18)

10See Pindyck (1999) for a discussion. Kim and Loungani (1994) and Blanchard and Gali (2007) also suggest
that the real price of oil would be better described by a process that can accommodate nonstationary.
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Simple rules in the form of (18) are used in BDW (2007) and in other contributions in the

literature on monetary policy as, for instance, Levin, Wieland and Williams, (1998). The main

di¤erence with previous studies adopting similar rules is the addition of the last term, which

allows policymakers to respond to changes in the real price of oil.

Following standard assumptions in the monetary rules literature, policymakers�choice of

the parameters g�, gy, gi and gs in (18) a¤ect their welfare de�ned in terms of an expected loss

function. I follow the literature on policy evaluation under model uncertainty (see for instance

BDW, 2003 and 2007, and Cogley et al., 2009) and I assume that policymakers� losses are

determined by a weighted sum of the unconditional variances of the variables of interest:

R = var (�1) + �yvar (y1) + �ivar (�i1) (19)

The parameters �y and �i in (19) represent the weights attached to the volatility of the

output gap and of the changes in the policy instrument relative to the volatility of core CPI

in�ation. I will assume that �y = 1 and �i = 0:1 as in BDW (2007) and Cogley et al. (2009);

this choice is consistent with the literature using similar loss functions, see for instance Levin

and Williams (2003). The last term in (19), which accounts for interest rate variations, is

commonly introduced with a lower weight compared to the other variables, and its role is to

avoid extreme changes in the nominal interest rate.

In the policy evaluation exercise in section 5, di¤erent values of R will be calculated based

on alternative conditioning assumptions made via speci�cation of a policy and/or a model.

4.3 The model space

The space of all model speci�cations included into the analysis is de�ned based on di¤erent forms

of model uncertainty that policymakers view as relevant in the environment under consideration.

� Theory uncertainty. The �rst, and most important, form of model uncertainty the mone-
tary authority is concerned about is theory uncertainty. Theory uncertainty refers to the

imperfect knowledge of the mechanism through which oil prices a¤ect economic activity.

This form of uncertainty is represented by the three di¤erent frameworks described in the

previous section. These frameworks originate three di¤erent classes of models that span

the model space: M =
�
MS;MBG;MH

	
:

� Speci�cation uncertainty. For each one of the three frameworks described in the previous
section, the policymaker is also uncertain about the way the model should be speci�ed.

This form of uncertainty re�ects the imperfect knowledge about the correct speci�cation

of the econometric framework to be estimated, which would a¤ect the decision process

even if the true model of the economy was known.
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In more detail, I follow BDW (2007) and I assume that speci�cation uncertainty refers to

the number of lags of the variables of interest to be included in the estimation of each of

the di¤erent models. The policymaker incorporates this form of uncertainty by estimating

equations (9), with one, two, three and four lags of y, unanticipated in�ation and s, (11)

with one, two, three and four lags of y; the real interest rate and s; and (13) with one,

two, three and four lags of y and s: In the same way, he estimates equations (10) and (14)

with one, two, three and four lags of y; � and i; and (12) with one, two, three and four

lags of y and � only, while in all models the in�ation equation will be allowed to include

zero, one, two, three and four lags of s: The number of lags of st used in the estimation

procedure re�ects the fact that all the theories under consideration postulate an e¤ect of

oil prices on output, while the impact on core CPI in�ation, which excludes energy prices,

is not obvious.11 Table 1 summarizes the number of lags included in the estimation of

each approximating model.12

Table 1 - Lags used in the estimation procedure

l.h.v y � i s

S y 1-4 1-4 0 1-4

� 1-4 1-4 1-4 0-4

BG y 1-4 0 1-4 1-4

� 1-4 1-4 0 0-4

H y 1-4 0 0 1-4

� 1-4 1-4 1-4 0-4

Notes: 1. Number of lags of the right-hand variables included in each equation (with left-hand variable y or �)
for each approximating model: Solow (S), Blanchard-Gali (BG) and Hamilton (H).

2. In the S model, the right-hand variables are output gap (y), unanticipated in�ation (denoted as � here for
simplicity of exposition) and real oil price changes (s) in the output equation and output gap (y), in�ation
(�), interest rate (i) and real oil price changes (s) in the in�ation equation. In the BG model, the right-hand

variables are output gap (y), real interest rate (denoted as i here for simplicity of exposition) and real oil
price changes (s) in the output equation and output gap (y), in�ation (�) and real oil price changes (s) in
the in�ation equation. Finally, in the H model, the right-hand variables are output gap (y) and real oil price
changes (s) in the output equation and output gap (y), in�ation (�), interest rate (i) and real oil price changes
(s) in the in�ation equation.

11In Blanchard and Gali (2007), for instance, real oil prices do not a¤ect core CPI in�ation if the assumption
of real wage rigidities is dropped, even if Calvo pricing is still adopted. Solow (1980) also acknowledges the
possibility that oil price shocks do not change core in�ation (but he says that this situation is very unlikely).
Finally, Kim and Loungani (1992) focus on the e¤ects of oil prices on the production side of the economy, while
their impact on the price level is not discussed.
12Notice that the econometric models considered in this work are similar to those used in Rondina (2010)

which studies the history of postwar US policy decisions under the assumption of model uncertainty and learning.
However, speci�cation uncertainty is not considered in this previous work.
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4.4 Basic properties of the model space

The di¤erent forms of uncertainty that the policymaker decides to incorporate in the analysis

originate a model spaceM composed of 30; 720 models, 5; 120 forMBG andMH and 20; 480 for

MS: Because the equations of the Solow model include more variables relative to the Blanchard-

Gali and Hamilton models, the Solow class of models is four times larger than the other two

classes. This requires taking a stance on the de�nition of the prior probabilities to be used in

computing the models�posteriors, as I will discuss later in this section.

I estimated all the econometric speci�cations in M using ordinary least squares. The data

employed in the estimation goes from 1973 : I to 2008 : II, with observations from 1971 : I

to 1969 : IV used to provide lags. While the available data covers a larger time period, the

choice of the sample to be used in the policy evaluation exercise was motivated by the fact

that in this framework all parameters of each approximating model (with the exception of

the intercept in the process for the real price of oil) are assumed to be time invariant. This

implies that the necessity to have a long enough sample for the estimates to be meaningful

must be balanced with the fact that over longer time periods the economy is more likely to

have undergone relevant structural changes, which could have been re�ected into variations in

the model parameters. More speci�cally, the starting date was motivated by the fact that until

the early 1970s oil prices were subject to strong price controls, which were likely a¤ecting the

behavior of oil users. The ending date was selected so that the recent �nancial crisis, and the

near zero interest rate policy adopted by the Federal Reserve in response to it, would not a¤ect

the estimations. A detailed description of the data used in the empirical analysis is given in

Appendix 1.

In estimating the S and BG speci�cations, I assumed that the public forms expectations

using a backward-looking approach, so that: Et�1 (�t) = 1
4

4P
j=1

�t�j. This assumption might

seem restrictive, but in an environment characterized by model uncertainty forward looking

expectations rise a number of questions related to whether and to what extent the private

sector should share policymakers�uncertainty about the true data generating process. Again,

Rondina (2010) discusses this issue in more detail.

The posterior probabilities were computed according to (4), using the estimated models and

the approximation suggested by Raftery (1995). In this way, the obtained posteriors are pro-

portional to the models�BIC adjusted likelihoods, with a factor of proportionality that is equal

to their respective prior probabilities. In the baseline exercise, I assumed that policymakers�

main focus is on theory uncertainty, so that a prior probability of 1=3 was attached to each

class of models regardless of the number of speci�cations that each class contains. Therefore,

since the Solow class of models includes a much larger number of speci�cations, each one of
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them received a considerably lower prior relative to the speci�cations in the other classes. In

more detail, a prior of 1=15360 was attached to each element of MBG and MH ; while a prior of

1=61440 was attached to each model in MS. In the empirical section of the paper, I will study

the robustness of the results to an alternative de�nition of these prior probabilities.

