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1 Introduction

Forecasts of annual inflation rates are of great interest both for monetary
policy and for planning purposes in various contexts in business and in eco-
nomics more generally. A number of studies have explored possibilities for
improving inflation forecasts. For example, Stock and Watson (1999) use
the information in other economic variables to improve inflation forecasts.
Espasa, Senra and Albacete (2002) and Hubrich (2005) use disaggregated
data. Furthermore, Angelini, Henry and Mestre (2001), Camba-Méndez and
Kapetaneous (2004) and Hofmann (2008) consider extracting useful informa-
tion for forecasting inflation rates from large datasets. In all these studies
inflation is measured by first or annual differences of logarithms (logs) of the
underlying price index. In fact, using log price indices for inflation forecast-
ing seems to be the leading approach in the academic literature, although
this practice has not been properly justified.

In a recent study Lütkepohl and Xu (2009) investigated the role of the log
transformation in forecasting economic time series. They found that using
logs can bring about substantial gains in forecast accuracy if the log transfor-
mation leads to a more homogeneous variance of a variable. If this condition
is not satisfied, it may be preferable to forecast the series directly. There-
fore, in this study we investigate whether forecasting annual inflation rates
on the basis of first or annual differences of logs is preferable to forecasting
the underlying price indices directly. We focus explicitly on seasonally un-
adjusted price series because such series may have seasonal unit roots which
can be captured by annual differences and seasonal adjustment brings about
additional problems for modelling and forecasting.

Forecasting seasonal time series has been considered in a number of
studies (e.g., Osborn, Heravi and Birchenhall (1999), Clements and Hendry
(1997), Franses (1991), Paap, Franses and Hoek (1997), see also Hylleberg
(1986) for a discussion of seasonality more generally). Osborn (2002) pro-
vides a review of the results. In these studies of seasonal data the question
whether or not to use logs is either not explicitly explored at all or marginally
touched upon. For example, Osborn et al. (1999) use some pre-screening of
their series and decide on the log transformation based on that. Once the
decision is made in favor of logs, all further modelling is based on the trans-
formed series.

We compare univariate forecasts of inflation rates based on different con-
sumer price indices for a range of countries. The mean squared error (MSE)
or root mean squared error (RMSE) is used as the measure for forecast preci-
sion. We focus on autoregressive (AR) models based on seasonal differences,
called stochastic seasonality models, and models with seasonal dummies for
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the first differences, called deterministic seasonality models. These two model
classes were found to be more successful in forecasting seasonal time series
than models with both first and seasonal differences and models without any
differences at all (see in particular Osborn et al. (1999)). For comparison
purposes we also use the so-called airline model for forecasting inflation rates.
This model involves both first and seasonal differences and has a first order
moving average (MA) and a seasonal MA part. Osborn (2002) suggests that
this type of model may be worth considering for forecasting even if typical
unit root tests do not support double differencing.

It is found that for inflation forecasting taking logs is by no means uni-
versally preferable to forecasting the price index directly. In fact, our results
suggest that using the underlying price index directly should be the default
in forecasting inflation. In many cases forecasting the price indices directly
leads to substantially smaller forecast RMSEs while gains from using logs
are usually slight. This result sheds doubt on the common practice of using
prices in logs and constructing inflation rates as differences of log prices. It
opens up another direction for forecast improvements.

Actually, the question whether it is useful to apply some kind of trans-
formation and in particular the log transformation to a variable, prior to
constructing a forecasting model, is an old one. Box and Jenkins (1976)
discuss it already as part of their modelling strategy (see in particular their
Section 9.3)2 and Chatfield and Prothero (1973) apply logs to their sales series
to make the variance more homogeneous when they construct a forecasting
model. In fact, Tunnicliffe Wilson (1973) in his discussion of Chatfield and
Prothero (1973) mentions that their use of logs may have led to poor fore-
casts and advocates the more general Box-Cox class of transformations (Box
and Cox (1964)). We will not consider more general transformations in our
forecast comparison because such transformations do not seem common in
inflation forecasting. Clearly, in this context the log transformation has the
advantage of giving rise to quantities with a direct interpretation. For in-
stance, differences of log price indices are precise approximations of inflation
rates. Moreover, in economic models log price indices are typically easy to
interpret.

Our study is structured as follows. The forecasting models and forecasts
are presented in the next section. In Section 3 a forecast comparison based
on a range of consumer price index (CPI) series for different countries is
presented. Section 4 concludes.

2The discussion of transformations has not changed much in the later edition of the
book (Box, Jenkins and Reinsel (1994)).
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2 Models and Methods

2.1 Variables of Interest

The price index of interest is denoted by yt and its natural logarithm is
signified as xt, that is, xt = log yt. It is assumed that yt is observed s times per
year. In the empirical study in Section 3 monthly series are considered, i.e.,
s = 12. For the discussion of models and methods we still prefer to entertain
a more general setup which in principle also allows for other observation
frequencies.

It is assumed that forecasts are desired for annual inflation rates based
on the price index yt,

∆syt/yt−s,

rather than the approximate inflation rate ∆sxt. Here ∆s denotes the sea-
sonal differencing operator defined such that ∆syt = yt−yt−s. The h-periods
ahead forecasts of yt and xt at forecast origin t are denoted by yt+h|t and
xt+h|t, respectively. The forecast MSE or its square root (RMSE) are used
as measures for forecast accuracy.

2.2 Forecasting Models

Different autoregressive (AR) models are fitted as forecasting models. For
example, AR models may be considered for the seasonal differences of xt and
yt, e.g.,

∆sxt = ν + α1∆sxt−1 + · · ·+ αp∆sxt−p + εt, (1)

where ν is a constant term and εt is a white noise error term. Alternatively,
a model with seasonal dummy variables may be fitted to the first differences,

∆xt = ν1δ1t + · · ·+ νsδst + α1∆xt−1 + · · ·+ αp∆xt−p + εt, (2)

where ∆xt = xt − xt−1 and δit = 1 if t is associated with the ith season
(month) and δit = 0 otherwise, that is, the δit’s are seasonal dummy variables.
Model (1) is referred to as stochastic seasonality model and (2) is called
deterministic seasonality model. We use full AR models with different lag
orders p and subset AR models where some of the AR coefficients αj, j < p,
are zero. These models are fitted to xt and yt or, more precisely, the seasonal
and first differences of xt and yt.

