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Abstract

This paper shows that rare events are important in explaining the cross section of

asset returns because of their role in shaping agents� expectations. I reconsider the

"bad beta, good beta" ICAPM proposed by Campbell and Vuolteenaho and I point

out that the explanatory power of the model relies on including the stock market crash

that opened the Great Depression. When using a Markov-switching VAR, a �30s regime

is identi�ed. This regime receives a large weight when forming expectations consistent

with the ICAPM, suggesting that the way agents think about �nancial markets is

shaped by what happens during extreme circumstances. From a technical point of

view, the paper extends the present value decomposition of Campbell and Shiller to

allow for Markov-switching dynamics in the law of motion of the state variables. This

approach could shed new light on the sensitivity of the present value decomposition

methodology to the sample choice.

1 Introduction

Financial market practitioners would agree that extreme �nancial crises are characterized

by peculiar dynamics that set them apart from what happens on a daily basis. This paper

�I am grateful to Chris Sims for useful suggestions at the early stage of this work. I thank Robert Barro,
Markus Brunnermeier, John Campbell, Jakub Jurek, Alisdair McKay, Motohiro Yogo, Adam Zawadowski,
Barbara Rossi, and seminar participants at Princeton University, Duke University, the Board of Governors
of the FRS, the EEA-ESEM conference, Bank of Italy, and the CEF 2008 conference for helpful discus-
sions and comments. This paper was awarded the Society for Computational Economics Student Prize.
Correspondence: 213 Social Sciences Building, Duke University, Durham, NC, 27708-0097, USA. E-mail:
francesco.bianchi@duke.edu.

1



shows that this is in fact the case and that taking these dynamics into account is important

in understanding the cross section of asset returns. Particular emphasis will be put on the

stock market crash that opened the Great Depression, providing support for the idea that

rare events shape agents�expectations. In doing so, I will provide formulas to extend the

present value decomposition of Campbell and Shiller (1988) to accommodate for the state

variables evolving according to a Markov-switching process.

The macro-�nance literature reveals a growing interest in the role that rare disasters can

play in understanding asset returns. Barro (2006, 2009), following Rietz (1988), shows that

rare events are potentially important in explaining several asset-pricing puzzles, such as the

high equity premium, low risk-free rate, and volatile stock returns, and that the welfare costs

of rare disasters can be very large for reasonable parameter values.

The idea that rare disasters should imply an increase in the risk premium sounds rea-

sonable and conceptually it is not di¤erent from the argument underlying the Consumption

CAPM: An asset is valuable if it pays during bad times, when the marginal utility of con-

sumption is very high. If the stock market performs poorly during a disaster, it is fair to

expect a high equity premium. Hence, if the probability of a rare event is taken into ac-

count, the high risk premium won�t be mistakenly ascribed to unreasonably high levels of

risk aversion. In fact, Barro et al. (2009), estimating an empirical model of consumption

disaster with Bayesian methods, show that under Epstein-Zin-Weil preferences rare disasters

can rationalize a sizeable equity premium for modest values of risk aversion.

Gabaix (2007) extends Barro�s results to allow for a time-varying intensity of rare disas-

ters. Among other things, he suggests that the small-value premium could be compensation

for distress risk if value stocks did worse than growth stocks during disasters. Irrespective of

how appealing this argument might sound, it seems at odds with the �ndings of Julliard and

Ghosh (2008). They show that rare events cannot account for the Equity Premium Puzzle

and the cross section of asset returns at the same time. On the one hand, the rare events

explanation of the EPP requires an increase in the probability assigned to disasters. On

the other hand, all stocks behave quite poorly during such events. Therefore, the rare-event

explanation of the EPP signi�cantly worsens the ability of the Consumption-CAPM to ex-

plain the cross-section of asset returns because it implies a reduction in the cross-sectional

dispersion of consumption risk compared to the cross-sectional variation of average returns.

Proposing an alternative approach, this paper shows that rare events indeed matter for

the cross section of asset returns because they have a large impact on the way agents think

about �nancial markets. So far, the literature has focused on the behavior of assets during

rare disasters, but it has neglected to address the role that rare events can play in shaping

agents� expectations. However, several economic variables of interest exhibit strong co-
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movements during extraordinary events, a feature that makes them relatively easy for agents

to interpret. Moreover, rare events come with remarkable e¤ects on the performance of the

stock market and on the overall state of the economy. Hence, in an uncertain environment

such as the one characterizing �nancial markets, it could be that agents form expectations

relying heavily on what happens in extreme circumstances.

This argument has an important implication. If the only thing that matters is the way

that assets behave during disasters, regular times betas could be completely uninformative

about the risk premia, given that they would not re�ect the risk associated with the di¤erent

portfolios, and only rare disasters betas would reveal the information needed to price them.

But if rare disasters did a¤ect the expectation formation mechanism, then regular times betas

would still be informative as long as expectations have been modeled adequately, i.e. as long

as the role of rare events has been taken into account.

This paper provides support for such a thesis by showing that, exactly because of their

impact on the expectation mechanism, rare events play an important role in explaining the

cross section of asset returns. I reconsider the "bad beta, good beta" Intertemporal CAPM

(ICAPM) proposed by Campbell and Vuolteenaho (2004a). The model is based on the idea

that unexpected (excess) returns can be decomposed into news about future cash �ows and

news about future discount rates. Accordingly, the usual CAPM beta can be decomposed

into two betas, one for each of the two types of news. The economically motivated ICAPM

predicts that the price of risk for the discount-rate beta should equal the variance of the

market return, while the price of risk for the cash-�ow beta should be 
 times greater, where


 is the investor�s coe¢ cient of relative risk aversion. Campbell and Vuolteenaho show that

the ICAPM is able to account for the small-value anomalies that arise starting from the

early �60s.

The �rst contribution of this paper is to point out that this remarkable result relies

on whether the dataset includes the stock market crash that opened the Great Depression.

Campbell and Vuolteenaho implement the decomposition of the expected market return

into cash-�ow news and discount rate news using a VAR model estimated on the sample

1928:12-2001:12. They then split the sample into two parts: pre- and post-63. Figure 1

reports the evolution of R2 of the ICAPM1 for the post-63 subsample as the full sample

used in estimating the initial VAR shortens. For example, 1940:12 means that cash-�ow

and discount-rate news have been computed according to a VAR estimated over the sample

1940:12-2001:12, with the ICAPM always tested over the same subsample (1963:07-2001:12).

1This is computed as 1�RSS=RSM where RSS is the residual sum of squares and RSM is the residual
sum of squares when only the constant is used as a regressor. The ICAPM restricts the price of risk for the
discount-rate beta to be equal to the variance of the market return. This is why R2 can become negative.
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Figure 1: Evolution of R2 for the ICAPM as the sample used to compute cash-�ow and
discount rate news shortens. For example: 1940:12 means that cash-�ow and discount-rate
news have been computed according to a VAR estimated over the sample 1940:12-2001:12.
While the sample used to estimate the VAR is changing, the models are always tested over
the same subsample (1963:07-2001:12).

Excluding the �rst three years has a substantial e¤ect on the explanatory power of the

ICAPM. When the entire sample is used, R2 = 51:96%. However, once the �rst three years

are excluded these results disappear and R2 ' 0%.
Many economic models require researchers to take a stance on how agents form expecta-

tions. This implies that when testing these models two sets of assumptions are under the lens

of the researcher. The �rst one is model speci�c, while the second refers to how expectations

have been modeled. In fact, a model could be rejected because the expectation mechanism

is not captured adequately. This is what seems to happen once the early �30s are excluded

from the estimates. Removing these �rst years means getting rid of the dramatic market

crash that marked the beginning of the Great Depression. If investors form expectations

giving a large weight to what happens in extreme circumstances, it is not surprising that the

events of the early �30s have such a large impact on the performance of the ICAPM. The

Great Depression market crash is likely to convey information that is crucial in modeling the

agents�expectation formation mechanism and this is why it is important to include those

years in the estimates.

The second contribution of this paper is to formalize this appealing argument. Using

a Markov-switching model with VAR coe¢ cients and volatilities evolving according to two

independent chains (MS-VAR), I show that it is in fact possible to isolate a �30s regime.

An interesting feature of the �30s regime is that the value spread predicts low stock market

returns, whereas this is not true for a large part of the remainder of the sample.2 This

2The value spread is the di¤erence in the log book-to-market ratios of small value and small growth
stocks. Therefore, when the performance of growth stocks is particularly good, this variable increases.
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property is quite relevant because it is implied by the ICAPM itself. If growth stocks deliver

lower returns, and these returns are not explained by market betas, it must be the case that

these assets provide hedging against future low market returns. Therefore, we would expect

the value spread to enter with a negative coe¢ cient in a regression that has future market

returns as the dependent variable. Consistent with this �nding, I show that in order to

maximize the explanatory power of the ICAPM a large weight must be assigned to the �30s

regime, even if there is little evidence of it occurring again after the early years. The best

version of the model delivers R2 = 53:77% when the initial weight assigned to the �30s regime

is well above its historical occurrence, implying that when forming expectations agents rely

heavily on what happens during extraordinary events, even if they are aware that di¤erent

regimes might prevail in the long run.

The third contribution of this paper is methodological and consists of extending the

present value decomposition methodology of Campbell and Shiller (1988) and Campbell

(1991) to allow for Markov-switching dynamics in the law of motion of the �nancial vari-

ables. The formulas presented in the paper are speci�c for the model of Campbell and

Vuolteenaho (2004a), but they can be easily modi�ed to handle other models that make use

of a present value decomposition. This approach, which formally isolates periods character-

ized by unusual dynamics, might prove useful in explaining why the present value decompo-

sition methodology is often sensitive to the sample choice. The paper also provides a simple

algorithm to estimate a Markov-switching VAR in reduced form with Bayesian methods.

However, practitioners that are more familiar with frequentist econometrics can make use of

the results presented here and use a method of their choice to estimate the MS-VAR.