Figure 1 - Posterior probabilities

Notes: 1. Posterior probabilities for each model speci�cation in M . The top panel reports the Solow class of

models, and the bottom panels the Blanchard-Gali and Hamilton classes. Notice that, for a better exposition

of the results, the scale in the bottom panels is di¤erent from the top panel.

2. The sum of posterior probabilities over the three panels is equal to one. The sum of posterior probabilities

in each panel (i.e. for each class of models) is reported in Table 2.

3. Model numbers are explained in Appendix 1.

Table 2 - Sum of posterior probabilities in each class of models

MS MBG MH

Sum of posterior probabilities 0:8585 0:0301 0:1114

Sum of prior probabilities 1=3 1=3 1=3

No models 20; 480 5; 120 5; 120

Note: Sum of posterior probabilities in each class of models. The posterior probabilities have been computed

from (4) using the approximation proposed by Raftery (1995) and the priors described in the main text. The

posteriors have been rescaled so that they add up to one across the model spaceM .

Figure 1 reports the posterior probabilities for each model speci�cation in M . Table 2

provides information on the sum of these posteriors in each class of models. Posterior prob-
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abilities have been rescaled so that they add up to 1 across the model space. Thus, table 2

can be interpreted as the probability that the true data generating process follows the Solow,

Blanchard-Gali or Hamilton theory on the predominant channels through which oil prices are

assumed to a¤ect the economy. In this sense, it is clear that the data favors the Solow theory,

since this class of models incorporates 85:85% of the posterior probability. However, the poste-

riors attached to the Hamilton and Blanchard-Gali theories, while considerably lower relative

to the Solow class, are still largely di¤erent from zero. In addition, �gure 1 also shows that a

few speci�cations, belonging to di¤erent classes of models, exhibit posterior probabilities that

are actually comparable with each other. For these reasons, a policymaker concerned about

model uncertainty should not discard any of these theory as the possible true representation of

the economy, but rather look for a policy rule that is able to perform relatively well in all of

them.

From �gure 1, it is evident that each class of models is characterized by an handful of

speci�cations that have higher posterior probabilities, and a large number of them that, on the

contrary, have near zero posteriors. Given the large number of models inM , policymakers might

want to restrict the model space and focus only on those speci�cations that o¤er a plausible

representation of the economy. In this choice, decision makers face a tradeo¤ between allowing

for a su¢ ciently large degree of model uncertainty, and making the policy evaluation exercise

cumbersome and possibly even not informative.13 Here, I follow BDW (2007) in the procedure

used to restrict the analysis to a smaller model space.14 This procedure entails computing the

relative posterior of a model within a class, de�ned as:

Pm =
� (m j d)P

m2C
� (m j d) =

bLmP
m2C

bLm (20)

where bLm is the BIC-adjusted likelihood for model m, and C is equal to MS;MBH or MH

depending on the class under consideration. The second equality follows from the fact that in

this setup posterior probabilities are proportional to BIC-adjusted likelihoods and that, within

each class of models C, all models have the same prior. In words, this formula rescales the

posterior probabilities so that they add up to one within each class of models. The measure

obtained from (20) is then used to identify the models that have the highest relative posterior

probabilities within each class. In this work, these models will be de�ned as those for which

Pm is at least 1=100 = 1% of the model with the highest Pm in the class. The policy evaluation

13Many of the speci�cations with near zero posteriors are very unstable, and exhibit in�nite losses under a
wide range of policies. For this reason, they might dominate the policy evaluation exercise, despite the fact that
their posterior probability is essentially zero.
14This approach is based on the "Occam�s window" technique originally proposed by Madigan and Raftery

(1994).
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exercise developed in the next section will focus on this subset of model speci�cations.15

Table 3 - Relative posterior probability Pm
MS MBG MH

(1) Minimum Pm 2:02� 10�24 7:34� 10�26 2:47� 10�22

(2) Q1 Pm 1:53� 10�15 2:16� 10�18 3:89� 10�14

(3) Median Pm 6:40� 10�12 9:08� 10�12 1:74� 10�10

(4) Q3 Pm 3:92� 10�9 8:58� 10�7 8:59� 10�8

(5) Maximum Pm 0:2137 0:1378 0:1849

(6) No. models with Pm> (max Pm)=100 55 87 56

(7) Sum of Pm models with Pm> (max Pm)=100 0:8581 0:8827 0:9274

(8) Sum of Pm for models in top quartile 1:0000 0:9998 1:0000

(9) Sum of Pm for models in bottom 3 quartiles 3:25� 10�6 1:97� 10�4 1:89� 10�5

(10) Sum of Pm 1 1 1

(11) No. models 20; 480 5; 120 5; 120
Note: The relative posterior probability Pm is de�ned by (20). The sum of Pm for each class of models equals

one by construction.

Table 3 provides some summary statistics on the distribution of the relative posterior prob-

abilities for each class of models. This table clearly shows that, in each class, a restricted

number of speci�cations cover almost the entire posterior probability for the class. Indeed, the

�rst three quartiles only contain speci�cations with relative posteriors that are essentially zero,

while the sum of Pm for the �rst quartile is nearly one in all classes. The number of speci�ca-

tions for which Pm is at least 1% of the model with the highest Pm; reported in line (6), is very

small relative to the size of each class, but these few speci�cations still cover a very high relative

posterior, as shown in line (7). For the policy evaluation exercise in the next section, the model

space M and the classes of models MS, MBG and MH are rede�ned to incorporate only the

models with the highest relative posterior probability. Therefore, the new model space includes

198 speci�cations, whileMS,MBG andMH are composed of 55, 87 and 56 models respectively.

A more detailed description of the model speci�cations used in the policy evaluation exercise,

and the de�nition of the new model space and classes of models are provided in Appendix 1.

15The factor that is used in BDW (2007) to de�ne the set of models with high posterior probability is 1/20.
The reason why I set a lower threshold is that, in this context, a large number of models, with posterior
probability di¤erent from zero as a group, do not get captured by the 1/20 threshold. Since I will use the
subset of models with high posterior probabilities for the policy evaluation exercise in the next section, the
lower threshold of 1/100 allows me to have a group of models that provide a better representation of the original
model space M:
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Finally, table 4 reports the estimated coe¢ cients for the speci�cation with the highest

posterior probability in each class of models. As I mentioned before, posterior probabilities

are proportional to model speci�c BIC-adjusted likelihoods. It follows that the speci�cations

presented in table 4 correspond to those that would have been selected within each class using

BIC as the selection criterion. Notice that in these speci�cations real oil price changes enter in

the output equation with only one lag, and they do not enter in the in�ation equation. However,

the subspace of models with high posterior probabilities used in the policy analysis includes

speci�cations with a higher number of lags of the oil measure in both equations. Again, see

Appendix 1 for further details on the elements of the restricted model space.

4.5 Simple rules

This work aims to compare the performance of alternative policy rules in an environment

characterized by uncertainty on the way oil prices a¤ect economic variables. Thus, after having

described the space of models under consideration, the second step is de�ning the set of policies

to be evaluated. As previously mentioned, I assume that policymakers only consider simple

policy rules in the form of (18).