Notice that for monthly data ∆xt represents the monthly inflation rate
from which an annual rate may be obtained as s∆xt. We do not use this
inflation measure because it puts the deterministic seasonality model at a
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severe disadvantage. Notice that this model is likely to produce seasonal
monthly forecasts which need to be added to obtain a sensible annual forecast.
Hence, we compute forecasts xt+h|t = ∆xt+h|t + · · ·+ ∆xt+1|t + xt for the log
price index from the model for the first differences. These forecasts are then
used to determine annual inflation forecasts as discussed in the following.
Analogous comments apply for the forecasts based on models for ∆yt.

For comparison purposes we also consider forecasts based on the so-called
airline model which is given by

∆∆sxt = ν + (1 + θL)(1 + θsL
s)εt, (3)

where L denotes the backshift operator defined such that Liεt = εt−i and ν,
θ and θs are parameters. In the classical Box-Jenkins terminology (Box and
Jenkins (1976)) this model is a seasonal autoregressive integrated moving
average (ARIMA)(0, 1, 1)(0, 1, 1)s model. Given that double differencing is
used, a constant term may not be needed, that is, ν = 0 may be assumed.
We allow for a nonzero ν, that is, we estimate ν as an additional parameter,
to avoid distortions of our forecasts due to a neglected nonzero mean term.
The airline model is used for both xt and yt in the empirical section. It may
also be summarized under stochastic seasonality models because it involves
seasonal differences. We keep it separately because it involves MA terms. We
estimate the airline model by a maximum likelihood (ML) procedure which
conditions on zero initial values for the residuals and we restrict the seasonal
MA coefficient to the interval [−1, 0], that is, θ̂s ∈ [−1, 0] and the nonseasonal
MA coefficient is restricted such that θ̂ ∈ [−1, 1]. Thus, the seasonal MA
part is set up to compensate for potential seasonal over-differencing whereas
the nonseasonal MA term captures short-term correlation more generally.
Restricting the seasonal MA parameter to the negative unit interval is in
line with the procedure used in the Seats seasonal adjustment programme
(see Gómez and Maravall (1997)).

2.3 The Forecasts of Interest

The forecasts based on levels variables obtained from the airline model as well
as the stochastic and deterministic seasonality models are denoted by yair

t+h|t,
yss

t+h|t and yds
t+h|t, respectively. Forecasts for yt are obtained from forecasts of

xt by reversing the log,
ynai

t+h|t = exp(xt+h|t).

This notation was also used by Lütkepohl and Xu (2009) for a forecast for
yt obtained by applying the exponential function to reverse the log. Granger
and Newbold (1976) pointed out that this forecast is in general not optimal
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and therefore they called it a naive forecast. If xt is generated by a Gaussian
linear process, e.g., by an ARIMA process with normally distributed white
noise, the optimal forecast is

yopt
t+h|t = exp(xt+h|t + 1

2
σ2

x(h)),

where σ2
x(h) is the forecast error variance of an h-step forecast of xt. Hence,

the naive forecast is multiplied by an adjustment factor exp[1
2
σ2

x(h)] to obtain
the optimal forecast. In our empirical analysis we also studied this predic-
tor in preliminary investigations. It turned out, however, that it is at best
marginally better than the naive forecast, that is, the resulting MSEs are
often almost identical. Sometimes the optimal predictor even has a slightly
larger MSE. This result is in line with an observation made by Lütkepohl and
Xu (2009) in a univariate forecast comparison and by B̊ardsen and Lütkepohl
(2009) in a multivariate context. Three factors may contribute to this re-
sult. First, the forecast error variance is not known but has to be estimated.
Thus, we just have an estimated adjustment factor for the naive forecast.
Second, the normality assumption underlying the adjustment factor may be
violated for some of our series. Third, the forecast error variance is typically
very small compared to the level of the log price index. In that case the
adjustment factor does not make much difference. As a consequence we do
not consider this forecast further in the following.

In analogy with the previously introduced notation we denote the naive
forecasts based on the airline model as well as the stochastic and deterministic
seasonality models by yair,nai

t+h|t , yss,nai
t+h|t and yds,nai

t+h|t , respectively. Thus, in total
we have six forecasts of the annual inflation rates based on a price index yt

which are compared subsequently:

∆sy
air
t+h|t/y

air
t+h−s|t; ∆sy

ss
t+h|t/y

ss
t+h−s|t; ∆sy

ds
t+h|t/y

ds
t+h−s|t;

∆sy
air,nai
t+h|t /yair,nai

t+h−s|t; ∆sy
ss,nai
t+h|t /yss,nai

t+h−s|t; ∆sy
ds,nai
t+h|t /yds,nai

t+h−s|s.

Note that in most of our comparisons we use h ≤ s so that the denominator
is the observed value yt+h−s.

2.4 Model Selection

Of course, it would be helpful to have criteria to decide a priori, for a given
time series, which forecast is the best. One may conjecture that HEGY tests
for seasonal unit roots (Hylleberg, Engle, Granger and Yoo (1990))3 may
be helpful in discriminating between stochastic and deterministic seasonality

3Extensions to monthly data are due to Franses (1990) and Beaulieu and Miron (1993).
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models. If unit roots at all seasonal frequencies are found, fitting an AR
model to the seasonal differences seems like a plausible strategy. Unfortu-
nately, for the series considered in the next section HEGY tests typically do
not reject seasonal unit roots at some frequencies but reject for others. A
clear relation between the seasonal unit roots and the best forecasting model
is not detected. Thus, it seems unwise to decide between the two model types
on the basis of HEGY tests alone.

Also, of course, we have to choose between forecasts based on the original
price indices and on the logs. We explore the potential of model selection
criteria to help with the choice. In particular, we use the Akaike information
criterion (Akaike (1973))

AIC = −2 log(maximum likelihood) + 2× number of parameters. (4)

Note that the probability density function (pdf) of the sample x1, . . . , xT

denoted by φx(x1, . . . , xT ) is related to the pdf of y1, . . . , yT as

φy(y1, . . . , yT ) = |∂(x1, . . . , xT )/∂(y1, . . . , yT )′|φx(x1, . . . , xT )

= φx(x1, . . . , xT )

/
T∏

t=1

yt ,

where | · | signifies the determinant. To compare models for yt and xt via
AIC, we use for both φx(x1, . . . , xT ) and φy(y1, . . . , yT ) Gaussian densities.
The rational for this choice is that the Box-Cox transformation is often used
to make the distribution more Gaussian. The transformation is defined as

y
(λ)
t =

{
(yλ

t − 1)/λ for λ > 0,
log yt for λ = 0.