The content of this paper can be summarized as follows. Section 2 presents a short review

of the related literature. Section 3 explains how to obtain the two types of news starting from

a �xed coe¢ cient VAR and introduces the ICAPM. Readers that are familiar with Campbell

and Vuolteenaho (2004a) may skip this section. Section 4 highlights the importance of the

early years of the sample: Once these are removed the ICAPM delivers poor results. Section

5 shows that it is possible to isolate a �30s regime using a Markov-switching model. In section

6, I describe how to compute the news when the dynamics of the state variables are described

by a Markov-switching process. Section 7 shows that a large weight must be assigned to the

�30s regime in order to maximize the explanatory power of the ICAPM. Section 8 shows that

if agents simply updated their beliefs according to a time-varying VAR, the ICAPM would

not be able to account for the value-small anomalies, implying that the Great Depression

had a long lasting impact on expectations. Section 9 concludes.
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2 Related literature

The results of this paper can be linked to some recent contributions in the �nance and

macro literature. The role of the Great Depression is central in Cogley and Sargent (2007).

They posit that agents update their beliefs according to Bayes�Law, but also that some rare

events can arrest convergence to a rational expectations equilibrium thereby initializing a

new learning process. They argue that the Great Depression was one such event. They show

that with su¢ cient initial pessimism, their model is able to generate substantial values for the

market price of risk and equity premium and to predict high Sharpe ratios and forecastable

excess stock returns. On the other hand, it could be that agents have a limited capacity when

it comes to acquiring information. In a model of Rational Inattention (Sims (2003, 2006))

agents would probably �nd it optimal to devote more attention to extraordinary events.

Such events are likely to be easier to interpret and more important to understand. As for

the importance of allowing for parameter instability when modeling agents�expectations,

this paper is close to the work of Bianchi et al. (2009). They use a Time-Varying Factor-

Augmented VAR (FAVAR) to model the interaction between the yield curve and the real

economy. When agents are assumed to form expectations according to the Time-Varying

FAVAR, they �nd that deviations from the expectations hypothesis are rare.

The idea that rare events a¤ect the expectation mechanism should be distinguished from

the so called peso phenomenon that addresses agents� expectations of an economy wide

disaster that has never materialized in the sample (Sandroni (1998), Veronesi (2004)). As

observed by Julliard and Ghosh (2008) this explanation would negatively a¤ect the ability of

the Consumption-CAPM to price the cross-section of asset returns, since such an expectation

would reduce the cross-sectional dispersion of consumption risk across assets. Instead, the

argument that I propose is based on the idea that rare events modify the way agents interpret

whatever happens in stock markets. In other words, agents can form expectations and

interpret events based on a limited number of episodes, without necessarily expecting a

market crash to occur in the near future.

Lewellen et al. (2008) and Daniel and Titman (2006) have highlighted several drawbacks

of the empirical methods used to test factor-model explanations of market anomalies. Among

other things, they recommend testing models on a large set of portfolios and taking into

account coe¢ cient restrictions as implied by economic theory. The results of this paper

are essentially robust to these critiques. The ICAPM is based on two factors and imposes

economically motivated restrictions on the premia. Furthermore, good results are obtained

even when imposing the zero-beta-restriction, i.e. that a portfolio with both betas equal to

zero should deliver the risk free rate. Moreover, in testing the model, 20 risk-sorted portfolios
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are added to the 25 Fama-French portfolios.

Finally, there are some caveats about the VARmethodology used to retrieve cash-�ow and

discount rate news. Chen and Zhao (2005) argue that it is potentially misleading to obtain

the two series with the discount-rate news being directly modeled and the cash-�ow news

calculated as the residual. They conduct several tests showing that the results of Campbell

and Vuolteenaho (2004a) are very sensitive to the set of variables that are included in the

VAR. To overcome this drawback Campbell et al. (2007) use direct proxies for cash-�ow

and discount-rate news. Bianchi (2003) highlights that the results are also very sensitive

to the sample chosen to estimate the news series. Thomas and Zhang (2007) and Wei and

Joutz (2009) point out that the pre-50s data are important for the results of Campbell and

Vuolteenaho (2004b), another important contribution from the same authors that makes use

of a present value decomposition to test the in�ation illusion hypothesis. Bianchi (2003)

represents the pars destruens of a more extended argument that �nds its pars costruens in

this paper. Here I o¤er an explanation for why the sample choice is so relevant and provide

new tools to handle this issue. However, it is important to keep in mind that cash-�ow and

discount-rate news are obtained through a highly non-linear transformation of the residuals.

This means that even extremely small changes in the VAR coe¢ cients can have important

e¤ects on the �nal results.

3 The ICAPM

The CAPM fails to describe average realized stock returns since the early 1960s, when a

value-weighted equity index is used as a proxy for the market portfolio. This failure is

most apparent for the price of small stocks and value stocks. Those stocks have experienced

average returns that cannot be explained through their market betas.

However, the returns on the market portfolio can be split into two components. An

unexpected change in excess returns can be determined by news about future cash �ows or

by a change in the discount-rate that investors apply to these cash �ows. While a fall in

expected cash �ows is simply bad news, an increase in discount rates implies at least an

improvement in future investment opportunities.

This means that the single CAPM beta can be decomposed into two sub-betas: one

re�ecting the covariance with news about future cash �ows (bad beta), the other linked to

news about discount rates (good beta). The previous argument suggests that given two

assets with the same CAPM beta, the one with the highest cash-�ow beta should have a

larger return. In fact, according to an Intertemporal capital asset pricing model along the

lines of the one proposed by Merton (1973), it can be shown that the price of risk for the
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discount-rate beta should equal the variance of the market return, while the price of risk for

the cash-�ow beta should be 
 times greater, where 
 is the investor�s coe¢ cient of relative

risk aversion.

The �rst step consists in obtaining estimates for the news. Using the loglinear approx-

imation for returns introduced by Campbell and Shiller (1988), unexpected excess returns

can be approximated by:

rt+1 � Etrt+1 = (Et+1 � Et)

1X
j=0

�j�dt+1+j| {z }
NCF;t+1

� (Et+1 � Et)

1X
j=1

�jrt+1+j| {z }
NDR;t+1

(1)

where rt+1 is a log stock market return, dt+1 is the log dividend paid by the stock, � denotes

a one period change, Et denotes a rational expectation formed at time t, and � is the discount

coe¢ cient that is set to 0:95 per annum. NCF;t+1 and NDR;t+1 represent news about future

market�s cash �ows and news about future market�s discount returns, respectively.

The VAR methodology, introduced by Campbell (1991), provides an estimate for the

terms Etrt+1 and NDR;t+1 = (Et+1 � Et)
1P
j=0

�j�rt+1+j. Then NCF;t+1 is derived from (1).

Consider a VAR in companion form:

Zt+1 = a+ �Zt + ut+1 (2)

where Zt is a vector of state variables with the excess return ordered �rst. Assuming that

agents form expectations using the above VAR, the two types of news can be obtained

according to the following transformation of the residuals:

rt+1 � Etrt+1 = e01ut+1 (3)

NCF;t+1 = (e01 + e01�)ut+1 (4)

NDR;t+1 = e01�ut+1 (5)

where � = �� (I � ��)�1 and e01 = [1; 0; :::; 0]
0. The residuals of the four equations are given

weights re�ecting their persistence and their contribution in explaining the excess return.

The �rst e¤ect is captured by (I � ��)�1, the second by ��.

Once the news have been obtained, the betas can be computed for a set of portfolios
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according to the following formulas:

b�i;CF =
ccov(ri;t; NCF;t)dvar(NCF;t �NDR;t)

+
ccov(ri;t; NCF;t�1)dvar(NCF;t �NDR;t)

(6)

b�i;DR =
ccov(ri;t;�NDR;t)dvar(NCF;t �NDR;t)

+
ccov(ri;t;�NDR;t�1)dvar(NCF;t �NDR;t)

(7)

where ri;t is the return of the i-th portfolio. Notice that the denominator is simply the

sample variance of the unexpected excess returns, i.e. of the residuals from the �rst equation

(see (1)). The market beta is obtained by summing the two betas. This is di¤erent than

the usual market beta because of the additional lag of the news terms. However, the poor

performance of the CAPM does not depend on this assumption.

The �nal step consists of determining whether the two betas represent an improvement

over the single market beta. Three models can be examined: the static CAPM, the ICAPM,

and an unrestricted factor model based on the two betas. Consider the cross-sectional

regression

Ri = g0 + g1 � b�i;CF + g2 � b�i;DR
where Ri is the time-series mean for the excess return of asset i. The CAPM model imposes

the coe¢ cient restriction g1 = g2, given that b�i;M = b�i;CF + b�i;DR. According to the ICAPM
the premia should be: g1 = 
�2M and g2 = �2M , where 
 is the coe¢ cient of relative risk

aversion and �2M is the variance of the unexpected excess returns. Therefore the ICAPM

restricts the coe¢ cient of the discount-rate beta and it returns an estimate of the coe¢ cient

of relative risk aversion 
. In the factor model the coe¢ cients are not restricted. Each

model can be tested with and without the constant g0. Excluding the constant is equivalent

to imposing that a portfolio with both betas equal to zero should deliver the risk-free return

(zero-beta-restriction).

4 Excluding the early years

Campbell and Vuolteenaho (2004a) implement the steps described in section 3 estimating a

�xed coe¢ cient VAR(1) over the sample 1928:12-2001:12 and computing the news for the

entire sample using formulas (4) and (5). Then they split the sample into two parts 1928:12-

1963:6 and 1963:7-2001:12, compute the betas for the 25 Fama and French portfolios and 20

risk-sorted portfolios, and test the three models (the static CAPM, the "Bad Beta, Good

Beta ICAPM", and the unrestricted factor model) over the two subsamples.

