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Abstract

I propose a method to estimate cyclical DSGE models using the raw data. The approach
links the observables to the model counterparts via a flexible specification which does not require
that the cyclical component is solely located at business cycle frequencies and allows the non-
cyclical component to take various time series patterns. I show that applying standard data
transformation induces distortions in structural estimates and policy conclusions and explain
the reasons for their emergence. The proposed approach recovers the features of the cyclical
component in selected experimental designs.
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1 Introduction

There has been considerable development in the specification of DSGE models over the last 10

years. The original structure, featuring a single technological disturbance, has been enriched with

shocks and frictions and our understanding of the propagation mechanism of important shocks

enhanced. Steps forward have also been made in the estimation of these models. While a few years

ago it was standard to informally calibrate their structural parameters, now researchers routinely

use limited and full information estimation procedures and, perhaps more importantly, this trend

is common in academic and policy circles (see, e.g., [29], [12], [31],[21], [28] among others).

Despite recent developments, structural estimation of DSGE models is conceptually and prac-

tically difficult. For example, classical estimation is asymptotically justified only when the model

is the data generating process (DGP) of the actual data, up to a set of serially uncorrelated mea-

surement errors, and standard validation exercises are meaningless without such an assumption.

Identification problems (see [9]) and numerical difficulties appear to be widespread. Finally, the

vast majority of the models used in the literature is intended to explain only the cyclical portion

of observable fluctuations but macroeconomic data contains many types of fluctuations, some of

which can hardly be considered cyclical.

There are a number of reasons for why researchers prefer to work with ”cyclical” models. Jointly

accounting for cyclical and non-cyclical fluctuations is still an ambitious task and there are very

few known theoretical mechanisms able to propagate temporary disturbances for a sufficiently long

time (we need e.g. R&D as in [14] or a Schumpeterian creative destruction as in [7]). In addition,

since little is known about the features of the non-cyclical component, specification errors may be

important. Finally, from the computation and the interpretation point of views, it is convenient to

assume that the mechanisms driving cyclical and non-cyclical fluctuations are distinct.

The mismatch between what models are designed to explain and what the data contains creates

important headaches to applied investigators. In general, one of two following routes is taken:

• Estimate the model using data transformations which, in theory, are likely to be void of non-
cyclical fluctuations, e.g. consider real ”great ratios” (as suggested in [13] and [23]) or nominal ”

great ratios”, (as suggested in [33]). As Figure 1 shows, such transformations are unlikely to resolve

the mismatch issue because many of these ratios still display important non-cyclical movements.

• Fit the model to filtered data. While popular, such an approach is problematic for at least three
reasons. First, while many ways to extract fluctuations with 8-32 quarters average periodicity - the

so-called business cycle frequencies - exist in the literature, they all produce contaminated estimates

of these fluctuations. For example, a Band Pass (BP) filter, when used with finite stretches of data,

only very roughly capture the power of the spectrum at business cycle frequencies and taking growth

rates greatly emphasizes the high frequency content of the data.
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Figure 1: US real and nominal great ratios. Vertical bars in the right column isolate business
cycle frequencies.
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Second, while it is typical to filter each series separately, there are theoretical reasons to believe

that some multivariate consistency condition should be imposed. Along the same lines, it is unclear

whether only real variables or all variables should be filtered prior to estimation and there are argu-

ments in favour of both approaches. Many models imply cyclical fluctuations for e.g., inflation and

the nominal rate, even when the shocks are non-cyclical; conversely, not all the fluctuations present

in nominal variables can be safely considered as cyclical. Third, while usually not appreciated,

the cyclical component produced by the majority of the filters can be represented as a symmetric,

two-sided moving average of the raw data. Since the timing of information is altered by filtering,

dynamic analyses conducted with estimated parameters are difficult to interpret. In sum, rather

than resolving the issue, filtering increases the difficulties applied researchers face.

This paper first shows that the data transformation one employs matters for structural pa-

rameter estimation and for economic inference in general. Hence, unless one takes a strong but

unjustified view of what ”cyclical” data the model should explain, one is left wandering how to

credibly select among various structural estimates. I then argue that structural estimates obtained

with any preliminary data transformations should not be trusted for two reasons. On the one hand,

the presence of measurement error with low frequencies features in the transformed data distorts

the conclusions applied investigators reach. An approach to deal with this type of contamination,

which exploits ideas developed in [3], has been recently proposed in [6].

On the other, the cyclical component of a DSGE model has properties which are different from

the cyclical component extracted with existing filters, even in large samples. This is because the

filters commonly used implicitly assume that the cyclical component has power only at business

cycle frequencies. However, a DSGE model generates cyclical and non-cyclical components with

power at all frequencies of the spectrum. Hence, at business cycle frequencies, both components may

matter and it is not very difficult to build examples where the non-cyclical component dominates.

[1] have argued that for Less Developed Countries (LDC) this is an important concern. What I

show is that the problem is relevant for structural estimation with the data of any country and, as

long as the variance of the disturbances driving the cyclical and the non-cyclical components are

roughly of the same magnitude, significant biases may emerge.

I highlight the importance of these two problems using a simple experimental design where data

is generated from a DSGE model where the endogenous variables are driven by cyclical and non-

cyclical shocks and standard transformations are applied prior to parameter estimation. I interpret

the distortions produced using the decomposition of the likelihood function suggested in [19] and

show why even ”ideal” transformations may lead to incorrect inference.

As an alternative, I propose to estimate the structural parameters of a ”cyclical” DSGE model

by creating a flexible link between the model and the raw data that allows the cyclical and the non-

cyclical components to have power at all the frequencies of the spectrum. Since the specification I
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use encompasses, as special cases, situations where the non-cyclical component displays determin-

istic, stochastic or smooth features, the approach does not require researchers to take a stand on

the non-cyclical features of the raw data (as is done e.g. in [13] and [18]) and therefore shields the

analysis from important specification errors. Also, while for expositional reasons, drivers of the

cyclical and the non-cyclical components are assumed to be orthogonal, there are no conceptual

difficulties in considering cases where shocks driving the two components are correlated.

I demonstrate that the procedure can effectively capture the cyclical component of the data

generating process (DGP) and produces reasonable estimates of the structural parameters when

samples of the size currently available in macroeconomics are used. I also show that, when applied

to real data, the procedure gives a somewhat different view about important aspects of the model

economies relative to standard filtering approaches. In particular, inference about the size of the

Phillips curve trade-off and the short run inflation coefficient in the policy rule and the contribution

of various shocks to the variance of output and inflation is very different.

To focus attention on the issues of interest, the paper makes a number of simplifying assump-

tions. In particular, I assume that (i) the estimated model is correctly specified; that is, there are

no missing variables or omitted cyclical shocks; (ii) theoretical singularities are absent - the number

of shocks is equal to the number of endogenous variables - and (iii) model variables have an exact

counterpart in the actual data, i.e. no proxy error is present. While these issues are important in

practice and semi-structural methods of the type suggested by [8] produce more robust inference

when they are present, I find it useful to keep them separate from the issue of estimating cyclical

models with raw data because the problems I highlight occur regardless of whether (i)-(ii) and (iii)

are present or not.

The rest of the paper is organized as follows. The next Section presents a simple model and

estimates its structural parameters using a number of data transformations. Section 3 shows why

estimates obtained in Section 2 should not be trusted. Section 4 presents the methodology to

bridge cyclical DSGE models and the raw data, relates it to what is available in the literature

and evaluates its properties. Section 5 compares estimates of functions of the parameters in two

different models. Section 6 concludes. An appendix contains all the relevant additional material

mentioned in the paper.