For λ = 1 this is just the original series shifted by −1, whereas for λ → 0
the transformation approaches the log. Assuming that only λ = 0 and 1 are
permissible parameter points, we may just compare a Gaussian likelihood for
the original yt’s to that for the xt’s divided by

∏T
t=1 yt. The comparison is

done via AIC because models with different numbers of parameters may be
used for yt and xt.

These considerations imply the following strategy for model selection.
First AR models (1) and (2) are fitted to yt and xt. Then the four result-
ing models are compared with the AIC form in (4) taking into account the
transformation of the distribution implied by the log transformation. In ad-
dition to the AIC we also use the Schwarz model selection criterion (Schwarz
(1978)) which multiplies the number of parameters by log T instead of 2. It
will be denoted by SC.
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In the first step of this model selection strategy AR models are chosen in
two alternative ways. More precisely, subset AR models specified by some
subset selection procedure are considered and full AR models for which the
lag length is selected by AIC or SC are employed. Subset AR models are
specified by fitting an AR model of some maximum lag length and then
successively deleting the coefficient with the smallest t-ratio, re-estimating
the resulting model and deleting the next coefficient with the smallest t-ratio
until all remaining t-ratios are larger than 1.96. Thus, in the final model all
coefficients including the ones attached to deterministic terms are significant
at a 5% level based on their t-ratios. Subset models are plausible in the
present context because they tend to be more parsimonious than full AR
models for seasonal monthly data. They typically choose small lags and lags
around the seasonal period.

AIC and SC are also used for the airline model to choose between speci-
fications in levels or logs. Given that the number of parameters is fixed, this
procedure amounts to a comparison of the likelihood maxima. In fact, this
decision rule appears to be the one used by the commonly applied seasonal
adjustment procedures Tramo and Census X12 to choose between additive
and multiplicative models (or, equivalently, levels and logs) for a given time
series (see EViews (2000)).4 The algorithms used for estimating the param-
eters of the airline model in these two procedures differ from ours, however.
They both use exact ML procedures based on different algorithms. More-
over, Tramo and Census X12 do not seem to include an intercept term in
the airline model. Hence, their estimates of the MA coefficients may differ
from ours.

3 Forecast Comparison for Inflation Rates

3.1 The Data

We use two sets of unadjusted monthly CPI data to compare forecasts and
investigate procedures for choosing a good forecasting model. The first one
consists of total CPI series for 24 countries for the period 1996M1-2007M12.
The countries are member states of the European Union (EU) and most but
not all of them are members of the euro area, i.e., the European Monetary

4Although the Tramo-Seats manual discusses a possibility to choose between levels
and logs on the basis of a range-mean regression (Gómez and Maravall (1997, p. 15)), A.
Maravall, in a personal communication, confirmed that the choice is actually made by a
likelihood comparison in more recent versions of the program.
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Union (EMU). In addition, we also include data for the USA.5 The sample
period is chosen to account for the special situation in Europe during the
run-up to the EMU. The euro was introduced in January 1999 and most
countries had to adjust their inflation rates to satisfy the Maastricht criteria.
Therefore inflation rates in many European countries have changed during
the 1990s. The process may not have been completed in 1996. We still start
our sample in this year to ensure a reasonably long sample period for model
specification and estimation in our setup where the last years are reserved
for the forecast comparison. We have checked the impact of the first three
years on our results and report on the outcome later. We also have data for
the year 2008 but do not report results based on them. The year 2008 is
a bit special in that the inflation rates in most countries were rather high
at the beginning and then dropped sharply. Clearly such an unusual period
may cause difficulties for forecasting methods. Some poor forecasts may
dominate the MSE if the unusual period is included. In particular, when
inflation is high the inflation rates computed as differences of logs will be
poor approximations to the actual inflation rates. Thus, including data from
2008 might have biased our results against logs.

Plots of the series are shown in Figure 1. The last four series from Bel-
gium, Italy, Luxembourg and Spain have an obvious change in their seasonal
pattern during our sample period. The problem becomes even more apparent
in Figure 2, where the first differences of the four series are plotted. Although
a change in seasonality can be captured to some extent by a stochastic sea-
sonality model, it is difficult to argue that these series can be classified as
difference stationary. We still keep them in our sample to study the impact
on our forecast comparison. All the other series have a more or less regular
seasonal pattern over our sample period. At least a visual inspection does
not give rise to concerns about structural breaks.

In fact, there have been adjustments to the construction of the indices
during our sample period. In particular, sales prices have been included in
the HICPs published by Eurostat.6 These alterations explain the apparent
structural changes in the series for Belgium, Italy, Luxembourg and Spain.
They may also have affected the price indices of other countries. We ignore
this problem because it is not obvious from a visual inspection of the series.
In fact, Bataa, Osborn, Sensier and van Dijk (2008) found evidence for struc-
tural change in the price indices of other series as well. Again we ignore such
changes because they are not apparent in the graphs of the series. Obviously,

5The data for the EU countries are the HICP series from Eurostat taken from the
database of the European Central Bank. The US series is total CPI from the database of
the Federal Reserve Bank of St. Louis.

6We thank Denise Osborn for drawing our attention to this adjustment.
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our focus is not on possible structural changes in the series although they
may admittedly be important for the forecast performance of our models.
We have no reason to believe, however, that they affect models for levels
more or less than models for logs. Hence, we ignore possible problems due
to structural changes which are not apparent in a visual inspection of the
series.

For some of the series the seasonal fluctuations increase with the level of
the series (see, e.g., the series from Malta or the USA). Thus, the volatility
increases with the level. This behavior can potentially be alleviated by a
log transformation. On the other hand, for some of the other series apply-
ing the log transformation does not make much difference for their general
appearance (e.g., for Austria, Cyprus, Denmark, Sweden or the UK).

In Table 1 the results of standard augmented Dickey-Fuller (ADF) and
HEGY tests for seasonal unit roots are reported. Assuming that all the series
have at most one unit root and applying ADF tests to the original series and
their logs, it turns out that only four rejections are obtained at the 5% level of
significance. More precisely, unit roots are rejected for the original series for
Cyprus and Malta and for the logs of the Hungarian and Polish series. Thus,
for the vast majority of the series there is some evidence that taking at least
first differences is justified for the levels as well as the logs. Of course, in our
forecast comparison we treat all series in the same way as far as differencing
is concerned. It may be useful, however, to keep in mind the results of the
unit root tests.