The ICAPM returns very good results over both sub-samples, whereas the CAPM per-

forms very poorly over the second subsample (1963:7-2001:12). This important �nding is
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explained by a change in the composition of the single market beta across the di¤erent port-

folios. Speci�cally, over the second subsample, growth stocks turn out to have large market

betas, but with a large good beta component, whereas value stocks have higher bad betas

than growth stocks do. This justi�es their high returns over the second subsample. On the

other hand, the composition of the market beta was substantially homogenous before the

�60s. This explains why the static CAPM, based on the single market beta, is able to explain

the cross section of asset returns for the pre-�63 subsample.

At this point, it is important to point out that while the betas are computed over two

distinct subsamples, cash-�ow and discount-rate news are based on the VAR coe¢ cients

estimated over the entire sample, 1928:12-2001:12. Two important assumptions are implied

by this choice. First, the dynamics of the variables included in the model must have been

stable over time. Second, agents are somehow aware of these underlying parameters and

they use them to form expectations.

I focus on the results for the second subsample. In particular, I investigate the importance

of including the �rst years of the sample when estimating the VAR. I begin assessing the

performance of the di¤erent models by computing the two types of news according to a

VAR estimated on the entire sample. I then shorten the sample by a single month at a

time, while keeping the methodology described in section 3 unchanged. I use the same

state variables used by Campbell and Vuolteenaho (2004a): The excess log return on the

CRSP value-weighted index, the term yield spread in percentage points, measured as the

yield di¤erence between ten-year constant-maturity taxable bonds and short-term taxable

notes, the log price earning ratio, and the small-stock value-spread, the di¤erence in the log

book-to-market ratios of small value and small growth stocks. The models are tested on the

25 Fama and French portfolios and 20 risk-sorted portfolios.3 Thus, the sample size for the

initial VAR is the only thing that is changing, whereas the subsample under investigation

(1963:07-2001:12) and the variables used to test the model are not.

4.1 Evolution of the explanatory power of the models

Figure 2 reports the evolution of R2 for the three models.4 Notice that excluding the �rst

three years from the sample used in estimating the VAR has a dramatic e¤ect on the ability

of the ICAPM to explain the returns of the 44 portfolios (the smallest-growth portfolio is

excluded from the estimates). When the entire sample 1928:12-2001:12 is used, R2 = 51:96%

3All the data used in this paper come from the dataset that Campbell and Vuolteenaho make available
online (http://www.aeaweb.org/articles/).

4This is computed as 1�RSS=RSM where RSS is the residual sum of squares and RSM is the residual
sum of squares when only the constant is used as a regressor.
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Figure 2: Evolution of R2 for the three models as the sample used to compute the two types
of news shortens. For example: 1940:12 means that cash-�ow and discount-rate news have
been computed according to a VAR estimated over the sample 1940:12-2001:12. While the
sample used to estimate the VAR is changing, the models are always tested over the same
subsample (1963:07-2001:12). The zero-beta-restriction implies that the return of a portfolio
with both the betas equal to zero should equal the risk free rate.

for the unrestricted ICAPM and R2 = 51:57% for the restricted ICAPM. However, once the

�rst three years are excluded these remarkable results disappear.

A di¤erent argument applies to the factor model. Again the performance depends on

the sample used to compute cash-�ow and discount-rate news, but the factor model works

well for di¤erent choices of the initial sample. In particular it has a good explanatory power

when using only the second subsample to estimate the VAR and the two kinds of news.

The di¤erence between the two models is given by the restrictions imposed by the ICAPM

on the �DR premium. When the entire sample is included, the factor model premia are

0:0526, for �CF , and 0:015, for �DR. The unrestricted premium of the discount rate beta

is in this case very close to the value imposed by the ICAPM (b�2M = 0:02). However,

this is not the case when the early years are removed. For example, when only the second

subsample is used, the unrestricted premia turn out to be 0:0515, for �CF , and �0:0436, for
�DR. The premium of the discount rate beta is now very di¤erent from the value implied

by the ICAPM. These features re�ect two crucial �ndings that will be described in the

following two subsections: When the Great Depression is removed from the estimates: 1)

The correlation between the two types of news moves from positive to negative, implying

that the correlation between the betas moves from negative (' �0:38) to strongly positive
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Figure 3: Evolution of the weights used to transform the residuals into discount-rate news
as the sample size shortens. For example: 1940:12 means that the VAR has been estimated
over the sample 1940:12-2001:12.

(' 0:8);5 2) The important feature that value stocks are characterized by larger cash-�ow

betas does not hold anymore.

Finally the graph shows that the CAPM presents an extremely poor performance inde-

pendent of the sample used. This fact, together with the extreme sensitivity of the ICAPM

to the sample choice, suggests that the coe¢ cient estimates are important in decomposing

the residuals into cash-�ow news and discount rate news, but not for calculating unexpected

excess returns. In other words, it is notoriously hard to predict stock market returns, and the

only factor that really matters is how agents interpret what happens on the stock markets.

The following two subsections will reinforce this intuitive argument.

4.2 Cash-�ow and discount-rate news

As a �rst step, it is useful to consider how the vector used to transform the residuals into cash-

�ow and discount-rate news varies as the sample shortens. Figure 3 describes the evolution of

the weights used to construct the discount-rate news. The horizontal axis reports the starting

date of the sample over which the VAR has been estimated, while the vertical axis shows the

weight assigned to the residual from the speci�ed equation, when computing NDR;t+1. As the

initial sample shortens, the weights vary signi�cantly. On the other hand, the residuals of

5The correlation between the betas becomes very close to 1 after WWII. Graphs of the premia and of the
correlation between the betas are reported in appendix D.
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Figure 4: Evolution of the unexpected return variance and of the covariance matrix of the
cash-�ow and discount rate news over the subsample 1963:07-2001:12 as the sample size
used to estimate the VAR shortens. For example: 1940:12 means that the VAR has been
estimated over the sample 1940:12-2001:12. Unexpected returns are the residuals of the
excess return equation and they are equal to the di¤erence between cash-�ow news (NCF)
and discount rate news (NDR). Note that the sample used to estimate the VAR is changing,
while the covariance matrix and the unexpected return variance refer to the same subsample.

the excess return equation are quite stable given that it is generally di¢ cult to predict stock

returns. This implies that the results that follow are driven by the changes in the weights.

Figure 4 displays how the variance-covariance matrix of the two types of news and the

variance of unexpected returns vary as the initial sample shortens. The variance of unex-

pected returns is, for the most part, una¤ected by changes in the sample used to compute

cash-�ow and discount rate news, while the variance of the discount rate news and the co-

variance between the two types of news move substantially. In particular, whether or not

the �rst years of the sample are included has a relevant impact on the covariance between

cash-�ow and discount-rate news. If the early years are excluded, the covariance turns out

to be very close to zero, while if they are included it is positive. Furthermore, when even

more observations are excluded, the covariance becomes negative. Recall that unexpected

returns are equal to the di¤erence between cash-�ow news and discount rate news (equation

(1)). Therefore:

V (uER) = V (NCFt �NDRt) = V (NCFt) + V (NDRt)� 2COV (NDRt; NCFt)

Hence, the composition of the sample used to model the expectation mechanism has a large
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Figure 5: Time evolution of the betas over the subsample 1963:07-2001:12 for di¤erent
starting dates of the sample used to compute cash-�ow and discount rate news. For example:
1940:12 means that the VAR has been estimated over the sample 1940:12-2001:12. The top
panels refer to the Fama-French portfolios, the lower panels present the results for the risk-
sorted portfolios. Note that the sample used to estimate the VAR is changing, while the
betas are always computed over the same subsample.

impact on how return innovations are decomposed into cash-�ow and discount rate news,

but a minimal e¤ect on the model�s capacity to predict stock market returns. This explains

why V (uER) shows only imperceptible changes in response to the sample choice.

The CAPM is based on the covariance between portfolio returns and unexpected returns.

Therefore, the sample choice should have a minimal e¤ect on its performance. However, the

ICAPM relies on the covariance between the two types of news and portfolio returns. Hence,

the way that unexpected returns are decomposed into the two kinds of news is extremely

important for this model. We would expect the sample choice to have a large impact on

the explanatory power of the ICAPM, but minimal e¤ect on the performance of the CAPM.

This is exactly what we found in section 4.1.

4.3 Cash-�ow and discount-rate betas

Figure 5 reports cash-�ow and discount rate betas for the 25 Fama-French ME and BE/ME-

sorted portfolios and the 20 portfolios sorted on past risk loadings with VAR state variables.

The top panels refer to the Fama and French portfolios, while the lower panels contain the

betas for the risk-sorted portfolios. The betas move in similar ways across the portfolios:
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cash-�ow betas exhibit upward trends, while all the discount rate betas follow a common

negative trend. These movements mimic the patterns of the variances of cash-�ow and

discount-rate news. Finally, the central �nding of Campbell and Vuolteenaho, that value

stocks have a larger cash-�ow beta, disappears once the Great Depression has been excluded

from the estimates (see solid lines in the left-top panel).

Consider the formulas used to compute the betas ((6) and (7)). In the current exercise

we keep the sample used to compute the betas �xed, hence we can rule out the possibility

that portfolio returns are the source of this common trend. Moreover, the denominators are

very stable because the residuals of the excess return equation are not very sensitive to the

sample choice. We can conclude that these trends are driven by the changes in the estimates

of the two news series, that in turn depend on the VAR coe¢ cient estimates.

5 Was the Great Depression a rare event?

Was the Great Depression a rare event? The answer to this question seems so obvious, that

it is hardly reasonable to spend an entire section to answer it: a simple "yes" would su¢ ce.

However, the goal here is not to state the obvious but to understand if a �30s regime can be

formally detected and if this can help to clarify why the early years are so important.