The �rst rule included in the set of policies under analysis is the one originally proposed by

Taylor (1993) (from now on denoted as OT rule):

it = 1:5�t + 0:5yt (21)

This policy rule is widely used in the literature and was likely also implemented in practice,

so it will be considered as a benchmark. In addition to the OT rule, policymakers might want

to study the performance of policies that are to some extent optimal under the theories they

regard as possibly generating the data. To obtain these policy rules, I followed BDW (2007)

and used the speci�cation with the highest posterior probability in each class of models. More

speci�cally, I computed these rules by performing a grid search of the parameters g�, gy, gi and

gs in (18) that minimize the conditional expected loss:

bRm = var (�1 j d; p;m) + �yvar (y1 j d; p;m) + �ivar (�i1 j d; p;m) (22)

for each of the three models described in table 4. I restricted this search to rules in which the

long run e¤ect of output and core CPI in�ation on the nominal interest rate is the same as

in the Taylor rule.16 No restrictions were imposed on the coe¢ cient on real oil price changes,

gs. In other words, I assumed that the monetary authority wants to evaluate the performance

16More speci�cally, I performed a grid search only on values of g�, gy and gi that satisfy: g�= (1� gi) = 1:5
and gy= (1� gi) = 0:5.
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of the Taylor rule relative to alternative simple rules which di¤er from the original Taylor rule

only in terms of interest rate smoothing and the (possible) response to oil prices. This exercise

provides a clear picture of the impact that reacting to changes in the real price of oil has

on policymakers�losses, and seems to be the most appropriate in a context characterized by

uncertain on the way in which oil prices a¤ect economic variables.17

The simple policy rules obtained from the described procedure, denoted as S rule, BG rule

and H rule, are reported in table 5.

Table 5 - Policy space: the simple policy rules

S rule BG rule H rule

gy 0.1995 0.4635 0.2670

g� 0.5985 1.3905 0.8010

gi 0.6010 0.0730 0.4660

gs -0.0071 -0.0194 -0.0040

Exp. loss 31.688 22.706 19.771

Long runeg� 1.5 1.5 1.5egy 0.5 0.5 0.5egs -0.0178 -0.0209 -0.0075

Notes: 1. Simple rules in the form described by (18). These rules were obtained by grid search of the coef-

�cients in (18) that minimize (22) under the restrictions g�= (1� gi)= 1:5 and gy= (1� gi)= 0:5 for the
speci�cation with the highest posterior probability in each class of models.

2. The long run e¤ect of y; � and s on the nominal interest rate is de�ned as: egk= gk= (1� gi) ; k = y; �; s:
The simple rules reported in table 5 o¤er some relevant insights on the di¤erences in the

optimal policy response to oil prices in each of the three theories under consideration. In

particular, we can compare the short run and long run e¤ects of oil prices on the nominal

interest rate that these three policies imply. As expected, theBG rule recommends the strongest

response to changes in the real price of oil, both in the short run and in the long run. Indeed, the

Blanchard-Gali theory assumes that the economy is characterized by a number of rigidities that

17In a previous version of the paper, I was comparing the original Taylor rule to the optimal simple rules
obtained by minimizing (22) with no restrictions on the values of the coe¢ cients gy and g�. However, I found
that exercise to be less informative than the one performed here. Indeed, the di¤erences in performance between
the alternative simple rules and the original Taylor rule were largely driven by their di¤erent response to output
and in�ation, and it was di¢ cult to discern the role of the reaction to changes in the real price of oil. Here, this
is not the case, because the long run response to the output gap and core CPI in�ation is set to be equal in all
the rules considered in the policy evaluation exercise.
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have the potential to amplify the impact of oil prices on the variables of interest to policymakers.

At the same time, in this theory the policy instrument can a¤ect the output gap directly so that,

by responding to changes in the real price of oil, policymakers are able to contrast the e¤ects of

this variable on the real economy. On the other hand, in the Solow theory monetary policy has

an impact on the output gap only indirectly through unanticipated in�ation. Nonetheless, the

policy suggested by this theory still implies a relatively large reaction of the nominal interest

rate to oil prices, especially in the long run. Finally, in the Hamilton theory policymakers cannot

modify the output gap with their policy choices. For this reason, the interest rate response to

the oil variable is much smaller, and directed to contrast its e¤ects on core CPI in�ation only.

Figure 2 - Impulse responses: simple rules and no action

Note: Response of the output gap, core CPI in�ation and the Federal funds rate to a 10% increase in the real

price of oil. The �rst columns reports the output gap, the second column core CPI in�ation and the last column

the Federal funds rate. Each row represents a di¤erent model and relative policy rule. In each panel, the

response of the variable of interest under the selected policy rule (continuous line) is compared to the response

when no action is undertaken by the policymaker, i.e. when the coe¢ cients in (18) are all set equal to zero

(dashed line).

For a better understanding of the implications of the simple rules described in table 5,

I studied the policy response to a 10% increase in the real price of oil that each of them

21



recommends. More speci�cally, I investigated the response of output, core CPI in�ation and the

Federal Funds rate in each of the models described in table 4, when the policymaker implements

the respective optimal simple rule. In each model, the impact of the policy response to the

change in oil prices is compared with the pattern of the variables of interest when no action

is undertaken by the policymaker, i.e. when the coe¢ cients on the policy rule in (18) are all

set equal to zero. This exercise provides further evidence about the fact that the ability of

monetary policy to contrast an oil price shock is model dependent. The results of this exercise

are reported in �gure 2; some further analysis of the policy responses implied by each of the

rules described in table 5 is provided in Appendix 2.

A few things can be observed from �gure 2. First, as discussed the recommended response

to oil prices is stronger in the Solow and Blanchard-Gali theories relative to the Hamilton

theory. Second, in the Blanchard-Gali model if policymakers do not respond to the change

in the real price of oil, both the output gap and core CPI in�ation quickly diverge towards

in�nite negative values. Thus, in this model policymakers must react to changes in oil prices

to preserve the stability of the variables of interest. Third, �gure 2 shows that the ability of

policymakers to contrast the e¤ects of a change in the real price of oil on the output gap is

quite di¤erent depending on the model of the economy under consideration. For this reason,

the exercise reported in this �gure provides some additional insights on the debate between

Bernanke et al. (1997, 2004) and Hamilton and Herrera (2004) over the role of monetary policy

in the declines in output that followed most of the oil price shocks of the postwar period. While

Bernanke et al. (1997, 2004) suggest that the economic downturns would have been milder if

the policymaker had adopted a less contractionary policy after an oil price shock, Hamilton

and Herrera (2004) argue that output would have decreased no matter what policy had been

implemented. Figure 2 reports an impulse response exercise that is very similar to those studied

by Bernanke et al. (1997, 2004) and Hamilton and Herrera (2004), and the panels in the �rst

column of this �gure are actually consistent with the results of these contributions. In more

detail, if the true model of the economy is the BG model, then �gure 2 shows that policymakers

can successfully reduce the downfall in output caused by an oil price shock by implementing

an expansionary policy rule. This conclusion supports the position of Bernanke et al. (1997,

2004). On the other hand, if the true data generating process is either the H model or the S

model, then policymakers are not able to avoid the decrease in output caused by a change in oil

prices, and a more expansionary policy rule brings no bene�ts to the real economy, which is the

opinion expressed by Hamilton and Herrera (2004). Thus, this exercise provides evidence that

both positions can be correct, depending on which theory is regarded as the one generating the

data.

The simple rules reported in table 5 have been selected to minimize losses in a speci�c model
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belonging to one of the three theories under consideration. However, their performance in the

other speci�cations included in their same class or in the other classes of models is not obvious,

and policymakers might be interested in evaluating whether the adoption of one of them o¤ers

advantages relative to the implementation of the OT rule. This exercise is carried out in the

next section, using the measures that have been previously described in section 2.