2 Structural estimation with transformed data

To show how estimates of the parameters a ”cyclical” DSGE model depend on the preliminary

transformation employed, I consider a standard small scale New-Keynesian model where agents face

a labor-leisure choice, there is external habit in consumption, production is stochastic and requires

labor, there is an exogenous probability of price adjustments and monetary policy is conducted
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with a conventional Taylor rule. Details on the structure of this model are in the Appendix. The

log-linearized equilibrium conditions are:

λt = χt −
σc
1− h

(yt − hyt−1) (1)

yt = zt + (1− α)nt (2)

mct = wt + nt − yt (3)

wt = −λt + σnnt (4)

rt = ρrrt−1 + (1− ρr)(ρππt + ρyyt) + �rt (5)

λt = Et(λt+1 + rt − πt+1) (6)

πt = kp(mct + �μt ) + βEtπt+1 (7)

where kp =
(1−βζp)(1−ζp)

ζp
1−α

1−α+εα , all variables are expressed in deviation from the steady states,

λt is the Lagrangian on the consumer budget constraint, mct are marginal costs, ztρzzt−1 + �zt
is a technology disturbance, χt = ρχχt−1 + �χt a preference disturbance, �

r
t is an iid monetary

policy disturbance and �μt an iid markup disturbance. Equation (1) relates the Lagrangian to the

marginal utility of consumption, equation (2) is a production function, equation (3) is the definition

of marginal costs, equation (4) equates the marginal disutility of leisure to the real wage, equation

(5) is the monetary policy rule, equation (6) is the euler equation, equation (7) is a Phillips curve.

The structural parameters to be estimated are: σc the risk aversion coefficient, σn the inverse of the

Frisch elasticity, h the coefficient of consumption habit, 1− α the share of labor in production, ρr

the degree of interest rate smoothing, ρπ and ρy the parameters of the policy rule, ζp the probability

of not changing prices, and ε the elasticity among consumption varieties. The auxiliary parameters

are: ρχ, ρz the autoregressive parameters of preference and technology shocks, and σz, σχ, σr, σμ

the standard deviations of the four structural shocks. The discount factor β is kept fixed to 0.99

in the estimation exercises.

I assume that there are four observable variables: output, the real wage, the inflation rate

and the nominal interest rate (yt, wt, πt, rt), and examine a variety of filtering approaches, applied

to all or a subset of the variables. In particular, I have considered the following options: (i)

independently filter real variables and demean nominal variables (as in [27], [28] or [31]); (ii)

independently filter all the variables (as in [21]); (iii) demean all the variables and take ratios for

real variables (log yt − lognt, logwt − lognt, where nt is hours worked). This last transformation
is selected because, if the model is correct, the transformed data must be void of non-cyclical

fluctuations no matter what the time series properties of the shocks are. For (i) and (ii), I consider

four approaches, which cover the range of filters used in the empirical DSGE literature: linear

filtering (LT), Hodrick and Prescott filtering (HP), BP filtering and first difference (FOD) filtering.

Since the first three approaches belong to the class of two-sided moving averages and may therefore
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Parameter Distribution Mean Standard Deviation

σc Γ(20, 0.1) 2.00 0.447
σn Γ(20, 0.1) 2.00 0.447
h B(6, 8) 0.428 0.127
α B(3, 8) 0.277 0.128
� N(6, 0.1) 6.00 0.10
ρr B(6, 6) 0.500 0.138
ρπ N(1.5, 0.1) 1.50 0.10
ρy N(0.4, 0.1) 0.40 0.10
ζp B(6, 6) 0.500 0.138
ρχ B(18, 8) 0.692 0.088
ρz B(18, 8) 0.692 0.088
σχ Γ−1(10, 20) 0.0056 0.0020
σz Γ−1(10, 20) 0.0056 0.0020
σmp Γ−1(10, 20) 0.0055 0.0020
σμ Γ−1(10, 20) 0.0056 0.0020

σei Γ−1(10, 10) 0.0111 0.0039
σvi Γ−1(10, 100) 0.0011 0.0003
σui Γ−1(10, 100) 0.0011 0.0003

Table 1: Prior distributions

alter the timing of the information of the data, I have also experimented with either a recursive

LT filter or a one-sided version of the HP filter. None of the results below are driven by this,

nevertheless important, problem.

Estimation is conducted using Bayesian methods. Posterior estimates are obtained with a

random walk Metropolis algorithm, where the vector of jumping variables is t-distributed with 5

degrees of freedom, and the variance tuned to have an acceptance rate of roughly 30-35 percent

for each transformation considered. One million draws are made for each case-filter combination

studied and convergence was checked using CUMSUM graphs. Since convergence to the ergodic

distribution is rather slow and draws are highly serially correlated, I keep one every hundred of the

last 100,000 draws to compute posterior statistics. The data is from the FRED database and the

sample goes from 1980:1 to 2007:2. The priors for the parameters are kept fixed in the exercise,

are chosen to be rather loose to let the data talk, and are reported in table 1.

Table 2 contains the median and the standard deviation of the posterior distributions for a subset

of the combinations I have tried. Results for other combinations and available in the appendix.

Clearly, there are several parameters whose posterior distribution is affected by the preliminary data

transformation used (see e.g. the price stickiness parameter ζp, the persistence and the volatility of

the shocks, and the parameters of the monetary policy rule). Since posterior standard deviations
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LT HP FOD BP Ratio

Median (s.d.) Median (s.d.) Median (s.d.) Median (s.d.) Median (s.d.)

σc 2.19 (0.10) 2.25 (0.12) 2.54 (0.16) 2.21 (0.10) 1.69 (0.11)
σn 1.79 (0.08) 1.57 (0.10) 1.90 (0.19) 1.78 (0.08) 2.16 (0.10)
h 0.67 (0.01) 0.59 (0.03) 0.44 (0.03) 0.66 (0.02) 0.64 (0.02)
α 0.17 (0.03) 0.12 (0.02) 0.12 (0.03) 0.16 (0.02) 0.13 (0.02)
� 3.90 (0.12) 4.27 (0.14) 2.92 (0.11) 3.72 (0.05) 4.09 (0.12)
ρr 0.16 (0.04) 0.52 (0.04) 0.22 (0.06) 0.49 (0.04) 0.22 (0.04)
ρπ 1.36 (0.08) 1.67 (0.04) 1.74 (0.05) 1.77 (0.08) 1.71 (0.05)
ρy -0.15 (0.02) 0.35 (0.06) 0.13 (0.07) 0.44 (0.05) -0.02 (0.01)
ζp 0.81 (0.01) 0.60 (0.03) 0.33 (0.03) 0.56 (0.03) 0.81 (0.01)
ρχ 0.76 (0.02) 0.59 (0.04) 0.29 (0.04) 0.82 (0.03) 0.82 (0.02)
ρz 0.96 (0.01) 0.54 (0.05) 0.87 (0.05) 0.46 (0.05) 0.92 (0.01)
σχ 0.23 (0.04) 0.37 (0.05) 0.23 (0.04) 0.20 (0.03) 0.95 (0.16)
σz 0.12 (0.02) 0.08 (0.01) 0.09 (0.01) 0.09 (0.01) 0.08 (0.01)
σr 0.11 (0.01) 0.08 (0.01) 0.12 (0.02) 0.08 (0.01) 0.12 (0.01)
σμ 30.54 (1.17) 1.01 (0.40) 0.16 (0.03) 0.63 (0.21) 34.70 (1.04)

Table 2: Posterior estimates. For LT, HP, FOD and BP real variables detrended, nominal de-
meaned. For Ratio, real variables are in terms of hours and all variables demeaned. Standard
deviations in parenthesis. Estimates of σ’s and their standard deviations are in percentages. US
data, sample 1980:1-2007:2.

are tight, differences across columns are a-posteriori significant. Posterior differences are also

economically relevant. For example, the volatility of markup shocks in the LT and Ratio economies

is considerably larger than in the other economies and nominal inertia much stronger.