Instead of being certain about the current state of the world, investors could have in mind

a limited number of alternative scenarios. In this case, they would �rst obtain estimates

of the parameters and then they would form expectations according to the probabilities

assigned to di¤erent regimes. States that are not likely to occur in the near future could still

receive a high weight when investors form expectations, especially if they were associated

with extraordinary events. A Markov-switching model is the perfect tool to formalize this

idea.

5.1 The model

As before, the state variables follow a VAR(1). However, in this model, both the VAR

coe¢ cients and the covariance matrix are allowed to switch across regimes:

Zt = a(s�t ) + �(s
�
t )Zt�1 + �(s

�
t )
1=2!t (8)

�(s�t ) =
�
a(s�t );�(s

�
t )
�

(9)

where Zt = [ERt; TYt; PEt; V St]
0 denotes the data matrix, s�t and s

�
t are unobserved states

and !t � N(0; I). Zt contains the same state variables: Excess return (ERt), term yield
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spread (TYt), the (log) price earning ratio (PEt), and the value spread (V St) :

The model assumes that the VAR coe¢ cients and the covariance matrix of the residuals

follow two independent chains. This represents a convenient way to model heteroskedasticity

and to allow for the possibility of changes in the dynamics of the state variables. A simpli�ed

model in which all the parameters follow a common chain can be obtained assuming s�t = s�t .
6

The unobserved states can take on a �nite number of values, j� = 1; : : : ;m� and j� =

1; : : : ;m�; and follow two independent Markov chains. Therefore, the probability of moving

from one state to another is given by P [s�t = ijs�t�1 = j] = h�ij and P [s
�
t = ijs�t�1 = j] = h�ij.

Given H� = [h�ij] and H
� = [h�ij] and a prior distribution for the initial state, we can

obtain maximum likelihood estimates of the parameters of the model, conditional on the

initial observation Z1. In the process we obtain �ltered estimates of the state, giving P [s�t =

ij fZs; s � tg ;�(�);�(�); H�; H�; s�t ] and P [s
�
t = ij fZs; s � tg ;�(�);�(�); H�; H�; s�t ] for all

i at each t. The �ltered estimates of state probabilities can then be converted by a recursive

algorithm to smoothed estimates. A similar recursive algorithm generates pseudo-random

draws from the posterior distribution of the sequence of states s�;T and s�;T conditional on

ZT ;�(�);�(�); H�; H� (where xT = fxtgTt=1).

5.2 Algorithm

The model is estimated with Bayesian methods and proper priors are put on all the parame-

ters in the model. Given that the �nal goal is to establish whether it is possible to isolate a

�30s regime, strong priors are imposed on the transition matrix for the VAR coe¢ cients so

as to obtain persistent regimes and avoid meaningless switches from one regime to another.

In order to compute the news, we need to make sure that the model is stable. In princi-

ple, we only need convergence of the �rst moments, however I adopt a stronger concept of

stability: Mean-square stability (MSS). A system is mean square stable if both the �rst and

second moments converge. In the Gibbs sampling algorithm, draws of the model parameters

that imply instability are rejected so that the priors are in fact truncated. Please refer to

section 6 and appendix C for more details. To capture the idea that one regime might occur

less frequently than the other, the persistence implied by the priors di¤ers across the two

VAR coe¢ cients regimes, whereas the priors for all the other parameters are standard and

6Note that the regime switch is modeled for a VAR in its reduced form. Sims and Zha (2006) recommend
working directly on the structural form of a VAR. However, it is not clear what kind of identifying restrictions
could be imposed when dealing with four �nancial variables such as the ones that are included in the present
model. Therefore, it seems more reasonable to proceed with this approach than to attempt to impose
restrictions that are di¢ cult to justify.
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symmetric across the two regimes.7

I report results for the posterior mode, based on the maximization of the log-posterior,

and I employ a Gibbs sampling algorithm to draw from the posterior distribution. A detailed

description of the prior distributions and the sampling method is given in appendix A. Here

I summarize the Gibbs sampling algorithm which involves the following steps:

1. Sampling s�;T and s�;T : Following Kim and Nelson (1999a) I use a Multi-Move Gibbs

sampling to draw s�t from f(s�t jZT ;�(�); �(�); H�; H�; s�t ) and s
�
t from f(s�t jZT ;�(�),

�(�); H�; H�; s�t ).

2. Sampling �(s�t ) and �(s
�
t )

� If s�t = s�t , i.e. if the VAR coe¢ cients and the covariance matrix follow a common

regime, standard results can be used: The VAR coe¢ cients are sampled from

a normal distribution and the covariance matrices are drawn from an inverted

Wishart distribution (Uhlig (2005)).

� If s�t and s�t are independent we need to proceed in two steps. Given �(�) and s�t
we can compute the residuals. Then, given s�t , �(�) can be drawn from an inverse
Wishart distribution. When drawing the VAR coe¢ cients we need to take into

account the heteroskedasticity implied by the switches in �(�). This can be done
using GLS or a Kalman �lter. Appendix B describes the two methods.

3. SamplingH� andH�: Given the draws for the state variables s�t and s
�
t , the transition

probabilities are independent of Yt and the other parameters of the model. Therefore,

they can be drawn using a Dirichlet distribution.

4. If the algorithm has reached the desired number of iterations, stop. Otherwise, go to

step 1.

I use 500,000 Gibbs sampling iterations, discard the �rst 50,000 as burn-in and retain

one every 50 of the remaining draws. The posterior moments vary little over the retained

draws providing evidence of convergence.

7This implies that the features of the two regimes are not restricted, so di¤erences will arise only because
of the data. Results under a symmetric prior for H� are available upon request and they are substantially
equivalent to the ones presented here, with the only di¤erence that it becomes harder to obtain MSS, even
if convergence of �rst moments still holds.
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Figure 6: Markov-switching VAR with independent regimes. Starting from the lower-left
panel and proceeding clockwise, the �rst three panels show the posterior mode probability
of regime 1 for the VAR coe¢ cients (the �30s regime) together with the term yield spread,
the price-earning ratio, and the value spread. The last panel contains the probability of the
high volatility regime with the price-earning ratio. The three state variables are normalized
to �t into the graphs.

5.3 VAR Estimates

This section reports parameter estimates for the model described in section 5.1 for the case

in which the number of regimes is equal to two for both chains, m� = 2 = m�, for a total

of four regimes. Figure 6 shows the smoothed probabilities of s�t = 1 and s�t = 1 at the

posterior mode. Table 1 reports posterior mode and 68% error bands for the parameters of

the Markov-switching VAR.

Starting from the lower-left corner and proceeding clockwise, the �rst three panels of

�gure 6 report the smoothed posterior mode probability of regime 1 for the VAR coe¢ cients

together with the term yield spread, the price-earning ratio, and the value spread (the

variables are normalized to �t in the graph). This regime clearly dominates the �rst decade,

a period characterized by large market crashes and unusually high values for the term yield

spread and the value spread. Then it occurs again in the mid-�70s and in the early 90s, when

we observe very persistent increases in the term yield spread, and with some probability at

the end of the sample, with the end of the IT bubble. The behavior of the value spread

and the price earning ratio in the early �30s is worth noting. The largest stock market crash

of US history came with a substantial increase in the value spread, which reached historic
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s�t = 1 ERt TYt PEt V St const

ERt+1 0:0295
(�0:0826;0:0713)

0:0008
(�0:0042;0:0036)

�0:0061
(�0:0122;0:0047)

�0:0112
(�0:0151;0:0005)

0:0375
(�0:0022;0:0575)

TYt+1 �0:0424
(�0:2564;0:2419)

0:9827
(0:9555;0:9910)

�0:0008
(�0:0391;0:0374)

�0:0253
(�0:0147;0:0548)

0:0979
(�0:1509;0:1576)

PEt+1 0:5165
(0:4259;0:5352)

�0:0021
(�0:0043;0:0008)

1:0009
(0:9958;1:0060)

�0:0047
(�0:0064;0:0051)

0:0058
(�0:0211;0:0185)

V St+1 �0:0254
(�0:0685;0:0256)

�0:0033
(�0:0060;0:0003)

�0:0044
(�0:0126;0:0007)

1:0063
(0:9968;1:0089)

0:0073
(�0:0102;0:0410)

s�t = 2 ERt TYt PEt V St const

ERt+1 �0:0022
(�0:0401;0:0740)

0:0029
(�0:0000;0:0088)

�0:0142
(�0:0286;�0:0110)

0:0176
(0:0075;0:0234)

0:0236
(0:0135;0:0704)

TYt+1 0:4538
(0:1958;0:7259)

0:8037
(0:7655;0:8184)

�0:0969
(�0:1440;�0:0652)

0:1346
(0:0793;0:1700)

0:1662
(0:0583;0:3595)

PEt+1 0:4042
(0:3753;0:4565)

0:0010
(�0:0012;0:0048)

0:9947
(0:9861;0:9974)

0:0159
(0:0068;0:0188)

�0:0082
(�0:0145;0:0239)

V St+1 0:0064
(�0:0370;0:0512)

0:0018
(�0:0012;0:0060)

�0:0006
(�0:0067;0:0074)

0:9756
(0:9622;0:9809)

0:0351
(0:0144;0:0626)

s�t = 1 uER uTY uPE uV S

uER 0:0074
(0:0074;0:0091)

0:0323
(�0:0298;0:1048)

0:7770
(0:7501;0:8039)

�0:0706
(�0:1465;�0:0120)

uTY 0:0012
(�0:0012;0:0043)

0:1865
(0:1809;0:2221)

0:0341
(�0:0292;0:1049)

0:0056
(�0:0646;0:0674)

uPE 0:0037
(0:0036;0:0046)

0:0008
(�0:0008;0:0027)

0:0341
(0:0030:0:0037)

�0:0926
(�0:1664;�0:0339)

uV S �0:0005
(�0:0011;�0:0001)

0:0002
(�0:0023;0:0024)

�0:0004
(�0:0008;�0:0002)

0:0058
(0:0057;0:0070)

s�t = 2 uER uTY uPE uV S

uER 0:0012
(0:0012;0:0013)