When ADF tests are applied to seasonal differences, unit roots are re-
jected in nine cases. For Cyprus, the Czech Republic and Greece unit roots
are rejected for both the original series and the logs, whereas for Malta the
ADF test rejects for the levels and for Poland and Belgium for the logs.
Overall there is some evidence for unit roots in the seasonal differences of
most series. Given the results for the logs, this means, of course, that the
ADF tests indicate a unit root in the annual inflation rates of most countries.

On the other hand, when HEGY tests are applied to the first differences,
for all countries with a single exception, at least some seasonal unit roots
are rejected. The exceptional case is Malta. For all the other countries
taking both first and seasonal differences is, hence, not supported by a HEGY
test. Although this sheds doubt on the suitability of the airline model, we
nevertheless use it for comparison purposes.

To investigate the robustness of our results we also consider some other
price indices. In particular, our second data set consists of 16 core CPI series.
We have comparable data for all countries from the previously described set
except for the Czech Republic, Hungary and Slovenia and we have eliminated
the series from Belgium, Italy, Luxembourg, Portugal and Spain because of
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obvious structural breaks. The sample period is again 1996M1-2007M12 and
the data sources are the same as for the total CPI series. Our core CPI series
for European countries are the HICPs of all items excluding energy and food
and the corresponding CPI is used for the USA.

The unit root properties are similar to those of the total CPI series. More
precisely, a zero frequency unit root is diagnosed in all series and their logs ex-
cept for logs of the series from Greece. Furthermore a zero frequency unit root
is not rejected for all but three seasonally differenced series, the exceptions
being levels and logs for Germany and logs for Greece. Seasonal unit roots
are found at best for some of the seasonal frequencies in the first differences
of levels and logs of the series from all countries. Again these results suggest
that applying first and seasonal differences may lead to over-differencing.
The core inflation series are primarily used for additional robustness checks.
Therefore we do not enter into a more detailed discussion of their properties
at this stage.

Core inflation series are of interest to policy makers because they elimi-
nate some more volatile inflation components. For our purposes it may also
be of interest to investigate whether our results hinge on considering rather
smooth and regular price indices, such as total and core CPI. The related
inflation rates were relatively low during the forecast periods. Therefore, we
also consider a set of more volatile price indices for energy. More precisely,
we use the HICP series for energy from all European countries from the total
HICP panel except for Czech Republic, Hungary, Malta and Slovenia, which
leaves us with 19 series. The data are originally from Eurostat, as given in
the database of the European Central Bank. The seasonal component in
some of these series is less apparent than in those of the other datasets. It
is to some extent dominated by general volatility. Note that some related
energy inflation rates were substantially in excess of 10% during parts of our
sample period. Thus, they are at times much larger than total inflation.

In our forecast comparison we first focus on the total CPI series and then
study the other inflation series.

3.2 Baseline Forecast Comparison for Total CPI Series

We set aside the observations for the last two years of the sample for fore-
casting and fit the airline model as well as the stochastic and deterministic
seasonality models to all total CPI series and their logs. For the 1-step fore-
casts the smallest specification and estimation period is 1996M1-2005M12,
whereas for the 12-step forecasts it is 1996M1-2005M1. The following con-
clusions emerge from Table 2. The AR models are subset models chosen with
the lag elimination procedure outlined in Section 2.4 with a maximum AR
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order of 14. The six forecasts and associated forecast errors are computed on
the basis of these models. Then the sample is extended by one observation
and the model specification and estimation steps are repeated and so on.
Thereby we get a set of forecast errors on which the RMSEs are based.

The best forecasting models with the smallest RMSEs within each model
class for 1-step and 12-step forecasts are given in Table 2. Significant dif-
ferences of the related MSEs at a 5% level between models in levels and
logs according to the Harvey, Leybourne and Newbold (1997) version of the
Diebold-Mariano test (Diebold and Mariano (1995)) are indicated by an as-
terisk. Also the overall best models for each of the two forecast horizons are
presented in the table. The table is based on the RMSEs obtained over 24
forecasts for the last two years of our sample.

1. Considering only the 20 series without obvious structural breaks (the
first 20 in the table), forecasts based on levels are optimal in about half
of the cases. In fact, considering the different model types separately,
levels are preferable in a clear majority of the cases for the airline
and stochastic seasonality models. These results hold for both forecast
horizons. In a substantial number of cases the levels forecasts are in
fact significantly better than the forecasts based on logs whereas the
converse is true only in three cases. As mentioned earlier, the seasonal
pattern for many of the countries does not depend much on the level
of the series (see also Figure 1). Hence, taking logs does not make
them more regular which may explain the good performance of levels
forecasts.

2. Again for the 20 series without apparent structural breaks, the deter-
ministic seasonality and stochastic seasonality (including airline) mod-
els are optimal for roughly similar numbers of countries. For 1-step
forecasts seven out of 20 times the deterministic seasonality model is
overall best while the corresponding number for 12-step forecasts is ten.

3. The ranking of the models with respect to their forecast performances
depends to some extent on the forecast horizon. For example, for Den-
mark a deterministic seasonality model delivers the best 12-step fore-
casts while an airline model (that is, a stochastic seasonality model) is
best for 1-step forecasting. The reverse outcome is observed for Fin-
land.

4. The airline model performs overall better for the original data than
for the logs, both for one month and one year ahead forecasts. It is
not very successful compared to the AR models for 12-step forecasts,
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however. For this forecast horizon it comes out best in only five cases.
Perhaps this result reflects the message given by the HEGY tests which
did not support double differencing.

5. For the series with a break in the seasonal pattern (the last four in
Table 2) the overall results are not much different from those for more
regular series.

In summary, these observations mean, of course, that the common prac-
tice of basing annual inflation forecasts on first and/or seasonal differences
of logs is questionable. There is some potential for forecast improvements
at least in some countries by using the original levels series. Of course, the
actual gains in forecast precision cannot be seen from Table 2 even though
in some cases the differences between forecasts based on levels and logs are
significant. To show that levels forecasts can lead to substantial improve-
ments, we present relative RMSEs in Figure 3 for 12-step forecasts. The
longer forecast horizon is more relevant from a policy point of view and,
hence, we present detailed results for that. All RMSEs are divided by the
RMSE of the corresponding airline model based on the original variables,
that is, the latter model is the benchmark model in Figure 3. A black bar
in each panel signifies the smallest RMSE. The results in the figure show
that the differences between the models can indeed be substantial (see, e.g.,
Cyprus, Hungary, Ireland, Malta or the UK). Similar results are also found
for 1-step forecasts. Thus, using the original levels of some of the series leads
potentially to much more precise forecasts than models based on logs.