5 Policy Evaluation

In a context in which the monetary authority does not know whether the true model of the

economy belongs to theMS;MBG orMH class, what are the consequences of adopting a speci�c

policy rule? What rules are more robust across the di¤erent speci�cations? These questions

will be investigated in this section.

A large part of the policy evaluation exercise performed in this section is based on the study

of expected losses conditional on a given model speci�cation and policy rule, as de�ned in (22).

In addition, the Bayesian portion of the analysis requires the computation of expected losses

for the di¤erent classes of models and for the entire model space. As in BDW (2007) and

Cogley et al. (2009), these will be obtained by taking a weighted average of the model speci�c

conditional expected losses, using posterior probabilities as weights. Thus, the expected loss

across the entire model space when model uncertainty is incorporated into the analysis will be

de�ned as: bR = X
m2M

bRm� (m j d) (23)

Using the same approach, the expected loss for each class of models will be computed as:

bRC = X
m2C

bRm� (m j d) =

P
m2C

bRmbLmP
m2C

bLm (24)

where again bLm is the BIC adjusted likelihood for model m, and the second equality follows
from the fact that within each class of models all speci�cations have the same prior probability.

5.1 Outcome dispersion

Outcome dispersion measures the variation in loss that occurs when considering the e¤ects of

the same policy rule in di¤erent model speci�cations. Table 6 reports the properties of the

distribution of losses for each class of models under each of the four policy rules included into

the analysis (OT rule, S rule, BG rule and H rule). Table 7 provides a description of the same
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distribution across the whole model space. Finally, �gure 3 o¤ers a visual representation of the

information presented in these two tables.

Table 6 - Distribution of model losses under each of the policy rules

Class of models MS MBG MH

Policy rule OT S BG H OT S BG H OT S BG H

(1) Mean 42.92 39.48 40.88 40.31 68.46 46.87 40.67 57.29 32.90 30.86 32.49 30.54

(2) St. deviation 11.45 10.72 9.97 11.34 36.23 23.31 20.64 29.80 11.51 10.31 9.20 11.16

(3) Minimum 26.21 25.54 28.57 24.59 27.42 22.60 21.20 26.22 19.07 19.90 22.22 18.15

(4) Q1 34.30 31.00 33.37 31.54 40.90 27.90 24.92 34.22 25.11 22.92 25.66 22.21

(5) Median 41.26 36.62 38.51 38.10 49.46 35.34 33.01 43.75 30.08 28.31 29.05 28.39

(6) Q3 49.40 44.92 44.74 47.10 96.23 62.15 52.92 80.40 37.78 34.36 35.23 34.56

(7) Maximum 78.55 75.67 75.53 77.02 157.41 127.63 130.24 132.26 67.20 64.32 63.72 65.59

(8) P. w. average 38.70 35.31 36.97 36.07 57.56 36.80 31.87 46.43 26.85 25.30 27.19 24.71

(9) N. of models 55 87 56

Notes: 1. Distribution of model speci�c losses for each class of models under the Taylor rule and the three

simple rules described in table 5: the S rule, the BG rule and the H rule.

2. Rows (1) - (7) report basic statistics of the distribution of losses for each class of models under each policy

rule. Row (8) reports the posterior weighted average loss, computed using (24).

3. The composition of each class of models is described in Appendix 1.

In the environment under analysis, the simple rules described in table 5 perform better

than the OT rule in terms of the �rst and second moments of the distribution of losses that

they generate. In particular, table 6 shows that while the OT rule implies higher and more

disperse expected losses in all classes of models, its performance is signi�cantly worse than the

other rules in the BG class. Among the three simple rules, the H rule delivers a higher mean

and standard deviation of losses than the S and BG rules in the BG class, while all of them

imply similar losses in the other two classes. The considerably lower standard deviation of

expected losses that can be attained by adopting the S or BG rule should be a characteristic

of particular interest to policymakers in an environment characterized by uncertainty on the

model that generates the data.
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Table 7 - Distribution of losses across the model space

OT rule S rule BG rule H rule

(1) Mean 51.308 40.287 38.414 45.009

(2) Standard deviation 29.866 18.521 15.840 24.289

(3) Minimum 19.068 19.900 21.198 18.152

(4) Q1 32.592 27.894 26.692 29.511

(5) Median 41.377 33.323 33.948 36.224

(6) Q3 55.738 48.493 44.579 51.304

(7) Maximum 157.413 127.634 130.243 132.259

(8) Posterior weighted average 37.866 34.164 35.647 35.030

(9) N. of models 198 198 198 198

Notes: 1. Distribution of model speci�c losses across the entire model space under the Taylor rule, the S rule,
the BG rule and the H rule.

2. Rows (1) - (7) report basic statistics of the distribution of losses under each policy rule. Row (8) reports the

posterior weighted average loss, computed using (23).

3. The composition of the model space is described in Appendix 1.

Figure 3 - Outcome dispersion for each policy rule

Notes: 1. Model speci�c expected losses under the original Taylor (OT ) rule, de�ned in (21), and the S, BG
and H rules described in table 5.

2. The summary statistics for the distribution of losses in each class of models are reported in table 6. The

summary statistics for the distribution of losses across the model space are reported in table 7.

3. Models from 1 to 55 belong to the S class, from 56 to 142 to the BG class, and from 143 to 198 to the H
class. Additional information on the model numbers is provided in Appendix 1.
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In terms of posterior weighted average losses, the di¤erences in performance between rules

are reduced when we consider the entire model space because the BG class of models, in which

the disparities are larger, covers a smaller posterior probability relative to the other two classes.

Despite this, the posterior weighted average loss delivered by the OT rule is the largest among

the policy rules under consideration. Notice that this measure is the only one in tables 6 and

7 that is computed using the models�posterior probabilities, while all the other information is

obtained by assigning an equal weight to all speci�cations in the model space. The posterior

weighted average loss is the value that is naturally used for policy evaluation in the Bayesian

approach. It follows that, in this environment, a Bayesian policymaker would select the S rule

as the robust policy under model uncertainty.

Figure 4 - Model losses for each policy relative to the Taylor rule

Notes: 1. Each panel reports the ratio between the loss generated by one of the simple policy rules described

in table 5 and the loss generated by the original Taylor rule, for each speci�cation in the model space.

2. Model numbers are explained in Appendix 1.

The performance of the OT rule relative to the alternative policy rules described in table

5 is further investigated in �gure 4. For each model speci�cation, this �gure reports the ratio

between the loss generated by the S, BG and H rules and the loss generated by the original

Taylor rule. This exercise con�rms that, in average, expected losses are lower under the alter-

native simple rules than under the OT rule, and that the largest improvement is attained in the

BG class of models. At the same time, �gure 4 also shows that there are a few speci�cations
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for which the OT rule implies lower losses compared to the S, BG and H policies. This is

particularly true for some elements of the BG class, in which the original Taylor rule performs

considerably better than the other policies, especially the S and BG rules. These are models

in which the strong expansionary response to a change in oil prices suggested by the S and BG

policies is considerably less e¤ective in stabilizing the volatility of the variable of interest to

policymakers than abstaining from any direct reaction to the change.

5.1.1 The role of inertia in the alternative policy rules

Tables 6�7 and �gures 3�4 provide evidence of the fact that among the policy rules considered
in the policy evaluation exercise, the OT rule is the one that delivers the highest mean and

variance of the distribution of losses across the model space, and the highest posterior weighted

average loss. Given this result, policymakers might be interested in investigating whether this

di¤erence in performance is due to the fact that the S, BG and H rules incorporate a response

to changes in the real price of oil, while the OT rule does not.