�0:0087
(0:0619;0:0289)

0:7237
(0:0701;0:7437)

0:0654
(0:0226;0:1159)

uTY �0:0000
(�0:0003;0:0002)

0:0209
(0:0226;0:0266)

�0:0156
(�0:0625;0:0280)

�0:0149
(�0:0485;0:0422)

uPE 0:0006
(0:0006;0:0007)

�0:0001
(�0:0003;0:0001)

0:0006
(0:0006;0:0007)

�0:0212
(�0:0617;0:0344)

uV S 0:0001
(0:0000;0:0001)

�0:0001
(�0:0002;0:0002)

�0:0000
(�0:0000;0:0000)

0:0007
(0:0007;0:0009)

H� h�11 h�22
0:9718

(0:9505;0:9767)
0:9940

(0:9730;0:9917)

H� h�11 h�22
0:7706

(0:7191;0:8076)
0:9087

(0:9000;0:9309)

Table 1: The three sets of tables contain modes and 68% error bands for the parameters of the
Markov-switching VAR. The �rst two tables report the estimates for the VAR coe¢ cients.
The second set of tables contains the elements of the covariance matrices (shown on and
below the main diagonal) and the implied correlations (shown above the main diagonal).
The last table contains the diagonal elements of the transition matrices.
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heights. In other words, during the most severe recession that the US has ever experienced

(so far), growth stocks were outperforming value stocks and this situation of disequilibrium

lasted for a decade. A rational agent who is trying to hedge against risk is likely to �nd this

pattern extremely informative. From now on I will refer to regime 1 as the �30s regime.

Overall, only some of the coe¢ cients are tightly estimated. Nevertheless, the regimes

are well identi�ed and the VAR coe¢ cients show some remarkable di¤erences across the two

regimes.8 First of all, the coe¢ cient of the value spread in the excess return equation is

negative for the �30s regime, while it is positive for regime 2. This means that high returns

on small growth stocks predict low stock market returns only under the �30s regime. The

autoregressive component for the term yield spread is substantially closer to one when the

�30s regime prevails. This explains the high probability of the �30s regime in the mid-70s

and during the �rst half of the �90s. Furthermore, the excess return, the price earning ratio,

and the value spread enter the term yield equation with coe¢ cients that are substantially

di¤erent across the two regimes. The coe¢ cient of the excess return in the price earning

equation is larger for the �30s regime, even if the bands partially overlap, and di¤erences

can be detected for the coe¢ cients of the price earning ratio and term yield spread in the

excess return equation. Finally, the autoregressive coe¢ cients for these two variables are

larger under the �30s regime.

As for the covariance matrix, regime 1 is associated with more uncertainty. Interestingly,

value spread and excess return innovations are negatively correlated under the high volatility

regime, whereas this is not the case under the low volatility regime. The panel in the low

right corner of �gure 6 reports the probability of the high volatility regime and the log price

earning ratio. The probability of the high volatility regime is very high during the early years

of the sample, but it increases again at di¤erent points in time. Note that sudden negative

changes in the price-earning ratio are often associated with an increase in the probability of

the high volatility regime.

6 News in a Markov-switching framework

Note that while regime 2 is stable, the �30s regime is not. Stationarity is necessary for the

Campbell-Shiller approximation to hold. Therefore, it would be problematic to apply the

VAR decomposition to the �30s regime alone. However, the system as a whole is stable, which

is what we need to be able to decompose the residuals into news. In fact, the instability of

the �30s regime represents an advantage of the approach used in this paper. The Markov-

8Appendix D contains results for a formal pairwise comparison of the VAR coe¢ cients across the two
regimes.
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switching model allows for temporary deviations from the stationarity assumption, provided

that the model assigns a su¢ ciently high probability to the stable regime.

In what follows, I generalize the present value decomposition of Campbell and Shiller

(1988) and Campbell (1991) for the case in which the law of motion of the state variables is

described by a Markov-switching VAR. Here the focus is on discount rate and cash �ow news,

but the methods can be applied whenever we are looking for a present value decomposition

in a Markov-switching framework. De�ne the column vectors qt and  t as:

qt =
h
q1

0

t ; :::; q
m0
t

i0
; qit = E (Zt1st=i) ;  t =

�
 10t ; :::;  

m0
t

�0
;

where  it is a column vector with all the elements equal to p
�
s�t = i

�
and 1st=i is an indicator

variable that is equal to one when regime i is in place and zero otherwise.

Note that:

E (Zt) =
mX
i=1

qit = wqt; w =

24In; :::; In| {z }
m

35
Then, it can be shown that qt evolves according to the following law of motion:

qt = M t + 
qt�1 (10)

 t = G t�1 (11)

where G = kron(H�; In) and, for the model considered in this paper, 
 and M are


 =

"
� (st = 1)h

�
11 � (st = 1)h

�
12

� (st = 2)h
�
21 � (st = 2)h

�
22

#
; M =

"
diag (a (st = 1)) 0

0 diag (a (st = 2))

#

In order to compute the news, we need to make sure that the process described by

(10) converges. As mentioned before, I assume mean-square stability, a concept of stability

popular in the engineering literature. In fact, this is more than what is needed, given that

it implies convergence of the second moments, whereas to compute the news we only need

convergence of �rst moments. However, MSS is arguably a desirable feature because it

implies that when trying to project the state vector into the future, the variance converges

to a particular value that can be computed analytically. Costa et al. (2004) shows that MSS

depends on the eigenvalues of the matrix governing the law of motion of the second moments

of the homogeneous system. Appendix C describes these conditions and reports the general

formulas for 
 and M .

De�ne, qit;t+j = Et
�
Zt+j1st+j=i

�
and note that qit;t = Et (Zt1st=i) = Zt � p

�
s�t = i

�
and

Zt =
Pm

i=1 q
i
t;t. Appendix C shows that when MSS holds, we can obtain formulas for discount
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rate news and cash-�ow news that resemble formulas (3)-(5):

NDR;t+1 = e01w
h
�qvqt+1 + � v t+1

i
NCF;t+1 = e01w

h
(Ir + �q) vqt+1 + � v t+1

i
ut+1 = e01wv

q
t+1

where r = n �m� and

�q = (Ir � �
)�1 �


� = (Ir � �
)�1 (Ir � �G)�1 �MG

vqt+1 = qt+1;t+1 � qt+1;t

v t+1 =  t+1;t+1 �  t+1;t

Note that given a sequence of probabilities (or a posterior draw s�;T ) and a set of para-

meters, it is easy and computationally e¢ cient to compute the entire sequences vq;T , v ;T ;

and uT :

NT
DR = e01w

�
�qvq;T + � v ;T

�
(12)

NT
CF = e01w

�
(Ir + �q) vq;T + � v ;T

�
(13)

uT = e01wv
q;T (14)

When the two regimes coincide, formulas (12)-(14) collapse to (3)-(5). So the above

formulas can be treated as a generalization of the ones used in Campbell and Vuolteenaho

(2004a).

7 The importance of the Great Depression

Based on the results thus far, it seems plausible that the Great Depression represented an

exceptional event not only for the real economy, but also for the statistical properties of

the �nancial variables. It is, therefore, interesting to ask what role this rare event has in

explaining the cross section anomalies. It could be that agents consider the �30s regime as

a memory of the past, given that there is little evidence of it occurring again after the �rst

decade of the sample. On the other hand, agents could put a certain probability on its future

occurrence.

Suppose agents have in mind that the state variables can evolve according to two distinct
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Model w�(1);t z:b:r: R2 MPE

Naive 0:6420 no 52:91% 0:7596
Naive 0:5640 yes 49:09% 0:8211

Semi-sophisticated 0:9978 no 53:77% 0:7387
Semi-sophisticated 0:9723 yes 53:34% 0:7456
Perf. knowl. p�(1);t no 17:29% 1:3215
Perf. knowl. p�(1);t yes 15:04% 1:3575

Table 2: R2 and Mean Pricing Error for the ICAPM. Cash-�ow and discount-rate news are
computed based on a MS-VAR with the VAR coe¢ cients and the covariance matrix evolving
according to independent chains. Naive model: Agents assign time invariant weights to the
two regimes. Semi-sophisticated: Agents assign initial arbitrary time-invariant probabilities
to the two regimes, but they then update them using the transition matrix. Perfect knowl-
edge: Weights assigned to the two regimes equal their probabilities and are updated using
the transition matrix.

regimes. If they were fully aware of the model they would 1) come up with the probabilities

to assign to each of the states of the world, 2) use the transition matrix H� to update these

probabilities, 3) form expectations about the future according to the updated probabilities,

4) revise their beliefs after having observed the state variables, and, �nally, 5) compute cash-

�ow news and discount-rate news according to the revised beliefs. I refer to this speci�cation

as the perfect knowledge model. Under these assumptions the expectation error is the sum of

two components: one depends on the revision in beliefs about the state of the world once new

information is received, the other re�ects the typical VAR shocks. On the opposite side of the

spectrum is the naive model. In this case agents simply use a weighted average of the two sets

of coe¢ cients. They use these weights not only to form expectations, but also to decompose

the expectation error. Finally, I consider an intermediate case: the semi-sophisticated model.

In this setting agents are aware of the transition matrix H� and they use it when computing

cash-�ow and discount-rate news. However, when forming expectations they come up with

their own initial weights instead of using the estimated probabilities.9 The results for the

three di¤erent speci�cations are reported in table 2.