These conclusions raise the question of how to find the best model for
a given series for out-of-sample forecasting. In particular, the question in
which cases levels should be used to improve inflation forecasts is of consid-
erable interest. To investigate this question we present the recommendations
of several model choice criteria and procedures in Table 3. We report the
recommendations of the AIC and SC selection procedures and compare our
airline models for levels and logs based on AIC (or, equivalently, the cor-
responding likelihood maxima). Note that our airline model used in the
comparison with the subset AR models is estimated on the same sample as
the subset AR models to ensure a fair comparison via the model selection
criteria. In other words, the first 14 values which are used as presample val-
ues for model selection for the subset AR models are also not considered for
estimating the airline model. However, the column with the heading “Air-
line” in Table 3 contains the recommendations based on the airline model
when estimated over the full sample to have a comparable procedure to those
implemented in the Tramo and Census X12 programs. Note that in Tramo
the airline model is used as the standard model for choosing between levels
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and logs while in the Census X12 program an ARIMA model can be selected
which we have specified to be an airline model. The recommendations of
these procedures are also shown in Table 3 and they are also estimated using
the whole sample. In Table 3 we present results for varying sample periods
to check the robustness of the results. The following conclusions emerge:

1. Unfortunately, the recommendations in the table are not reliable indi-
cators of the best forecasting model. For example, if only data before
our first forecast period are considered (1996M1-2004M12), the best
models according to AIC agree only in 6 cases with the overall best 12-
step forecasting models in Table 2. Also SC is not a reliable indicator
for choosing the best forecasting model.

2. None of the procedures is fully reliable in choosing between levels and
logs for forecasting purposes. Focussing again on the 12-step forecasts
in Table 2, it turns out that the recommendation from the Census X12
procedure agrees in most cases with the best forecasting model. Its
recommendation conforms in 18 out of 24 cases with the best choice for
forecasting. Even that leaves room for improvement, of course. It may
also be worth emphasizing that forecasting is not the main objective of
the Tramo and Census X12 programs.

3. The different criteria typically do not agree on which form of a par-
ticular CPI should be used (levels or logs). In fact, only in very few
cases is the same recommendation given by all criteria. Even then it is
not clear that this recommendation corresponds to the best forecasts.
For example, for Finland the log is unanimously recommended by all
procedures and across all sample periods in Table 3. In contrast, the
best 12-step forecasts in Table 2 are obtained from a model for the
levels. Note, however, that for Finland the RMSE differences for levels
and logs are not significant.

4. The recommendations for a single series frequently change with the
sample period. In other words, by adding a couple more years to the
sample, a given procedure may reverse its decision regarding levels or
logs of a variable. For example, the Census X12 procedure changes
its recommendation in six cases when a sample period from 1996M1-
2007M12 is used instead of 1996M1-2004M12, that is, when only three
years of additional data are added. Thus, the decisions are rather
fragile.

5. Although Tramo and Census X12 are both based on airline models
they do not always agree among each other and with the choice based
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on our airline model. The reason is that there are slight differences in
the three procedures, as described in Section 2.4. Apparently, these
differences are enough to end up with different recommendations re-
garding levels or logs. Even for those cases where the three procedures
agree, this is no insurance for a good choice for forecasting purposes.

The overall conclusion from the results in Table 3 is that the procedures
in current use can at best give indications but cannot be used as reliable
indicators for a decision on using levels or logs of a price index for forecasting
purposes.

One may conjecture that deciding between levels and logs on the basis
of past forecast performance may be a good strategy. Therefore we present
forecasting results for a sample ending in 2005M12 in Table 4. These are
obtained analogously to the results in Table 2. In other words, the forecasts
are based on the data from the last two years of the sample. Comparing these
results to those in Table 2 shows that there are many changes in the optimal
models, overall and also within each model class. For example, the best
airline model for 1-step forecasting in Table 2 is based on levels in 16 cases
while the corresponding number in Table 4 is only 5. Even if we consider the
overall best models for 12-step forecasting, they change for the vast majority
of the countries in our sample when the sample ends in 2005M12 rather than
2007M12. Thus, if one chooses the forecasting model on the basis of data up
to 2005, the model is not optimal for predicting inflation for the following
years for most countries. Even the choice between levels and logs based
on past forecasting performance is not optimal in many cases. This result
also implies that in-sample methods cannot be expected to provide a reliable
decision rule between levels and logs.

The overall conclusion is that computing inflation forecasts from the orig-
inal price levels leads to substantially better forecasts for some countries and
forecast horizons than using the log price indices. This result was found
within the different model classes and overall across all model classes. Be-
cause it depends on the forecast horizon, the sample and forecast periods
whether levels or logs are superior, in-sample methods cannot be expected
to indicate whether levels or logs are preferable for forecasting. Hence, the
sizable gains from using levels obtained in some cases suggest that using lev-
els of price indices for forecasting inflation rates should be the default rather
than using logs.
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3.3 Robustness Analysis

We have checked the robustness of these results by varying the sample period,
the model types, the model selection strategy, the forecast horizon and the
types of price indices. In view of the start of the EMU in January 1999
we have eliminated the first three years of our sample and have repeated
the comparison for the core CPI series. Results are presented in Table 5.
Our main conclusion that using levels instead of logs is preferable for many
countries is reinforced by these results. Again, forecasts based on logs are
rarely significantly better than the corresponding forecasts based on levels.

Although parsimonious models are often preferable for forecasting pur-
poses we have also fitted full AR models choosing only the lag length but
not eliminating intermediate lags. The results are shown in Tables 6 and 7
for lag order selection by AIC and SC, respectively. Both tables convey the
same picture, namely that using levels rather than logs is often beneficial for
forecasting purposes. Using logs is rarely significantly better. In fact, for
our series the full AR models often select lag orders around the seasonal lags
and, hence, are not very parsimonious. They still produce better forecasts
than the subset models in many cases. This can be seen in Figure 4, where
12-step forecasts based on deterministic seasonality models for the subset
AR and full AR models based on AIC and SC are compared. It can be seen
that only for five out of 24 countries the subset AR models produce better
forecasts than the full AR models.