Differences in the location of the posterior of the parameter translate into important differ-

ences in the transmission of shocks. This is clear in Figure 2, which reports responses of the four

endogenous variables to unitary preference and technology shocks: the magnitude of the impact

coefficients and the persistence of the responses vary with the preliminary transformation. Fur-

thermore, at least in the case of technology shocks, the sign of some of the responses is affected.

Differences in the responses to monetary and markup disturbances are less dramatic because shocks

are iid. Nevertheless, on impact, differences are statistically and economically important.

Important policy recommendations may also depend on the preliminary transformation used.

In table 3 I present the median and the standard deviation of the posterior distribution of the

Phillips curve trade-off kp and the short run inflation coefficient in the policy rule (1 − ρr) ∗ ρπ.
The posterior distribution of the trade-off is centered at very low values and is very tight with

LT and Ratio estimates but centered at higher values and much more spread out with other data

transformations. Similarly, the location and the spread of the posterior distribution of the inflation
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LT HP FOD BP Ratio Flexible

Median (s.d.) Median (s.d.) Median (s.d.) Median (s.d.) Median (s.d.) Median (s.d.)

kp 0.02 (0.001) 0.17 (0.03) 0.95 (0.17) 0.21 (0.03) 0.02 (0.001) 1.20 (0.34)
(1− ρr) ∗ ρπ 1.16 (0.09) 0.80 (0.06) 1.36 (0.11) 0.89 (0.07) 1.31 (0.07) 1.58 (0.08)

Table 3: Posterior estimates. For LT, HP, FOD and BP real variables detrended, nominal de-
meaned. For Ratio, real variables are in terms of hours and all variables demeaned. Standard
deviations in parenthesis. US data, sample 1980:1-2007:2.

coefficient depends on the preliminary data transformation employed and the posteriors obtained,

e.g. with HP and FOD filtered data, display little overlap.

While it is common to sweep these differences under the rug, one should expect them to occur.

After all, the growth rate of GDP and the linearly detrended GDP have very different time series

properties. These differences would be inconsequential, if applied researchers had a good reason

to prefer one preliminary transformation over the other. As argued in [4], it is hard to design

criteria to do so. But even if a criteria could be found, none of the columns of table 1 should

be trusted ¡for two reasons. First, all the transformation considered only approximately isolate

cycles with 8-32 quarters periodicities: the LT transformation leaves both long and short cycles in

the filtered data; the HP transformation leaves high frequencies variability unchanged; the FOD

transformation emphasizes high frequency fluctuations and reduces the importance of cycles with

business cycle periodicity; Great ratios leave important low frequency fluctuations in the trans-

formed data; and even a BP transformation, once truncations due to finite samples are considered,

induces significant approximation errors (see e.g. [5], ch.3). Since the ”cyclical” data used for

estimation contains considerable measurement error, distortions are likely to appear. In addition,

since different approaches spread this error across different frequencies, estimates are likely to differ

depending on the preliminary transformation used. An estimation approach which can reduce the

extent of these measurement errors is suggested in [6].

Second, and perhaps more importantly, all transformations assume that the cyclical and the

non-cyclical components are located at different frequencies of the spectrum and that the economic

mechanism generating the two is distinct. Such an assumption is crucial, for example, when identi-

fying the frequencies corresponding to fluctuations with 8 to 32 quarters periodicity with the cycle

produced by the model. However, the cyclical component produced by a DSGE model has power

at frequencies other than those corresponding to 8 to 32 quarters and, viceversa, the non-cyclical

component is important at business cycle frequencies. Time series macroeconometricians are gener-

ally aware that statistical transformations are unlikely to recover interesting economic objects. For

example, [30], [17] and [19] have all emphasized the fallacy of estimating structural models using

seasonally adjusted data, precisely for this reason.



2 STRUCTURAL ESTIMATION WITH TRANSFORMED DATA 10

0 0.5 1 1.5 2 2.5 3 3.5
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Radiants

Ideal Situation

 

 

data
cycle 

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Radiants

Typical DSGE

 

 

data

cycle

Figure 3: Cyclical and non-cyclical components
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Figure 3 illustrates the essence of the problem. On the top panel are plotted the log spectrum

of a typical macroeconomic time series and the ideal form of the cyclical component. Here, a

statistical filter which attempts to isolate business cycle frequencies (marked by the vertical bars)

will produce some measurement errors (due to leakages and compression) but it will not greatly

distort the features of the true cyclical component. On the bottom panel, I present instead the more

common situation present in DSGE frameworks where the cyclical component has power in the low

frequencies of the spectrum and conversely, the non-cyclical component, has power at business

cycle frequencies. Here, filtering to extract the power of the spectrum at business cycle frequencies

is likely to induce significant distortions. This fundamental mismatch between statistical and

economic notions of cyclical fluctuations makes estimation results obtained with preliminary data

transformations incredible. The next section quantifies the size of these distortions on estimates of

the structural parameters.

3 The problems and their consequences

For illustration, I assume that, in the model of section 2, the preference disturbance has two uncor-

related components: one with unitary autoregressive (AR) coefficient and one with AR coefficient

equal to 0.5. This allows me to identify the theoretical non-cyclical component of the four observable

variables with the fluctuations generated by the non-stationary component of the preference shock

and the theoretical cyclical component with the fluctuations induced by the stationary shocks. Us-

ing the parameter values reported in the first column of table 4, I have simulated 1200 data points

from the model, discarded 1050 initial observations and passed the experimental data through LT,

HP, FOD and BP filters. Figures 4 and 5 show the contribution of the two theoretical components

to the log spectrum and to the autocorrelation function of filtered output.

Two features are clear. First, all filters leave considerable power outside the business cycle fre-

quencies (identified by the vertical bars in figure 4). The problem is more evident with LT and FOD

but leakages and compressions are present also with HP and BP filters. Second, both theoretical

components have power at the business cycle frequencies and, with the chosen parameterization,

the theoretical non-cyclical component is as important as the cyclical component. This is very

clear in figure 6: the autocorrelation function produced by the two theoretical components is very

similar. [1] and [2] have claimed that for LDC countries the trend is the cycle. Figures 5 and 6

show that the problem is relevant for any country. It is only required that the variability of the

shocks driving the two components is of similar magnitude.

It is important to stress that the features of figures 5 and 6 do not depend on the assumption

that the preference shock has two components: had I assumed that the technology shock has two

components similar features would emerge. In other words, what drives the non-cyclical component
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is irrelevant for the points I am interested in making here.

To appreciate the distortions that standard data transformation imply, I use LT, HP, BP, and

FOD filtered data to estimate the structural parameters of the model in the most ideal situations one

could consider. These includes a prior centered at the true parameter vector and initial conditions

in the estimation equal to the true parameter vector. Table 4 reports the true parameter values, the

posterior median and the posterior standard deviations obtained with each transformation. Clearly,

distortions are important. For example, the inverse of the Frisch elasticity σn, the lagged interest

rate coefficient in the policy rule ρr, and the persistence of the preference and the technology

shocks ρχ, ρz are considerably overestimated while the coefficient of relative risk aversion σc, and

the variance of the preference shocks σχ underestimated 1.

To understand why distortions appear, it useful to recall that the posterior distribution of the

structural parameters is proportional to the likelihood, given the data, multiplied by the prior. In

turn, the log-likelihood can be represented as the sum of three terms L(θ|yt) = [A1(θ) + A2(θ) +

A3(θ)|y], see [19], where A1(θ) =
1
π

P
ωj
log detGθ(ωj), A2(θ) =

1
π

P
ωj

trace [Gθ(ωj)−1F (ωj)],

A3(θ) = (E(y) − μ(θ))Gθ(ω0)
−1(E(y) − μ(θ)), ωj =

πj
T , j = 0, 1, . . . , T − 1. Gθ(ωj) is the model

based spectral density matrix of yt, μ(θ) the model based mean of yt, F (ωj) is the data based

spectral density of yt and E(y) the unconditional mean of yt. Note that A2(θ) and A3(θ) are

penalty functions: A2(θ) sums deviations of the model-based from the data-based spectral density

at various frequencies; A3(θ), weights deviations of model-based from data-based means, with the

spectral density matrix of the model at frequency zero.