I shall begin by considering the naive model: Investors are aware of the two regimes,

but instead of using the formulas described in section 6, they simply take a weighted av-

erage of the two sets of VAR coe¢ cients. Note that this assumption is computationally

convenient because the formulas of section 3 can be applied once � has been de�ned as

� = w�(1)� (1)+
�
1� w�(1)

�
� (2) ; where � (1) and � (2) are the posterior mode estimates of

the VAR coe¢ cients. The posterior modes are preferred to the means because the di¤erence

9In principle the initial weights could be time-varying. However, without further restrictions, the weights
would adjust to a perfect �t. This is why I don�t report results for this case.
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Figure 7: The �gure shows how the explanatory powers of the unrestricted two-factor model,
the ICAPM, and the CAPM vary in response to the initial weight assigned to the �30s regime
under the semi-sophisticated speci�cation. The left column refers to the pre-63 subsample,
whereas the right column contains the results for the post-63 subsample. The �rst and the
second row show results with and without the zero-beta-restriction, respectively.

in the posterior is particularly large (as explained by Sims et al. (2008) this happens quite

frequently with Markov-switching models).

What are the weights that maximize the explanatory power (R2I) of the ICAPM? When

imposing the zero-beta-restriction R2I = 49:09% with w�(1) = 0:5640, whereas R2I = 52:91%

with w�(1) = 0:6460 when relaxing it. Note that the explanatory power of the model is large

and it is obtained by assigning a weight to the �30s regime that is larger than its historical

probability.

The results are even more suggestive under the semi-sophisticated speci�cation. In this

case, at each point in time agents assign arbitrary initial probabilities to the two regimes,

but they are aware that in the long run both regimes will prevail. Therefore, when forming

expectation they update the probabilities according to the transition matrix H�. Figure

7 shows how the explanatory powers of the unrestricted two-factor model, the ICAPM,

and the CAPM vary depending on the initial weight assigned to the �30s regime. The

left column refers to the �rst subsample, whereas the right column contains the results for

the second subsample. The �rst and the second row show results with and without the

zero-beta-restriction, respectively. Note that the initial weight assigned to the �30s regime

is substantially irrelevant for the �rst subsample: In this case the standard CAPM works

well, so it is not important how the single market beta is decomposed into the two betas.
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On the other hand, the weight of the �30s regime turns out to be very important when

trying to explain the cross section of asset returns for the second subsample. The �t of

the ICAPM model is maximized with w�(1) = 0:9978, without the zero-beta-restriction, and

w�(1) = 0:9723, with the zero-beta-restriction. The correspondent R2I is remarkably high,

very similar across the two speci�cations (53:77% and 53:34%), and higher than the one

obtained with the �xed coe¢ cient VAR (51:96% and 51:57%). Furthermore, it is also very

similar to the one obtained with the unrestricted two factor model that does not impose any

economic restriction on the premia. This suggests that even if it is always possible to obtain

a high R2I by breaking the single market beta into two components, a sensible interpretation

of the results might depend crucially on the way expectations have been modeled.

Finally, I consider the perfect knowledge model. Agents are fully aware of the MS model

that drives the �nancial variables. They form expectations taking into account that pt+1 =

H�pt. Once the expectation error is revealed, they update their beliefs and they compute

the two news series according to the MS process that drives the model. In this case the

results for the second subsample are unsatisfactory (R2I = 17:29% and R
2
I = 15:04%). Given

the low weight that is assigned to the �30s regime over the second subsample (see �gure 6),

the poor performance associated with this speci�cation is not surprising and is in line with

the results of section 4.

These results support the original hypothesis: the weights given to rare events are not

necessarily linked to the actual probability of their occurrence. The result for the semi-

sophisticated speci�cation is particularly interesting. Agents are aware of the two regimes

and of the fact that in the long run both of them will occur with a certain probability.

However, when forming expectations for the immediate future, they put a very large weight

on the �30s regime. Obviously, this does not mean that they expect the Great Depression

to occur with that exact probability. Rather, it suggests that the dynamic properties that

prevailed during those years have a large impact on how agents think about �nancial markets.

8 A Time-Varying approach

A central result of this paper is that the statistical dynamics that characterize �nancial crises

are important in explaining the value and stock anomalies. An alternative model is one in

which agents are aware of parameter instabilities and update their beliefs disregarding what

happened in extreme circumstances, as long as these events are far enough in the past. In

this section I make use of a Bayesian Time-Varying VAR to model this kind of expectation

formation mechanism.
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8.1 The model

As before, the state variables follow a VAR(1), however, in this model, the VAR coe¢ cients

and the covariance matrix of the residuals are time-varying:

Zt = at + �tZt�1 + vt (15)

where Zt = [ERt; TYt; PEt; V St]
0 denotes the data matrix and vt = �

1=2
t !t with !t � N(0; I).

Once again, the state variable vector Zt contains the excess return (ERt), the term yield

spread (TYt), the (log) price earning ratio (PEt), and the value spread (V St) :

The VAR coe¢ cients evolve according to a random walk: �t = �t�1 + �t, where �t =

vec [at;�t] : The covariance matrix of the VAR innovations vt is factored as V AR (vt) � �t =
A�1t Ht(A

�1
t )

0. The time-varying matrices Ht and At are de�ned as:

Ht �

266664
h1;t 0 0 0

0 h2;t 0 0

0 0 h3;t 0

0 0 0 h4;t

377775 and At �

266664
1 0 0 0

�21;t 1 0 0

�31;t �32;t 1 0

�41;t �42;t �43;t 1

377775 (16)

with the hi;t elements evolving as geometric random walks, lnhi;t = lnhi;t�1 + ut, and the

non-restricted elements of the matrix At evolve as driftless random walks, �t = �t�1+"t. The

vector [v0t; �
0
t, "

0
t, u

0
t]
0 is distributed as [v0t; �

0
t; "

0
t; u

0
t]
0 � N (0; V ), V = blockdiag [�t; Q; S;G]

and G = diag [�21; :::; �
2
4] :

The model is estimated using the Bayesian methods described by Kim and Nelson

(1999a). In particular, I employ a Gibbs sampling algorithm that approximates the pos-

terior distribution (see appendix A for details). The priors and the starting values for the

VAR coe¢ cients are based on a �xed coe¢ cient VAR estimated over the sample 1928:12-

1932:12.

8.2 Results

Figure 8 shows the evolution of the VAR coe¢ cients and of the weights used to compute the

two types of news. It is evident that the VAR coe¢ cients change substantially over the early

�30s, while they are relatively stable throughout the remainder of the sample. Note that

at the beginning of the sample excess returns were positively autocorrelated and the value

spread was predicting low stock market returns; these features disappear over the reminder

of the sample. These results reinforce the idea that the early years re�ect an exceptional

event with speci�c statistical properties.
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Figure 8: Time Varying VAR estimates: Evolution of the VAR coe¢ cients and of the weights
used to transform the residuals in discount-rate news (last column) over the sample 1933:01-
2001:12. The priors and the starting values for the VAR coe¢ cients are based on a �xed
coe¢ cient VAR estimated over the sample 1928:12-1932:12.

Tables 3 and 4 report the betas for the 25 ME- and BE/ME-sorted portfolios and the

20-risk sorted portfolios.10 Note that value stocks are not characterized by larger cash-�ow

betas. Table 5 shows R2 and Mean Pricing Error for the three models that were introduced

in section 3. Both the ICAPM and CAPM turn out to have a very poor performance over

the second subsample. On the other hand, the explanatory power of the factor model is

extremely high on both sub-samples.

While the estimates point toward a substantial change in the law of motion of the state

variables, the poor performance of the ICAPM con�rms that the way agents form expecta-

tions might not have evolved along the same lines. It seems possible that even if agents were

aware of the changes of the parameters, they would still extract a lot of information from

a regime that has characterized an important period of American history. In a model with

time-varying coe¢ cients agents update the estimates for the current parameters and then

use them to form expectations. Therefore, whereas the time-varying model might be an ideal

tool to describe long-term dynamics, revealing the time evolution of the parameters, it could

be un�t to capture the expectation mechanism because it implicitly assumes that events that

occurred far enough in the past have no impact on the way agents form expectations today.

10The results presented here are based on the smoothed estimates of the VAR coe¢ cients. This makes
them directly comparable with the benchmark model with �xed coe¢ cients.
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Fama and French portfolios
Growth 2 3 4 Value

Small 0.3181 0.2627 0.2159 0.1936 0.1846
2 0.3229 0.2516 0.2059 0.1961 0.2009
3 0.3147 0.2375 0.2059 0.1751 0.1944
4 0.3011 0.2404 0.2052 0.1902 0.2126

Large 0.2307 0.2174 0.1948 0.1721 0.1698
Risk-sorted portfolios

Lo bbrM 2 3 4 Hi bbrM
Lo bbV S 0.1280 0.1873 0.2059 0.2600 0.3310
Hi bbV S 0.1558 0.1986 0.2623 0.2964 0.3595
Lo bbTY 0.1459 0.1999 0.2448 0.2898 0.3495
Hi bbTY 0.1445 0.1921 0.2295 0.2781 0.3358

Table 3: Cash Flow Betas for the subsample 1963:07-2001:12 when the news are computed
according to a Time-Varying VAR.

Fama and French portfolios
Growth 2 3 4 Value

Small 1.1761 1.0131 0.9104 0.8536 0.8742
2 1.1613 0.9600 0.8676 0.8121 0.8903
3 1.1027 0.9146 0.8072 0.7546 0.8298
4 1.0095 0.8791 0.8078 0.7468 0.8146

Large 0.8156 0.7701 0.7013 0.6361 0.6475
Risk-sorted portfolios

Lo bbrM 2 3 4 Hi bbrM
Lo bbV S 0.5655 0.6731 0.7817 0.9408 1.1409
Hi bbV S 0.6021 0.7370 0.8635 1.0246 1.2406
Lo bbTY 0.6596 0.7355 0.8726 1.0151 1.2722
Hi bbTY 0.5865 0.6837 0.7720 0.9153 1.0916

Table 4: Discount Rate Betas for the subsample 1963:07-2001:12 when the news are computed
according to a Time-Varying VAR.