We have also computed biannual forecasts, that is, 24-step forecasts, to
study the impact of a longer forecast horizon on our results although one
could argue that univariate time series models may not be the best tools for
longer term forecasting. Again the results are similar to those for the shorter
horizons and are therefore not presented in detailed tables or graphs. The
bottom line is again that in many cases level forecasts dominate forecasts
based on logs although there is some variation relative to the shorter term
forecasts. For example, there are cases where 12-step forecasts based on levels
are better, while 24-step forecasts based on logs produce a smaller RMSE for
the same variable. The reverse outcome is also observed. Thus, the 24-step
forecasts do not change our general conclusions.

As a further robustness check we now turn to the other inflation series.
For the core CPI series based on a sample period 1996M1-2007M12 similar
conclusions emerge as for the total CPI series (detailed results are not shown).
In particular, for 12-step forecasts levels are better than logs in eight out of 16
cases. With three exceptions, only level forecasts are significantly preferable
when level and log forecasts are compared for specific models. For 1-step
forecasts the results are even more in favor of levels forecasts. For 9 of the
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16 countries levels produce better forecasts. Thus, for a majority of the
countries there is some potential to improve forecasts by using levels rather
than logs. Unfortunately, for a single country for which levels are better for
predicting total CPI inflation, logs may be better for core inflation and vice
versa. This result suggests that knowing more about the economic structure
of a country and its specific seasonal pattern of the CPI may not be sufficient
to decide on the best forecasting model. Similar results emerged when using
full AR models or when using a reduced sample size by focussing on the
period 1999M1-2007M12.

For the more volatile energy price indices and corresponding inflation
rates the situation is not much different. Using again a sample from 1996M1-
2007M12, levels 1-step and 12-step forecasts are optimal for 14 and 9 out of
19 countries, respectively. Hence, we can conclude that for a large range of
price indices using levels improves forecasts at relevant horizons relative to
using logs.

4 Conclusions

Given the importance of inflation forecasting, various proposals have been
made in the recent literature to improve inflation forecasts. For example, the
possibility of using disaggregated price series or incorporating information
from other related series has been explored. In this study we have focussed
on the question whether levels or logs of the underlying price index should
be used for forecasting purposes. In the academic literature on inflation
forecasting, using logs seems to be preferred although there does not seem
to be a systematic investigation of the transformation issue. We have based
forecasts on a number of univariate time series models which are plausible
for seasonal monthly price series. More precisely, we have used the so-called
airline model which is based on first and seasonal differences and we have
also used AR models for first differences and for seasonal differences. That
is, we have employed deterministic and stochastic seasonality models.

Our forecast comparison is based on different monthly seasonal CPI se-
ries from a large number of European countries and the USA for the period
1996M1-2007M12. The results clearly show that the common practice of us-
ing log differences to approximate the inflation rate is not necessarily optimal.
In fact, for a number of our series sizable and statistically significant forecast
improvements are obtained by modelling the original CPI series rather than
its log. On the other hand, if forecasts based on logs are superior, the gains
are usually small. Hence, our results suggest that using levels should be the
default.
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Unfortunately, we have not found a reliable in-sample method to indicate
for a given series whether levels or logs will lead to better out-of-sample
forecasts. We have explored the ability of standard methods to help in this
decision as they are implemented in the commonly used seasonal adjustment
procedures based on Tramo and Census X12. While these methods can help
they are certainly not very reliable indicators for deciding between levels and
logs. In fact, our results do not give hope that such methods can be reliable
tools for this purpose. The reason is that whether levels or logs are optimal for
forecasting depends very much on the sample, forecast periods and forecast
horizons. If additional data are added to the series of a particular country for
which using logs is optimal for the shorter period, levels may be preferable
for the longer period. Moreover, if levels produce better 1-step forecasts, logs
may be better for 12-step forecasts and vice versa. Thus, it is not likely that
in-sample procedures for discriminating between levels and logs can reliably
choose the best form of the data.

Given the potential forecast improvements from using levels rather than
logs, it may be worth exploring whether alternative methods for improving
inflation forecasts such as using disaggregated price indices or information
from other variables can benefit from allowing for the possibility of modelling
levels rather than logs. Our study also suggests a number of other directions
for further research. We have considered a range of different CPIs for a
large set of European countries and the USA. In future research it may
be of interest to explore the situation for countries from other regions of
the world where inflation has had quite different characteristics. Moreover,
using other forecasting models including multivariate ones may give further
useful insights regarding the question whether logs should be used or not for
particular series. Also, allowing for the more general Box-Cox transformation
rather than using logs may be an interesting strategy for future research.
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Table 1: Unit Root Properties of Total CPI Series for Sample Period 1996M1-
2007M12

ADF with trend ADF with roots not rejected
and seas. dummies constant by HEGY

Country level log ∆12 level ∆12 log ∆ level ∆ log
Austria -0.57 (0) -1.04 (0) -0.74 (14) -1.09 (14) 1,2,3/4 (2) 1,2,3/4 (0)
Cyprus -3.44* (9) -3.37 (9) -2.98* (12) -3.05* (12) 1,2,3/4 (1) 1,2,3/4 (1)
Czech Rep. -2.66 (6) -2.75 (6) -3.36* (12) -4.02* (12) 1,2,3/4 (1) 1,2,3/4 (2)
Denmark -2.15 (0) -1.88 (0) -2.84 (12) -2.74 (12) all but 9/10(12) 1,2,3/4 (0)
Finland -2.98 (13) -2.84 (13) -2.22 (12) -2.21 (12) 1,2,3/4 (0) 1,2,3/4 (0)
France -1.30 (2) -1.57 (2) -1.36 (12) -1.62 (12) 1,2,3/4 (0) 1,2,3/4 (0)
Germany 0.16 (1) -0.30 (1) -1.04 (12) -1.40 (12) 1,2,3/4 (0) 1,2,3/4 (0)
Greece -1.40 (12) -3.23 (12) -3.22* (0) -3.58* (0) 1,3/4 (0) 1,3/4 (0)
Hungary -2.20 (1) -3.85* (6) -2.45 (13) -2.72 (13) 1,2,3/4 (0) 1,2,3/4,7/8 (0)
Ireland -2.60 (0) -1.68 (1) -2.07 (12) -1.89 (12) 1,2,3/4 (6) 1,2,3/4 (6)
Lithuania -0.62 (6) -1.11 (6) -0.48 (14) -0.88 (14) 1,2,3/4 (2) 1,2,3/4 (2)
Malta -4.45* (6) -2.54 (9) -2.96*(12) -2.54 (12) all (12) 1,2,3/4 (0)
Netherlands -1.51 (12) -2.59 (12) -1.79 (13) -1.61 (13) 1,2,3/4 (0) 1,2,3/4 (0)
Poland -2.35 (1) -3.46* (1) -2.46 (13) -3.01* (13) 1,2,3/4 (0) 1,2,3/4,7/8 (0)
Portugal -2.44 (6) -2.04 (6) -1.84 (12) -1.79 (12) 1,2,3/4 (0) 1,2,3/4 (0)
Slovakia -1.13 (0) -0.16 (0) -1.70 (12) -1.12 (12) 1,2,3/4 (0) 1,2,3/4 (0)
Slovenia -3.01 (14) -1.81 (13) -1.63 (12) -1.55 (12) 1,2,3/4,7/8,11/12 (1) 1,2,3/4 (0)
Sweden -1.95 (0) -2.02 (0) -1.61 (12) -1.75 (12) 1,2,3/4 (0) 1,2,3/4 (0)
UK 0.45 (0) -0.14 (0) -0.58 (12) -0.94 (12) 1,2,3/4 (0) 1,2,3/4 (0)
USA -1.05 (12) -1.85 (12) -1.08 (14) -2.01 (12) 1,2,3/4 (0) 1,2,3/4 (0)
Belgium -1.18 (6) -1.64 (6) -2.84 (11) -3.22* (11) 1,2,3/4 (0) 1,2,3/4 (0)
Italy -3.00 (12) -3.00 (12) -1.68 (12) -2.02 (12) all but 5/6 (0) all but 5/6 (0)
Luxembourg -1.34 (7) -1.78 (7) -1.86 (12) -2.25 (12) 1,2,3/4 (0) 1,2,3/4 (0)
Spain -1.82 (10) -2.48 (10) -1.28 (12) -1.86 (12) 1,2,3/4 (7) 1,2,3/4 (3)