Suppose that the actual data is filtered so that frequency zero is eliminated and low frequencies

de-emphasized. Then the log-likelihood consists ofA1(θ) and ofA2(θ)∗ =
1
π

P
ωj
trace [Gθ(ωj)]

−1F (ωj)∗,

where F (ωj)
∗ = F (ωj)Iωj and Iωj is a function describing the effect of the filter at frequency ωj .

Suppose that Iω = I[ω1,ω2], i.e. an indicator function for the business cycle frequencies, as in an

ideal BP filter. Then A2(θ)
∗ matters only at business cycle frequencies. Since at this frequen-

cies [Gθ(ωj)] < F (ωj)∗ (see figure 5), and A2(θ)∗ and A1(θ) enter additively in the log-likelihood

function, two types of biases are present in estimates of θ. First, since estimates F̂ (ωj)∗ only ap-

proximately capture the features of F (ωj)
∗, Â2(θ)

∗, the sample version of A2(θ)
∗, has smaller values

at business cycle frequencies and a nonzero value at non-business cycle ones. Second, in order to

reduce the contribution of the penalty function to the log-likelihood, parameters are adjusted so

that [Gθ(ωj)] is close to F̂ (ωj)∗ at those frequencies where F̂ (ωj)∗ is not zero. This is done by

allowing fitting errors, ( a larger A1(θ)), at frequencies where F̂ (ωj)∗ is zero - in particular, the

low frequencies. Hence, the volatility of the structural shocks will be overestimated (this makes

Gθ(ωj) close to F̂ (ωj)
∗ at the relevant frequencies), in exchange for misspecifying their persistence.

1Distortions in the estimates of α, h and ε occur because these parameters are nearly non-identifiable from the
likelihood.
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LT HP FOD BP Flexible

Parameter True Median (s.d.) Median (s.d.) Median (s.d.) Median (s.d.) Median (s.d.)

σc 3.00 1.89 (0.07) 1.89 (0.07) 1.87 (0.07) 2.03 (0.09) 3.26 (0.29)
σn 0.70 2.13 (0.08) 2.11 (0.08) 2.15 (0.08) 1.90 (0.08) 0.80 (0.13)
h 0.70 0.58 (0.02) 0.60 (0.02) 0.56 (0.02) 0.69 (0.02) 0.77 (0.04)
α 0.60 0.47 (0.02) 0.46 (0.02) 0.49 (0.02) 0.24 (0.03) 0.41 (0.04)
� 7.00 3.85 (0.13) 3.92 (0.13) 3.46 (0.11) 4.16 (0.13) 6.95 (0.09)
ρr 0.20 0.68 (0.03) 0.59 (0.03) 0.43 (0.04) 0.50 (0.03) 0.31 (0.04)
ρπ 1.20 1.14 (0.04) 1.25 (0.04) 1.25 (0.04) 1.23 (0.04) 1.25 (0.03)
ρy 0.05 -0.07 (0.00) -0.01(0.01) -0.05 (0.02) 0.23 (0.01) 0.08 (0.10)
ζp 0.80 0.81 (0.03) 0.78 (0.03) 0.76 (0.03) 0.89 (0.03) 0.72 (0.02)
ρχ 0.50 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 0.97 (0.03) 0.69 (0.05)
ρz 0.80 0.90 (0.03) 0.92 (0.03) 0.91 (0.03) 0.98 (0.03) 0.90 (0.03)
σχ 1.12 0.09 (0.01) 0.31 (0.05) 0.61 (0.15) 1.87(0.14) 1.28 (0.03)
σz 0.51 0.61 (0.07) 0.30 (0.04) 0.40 (0.05) 0.10 (0.01) 0.69 (0.01)
σr 0.10 0.06 (0.01) 0.06 (0.01) 0.06 (0.01) 0.06 (0.01) 0.24 (0.004)
σμ 20.60 18.00 (0.74) 18.04 (0.61) 15.89 (0.83) 17.55(0.57) 12.73 (0.04)
σncχ 23.21

Table 4: Posterior estimates obtained using different filters; σncχ is the standard deviation of the
non-cyclical component of the preference shock. Experimental data

Since the volatility and the persistence features of the economy are distorted, agents’ decision rules

will be altered. Higher perceived volatility, for example, implies distortions in the Frisch elasticity

of labor supply and an artificial amplification in the internal features of the model. Inappropri-

ate persistence estimates, on the other hand, imply that perceived substitution and income effects

are distorted with the latter typically underestimated. When Iω is not the indicator function, the

derivation of the size and the direction of distortions is more complicated but the same logic applies.

Clearly, different Iω will produce different distortions because income and substitution effects will

have different properties.

Since estimates of F (ωj)
∗ are imprecise, even for large T , there are only two situations when

estimation biases are small. First, the non-cyclical component has low power at business cycle

frequencies - in this case the distortions induced by the penalty function are limited. This occurs

when the volatility of the shocks driving the non-cyclical component is considerably smaller than

the volatility of the shocks driving the cyclical component. Second, the prior limits the distortions

induced by the penalty function. While priors for DSGE parameters are typically tight and this

reduces somewhat the ability to trade-off distortions in various portions of the log-likelihood, it is

unlikely that biases are wiped out since priors are not designed with such a scope in mind.

While very popular in estimation literature, one could also conceive to fit a filtered version of
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the model to the filtered data, as it is done e.g. in [22] or [32]. To understand how parameter

estimates are affected by this transformation note that, in this case, the log-likelihood is composed

of A1(θ)∗ =
1
π

P
ωj
log |Gθ(ωj)Iωj | and A2(θ) - since the actual and simulated data are filtered in the

same way, the filter does not affect the penalty function. Suppose that Iω = I[ω1,ω2]. Then A1(θ)
∗

matters only at business cycle frequencies while the penalty function is present at all frequencies.

Therefore, parameter estimates are adjusted so as to reduce the misspecification at all frequencies of

the spectrum. Since the penalty function is more important at the low frequencies, parameters are

adjusted to make [Gθ(ωj)] close to F̂ (ωj) at those frequencies. Thus, the log-likelihood is willing to

incur large fitting errors at frequencies where F̂ (ωj) does not differ much fromGθ(ωj) - in particular,

the medium and high frequencies. Consequently, the volatility of the shocks will be generally

underestimated in exchange for overestimating their persistence and, somewhat paradoxically, this

procedure implies that the low frequency components of the data are those that matter most for

estimation. Cross frequency distortions imply that agents think they are living in an economy which

differs substantially from the true one. For example, since less noise is perceived, agents decision

rules will imply a higher degree of predictability of simulated time series, and higher perceived

persistence implies that perceived substitution and income effects are distorted with the latter

overestimated.

4 The alternative methodology

One solution to the problems I have highlighted is to build a non-cyclical component directly into

the DSGE model. I have mentioned in the introduction a few reasons for why researchers may be

reluctant to do so. There may also be practical statistical and specification concerns which may

not make the approach viable (What time series features should the non-cyclical component have?

Should it be deterministic or stochastic? Should it be correlated with the cyclical component

or not? What economic mechanism drives its fluctuations? What happens to estimates if the

structure of the non-cyclical component is misspecified? What if there are breaks?). Some progress

in addressing these latter issues have been reported in [18] and [15].