The alternative simple rules considered in the policy evaluation exercise have been con-

structed so that the long run e¤ect of the output gap and core CPI in�ation on the nominal

interest rate are the same as in the original Taylor rule. Therefore, the reduction in losses that

these rules imply relative to the OT rule cannot be attributed to di¤erences in the long run

response to yt or �t: Nonetheless, in the S, BG and H policies this long run e¤ect is attained

through some degree of interest rate inertia, while this is not the case in the OT rule. Thus,

the relevant question is whether the original Taylor rule performs worse than the alternative

policy rules because it does not include a term for interest rate smoothing, or because it does

not respond to changes in the real price of oil.

To answer this question, I compared the results obtained in the �rst part of this section

with the performance of a Taylor-type rule that adds persistence in the policy instrument. The

literature on monetary policy has devoted large attention to the tendency of central banks to

adjust interest rates gradually in response to changes in economic conditions. In particular, a

number of contributions have focused on the study of inertial Taylor rules. Using the notation

adopted in this paper, the typical speci�cation of this type of rule is:

it = giit�1 + (1� gi)eit (25)

where eit is the operating target for the policy instrument, and gi is the degree of inertia in the
central bank�s response. The interest rate target is de�ned as:

eit = eg��t + egyyt (26)
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with eg� and egy representing the long run e¤ects of in�ation and output gap on the nominal
interest rate.

I focused on the distribution of losses induced by the policy rule de�ned in (25) and (26),

with gi = 0:65; eg� = 1:5 and egy = 0:5: The value of gi is in the range estimated by the empirical
literature on inertial Taylor rules (see for instance Sack, 1998; Orphanides, 2001; Dueker and

Rasche, 2004). As for the rules in table 5, I imposed the restriction that eg� and egy are the
same as in the original Taylor rule. The policy following from these assumptions, denoted as

"inertial Taylor rule" (IT rule), is it = 0:525�t + 0:175yt + 0:65it�1. This rule is actually quite

similar to the S rule, except for the lack of a response to changes in the real price of oil. For

this reason, the comparison of the performance of the IT and S rules is particularly relevant for

a better understanding of the impact that policymakers�reaction to oil prices has on outcome

dispersion.

Table 8 - Distribution of losses across the model space

OT rule IT rule S rule BG rule H rule

(1) Mean 51.308 54.801 40.287 38.414 45.009

(2) Standard deviation 29.866 36.418 18.521 15.840 24.289

(3) Minimum 19.068 17.477 19.900 21.198 18.152

(4) Q1 32.592 32.031 27.894 26.692 29.511

(5) Median 41.377 43.018 33.323 33.948 36.224

(6) Q3 55.738 59.073 48.493 44.579 51.304

(7) Maximum 157.413 184.666 127.634 130.243 132.259

(8) Posterior weighted average 37.866 37.409 34.164 35.647 35.030

(9) N. of models 198 198 198 198 198

Notes: 1. Distribution of model losses under di¤erent policy rules. The OT rule is de�ned by (21), the IT
rule is de�ned by (25) and (26), with gi= 0:65; eg�= 1:5 and egy= 0:5; the S, BG and H rules are de�ned

by (18), with coe¢ cient values as reported in table 5.

2. Rows (1) - (7) report basic statistics of the distribution of losses under each policy rule. Row (8) reports the

posterior weighted average loss, computed using (23).

3. The composition of the model space is described in Appendix 1.

Table 8 reproduces table 7 with the addition of the IT rule. In terms of loss dispersion,

the IT rule performs even worse than the OT rule, although it still delivers a similar posterior

weighted average loss. In comparison with the S rule, the IT rule generates a distribution of

losses that has considerably higher mean, and almost twice the standard deviation. Thus, it

is clear that the introduction of inertia in the Taylor rule is not able, per se, to improve the

28



distribution of losses across the model speci�cations considered in the analysis. It follows that,

in this environment, the direct response to changes in oil prices seems to play an important role

in reducing the mean (simple and posterior weighted) and the volatility of expected losses for

the elements of the model space.

5.1.2 The process for the real price of oil

The models described in (9)�(14) incorporate oil prices in the form of the annualized change in
the real price of oil. This variable is assumed to follow the process characterized by (15)� (17).
As already mentioned, in the baseline scenario expected losses were computed using values of �;

�2o and �
2
"�
that are consistent with the estimations performed in Rondina (2010). Alternative

assumptions about the value of these parameters will a¤ect policymakers�losses, and could alter

the optimal policy response to oil prices recommended by the di¤erent speci�cations included

in the model space. These changes have the potential to modify the previous conclusions about

the impact that the reaction to oil prices has on the distribution of losses across the model

space.

Table 9 - Outcome dispersion, di¤erent values of the parameters in the process for the real price of oil

OT rule S rule BG rule H rule OT rule S rule BG rule H rule

�2�= 80
2 �2�= 90

2

gi

gs

0

0

0.608

-0.007

0.073

-0.0194

0.473

-0.004

0

0

0.599

-0.0071

0.069

-0.0195

0.451

-0.0041

mean

variance

median

p.w. mean

48.44

27.18

39.43

35.99

38.49

16.99

32.34

32.51

36.73

14.41

32.52

33.94

42.65

22.16

34.76

33.28

55.72

33.99

44.62

40.74

43.15

20.99

35.20

36.71

41.01

18.05

36.03

38.30

48.51

27.41

38.40

37.68

� = 0:88 � = 0:95

gi

gs

0

0

0.609

-0.0062

0.082

-0.0188

0.498

-0.0033

0

0

0.610

-0.0094

0.050

-0.0204

0.410

-0.0061

mean

variance

median

p.w. mean

40.00

18.94

33.76

30.71

33.79

12.74

29.28

28.03

32.27

9.84

29.30

29.66

36.55

16.60

31.54

28.55

96.86

75.69

72.08

65.32

63.63

47.64

49.10

56.31

62.20

42.72

50.79

57.47

75.11

53.11

53.44

58.74

Note: Outcome dispersion analysis for alternative values of the parameters �2� and � in (17). For the S, BG
and H rules, the new values of the coe¢ cients gi and gs in (18), computed using the same procedure as in the
baseline scenario, are also reported.
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I examined the sensitivity of the outcome dispersion analysis to variations in the magnitude

of the volatilities �2o and �
2
"�
and of the autoregressive coe¢ cient �. In each case, I �rst computed

the new S, BG and H rules using the same procedure described in the previous section. Then,

I studied the distribution of expected losses generated by these new alternative simple rules,

and I compared it with the performance of the original Taylor rule. The results of this exercise

are summarized in table 9.

In the baseline case, I set �2o = 42 (220) and �2"� = 42 (1:9) ; so that �2� = 42 (441:9) =

84:092: I considered changes in the volatility of the innovations in the process for st in the

range
�
�2� = 80

2; �2� = 90
2
�
:18 Table 9 shows that these changes have almost no impact on the

coe¢ cients of the optimal simple rules, and that the di¤erences in the distribution of losses

that these rules imply remain similar to those obtained in the baseline scenario.

As expected, variations in the autoregressive coe¢ cient � have a larger impact on the com-

puted simple rules, in particular on the optimal response of the nominal interest rate to changes

in the real price of oil. In the baseline scenario, � = 0:91; table 9 reports the results for � = 0:88

and � = 0:95: In terms of outcome dispersion, the di¤erences between the distribution of losses

generated by the OT rule and those originated by the alternative simple rules become larger

when changes in the real price of oil are more persistent. Overall, all cases considered in table

9 con�rm the result obtained in the baseline scenario that expected losses exhibit the highest

mean, variance, median and posterior weighted mean when the OT rule is implemented.