Note: Lag selection by AIC with maximum order 14, lag order given in parentheses. 5% critical values
for ADF test: -3.41 (with trend), -2.86 (with constant). HEGY test with seasonal dummies, results based
on 5% significance level. Computations were performe with JMulTi (Lütkepohl and Krätzig (2004)).
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Table 2: Forecasting Results for Total CPI Series for Sample Period 1996M1-
2007M12

best 1-step forecast best 12-step forecast
Country airline ss ds overall airline ss ds overall
Austria level level log ds+log log log log airline+log
Cyprus level level level ds+level level level* level ds+level
Czech Rep. level* level level ds+level level* level level ds+level
Denmark level log log airline+level log level log ds+log
Finland level level level ds+level level level log airline+level
France level level log* airline+level log level* log ds+log
Germany level level log airline+level log log log airline+log
Greece level log level ss+log level log log ss+log
Hungary level level level airline+level level level level ds+level
Ireland level level* level ds+level level level* level ss+level
Lithuania level level* level airline+level level* level level* ds+level
Malta log level level ds+level log level level ss+level
Netherlands log log level ss+log log level level* ds+level
Poland level level log ss+level level* log log ds+log
Portugal log level log airline+log log level* log ds+log
Slovakia level level level ss+level level* log* level ss+log
Slovenia level level log ss+level level level level airline+level
Sweden level level log ds+log level level log ds+log
UK log level log airline+log log* level* log ss+level
USA log log log airline+log log log log* airline+log
Belgium level log log ds+log level log log ss+log
Italy log log level airline+log level log log ss+log
Luxembourg log log level ds+level log log log ds+log
Spain log log log ss+log level log level ds+level

Note: ss - stochastic seasonality subset AR model, ds - deterministic season-
ality subset AR model. The underlying RMSEs are based on 24 forecasts.
An asterisk (*) indicates a significant improvement according to a 5% level
modified Diebold-Mariano test as proposed by Harvey et al. (1997).
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Table 3: Best Performing Models In-Sample for Total CPI
Country Period:1996M1-2004M12 Period:1996M1-2007M12

AIC SC Airline Tramo X12 AIC SC Airline Tramo X12
Austria ds+level airline+level level level log ds+log airline+log log log log
Cyprus ds+log ds+level level level level ds+level ds+level log level level
Czech Rep. ds+log ds+log log level level ds+log ds+log level level level
Denmark ds+log ds+log log log log ds+log ds+log log log log
Finland ds+log ds+log log log log ds+log ds+log log log log
France ds+level ds+level level level log ds+log airline+log level log log
Germany ds+log ds+log level level log ds+log ds+log level level log
Greece ds+log airline+log log log log ds+level airline+log log log level
Hungary ds+level ds+log level level level ds+log ds+log level level level
Ireland ds+log ds+log log log log ds+log ds+level level log log
Lithuania ds+level ds+level log level level ds+level ds+log level level level
Malta ds+log ds+log log log log ds+log ds+log log log log
Netherlands ds+level ds+level level level level ds+level ss+level level level level
Poland ds+level ds+level level level level ds+level ds+level level level level
Portugal ds+log ds+log log log log ds+log ds+log log log log
Slovakia ds+level ds+level level log log ds+level ds+level level level level
Slovenia ds+log ds+level level log level ds+log ds+log log log log
Sweden ds+log ds+log level log log ds+log ds+log level log log
UK ds+level ds+level level level level ds+log airline+level level level log
USA ds+log ds+log log log log ds+log ds+log log log log
Belgium ds+level ds+level level level log ds+log ds+level log level level
Italy ds+log ds+log level log log ds+log ds+log level log log
Luxembourg ds+level ds+level log level level ds+level ds+level level log log
Spain ds+log ds+log log log log ds+log ds+log log log log

Note: ss - stochastic seasonality subset AR model, ds - deterministic seasonality subset AR model.
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Table 4: Forecasting Models for Total CPI Series for Sample Period 1996M1-
2005M12

best 1-step forecast best 12-step forecast
Country airline ss ds overall airline ss ds overall
Austria log level level airline+log log level log airline+log
Cyprus log level level airline+log log level level* ds+level
Czech Rep. log level log ss+level level* level log ds+log
Denmark log level log ds+log level log level ds+level
Finland log log level airline+log level log level ds+level
France level log log ds+log level level level airline+level
Germany log level log airline+log level log* log* ss+log
Greece level log level airline+level level* log log ds+log
Hungary level level level airline+level level level level airline+level
Ireland level level log airline+level level* level* level* ds+level
Lithuania log log level ds+level log log level ds+level
Malta log level log airline+log level* level level ss+level
Netherlands log level level airline+log log level level ds+level
Poland log level level ds+level level* level* level ss+level
Portugal log level log ss+level level level level ds+level
Slovakia log level level ds+level level level level ds+level
Slovenia log level level airline+log log* level level* ss+level
Sweden log log level airline+log level level level* ds+level
UK level level level* ds+level level* log log ss+log
USA log log log ss+log level log log airline+level
Belgium log log log ds+log log log log ss+log
Italy log log log ss+log level level level ds+level
Luxembourg log level log airline+log level level level airline+level
Spain log log log ds+log level level log airline+level