Rather than augmenting the model with an arbitrary non-cyclical component and conditioning

estimation on the chosen specification, making the analysis vulnerable to specification errors, I will

use a flexible setup, in the spirit of [20], where the cyclical DSGE structure is unchanged but a

link is build from the model to the raw data which permits cyclical and non-cyclical components

to jointly appear at all frequencies of the spectrum. Let the (log)-linearized solution of a DSGE

model be of the form:

x2t = RR(θ)x1t−1 + SS(θ)�t (8)

x1t = PP (θ)x1t−1 +QQ(θ)�t (9)
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where PP (θ),QQ(θ), RR(θ), SS(θ) are functions of the structural parameters θ = (θ1, . . . , θk),

x1t ≡ (log x̃1t− log x̄1) includes the states and the predetermined variables, x2t = (log x̃2t − log x̄2)
all other endogenous variables, �t the shocks and x̄2, x̄1 are the steady states of x̃2t and x̃1t.

Let xmt (θ) = W [x1t, x2t]
0, be an N × 1 vector where W is a selection matrix picking out of

x1t and x2t those variables which are observable and/or interesting from the point of view of the

researcher. Let xdt = log x̃
d
t −E(log x̃dt ) be the log demeaned vector of observables. I assume that

xdt = c+ xnct + xmt (θ) + ut (10)

where c = log x̄m(θ)−E(log x̃dt ), xnct is the non-cyclical component, ut is a iid (0,Σu) (measurement)

noise and xnct , xmt and ut are mutually orthogonal. Furthermore, I assume that

xnct = xnct−1 + x̄t−1 + et et ∼ iid (0,Σe)

x̄t = x̄t−1 + vt vt ∼ iid (0,Σv) (11)

The specification in (11) is flexible and can account for several time series patterns in xnct . For

example, if both Σe and Σv are diagonal, Σvi > 0 and Σei = 0, ∀i, xnct is a vector of I(2) processes

while if Σvi = 0, and Σei > 0, ∀i, xnct is a vector of I(1) processes. Furthermore, if Σvi = Σei = 0, ∀i,
xnct is deterministic, while if both Σvi > 0 and Σei > 0 and

Σvi
Σei

is large, xncit is ”smooth” and

nonlinear, i = 1, 2, . . . ,N . Hence, (11) nests, as special cases, the structures which are typically

thought to motivate the use of the filters considered in the previous sections.

Given (8)-(9)-(10) and (11), I let the data endogenously select the specification for the non-

cyclical component which is more appropriate for each series and this is done jointly with the

estimation of the structural parameters θ. In (11) I have assumed that Σ2v and Σ
2
e are general

matrices. However, one can impose further structure by assuming that they are either diagonal

(so that the non-cyclical component is series specific) or that they are of reduced rank (so that

the non-cyclical component is common across series) and test various specifications using, e.g.,

marginal likelihood comparisons (see [16]).

There are at least two advantages the suggested specification has. On the one hand, it is not

necessary to take a stand on the time series properties of the non-cyclical component and on the

choice of filter to tone down its importance. This shields researchers from important specification

errors. Second, as I will show below, the cyclical component extracted with this approach is not

located at particular frequencies of the spectrum. In fact, by construction, all the components in

(10) may have power at each frequency.

In (10) I have assumed, cyclical and non-cyclical fluctuations are driven by independent shocks.

While such a setup may appear to be restrictive, it is easy to show that the specification is obser-

vationally equivalent to one where the non-cyclical and the cyclical components are correlated. For
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example, the specification

xdt = xnc∗t + xm∗t (θ) + ut (12)

xnc∗t = xnct + x̄t + ym(θ) (13)

xnct = xnct−1 + et (14)

x̄t = x̄t−1 + vt (15)

xm∗t (θ) = xm†t (θ) +A(θ)C(θ)x̄t (16)

xm†t (θ) ≡ x̃mt (θ)− xm(θ)−A(θ)C(θ)x̄t = C(θ)xm†t (θ) ≡ C(θ)(x̃mt (θ)− xm(θ)−A(θ)x̄t)(17)

xm†t (θ) = A(θ)xm†t−1(θ) +B(θ)�t (18)

which makes ync∗t and ym∗t (θ) correlated, is indistinguishable from the point of view of the observed

data from the specification I suggest.

4.1 Estimation

Estimation of the hierarchical structure (9)-(8), (11) and (10) can be carried out with both classical

and Bayesian methods. In fact, equations (9)-(8), (11) and (10) can be cast into the state space

system of the form

st+1 = Fst +Gωt+1 (19)

yt = Hst (20)

where F =

⎛⎜⎜⎜⎝
1 1 0 0 0
0 1 0 0 0
0 0 0 PP QQ
0 0 0 0 NN

⎞⎟⎟⎟⎠ , G =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ , H =
³
1 0 1 RR SS

´
,

st+1 =
³
xnct x̄t ut xmt−1(θ)

´
, ωt+1 = (et, vt, ut, �t+1) and Σω is block diagonal. Hence, the

likelihood of the system can be computed with a modified version of the Kalman filter, which

takes into account the possibility of diffuse initial observations, for a given ϑ and maximized using

standard tools.

When a Bayesian approach is preferred, one can obtain the non-normalized posterior distribu-

tion of ϑ, using standard MCMC tools. For example, estimates presented below are obtained with

a Random Walk Metropolis algorithm where, given initial ϑ−1, a Ω, and a prior g(ϑ), candidate

draws are obtained from ϑ∗ = ϑ−1 + υ and υ is distributed t(0, κ ∗ Ω, 5) where κ is a tuning pa-
rameter and the draw accepted if the ratio χ∗ =

ğ(ϑ∗|y)
ğ(ϑ−1|y) , where ğ(ϑi|y) = g(ϑi)L(y|ϑi), i = ∗,−1,

and L(y|ϑi) is the likelihood of ϑi, exceeds a uniform random variable. Iterated a large number of

times, for κ appropriately chosen, the algorithm ensures that the limiting distribution of ϑ is the

target distribution (see e.g. [5], Ch. 9).
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4.2 A comparison with existing literature

To the best of my knowledge, the literature has not yet addressed the problems I discuss in this

paper. In a seminal work, [13] considers estimating structural parameters when the data is trending

and the model has little or nothing to say about the properties of the trends. He builds a useful

taxonomy of cases, shows the distortions that incorrect assumptions have on the estimates of the

parameters and investigates whether certain estimation methods may downsize the importance of

specification errors. I share with Cogley the point of view that economic theory has not much to

say about non-cyclical fluctuations. However, rather than distinguishing between trend stationary

or difference stationary fluctuations, and attempting to robustify inference, I am concerned with

the generic mismatch between statistical and model-based concept of cyclical fluctuations and

in designing a procedure which resolves the problem without taking a stand on the time series

properties of the non-cyclical component.

[18] extend Cogley’s study suggesting how to robustify structural estimation, when the trend

specification, arbitrarily built into the model, is potentially misspecified. The suggested approach

shares with Gorodnichenko and Ng the idea of jointly estimating structural and auxiliary parameters

without specifying the DGP of the data. The two papers differ however in several respects. First,

they use minimum distance estimators of the parameters while I use likelihood based estimators.

Minimum distance estimators of DSGE parameters are subject to severe identification problems

which limits the credibility of the inferential conclusions one draws (see [9]). Second, rather than

assuming an arbitrary trend for one of the shocks, I assume that the DSGE model is build to explain

only the cyclical component of the data - a much more common assumption in macroeconomics -

and link model and observables through a flexible specification. Third, while minimum distance

estimators enjoy standard properties only if the data is stationary, my approach works regardless

of the time series properties of the raw data.

[1] and [2] have recently pointed out that in emerging markets, variations in trend growth are as

important as cyclical fluctuations in explaining the dynamics of macroeconomic variables. While

the first paper is primarily interested in characterizing differences between emerging and developing

economies and in finding a common mechanism to explain the evidence, the latter is concerned with

the misuse of cyclical DSGE models in policy analyses for LDC countries. This paper shows that

the problems they highlight are generic and that it is possible to estimate cyclical models without

imposing controversial assumptions about the nature of the non-cyclical component.