5.2 Action dispersion

In addition to outcome dispersion, policymakers might be interested in investigating the extent

to which the reaction to oil prices recommended by the di¤erent speci�cations in the model

space is homogeneous. All the policies reported in table 5 suggest an expansionary response to

oil price changes, even if the magnitude of this response is di¤erent. These rules were computed

using the model speci�cation with the highest posterior probability in each class of models, as

explained in the previous section. Here, I study the distribution of the optimal policy reaction

to a change in the real price of oil across all the speci�cations included in the model space. As

before, optimal policies were obtained by grid search of the parameters in (18) that minimize

(22), under the restriction that the long run e¤ect of output and in�ation on the nominal

interest rate is the same as in the OT rule.

Table 10 provides information on the interest rate response to a change in the real price of

oil recommended by the di¤erent speci�cations in the model space. The table focuses on the

coe¢ cient gs in (18) and on the long run e¤ect of oil price changes on the nominal interest

18This range corresponds to reasonable values of �2o and �
2
"�
in the process for the real price of oil, according

to the results reported in Rondina (2010).
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rate, de�ned as: egs = gs=(1� gi): The results are reported for each class of models and for the
entire model space. From this table, it is clear that the recommended response to a change

in the real price of oil varies considerably across the model space. In average, the elements

of the Blanchard-Gali class suggest a stronger response relative to the model speci�cations

belonging to the other two classes, as evident from rows (1) and (8). The standard deviation of

gs, which measures the contemporaneous reaction of it to oil price variations, is higher in the

Blanchard-Gali class, while the dispersion of egs, that is the long run e¤ect of a change in oil
prices on it, is higher in the Solow and Hamilton classes. This di¤erence is due to the term for

interest rate inertia, gi, which is larger in average in the model speci�cations belonging to these

last two classes. Finally, a number of models, particularly in the Hamilton class, recommend a

positive response to changes in the real price of oil. In these speci�cations, the (positive) impact

of oil prices on core CPI in�ation is larger than the (negative) impact on the output gap, so

that a contractionary rather than expansionary policy is required to contrast the economic

consequences of a change in the real price of oil.

Table 10 - Distribution of the optimal response to real oil price changes

All models MS MBG MH

gs egs gs egs gs egs gs egs
(1) Mean -0.0140 -0.001 -0.0080 0.0036 -0.0231 -0.0262 -0.0060 0.0335

(2) Standard deviation 0.0138 0.1109 0.0066 0.1617 0.0149 0.0171 0.0076 0.1253

(3) Minimum -0.0475 -0.1333 -0.0214 -0.1120 -0.0475 -0.0522 -0.0246 -0.1333

(4) Q1 -0.0208 -0.0333 -0.0126 -0.0313 -0.0359 -0.0414 -0.0123 -0.0209

(5) Median -0.0135 -0.0210 -0.0089 -0.0195 -0.0210 -0.0242 -0.0041 -0.0084

(6) Q3 -0.0031 -0.0074 -0.0008 -0.0059 -0.0180 -0.0208 0.0001 0.1000

(7) Maximum 0.0203 1.1333 0.0102 1.1333 0.0203 0.0244 0.0056 0.6000

(8) Post. weighted average -0.0075 -0.0205 -0.0074 -0.0215 -0.0222 -0.0245 -0.0047 -0.0117

(9) N. of models 198 55 87 56

Notes: 1. Distribution of the recommended values of gs and egs= gs=(1� gi) across all speci�cations included
in the model space.

2. The composition of each class of models is described in Appendix 1.

5.3 Minimax and minimax regret

As last step of the analysis, I examined the policy recommendations of the minimax and min-

imax regret criteria, de�ned by (6) and (7) in section 2. This exercise was performed using
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the OT rule and the S, BG and H rules described in table 5. As previously discussed, the

non-Bayesian minimax and minimax regret approaches do not take into account the models�

posterior probabilities. Therefore, in this portion of the policy evaluation an equal weight is

attached to all the speci�cations included in the model space.

Table 11 - Minimax analysis

(1) All models (2) MS (3) MBG (4) MH

N. of models 198 55 87 56

Max Loss

Taylor rule 157.41 78.55 157.41 67.20

S rule 127.63 75.67 127.63 64.32

BG rule 130.24 75.53 130.24 63.72

H rule 132.26 77.02 132.26 65.59

Minimax S rule BG rule S rule BG rule

Notes: 1. Robust policy rule recommended by the minimax criterion for each class of models and for the entire

model space. The minimax criterion is de�ned by (6).

2. The OT rule is de�ned by (21) and the S, BG and H rules are de�ned by (18), with coe¢ cient values as

reported in table 5.

3. The composition of each class of models is described in Appendix 1.

Table 12 - Minimax regret analysis

(1) All models (2) MS (3) MBG (4) MH

N. of models 198 55 87 56

Max Regret

Taylor rule 83.22 8.25 83.22 9.53

S rule 57.03 0.95 57.03 3.79

BG rule 59.65 5.52 59.65 10.25

H rule 57.71 4.00 57.71 5.70

Minimax Regret S rule S rule S rule S rule

Notes: 1. Robust policy rule recommended by the minimax regret criterion for each class of models and for the

entire model space. The minimax regret criterion is de�ned by (7).

2. The OT rule is de�ned by (21) and the S, BG and H rules are de�ned by (18), with coe¢ cient values as

reported in table 5.

3. The composition of each class of models is described in Appendix 1.

Table 11 reports the result of the minimax analysis for each class of models and for the entire

model space. Across the 198 speci�cations composing the model space, the policy rule that
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minimizes the maximum possible loss is the S rule. This is also the case if we only consider the

Blanchard-Gali class of models, while in the other two classes the BG rule delivers a (slightly)

lower maximum loss. In all sets of models, the OT rule induces the highest maximum loss.

Table 12 reports the policy recommendations of the minimax regret criterion. For each

model, regret is de�ned as the di¤erence between the loss su¤ered by a policy and the loss

under the optimal policy for that speci�c model. Thus, relative to the minimax criterion, this

measure is able to reduce the dominance of those speci�cations that entail relatively high losses

regardless of the selected policy. Table 12 shows that the policy minimizing the maximum

regret, in each class of models and in the entire model space, is the S rule. Again, in all sets of

models, the OT rule delivers the highest maximum regret.

For the space of model speci�cations considered in this work, tables 11 and 12 show that

the minimax and the minimax regret criteria both recommend the same policy, that is the S

rule. This policy is also the one that generates the lowest posterior weighted average loss across

the model space, as reported in table 7. Thus, among the policy rules considered in the policy

evaluation exercise, the Bayesian model averaging approach and the non-Bayesian minimax

and minimax regret criteria agree on the choice of the robust policy under model uncertainty.

Moreover, under all measures the least recommended policy is always the original Taylor rule.

5.4 An alternative model space

In the baseline scenario, the de�nition of the model space was centred on the three di¤erent

theories that policymakers believe as possibly generating the data. As a consequence, the

speci�cations included in the restricted model space used for the outcome dispersion, action

dispersion, minimax and minimax regret analysis were those with the highest posterior prob-

abilities within each class of models. In this section, I investigate whether the results of the

policy evaluation exercise would be di¤erent under an alternative de�nition of the model space

that puts less emphasis on the theory from which each model speci�cation originates.