Note: ss - stochastic seasonality subset AR model, ds - deterministic season-
ality subset AR model. The underlying RMSEs are based on 24 forecasts.
An asterisk (*) indicates a significant improvement according to a 5% level
modified Diebold-Mariano test as proposed by Harvey et al. (1997).
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Table 5: Forecasting Models for Total CPI Series for Sample Period 1999M1-
2007M12

best 1-step forecast best 12-step forecast
Country airline ss ds overall airline ss ds overall
Austria level log log ds+log log log* level ss+log
Cyprus level level level ds+level level level level* ds+level
Czech Rep. level level log ds+log level* level level airline+level
Denmark level level level airline+level level level level ds+level
Finland log level level ss+level level* log log* ds+log
France level level log airline+level level level level ds+level
Germany level level log airline+level level log log ds+log
Greece log level level ds+level log level level ss+level
Hungary level log level airline+level level level log ss+level
Ireland log level* level ds+level log level level ds+level
Lithuania log level log ss+level log log* log* airline+log
Malta log level log airline+log log level level ss+level
Netherlands log log level ss+log level level level* airline+level
Poland level log level* ds+level level log log ds+log
Portugal level log level ds+level level level level ds+level
Slovakia level* log level airline+level level log level ds+level
Slovenia level log log airline+level level level log ss+level
Sweden level log level airline+level level log level airline+level
UK log level level airline+log log level level airline+log
USA log level level airline+log log level log* airline+log
Belgium log log level airline+log level log log ss+log
Italy level level level airline+level level level* level* ss+level
Luxembourg level log log airline+level log level log ds+log
Spain log log log ds+log level log* log ss+log

Note: ss - stochastic seasonality subset AR model, ds - deterministic season-
ality subset AR model. The underlying RMSEs are based on 24 forecasts.
An asterisk (*) indicates a significant improvement according to a 5% level
modified Diebold-Mariano test as proposed by Harvey et al. (1997).
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Table 6: Forecasting Models for Total CPI Series for Sample Period 1996M1-
2007M12, Lag Order Selection Based on AIC

best 1-step forecast best 12-step forecast
Country airline ss ds overall airline ss ds overall
Austria level log log airline+level log log log airline+log
Cyprus level level log ds+log level level* level* ds+level
Czech Rep. level* level level ds+level level* log level ds+level
Denmark level level log ds+log log level level ds+level
Finland level log level ss+log level level level ds+level
France level level log airline+level log level* log ds+log
Germany level level* log airline+level log log log airline+log
Greece level log level ss+log level level level ds+level
Hungary level log level ds+level level level* level ds+level
Ireland level log level ds+level level level level ds+level
Lithuania level level* level ds+level level* log log ds+log
Malta log level level ss+level log level level ss+level
Netherlands log level level ds+level log level* level* airline+log
Poland level log level* ss+log level* level level* ss+level
Portugal log log level airline+log log log log ds+log
Slovakia level log level ds+level level* level* level* ss+level
Slovenia level log level ss+log level level log ds+log
Sweden level log level ds+level level log* log ds+log
UK log log log airline+log log* log log* airline+log
USA log log log airline+log log log* log ds+log
Belgium level log log airline+level level log log ds+log
Italy log level log airline+log level level log ds+log
Luxembourg log log log airline+log log log log ds+log
Spain log log log* ds+log level log* log* ds+log

Note: ss - stochastic seasonality full AR model, ds - deterministic seasonality
full AR model. The underlying RMSEs are based on 24 forecasts. An
asterisk (*) indicates a significant improvement according to a 5% level
modified Diebold-Mariano test as proposed by Harvey et al. (1997).
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Table 7: Forecasting Models for Total CPI Series for Sample Period 1996M1-
2007M12, Lag Order Selection Based on SC

best 1-step forecast best 12-step forecast
Country airline ss ds overall airline ss ds overall
Austria level level log ds+log log log log airline+log
Cyprus level level log ds+log level level* level ds+level
Czech Rep. level* log level* ds+level level* level level ds+level
Denmark level level log ds+log log level level ds+level
Finland level level level ss+level level log log ds+log
France level level log ds+log log log log ds+log
Germany level level log airline+level log log log airline+log
Greece level log level ss+log level level level* ds+level
Hungary level level level ds+level level level level ds+level
Ireland level level log ds+log level log level ds+level
Lithuania level level* log ds+log level* log log ds+log
Malta log level log airline+log log level level ds+level
Netherlands log level level ds+level log level level* ss+level
Poland level level level* ds+level level* level level* ss+level
Portugal log log level ss+log log log log ds+log
Slovakia level level level ds+level level* level level* ss+level
Slovenia level level level ds+level level level level* ss+level
Sweden level log level ss+log level log log ds+log
UK log level log airline+log log* log* log* airline+log
USA log log log airline+log log log* log ds+log
Belgium level log log ss+log level log log ss+log
Italy log log level airline+log level log log ds+log
Luxembourg log level log ds+log log log log ds+log
Spain log log log ds+log level log log ss+log

Note: ss - stochastic seasonality full AR model, ds - deterministic seasonality
full AR model. The underlying RMSEs are based on 24 forecasts. An
asterisk (*) indicates a significant improvement according to a 5% level
modified Diebold-Mariano test as proposed by Harvey et al. (1997).
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Figure 1: Monthly total CPI series for 1996M1-2007M12.
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Figure 2: First differences of total CPI series of Belgium, Italy, Luxembourg
and Spain for 1996M1-2007M12.
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Figure 3: Twelve-step ahead forecast RMSEs relative to ∆sy
air
t+h|t/yt+h−s

RMSE for total CPI series based on 24 forecasts; total sample period 1996M1-
2007M12; airline - airline model, ss - stochastic seasonality subset AR model,
sd - deterministic seasonality subset AR model.
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Figure 4: Comparison of twelve-step ahead forecast RMSEs based on subset
and full AR deterministic seasonality models for total CPI series based on 24
forecasts; RMSEs relative to RMSE of ∆sy

air
t+h|t/yt+h−s; total sample period

1996M1-2007M12.
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