Finally, [15] investigate the distortions introduced by infrequent switches in trend growth on

the estimated parameters of a DSGE model and propose an estimation approach which can deal

with these breaks within a standard state space formulation.
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Parameter Small variance Large variance

True Median Standard deviation True Median Standard deviation

σc 3.00 3.26 (0.40) 3.00 3.26 ( 0.29)
σn 0.70 0.54 (0.14) 0.70 0.80 ( 0.13)
h 0.70 0.55 (0.04) 0.70 0.77 ( 0.04)
α 0.60 0.19 (0.03) 0.60 0.41 ( 0.04)
� 7.00 6.19 (0.07) 7.00 6.95 ( 0.09)
ρr 0.20 0.16 (0.04) 0.24 0.31 ( 0.04)
ρπ 1.30 1.30 (0.04) 1.30 1.25 ( 0.03)
ρy 0.05 0.07 (0.03) 0.05 0.08 ( 0.10)
ζp 0.80 0.78 (0.04) 0.80 0.72 ( 0.02)
ρχ 0.50 0.53 (0.02) 0.50 0.69 ( 0.05)
ρz 0.80 0.71 (0.03) 0.80 0.90 ( 0.03)
σχ 1.12 1.29 (0.01) 1.12 1.28 ( 0.03)
σz 0.51 0.72 (0.02) 0.51 0.69 ( 0.01)
σr 0.10 0.21 (0.004) 0.10 0.24 (0.004)
σμ 20.60 15.86 (0.06) 20.60 12.73 (0.04)

σncχ 3.21 23.21

Table 5: Posterior estimates using flexible specification. σncχ is the standard error of the shock to
the non-cyclical component of the preference shock. Experimental data.

4.3 The procedure in a controlled experiment

To show the properties of the approach, I simulated data from the model of section 2 assuming

again that the preference shock has two components, a nonstationary one and a stationary one. I

then estimate the parameters of the DSGE model and those of the flexible non-cyclical part using

the suggested specification and a Bayesian approach. The priors for the non-structural parameters

are in the lower part of table 1. I use distributions with relatively large standard deviations to allow

the likelihood to explore a wide portion of the parameter space without being downweighted by the

prior. The median and the standard deviation of the posterior of each parameter are in the last

column of table 4 labelled ”Flexible”. While it is clear that the vector of posterior medians is not

exactly on top of the vector of true parameters, many of the distortions that standard procedures

produced are reduced or have disappeared - see e.g. estimates of the relative risk aversion coefficient,

of the inverse of the Frisch elasticity and of the elasticity of substitution among varieties. Finally,

the relative magnitude of the variance of various shocks and their persistence is better estimated.

Hence, the estimated and the true economy display decision rules that are roughly similar.

Table 5 shows the location and the spread of the posterior of structural parameters is roughly

invariant to the magnitude of the variance of the shock driving the non-cyclical component, while
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Figure 6: Cyclical output log spectra, true and estimated. Vertical bars indicate the frequencies
where cycles with 8-32 quarters periodicities are located
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Figure 7: Autocorrelation function of filtered cyclical output, true and estimated.

estimates obtained with standard filtering change considerably with the magnitude of the variance

of this shock. Hence, the flexible link I have specified adapts to capture different features of the

non-cyclical component of the data.

With the true parameter vector and the estimated median vector obtained with the baseline

variance of the non-cyclical shock, I then compute impulse responses to various shocks, which are

presented in figure 8, and the model-based cyclical component. I then filter the latter with the same

4 filters used in figures 4 and 5, and plot the log spectrum and the autocorrelation function of cyclical

output in figures 6 and 7. Both figures 6 and 7 show that the procedure is successful in recovering

the time series features of the true cyclical component and figure 8 indicates that the conditional

dynamics in response to each of the shocks are also reasonably matched. As anticipated, figure 6

highlights that both the true and the estimated cyclical components have power at all frequencies

of the spectrum.

In sum, the approach I suggest can produce better estimates of the cyclical components. Hence,

structural estimates and inference are likely to be less prone to ”mismatch” distortions.
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Figure 8: Model based impulse responses, true and estimated.
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5 Economic Inference

In this section I show that the proposed approach also produces significantly different interpretations

of the economic phenomena. For this reasons, I examine interesting functions of the parameters in

the toy model I have been working with so far and in a more standard medium scale DSGE model,

which has been widely used in the recent literature.

5.1 The slope of the Phillips curve and policy activism

I have argued that the posterior differences reported in table 2 matter for inference. Table 3 showed

that standard approaches give contradictory information both about the location and the spread

of the posterior distribution of the Phillips curve trade-off and the short run inflation coefficient in

the policy rule in actual data. Since the approach of this paper captures much better the features

of the true cyclical component when applied to experimental data, one may be curious as to how

the posterior distributions of these functions of the structural parameters look like in our case.

The last column of table 3 shows that the posterior distribution of the Phillips curve trade-

off is estimated to be very spread out and there is considerable posterior uncertainty about the

location of this distribution. Hence, while it is hard to say by how much a change in the marginal

costs will influence inflation, we can safely exclude that the slope coefficients is smaller than 0.5.

Comparing across columns, one can see that standard filtering approaches grossly underestimate

both the location and the spread of the distribution of this slope coefficient.

The posterior distribution of the short run inflation coefficient in the monetary policy rule is

relatively tight, it is centered around 1.6 and displays mild skewness. Contrary to what was obtained

with standard transformation, I can exclude with high probability that there is any mass in the

region below 1.0. Interestingly, the shape of the posterior resembles the one produced by a FOD

filter, but the spread is smaller and the probability that the coefficient is less than 1.2 considerably

reduced. Thus, the flexible link I have used seems to prefer for this data set a specification for the

non-cyclical component where the variance of vt is small and the variance of et is large.

In a number of closely related papers [24], [25] and [26] Orphanides has stressed the importance

of using real time data to assess the stance of monetary policy and argued that distortions may

emerge when revised data are used. For example, it may appear that policy looks weak, as far

as inflation responses are concerned, or too active, as far as output gap responses are concerned

when revised data is used but not with real time data. This could occur because output data is

imprecisely measured and revisions are considerable; measures of potential output suffer standard

end-of-the-period problems; local trends are difficult to detect and only with hindsight patterns

present in the data may be clarified.

Given that the approach may capture the features of the various components of the data better
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than standard methods, I want to see what the approach tells us about the features of the monetary

policy rule during the Great Inflation of the 1970s and the return to norm of the 1980s and 1990s

relative to the characterization offered by standard transformations.

In figure 9 I plot the posterior distribution of the policy activism parameter
ρy

ρπ−1 obtained

when the data is linearly detrended or HP filtered prior to estimation and when the alternative

approach is employed for the samples running from 1964:1 to 1979:4 and 1984:1 to 2005:4. A few

features of the plots deserve some comment. While there is a shift to the left of the posterior

of the policy activism parameter in the second sample when HP filtered data is used, the two

distributions overlap considerably and the posterior median is the statistically unchanged (equal

to -0.23 in the first sample and -0.33 in the second). This left shift of the posterior distribution is

absent when the data is linearly detrended prior to estimation and, if anything, the median of the

posterior in the second sample increases from -0.38 to 0.12, even though the change is statistically

insignificant. Note that with both LT and HP filtered data, the posterior distributions in both

samples are relatively tight. This is clearly not the case when the alternative approach is used. In

this case, the uncertainty surrounding the median estimate is substantial and although the median

of the posterior marginally decreases (from 0.22 to 0.l6) when we move from the first to the second

sample, the change is statistically insignificant.

In sum, because standard transformations fails to account for the uncertainty present in the

specification of the non-cyclical component, they generally give a much sharper characterization of

the properties of the data than otherwise would be. Overall, the evidence for a structural break in

the conduct of monetary policy seems to be weak.