The model space considered in this section was de�ned using the following procedure. Start-

ing from the initial set of 30; 720 speci�cations, I attached the same initial weight to all of them

by assuming a uniform prior of 1=30720. Then, I selected all the models with posterior prob-

ability of at least 1=200 = 0:5% of the model with the highest posterior in the entire model

space.19 In this way, only speci�cations with high posterior probability in absolute (and not in

relative) terms were included in the restricted model space used for the policy evaluation exer-

cise. This procedure selected a total of 96 models, covering 89:27% of the posterior probability.

19I decreased the threshold relative to the baseline scenario to include an overall posterior probability compa-
rable with those reported in table 3 for the di¤erent classes of models. In any case, the same exercised performed
with the threshold of 1% delivers very similar results.
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Of these, 89 were part of the original Solow class of models, 1 of the Blanchard-Gali class, and

6 of the Hamilton class. The higher prior attached to the Solow speci�cations relative to the

baseline case is re�ected in the composition of the restricted model space, which is almost en-

tirely constituted of models belonging to this class. The speci�cation with the highest posterior

probability in this alternative de�nition of the model space corresponds to the speci�cation

with the highest posterior in the Solow class, so its estimated coe¢ cients were already reported

in table 4.

Table 13 - Distribution of model losses in the alternative model space

OT rule S rule BG rule H rule

(1) Mean 42.406 39.065 40.508 39.776

(2) Standard deviation 12.516 11.754 11.0945 12.395

(3) Minimum 21.352 20.344 22.549 19.459

(4) Q1 34.006 30.279 33.281 30.535

(5) Median 40.205 36.521 38.340 37.291

(6) Q3 49.283 45.397 45.701 47.012

(7) Maximum 79.226 75.669 75.527 77.020

(8) Posterior weighted average 38.729 35.379 37.033 36.101

(9) N. of models 96 96 96 96

Notes: 1. Distribution of model losses under di¤erent policy rules. The OT rule is de�ned by (21) and the S,
BG and H rules are de�ned by (18), with coe¢ cient values as reported in table 5.

2. Rows (1) - (7) report basic statistics of the distribution of losses under each policy rule. Row (8) reports the

posterior weighted average loss, computed using (23).

3. The models space is composed of 96 models, 89 from the Solow class, 1 from the Blanchard-Gali class, and

6 from the Hamilton class. These models were selected using the procedure described in the main text.

Table 13 provides some summary statistics of the distribution of losses across the new model

space for the policy rules that were studied in the original analysis. The S rule corresponds

to the policy recommended by the speci�cation with the highest posterior in this new model

space. In addition, the Blanchard-Gali and Solow speci�cations described in table 4, which were

used to compute the BG and H rules, are still part of the model space, even in this alternative

de�nition. For this reason, as well as for comparison purposes, the policy evaluation exercise

was performed using the same set of policies considered in the baseline model scenario.

The performance of theOT rule in terms of the �rst two moments of the distribution of losses

across the model space is considerably improved in this case. This result was somehow expected,

since this policy rule originates high losses particularly in the Blanchard-Gali class of models,
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which is greatly underrepresented here compared to the baseline scenario (1 speci�cation instead

of 87). In addition, the marginal presence of Blanchard-Gali speci�cations for which, as shown

in �gure 3, losses exhibit a general tendency to be more volatile, induces a reduction in the

standard deviation of losses under all policy rules. Nonetheless, the di¤erences in performance

in terms of posterior weighted average loss are almost the same as those reported in table 7.

This happens because the Solow speci�cations dominate the model space in terms of posterior

probabilities, in this exercise as well as in the baseline case. Therefore, the di¤erences in the

expected losses generated by the selected policies in the two scenarios almost disappear when

these are weighted using the models�posteriors.

Figure 5 - Model losses for each policy relative to the Taylor rule in the alternative model space

Notes: 1. Each panel reports the ratio between the loss generated by one of the simple policy rules described

in table 5 and the loss generated by the original Taylor rule, for each speci�cation in the model space.

2. Model numbers are as follows: speci�cations from 1 to 89 belong to the Solow class of models, speci�cation

90 belongs to the Blanchard-Gali class, and speci�cations from 91 to 96 belong to the Hamilton class. These

models have been selected using the procedure described in the main text.

Finally, �gure 5 provides some additional information about the losses generated by the

S, BG and H policy rules relative to the OT rule. This �gure shows that, while for some

elements of the model space the OT rule is able to outperform the BG rule in terms of model

speci�c losses, this is almost never the case when this rule is compared to the S and H policies.

In all, from table 13 and �gure 5 we can conclude that even if the OT rule is considerably
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more comparable to the other policies in this di¤erent model space, it still produces the highest

average losses, either non-weighted or weighted using the models�posterior probabilities.

In this alternative de�nition of the model space, based on the posterior weighted average

losses reported in table 13 a Bayesian policymaker would select the S rule. On the other hand,

the minimax criterion would suggest the BG rule, while the minimax regret approach would

recommend again the S rule. Relative to the baseline scenario, only the minimax criterion

selects a di¤erent policy rule. However, it is clear from line (7) in table 13 that the lead of

the BG policy rule over the S rule is minimal, since the maximum loss generated by these two

policies is actually almost the same. Therefore, the conclusion that in this environment various

approaches point to the S rule as the robust policy choice under model uncertainty can be

regarded as valid even under the di¤erent de�nition of model space considered in this section.

Furthermore, all the techniques still regard the original Taylor rule as the least robust among

the set of policies under study.

6 Concluding remarks

In this paper, I analyzed the problem of a policymaker that is uncertain about the mechanisms

through which oil prices a¤ect economic activity. I conducted an empirical study of the likeli-

hood of three alternative theories that have been proposed to explain the e¤ects of oil prices on

the economy, and I presented a policy evaluation exercise encompassing a range of techniques

that have been developed in the model uncertainty literature. In this environment, I found that

according to a number of Bayesian and non-Bayesian measures, the original Taylor rule per-

forms worse than a set of alternative simple rules in which policymakers introduce persistence

in the nominal interest rate and respond to changes in the real price of oil. In particular, I

showed that allowing the policy rule to react to oil prices is important for controlling the mean

and volatility of expected losses across the di¤erent speci�cations considered in the analysis.

This result was not obvious. Since the di¤erent elements of the model space recommend a

contrasting optimal response to oil prices (negative in some cases, positive in others) it could

have been possible as well that a policy rule not reacting to changes in the real price of oil

performed better than another one imposing a response in one speci�c direction.

I believe that this work could be extended in a few di¤erent directions. First, the policy

analysis could be enriched to account for the lack of consensus on the way oil prices should

be measured. Indeed, while a part of the literature focused on real oil prices, in levels or

di¤erences (see, for instance, Blanchard and Gali, 2007 and Herrera and Pesavento, 2009),

other contributions introduced alternative measures of nominal oil price changes (see, among

the others, Hamilton, 2003 and Cavallo and Wu, 2009). This issue could be incorporated in the
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framework proposed in this paper by simply considering the uncertainty on the way oil prices

should be de�ned as an additional form of uncertainty characterizing the model space.

A second extension could be the inclusion of models that focus on allocative disturbances

as the channel through which oil prices a¤ect economic activity (see for instance Bernanke,

1983 or Hamilton, 1988). As explained by Hamilton (2005), if this is actually the mechanism

through which oil prices a¤ect the economy, then there is no reason to expect a linear relation

between oil prices and GDP. An oil price increase would decrease demand for some goods and

possibly increase demand for others, and it would create incentives for households to postpone

their investment activity. However, an oil price decrease would have the same e¤ect on the

economy, so that both an oil price increase and an oil price decrease could be contractionary in

the short run. For this reason, it might be worthy to think about possible ways of including this

additional channel of transmission of the e¤ects of oil prices in the policy evaluation exercise.