R2
(MPE)

CAPM ICAPM Factor

pre �60s 62:27%
(1:2616)

37:58%
(2:0873)

71:34%
(0:9583)

post �60s 2:18%
(1:5629)

18:89%
(1:2959)

64:18%
(0:5723)

Table 5: Explanatory power of the three models when cash-�ow and discount rate news are
computed according to a Time-Varying VAR.
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9 Conclusions

In light of their unusual statistical properties, exceptional events are indeed exceptional.

Variables that tend to move in an apparently disconnected way, suddenly reveal features

that cannot be identi�ed during regular times, when noise often gets the lion�s share. It

might be the case that these features play an important role in shaping the way agents form

expectations. Until now, much of the attention has been devoted to rare events betas, betas

computed during a rare event. However, regular times betas could still be informative if rare

events have an impact on the way agents think about �nancial markets. This new channel

could help reconcile the opposing views of Barro (2006) and Julliard and Ghosh (2008).

In support of this idea, I have pointed out that the ability of the "bad beta, good beta"

ICAPM to account for the value and size anomalies depends on whether the data includes

the early �30s. Given that the ICAPM is a model that imposes economically motivated

restrictions, it is unlikely that its performance is uniquely determined by the sample choice.

An alternative explanation is that some valuable information might be hidden in those early

years, characterized by the market crash that opened the Great Depression

Using a Markov-switching VAR, I have shown that it is in fact possible to isolate a �30s

regime. This regime is characterized by some interesting properties that set it apart from

what happens over the reminder of the sample. Speci�cally, the value spread predicts low

market returns and the state variables tend to be more autocorrelated. It turns out that in

order to maximize the explanatory power of the ICAPM, a large weight must be assigned to

the �30s regime, even if there is little evidence of it occurring again after the �rst decade. In

deriving this result, I have introduced a generalization of the present value decomposition

of Campbell and Shiller to allow for Markov-switching dynamics. This approach could be

applied to other models that make use of the same methodology and it might provide insight

into why the results are often sensitive to the sample choice.

When agents are assumed to form expectations using a Time-Varying VAR, taking into

account parameter instabilities but implicitly disregarding what happened far in the past,

the ICAPM returns very poor results. This reinforces the idea that rare events and �nancial

crises have a very long lasting impact on the way agents form expectations. Therefore,

economically motivated models that aim to explain stock market returns should address the

fact that some events are more important than others in revealing the link between risk

and return. Such events are likely to be particularly relevant when trying to model agents�

expectations using statistical models.

The Great Depression, beginning with the devastating market crash that occurred on

October 29, 1929, can certainly be considered a rare event in American history. It is hard
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to establish whether the stock market crash was a cause or a consequence of the Great

Depression, however there is no doubt that the two events were closely related. Financial

markets and economic institutions have evolved signi�cantly since then, but, as current

events suggest, this does not imply that investors should disregard what happened in those

years.11 In fact, the �30s can be considered an extreme example of how a stock market crisis

and a recession can negatively a¤ect each other. Therefore, if economic theory is looking for

a model that links returns to risk, it does not seem wise to leave out the Great Depression

and the stock market crash that came with it, since agents are likely to devote a lot of

attention to such events.

11Bianchi (2010) investigates the similarities between the Great Depression and the Great Recession and
their implications for �nancial markets. Very preliminary results show that there are in fact some similarities.
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A Bayesian algorithms

A.1 Markov-Switching VAR

I consider the most general case where both the VAR coe¢ cients and the covariance matrix

can switch and the regimes are assumed to be independent. The algorithms for the other

models are simpli�ed versions of the one reported here.

1. Sampling s�t and s
�
t :

� Following Kim and Nelson (1999b) I use a Multi-Move Gibbs sampling to draw s�t
from f(s�t jZT ;�(�);�(�); H�; H�; s�t ) and s

�
t from f(s�t jZT ;�(�);�(�); H�; H�; s�t ).

2. Sampling �(s�t ) and �(s
�
t )

� If s�t = s�t , i.e. if the VAR coe¢ cients and the covariance matrix follow a common

regime, we can use standard results and sample the VAR coe¢ cients from a

normal distribution and draw the covariance matrices from an inverted Wishart

distribution.

� If s�t and s�t are independent we need to proceed in two steps. Given �(�) and s�t
we can compute the residuals. Then, given s�t , �(�) can be drawn from an inverse
Wishart distribution. When drawing the VAR coe¢ cients we need to take into

account the heteroskedasticity implied by the switches in �(�): This can be done
using GLS or using a Kalman �lter. Appendix B describes the two methods.

� The priors are the same across regimes and are obtained running univariate au-
toregressions for each endogenous variable:

yi;t = ci + aiyi;t�1 + vt�i

The prior for the VAR coe¢ cients is:

B = vec (�(�)) � norm (B0;�(�)
 inv(N0))

The constants and the autoregressive elements of B0 are based on the univariate

regressions, while all the other elements are set to zero. As in Sims and Zha

(1998), the variance of the prior distribution is speci�ed by a number of hyper-

parameters that pin down N0. The choice of hyperparameters implies a fairly

loose prior for the VAR coe¢ cients. Let � be a (5� 1) vector containing the
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hyperparameters. The diagonal elements of inv(N0) corresponding to autoregres-

sive coe¢ cients are given as
�
�0�1
�il�3

�2
, where �j denotes the variance of the error

from the AR regression for the jth variable and l = 1:::L denotes the lags in the

VAR (L = 1 in the models considered in this paper). The intercept terms in

inv(N0) are controlled by the term (�0�4)
2. The choice for the hyperparameters

are �0 = :5, �1 = [:3; :2; :2; :2], �2 = 1, �3 = 1 and �4 = 1.

� The prior for �(�) is described by an inverse Wishart distribution with mean
S0 = V0diag (f�2i gi=1:::n):

�(�) � IW (S0; V0)

with V0 = 11.

3. Sampling H� and H�:

� Each column of H� and H� is modeled according to a Dirichlet distribution:

H�(�; i) � D(a�ii; a
�
ij)

H�(�; i) � D(a�ii; a
�
ij)

where a�ii = 10; a
�
ij = 1; a

�
22 = 120; a

�
21 = 1; a

�
11 = 120; and a

�
12 = 5. Note that

the prior on H� implies that regime 1 is less persistent than regime 2. However,

no restrictions are imposed on when regime 1 occurred or on its characteristics.

� Given the draws for the state variables s�t and s�t , the transition probabilities are
independent of Yt and the other parameters of the model and have a Dirichlet

distribution. For each column of H� and H� the posterior distribution is given

by:

H�( : ; i) � D(a�ii + ��ii; a
�
ij + ��ij)

H�( : ; i) � D(a�ii + ��ii; a
�
ij + ��ij)

where ��ij and �
�
ij denote respectively the numbers of transitions from state i� to

state j� and from state i� to state j�.

A.2 Time-Varying VAR

A.2.1 Priors

VAR coe¢ cients
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The prior for the VAR coe¢ cients is obtained via a �xed coe¢ cients VARmodel estimated

over the sample 1928:12 to 1932:12. �0 is therefore set equal to

�0 s N(�OLS; V OLS)

Elements of Ht

Let v̂ols denote the OLS estimate of the VAR covariance matrix estimated on the pre-

sample data described above. The prior for the diagonal elements of the VAR covariance

matrix (16) is as follows:

lnh0 � N(ln�0; I4)

where �0 are the diagonal elements of v̂
ols:

Elements of At
The prior for the o¤ diagonal elements At is

A0 s N
�b�ols; V �b�ols��

where b�ols are the o¤ diagonal elements of v̂ols, with each row scaled by the corresponding
element on the diagonal. V

�b�ols� is assumed to be diagonal with the diagonal elements set
equal to 10 times the absolute value of the corresponding element of b�ols:
Hyperparameters
The prior on Q is assumed to be inverse Wishart

Q0 s IW
�
�Q0; T0

�
where �Q0 is assumed to be var(�OLS) � 10�4 and T0 is the length of the sample used for
calibration.

The prior distribution for the blocks of S is inverse Wishart:

Si;0 s IW ( �Si; Ki)

where i = 1:::4 indexes the blocks of S: �Si is calibrated using âols. Speci�cally, �Si is a diagonal

matrix with the relevant elements of âols multiplied by 10�3:

Following Cogley and Sargent (2006), I postulate an inverse-Gamma distribution for the

elements of G,

�2i � IG

�
10�4

2
;
1

2

�
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A.2.2 Simulating the Posterior Distributions

The model is a VAR with drifting coe¢ cients and covariances. This model has become fairly

standard in the literature and details on the posterior distributions can be found in a number

of papers including Cogley and Sargent (2006) and Primiceri (2005). Here, I describe the

algorithm brie�y.

VAR coe¢ cients �t
The Time-Varying VAR coe¢ cients are drawn using the methods described by Kim and

Nelson (1999b).

Elements of Ht

Following Cogley and Sargent (2006), the diagonal elements of the VAR covariance matrix

are sampled using the methods described by Jacquier et al. (2004).

Element of At
Given a draw for �t the VAR model can be written as

A0t

�
~Zt

�
= ut

where ~Zt = Zt � at �
PP

p=1 �t;pZt�p = vt and V AR (ut) = Ht: This is a system of equations

with time-varying coe¢ cients and given a block diagonal form for V ar("t) the standard

methods for state space models described by Kim and Nelson (1999b) can be applied.

VAR hyperparameters
Conditional on Zt, �l;t, Ht, and At, the innovations to �l;t, Ht, and At are observable,

which allows us to draw the hyperparameters� the elements of Q, S, and the �2i� from their

respective distributions.

B Drawing the MS-VAR coe¢ cients

Suppose we have draws for
�
s�t
	
t=1:::T

,
�
s�t
	
t=1:::T

, and �(�). De�ne Xt = [1; Zt�1]
0 and

�(s�t ) =
�
a(s�t );�(s

�
t )
�
. Rewrite 8 as:

Zt = �(s
�
t )Xt + �(s

�
t )
1=2!t

Given
�
s�t
	
t=1:::T

we can collect all the draws for s�t = j�, for j� = 1; : : : ;m�:We obtain

a �xed coe¢ cient VAR with a Markov-switching covariance matrix. Notice that this is a
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convenient way to model heteroskedasticity.