5.2 Sources of output and inflation fluctuations

In standard medium scale cyclical DSGE models, like the one employed by [31] and [32], important

macroeconomic variables are primarily driven by markup shocks. Since these shocks are an unlikely

source of cyclical fluctuations, [10] have argued that misspecification is likely to be present (see [22]

for an alternative interpretation). Researchers working with models of this type use filtering devices

to fit the model to the data (as in [31]) or arbitrarily build a non-cyclical component in the model

(as in [32]), a stochastic one in [22]) and use model-consistent data transformations to estimate

the structural parameters. What would the approach of this paper tell us about the sources of

cyclical fluctuations in output and inflation relative to standard transformations? To answer this

question, I take the same model and the same data set used in [32] but I modify the setup in four

ways. First, I do not allow MA terms in price and wage markup disturbances: all shocks have the

standard AR(1) structure. Second, the model is solved in deviations from the steady states, rather

than from the flexible price equilibrium, which is the most common setup. Third, no rescaling of

the shocks is performed. Fourth, the Taylor rule does not include a term concerning output growth,
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Figure 9: Posterior distributions of policy activism parameter, different samples.

again a more standard approach.

Table 6 suggests some interesting patterns. When either a linear trend is removed from the

variables the forecast error variance of output at the five years horizon is indeed primarily driven by

price markup shocks, with a considerably smaller contribution of investment specific and preference

shocks. For inflation, price markup shocks account for almost 90 percent of the forecast error

variability at the five years horizon. When the model is instead fitted to the growth rates of the

variables, price markup shocks account for over 98 percent of the variability of both output and

inflation at the five years horizon. When the flexible bridge I suggest in this paper is used and the

non-cyclical component of real variables is restricted to have the same structure (there are only

two variances controlling the non-cyclical component of output, consumption, investment and a

measurement error for each equation) the picture is considerably different. Output fluctuation at the

five year horizon are driven almost entirely by preference disturbances. On the other hand, inflation

fluctuations are jointly accounted for by wage markup, TFP and price markup disturbances. Hence,

while it is still true that such a model is less structural than one would like to assume since ” black

box” disturbances dominate, the role of markup shocks is considerably reduced, at least as far as

output is concerned, when one uses the flexible link proposed in this paper.
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LT FOD Alternative

Output Inflation Output Inflation Output Inflation

TFP shocks 0.01 0.04 0.00 0.01 0.01 0.19
Gov. expenditure shocks 0.00 0.00 0.00 0.00 0.00 0.02
Investment shocks 0.08 0.00 0.00 0.00 0.00 0.05

Monetary policy shocks 0.01 0.00 0.00 0.00 0.00 0.01
Price markup shocks 0.75(*) 0.88(*) 0.91(*) 0.90(*) 0.00 0.21
Wage markup shocks 0.00 0.01 0.08 0.08 0.03 0.49(*)
Preference shocks 0.11 0.04 0.00 0.00 0.94(*) 0.00

Table 6: Variance decomposition at the 5 years horizon. Estimates are obtained with the median
value of the posterior of the parameters. A (*) indicates that the 68 percent highest credible set is
entirely above 0.10. The model and the data set used are the same (as in [32]).

6 Conclusions

I have argued that estimating cyclical DSGE models on either transformed or filtered data is

theoretically incorrect and may lead to serious distortions in the estimates of the structural para-

meters. There are two reasons for this. First, the transformed/ filtered data imperfectly measures

fluctuations appearing at frequencies corresponding to cycles of 8-32 quarters. Second, the cycli-

cal component that a model produces is not entirely located at these frequencies and, viceversa,

the non-cyclical component may have important power at these frequencies. The consequences

of these two specification errors could be important both statistically and economically because

income and substitution effects are distorted, the volatilities and persistence of the shocks over or

underestimated and the decision rules of the agents altered.

I propose an alternative methodology which allows researchers to estimate cyclical DSGEmodels

using raw data. There are several advantages of the approach. First, there is no need to build

non-cyclical components directly into a DSGE model nor to worry about their exact time series

features. Second, the procedure eliminates by construction the first source of measurement error

and considerably reduces the second because the spectrum of the data is endogenously split into

cyclical and non-cyclical parts. Finally, the specification allows us to reinterpret estimated cyclical

and non-cyclical components if economic inference requires them to be correlated.

I have shown both the distortions induced by standard filtering approaches and the properties

of the alternative methodology using data generated from a simple New Keynesian model and

compared the posterior distribution of interesting economic quantities in the actual data. Clearly,

the problems I highlight are general and could be very important in a variety of situation. Work in

progress indicates, for example, that the role of money in the transmission of cyclical fluctuations,

a topic recently addressed with DSGE models by [21], could be severely distorted by the use of
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preliminary filtering approaches. In fact, the cyclical component generated by, say, a New Keynesian

model with or without a role for money is considerably different and, at cyclical frequencies, non-

cyclical shocks could potentially matter. I therefore plan to study in the near future a number of

interesting economic questions with the methodology I have outlined in this paper.
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Appendix (not intended for publication)

A. The basic DSGE model

The bundle of goods consumed by the representative household is

Ct =

µZ 1

0
Ct(j)

�t−1
�t dj

¶ �t
�t−1

(21)

where Ct(j) is the consumption of the good produced by firm j and �t the elasticity of substitution

between varieties. Maximization of the consumption bundle, given total expenditure, leads to

Ct(j) =

µ
Pt(j)

Pt

¶−�t
Ct (22)

where Pt(j) is the price of the good produced by firm j. Consequently, the price deflator is

Pt =
³R 1
0 Pt(j)1−�tdj

´ 1
1−�t and PtCt = [

R 1
0 Pt(j)Ct(j)dj].

The representative household chooses sequences for consumption and leisure to maximize

E0

∞X
t=0

βt
∙
Xt

1

1− σc
(Ct − hCt−1)

1−σc − 1

1 + σn
N1+σn
t

¸
(23)

where Xt is an exogenous utility shifter following an AR(1) in logs:

χt = ρχχt−1 + �χt (24)

where χt = lnXt and �χt ∼ N(0, σ2χ). The household budget constraint is

PtCt + btBt = Bt−1 +WtNt (25)

where Bt are one-period bonds with price bt, Wt is nominal wage and Nt is hours worked.

There is a continuum of firms, indexed by j ∈ [0, 1], each of which produces a differentiated
good. The common technology is:

Yt(j) = ZtNt(j)
1−α (26)

where Zt is an exogenous productivity disturbance following an AR(1) in log,

zt = ρzzt−1 + �zt (27)

where zt = lnZt and �zt ∼ N(0, σ2z ). Each firm resets its price with probability 1 − ζp in any t,

independently of time elapsed since the last adjustment. Therefore, aggregate price dynamics are

Π1−�tt = ζp + (1− ζp)(P
∗
t /Pt−1)

1−�t (28)
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A reoptimizing firm chooses the P ∗t that maximizes the current value of discounted profits

max
P ∗t

∞X
k=0

ζkpEtQt,t+k

h
P ∗t Yt+k|t − TCt+k(Yt+k|t)

i
(29)

subject to the sequence of demand constraints

Yt+k|t =

µ
P ∗t
Pt+k

¶−�t+k
Yt+k (30)

k = 0, 1, 2, ... where Qt,t+k ≡ βk(Ct+k/Ct)(Pt/Pt+k), TC(.) is the total cost function, and Yt+k|t
denotes output in period t+ k for a firm that reset its price at t.

Finally, the monetary authority sets the nominal interest rate according to

rt = ρrrt−1 + (1− ρr)(ρππt + ρygdpt) + �ms
t (31)

where �ms
t ∼ N(0, σ2ms).