Finally, a last extension could be in the direction of investigating the role of expectations

in this environment. As a �rst step, the assumption of backward looking expectations could be

replaced by the use of survey data on expected in�ation. In addition, it might be interesting

to introduce uncertainty on the way expectations are formed, in a way similar to BDW (2007).
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Appendix 1

Data description and model labeling

Data description

The variables used in the main text are the following:

� yt is the output gap, computed as the di¤erence between real GDP and the CBO estimate
of potential GDP, both expressed in logs.

� �t is the annualized di¤erence in log core CPI, where core CPI is the "CPI for all urban
consumers: all items less energy products".

� st is the annualized change in the real price of oil. The real price of oil is de�ned as the
di¤erence between the nominal price of oil and core CPI, both expressed in logs. The

nominal price of oil is the West Texas Intermediate spot oil price, while core CPI is the

same used to compute �t.

� it is the average Federal Funds rate.

The data is quarterly and includes observations from 1973 : I to 2008 : II, with data from

1971 : I to 1972 : IV used to provide lags. All the data was obtained from the Federal Reserve

Bank of St. Louis web site.

The computation of the expected losses de�ned by (22) requires that policymakers know

the value of the parameters in the process for the real price of oil. As explained in the main

text, Rondina (2010) estimates these parameters using a MCMC algorithm. Given the results

of this related work, I set � = 0:91; �2o = 42 (220) and �2" = 42 (1:9) : This implies that �2� =

42 (441:9) = 84:092:

Model labeling

The full model space includes 30; 720 models, 20; 480 forMS and 5; 120 forMBG andMH : The

numbering of the models is organized as follows:

� models from 1 to 20; 480 are the S class of models;

� models from 20; 481 to 25; 600 are the BG class of models;

� models from 25; 601 to 30; 720 are the H class of models.
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The elements of each class of models di¤er in terms of the variables and the number of lags

of each variable included in the output and in�ation equations, as speci�ed in table 1. In each

class of models, the order in which the lags change is the following:

1. lags of st in the in�ation equation;

2. lags of it in the in�ation equation (for the S and H models);

3. lags of �t in the in�ation equation;

4. lags of yt in the in�ation equation;

5. lags of st in the output equation;

6. lags of the real interest rate (it�1 � Et�1 (�t)) in the output equation (for the BG models);

7. lags of unanticipated in�ation (�t � Et�1 (�t)) in the output equation (for the S models);

8. lags of y in the output equation.

In the policy evaluation exercise, I only consider a subset of the initial model space, composed

of 55 models for the S class, 87 models for the BG class and 56 models for the H class for a

total of 198 model speci�cations. The process used to select these models was explained in the

main text. The numbering of the elements in this restricted model space is as follows:

� models from 1 to 55 are the S class of models;

� models from 56 to 142 are the BG class of models;

� models from 143 to 198 are the H class of models.

Speci�cally, the lag composition of each of these models is described in the next tables.
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Table 14 - Model speci�cations in the restricted Solow class

Table 15 - Model speci�cations in the restricted Blanchard-Gali class
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Table 16 - Model speci�cations in the restricted Hamilton class
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Appendix 2

Analysis of the policy responses implied by the policy rules described in table 5

This Appendix provides a more in depth analysis of the policy responses implied by the

simple rules reported in table 5. Figure 6 investigates the response of output, Core CPI in�ation

and the Federal Funds rate to a 10% increase in the real price of oil in each of the models

described in table 4, when the policymaker implements the policy rule suggested by that speci�c

model. In each panel, the impact of the policy response to the change in the price of oil is

compared with the pattern of the variables of interest under the original Taylor rule described

by (21).

Figure 6 - Impulse responses: simple rules and Taylor rule

Note: Response of the output gap, core CPI in�ation and the Federal funds rate to a 10% increase in the real

price of oil. The �rst column reports the output gap, the second column core CPI in�ation and the last column

the Federal funds rate. Each row represents a di¤erent model and relative policy rule. In each panel, the

response of the variable of interest under the selected simple rule (continuous line) is compared to the response

under the OT rule described by (21) (dashed line).

All policies recommend a more expansionary response to the change in the real price of oil

than the OT rule. In the Hamilton model, which is the one implying the mildest reaction to oil

prices, the pattern of all variables is actually quite similar to the impulse-responses that would

be generated by implementing the Taylor rule. In the Solow model, the di¤erences between
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the S and the OT rule are more pronounced, particularly in the behavior of core CPI in�ation

that returns faster to its the pre-shock level when the S rule is implemented. Lastly, in the

Blanchard-Gali model, the BG rule is able to contrast the e¤ects of the oil price increase on

the output gap, and is generally a lot more e¤ective than the OT rule in bringing the variables

of interest back to their original values.

The next three �gures explore the response of output, Core CPI in�ation and the Federal

Funds rate to a 10% increase in the real price of oil in the models described in table 4, when

the policymaker implements one of the policy rules described in table 5.

Figure 7 - Impulse responses: S rule and Taylor rule

Note: Response of the output gap, core CPI in�ation and the Federal funds rate to a 10% increase in the real

price of oil. The �rst columns reports the output gap, the second column core CPI in�ation and the last column

the Federal funds rate. Each row represents a di¤erent model. In each panel, the response of the variable of

interest under the S policy rule (continuous line) is compared to the response under the OT rule described by

(21) (dashed line).

Figure 7 compares the patterns of the variables of interest generated by the S rule to their

behavior under the OT rule. For the Solow model, this exercise is the same as the one performed

in �gure 6. In the BG model, the S rule is still more e¤ective than the OT rule in contrasting

the e¤ects of the increase in oil prices, but the variables return to their original values more

slowly compared to the case in which the BG rule is implemented. In the Hamilton model,

the S rule generates a stronger response of the nominal interest rate relative to both the OT
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rule and the H rule (depicted in �gure 6), which leads to more ample variations in core CPI

in�ation.

Figure 8 - Impulse responses: BG rule and Taylor rule

Note: Response of the output gap, core CPI in�ation and the Federal funds rate to a 10% increase in the real

price of oil. The �rst columns reports the output gap, the second column core CPI in�ation and the last column

the Federal funds rate. Each row represents a di¤erent model. In each panel, the response of the variable of

interest under the BG policy rule (continuous line) is compared to the response under the OT rule described

by (21) (dashed line).

Figure 8 studies the patterns of the variables of interest under the BG rule. In the Solow

and Hamilton models, the stronger reaction to a change in the real price of oil recommended by

the BG rule implies a much larger decrease of the Federal funds rate relative to the OT rule,

and to the S and H rules as well (see �gures 6 and 7). The interactions between this decrease

and the reduction in output gap caused by the increase in oil prices make the pattern of core

CPI in�ation very volatile and hectic in both models. Nonetheless, in all models the length of

the recovery from the oil price increase does not change much relative to the previous exercises.

Finally, �gure 9 reports the responses of the output gap, core CPI in�ation and Federal

funds rate when the H rule is implemented. Given that the reaction to a change in the real

price of oil recommended by the H rule is quite small, it is not surprising that, in all models,

the patterns of the variables of interest are very similar to those generated by the OT rule.
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Figure 9 - Impulse response: H rule and Taylor rule

Note: Response of the output gap, core CPI in�ation and the Federal funds rate to a 10% increase in the real

price of oil. The �rst columns reports the output gap, the second column core CPI in�ation and the last column

the federal funds rate. Each row represents a di¤erent model. In each panel, the response of the variable of

interest under the H policy rule (continuous line) is compared to the response under the OT rule described by
(21) (dashed line).
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