Zt0 = �j�Xt0 + �(s
�
t0 )
1=2!t0

t0 2
�
t : s�t = j�

	
Our goal is to draw from the posterior distribution of �j� . Note that if �(�) were a

diagonal matrix, we could simply divide all the observations equation by equation by the

standard deviation of the residuals, i.e. by the square roots of the diagonal elements of �(�).
If we are a not willing to make this assumption we need to proceed in a di¤erent way. Here

I propose two possible ways to deal with heteroskedasticity: the �rst one is based on GLS,

the second one on the Kalman �lter.

B.1 Generalized least squares

The �rst method is a generalization of the generalized least squares. This method is very

straightforward to apply when an univariate regression is involved. Consider the following

example:

Y
T�1

= X�
(T�k)(k�1)

+ C�1�
(T�T )(T�1)

(17)

where C�1(C�1)0 = 
 = E (��0) and � � N(0; IT ). Note that 
T the covariance matrix of

the residuals across time and we assume that is not singular. Then we can rewrite 17 as:

CY = CX� + �

The transformed model allows to apply OLS:

�GLS = (X 0C 0CX)
�1
(X 0C 0CY )

=
�
X 0
�1X

��1 �
X 0
�1Y

�
We can then combine this estimate with the priors on � following standard results. Note

that when there is no correlation between observations the matrix 
 becomes diagonal and

each observation is weighted according to the reciprocal of the square root of the variance.

Now consider a VAR and assume that the covariance matrix of the residuals can assume

m� possible values. In the present case we will make the assumption that the residuals are

not correlated across time, but the results can be generalized.
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At each point in time we have

yt
(1�n)

= xt�
(1�k)(k�n)

+ "t
(1�n)

�
C
�
s�t
���1

(n�n)

with
�
C
�
s�t
��1��

C
�
s�t
��1�0

= �
�
s�t
�
:

Let yit be the observation at time t for variable i. We can rewrite the model as

eY
(1�nT )

= eB
(1�nk)

eX
(nk�nT )

+ e"
(1�nT )

eC�1
(nT�nT )

where eY and e" are (1� nT ) vectors obtained ordering all the observation for yt and "t in

two row vectors, eB = vec (�)0, eX = [bdiag (x01) ; :::; bdiag (x
0
T )] and

� eC�1�� eC�1�0 = 
.

Note that 
 is the covariance matrix of e". If we assume that there is no cross correlation
between residuals over time the matrix 
 is block diagonal and the same thing is true for

the matrix eC�1. In a model with MS covariance matrix 
 = bdiag
��
�
�
s�t
�	

t=1:::T

�
andeC�1 = bdiag

�n�
C
�
s�t
���1o

t=1:::T

�
:

Once the model has been rewritten in this way we can proceed with the transformation

that will make possible to apply OLS:

eY
(1�nT )

eC
(nT�nT )

= eB
(1�nk)

eX
(nk�nT )

eC
(nT�nT )

+ e"
(1�nT )

From here on standard methods apply.

A simple example will help in understanding the notation. Suppose there are only two

endogenous variables (n = 2) and three regressors (k = 3). The sample size is T = 3.
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We get 26666666664

y11

y21

y12

y22

y13

y23

37777777775

0

=

26666666664

�11

�21

�31

�12

�22

�32

37777777775

0

"
x01 x02 x03

x01 x02 x03

#

+

26666666664

"11

"21

"12

"22

"13

"23

37777777775

0

264 C
�
s�1
��1

C
�
s�2
��1

C
�
s�3
��1

375

The block diagonal structure is particularly convenient because eC can be computed taking
the inverse of the matrices that lay on the main diagonal. Moreover the variables can be

transformed separately for each t.

B.2 The Kalman �lter

In this paper, I make use of an alternative method that is based on the Kalman �lter

algorithm (in fact, it is simply Bayesian updating). The observation equation is given by

Zt0 = �j�Xt0 + !t0�(s
�
t0 )
1=2

t0 2 � =
�
t : s�t = j�

	
while the transition equation is

�j�;i = �j�;i�1

i = 1:::#�

The estimate of the VAR coe¢ cients is updated depending on the covariance matrix

�(s�t0 ). When we are in a low volatility regime the observation errors receive a large weight,

while the opposite occurs when a high volatility regime is in place. For a detailed description

of the Kalman �lter see Kim and Nelson (1999a).
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C Computing cash-�ow and discount rate news in the

perfect knowledge case

Consider a MS-VAR:

Zt = a (st) + � (st)Zt�1 + �(st)
1=2$t

where Zt is a column vector containing n variables and st = 1; :::;m, with m the number of

regimes, evolves following the transition matrix H.

De�ne the column vectors qt and  t as:

qt =
h
q1

0

t ; :::; q
m0
t

i0
; qit = E (Zt1st=i) ;  t =

�
 10t ; :::;  

m0
t

�0
;

where  it is a column vector with all the elements equal to p
�
s�t = i

�
and 1st=i is an indicator

variable that is equal to one when regime i is in place and zero otherwise.

Note that:

E (Zt) =
mX
i=1

qit = wqt; w =

24In; :::; In| {z }
m

35
We can de�ne the law of motion of qt as:

qt = M t + 
qt�1 (18)

 t = G t�1 (19)

where:

G = kron(H; In)


 = blockdiag (� (st = 1) ; :::;� (st = m)) �G
M = diag

�
a (st = 1)

0 ; :::; a (st = m)0
�

In order to compute the news, we need to make sure that the process described by (18)

converges. I adopt the concept of mean-square stability (MSS) of Costa et al. (2004).12 A

system is mean square stable if both the �rst and second moments converge. Costa et al.

(2004) provide conditions for stability of homogenous systems and they show that these

conditions can be immediately extended to non-homogeneous systems as long as st is an

ergodic chain and the shocks are bounded.

12This concept of stability has been recently used by Farmer et al. (2009) to provide a solution algorithm
to a class of Markov-switching Dynamic Stochastic General Equilibrium models. The formulas presented
here slightly di¤er from the ones of Costa et al. (2004) because of the di¤erent time indexation of the regimes.
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MSS depends on the eigenvalues of the matrix governing the law of motion of the second

moments of the homogeneous system:

Zt = � (st)Zt�1

Qt = �Qt�1 (20)

Qt =

2664
Q1t
...

Qm
t

3775 ; Qi
t = E (ZtZ

0
t1st=i)

� = blockdiag (� (st = 1)
 � (st = 1) ; :::;� (st = m)
 � (st = m)) �G

Theorem 3.9 of Costa et al. (2004) states the system is MSS if and only if all eigenvalues

of � are inside the unit circle.

To compute the news, de�ne:

qit+j;t = Et
�
Zt+j1st+j=i

�
= E

�
Zt+j1st+j=ij�t

�
e01 = [1; 0; 0; 0]0; r = m � n

where �t contains all the information that agents have at time time, including the probability

of being in one of the m regimes. Note that qit;t = Ztp (st = i) :

Now, consider the formula for the discount rate news:

NDR;t+1 = (Et+1 � Et)
1X
j=1

�jrt+1+j

The �rst term is:

Et+1

1X
j=1

�jrt+1+j =
1X
j=1

�je01wqt+1+j;t+1

= e01w
�
�qt+2;t+1 + �2qt+3;t+1 + �3qt+4;t+1 + ::::

�
= e01w (Ir � �
)�1

�
�
qt+1;t+1 + (Ir � �G)�1 �MG t+1;t+1

�
The second term is:

Et

1X
j=1

�jrt+1+j =
1X
j=1

�je01wqt+1+j;t

= e01w (Ir � �
)�1
�
�
qt+1;t + (Ir � �G)�1 �MG t+1;t

�
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Therefore:

NDR;t+1 = e01w (Ir � �
)�1
�
�
 (qt+1;t+1 � qt+1;t) + (Ir � �G)�1 �MG

�
 t+1;t+1 �  t+1;t

��
= e01w (Ir � �
)�1

�
�
 (qt+1;t+1 � 
qt �MG t) + (Ir � �G)�1 �MG

�
 t+1;t+1 �G t

��
= e01w (Ir � �
)�1

h
�
vqt+1 + (Ir � �G)�1 �MGv t+1

i
= e01w

h
�qvqt+1 + � v t+1

i
where

�q = (Ir � �
)�1 �


� = (Ir � �
)�1 (Ir � �G)�1 �MG

Then, we can easily compute the residuals:

ut+1 = Zt+1 � EtZt+1

e01ut+1 = rt+1 � Et (rt+1)

and the news about future cash-�ows can be obtained as:

NCF;t+1 = e01ut+1 +NDR;t+1

Note that given a sequence of probabilities (or MS states) and a set of parameters, it is

easy and computationally e¢ cient to compute the entire sequences vq;T , v ;T ; and uT :

NT
DR = e01w

�
�qvq;T + � v ;T

�
NT
CF = e01w

�
(Ir + �q) vq;T + � v ;T

�
uT = e01wv

q;T

43



D Additional graphs
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Figure 9: Fixed coee¢ cient VAR. Evolution of the premia as the sample size shortens. For
example: 1940:12 means that the VAR has been estimated over the sample 1940:12-2001:12.
The last plot describes the evolution of the correlation between the betas.
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Figure 10: The �gure contains histograms and 68% error bands for the pairwise di¤erences
of the VAR coe¢ cients across the two regimes. This can be regarded as a "test" for the null
the two coe¢ cients are the same across the two regimes.
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Figure 11: The �gure shows means and 90% error bands computed on two not overlapping
windows of 225,000 Gibbs sampling draws obtained dividing in two parts the 450,000 draws
used in the paper (the retainment rate is 2%).
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