The first order conditions of the optimization problems are:

0 = Xt(Ct − hCt−1)
−σc − λt (32)

0 = −N−σn
t − λt

Wt

Pt
(33)

1 = Et

∙
β
λt+1
λt

Pt+1
Pt

Rt

¸
(34)

0 =
∞X
k=0

ζkpEtQt,t+kYt+k|t
h
P ∗t −Mt+kMCn

t+k|t)
i

(35)

where λt is the Lagrangian multiplier associated with the consumer budget constraint, Rt ≡ 1+it =
1/bt is the gross nominal rate of return on bonds, MCn(.) are nominal marginal cost and

Mt = μe�
μ
t (36)

where �μt ∼ N(0, σ2μ) and μ is the steady state markup.

Market clearing requires

Yt(j) = Ct(j) (37)

Nt =

Z 1

0
Nt(j)dj (38)

and letting the aggregate output be GDPt ≡
µR 1

0 Yt(j)
�t−1
�t dj

¶ �t
�t−1

we have Ct = GDPt.
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B. The medium scale DSGE model

We only briefly sketch the log-linearized conditions used since the non-linear equations and their

transformations are fully described in the appendices of [32] and [22].

(a): The variables of the model

Label Definition

yt : output

ct : consumption

it : investment

qt : Tobin’s q

kst : capital services

kt : capital

zt : capacity utilization

rt : real rate

μpt : price markup

πt : inflation rate

μwt : wage markup

Nt : total hours

wt : real wage rate

Rt : nominal rate

(b): The parameters of the model

Label Definition

σc elasticity of intertemporal substitution

σl elasticity of labor supply with respect to real wages

h habit persistence parameter

δ depreciation rate

φp − 1 share of fixed costs in production
χ steady state elasticity of capital adjustment cost function

ψ positive function of the elasticity of capital utilization adjustment costs function.

α share of capital services in production

γp price indexation parameter

ζp price stickiness parameter

�p curvature of good market aggregator

γw wage indexation parameter

ζw wage stickiness parameter

�w curvature of labor market aggregator
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Label Definition

λr interest smoothing parameter

λπ inflation parameter

λy output parameter

gy government expenditure to output ratio

ky steady state capital output ratio

r∗ = β−1 steady state rental rate
w∗ steady state real wage rate

N∗/C∗ steady state hours to consumption ratio

(c): The equations of the model (in deviation from steady states)

yt = (1− gy − δ ky)ct + δ ky it + r∗ ky zt + gt (E.1)

ct =
h
1+hEtct+1 +

h
1+hct−1 −

(σc−1)w∗N∗/C∗
(1+h)σc

(Nt −EtNt+1)− 1−h
(1+h)σc

(Rt − Etπt+1 + ebt) (E.2)

it =
β
1+βEtit+1 +

1
1+βxt−1 +

χ−1

1+β qt + eit (E.3)

qt = β(1− δ)Etqt+1 + (1− β(1− δ))Etrt+1 − (Rt − Etπt+1 + ebt) (E.4)

yt = φp(αk
s
t + (1− α)Nt + eat ) (E.5)

kst = kt−1 + zt (E.6)

zt =
1−ψ
ψ rt (E.7)

kt+1 = (1− δ) kt + δ it + δ (1 + β) ψ eit (E.8)

μpt = α(kst −Nt) + eat − wt (E.9)

πt =
β

1+βγp
Etπt+1 +

γp
1+βγp

πt−1 − Tpμ
p
t + ept (E.10)

rt = −(kt −Nt) +wt (E.11)

μwt = wt − (σlNt + (1− h)−1(ct − hct−1) (E.12)

wt =
1
1+βwt−1 +

β
1+β (Etπt+1 +Etwt+1)− 1+βγw

1+β πt +
γw
1+βπt−1 − Twμwt + ewt (E.13)

Rt = λrRt−1 + (1− λr)(λππt + λyyt) + ert (E.14)

The seven disturbances are: TFP shock (eat ); monetary policy shock (e
r
t ); investment shock (e

i
t);

price markup shock (ept ); wage markup shock (e
w
t ); risk premium shock (ebt); government

expenditure shock (egt ). The compound parameters in equation (T.11) and (T.13) are

defined as: Tp ≡ 1
1+γp

(1−βζp)(1−ζp)
((φp−1)�p)ζp and Tw ≡ 1

1+β
(1−βζw)(1−ζw)
((φw−1)�w)ζw .
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(d): The process for the shocks

et = (eat , e
r
t , e

i
t, e

p
t , e

w
t , e

b
t , e

g
t )

et = ρet−1 + ηt

where both ρ and Σ = Etηtη
0
t are diagonal.

C. Additional Tables and Figures

LT HP FOD BP Ratio

Parameter Median (s.d.) Median (s.d.) Median (s.d.) Median (s.d.) Median (s.d.)

σc 2.18( 0.10) 2.14( 0.11) 2.65( 0.07) 2.19( 0.07) 2.18( 0.10)
σn 1.80( 0.09) 1.82( 0.09) 1.52( 0.06) 1.80( 0.06) 1.83( 0.08)
h 0.67( 0.01) 0.67( 0.01) 0.48( 0.01) 0.67( 0.01) 0.67( 0.01)
α 0.17( 0.02) 0.18( 0.02) 0.16( 0.01) 0.18( 0.02) 0.18( 0.02)
� 4.53( 0.16) 3.73( 0.09) 3.91( 0.04) 3.84( 0.06) 3.71( 0.08)
ρr 0.17( 0.04) 0.19( 0.04) 0.23( 0.01) 0.06( 0.03) 0.18( 0.05)
ρπ 1.37( 0.06) 1.38( 0.07) 0.81( 0.01) 1.79( 0.05) 1.36( 0.07)
ρy -0.14( 0.02) -0.28( 0.05) -0.01( 0.00) -0.20( 0.03) -0.17( 0.02)
ζp 0.80( 0.01) 0.65( 0.02) 0.75( 0.01) 0.78( 0.02) 0.78( 0.01)
ρχ 0.76( 0.03) 0.52( 0.03) 0.99( 0.01) 0.83( 0.02) 0.71( 0.02)
ρz 0.96( 0.01) 0.92( 0.02) 0.99( 0.01) 0.93( 0.01) 0.95( 0.01)
σχ 0.23( 0.04) 0.19( 0.03) 0.29( 0.02) 0.11( 0.01) 0.23( 0.04)
σz 0.12( 0.02) 0.11( 0.01) 0.26( 0.03) 0.07( 0.01) 0.12( 0.02)
σmp 0.11( 0.01) 0.08( 0.01) 0.07( 0.01) 0.07( 0.01) 0.11( 0.01)
σμ 31.79( 0.85) 1.87( 0.41) 16.63( 0.18) 6.35( 1.55) 17.50( 2.22)

Table A.1:Posterior estimates, different filters, all variables detrended. Standard deviation in parenthesis.

Estimates of σ’s and their standard errors in percentages. US data, sample 1980:1-2007:2.
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LT HP FOD BP Flexible

Parameter True Median (s.d.) Median (s.d.) Median (s.d.) Median(s.d.) Median(s.d.)
σc 3.00 2.08 (0.11) 2.08 (0.14) 1.89 (0.14) 2.13 (0.12) 3.26( 0.40)
σn 0.70 1.72 (0.09) 1.36 (0.07) 1.24 (0.06) 1.58 (0.08) 0.54( 0.14)
h 0.70 0.67 (0.02) 0.58 (0.03) 0.36 (0.03) 0.66 (0.02) 0.55( 0.04)
α 0.60 0.28 (0.03) 0.15 (0.02) 0.14 (0.02) 0.17 (0.02) 0.19( 0.03)
� 7.00 3.19 (0.11) 5.13 (0.19) 3.76 (0.18) 3.80 (0.13) 6.19( 0.07)
ρr 0.20 0.54 (0.03) 0.77 (0.03) 0.72 (0.04) 0.53 (0.03) 0.16( 0.04)
ρπ 1.20 1.69 (0.08) 1.65 (0.06) 1.65 (0.07) 1.63 (0.10) 1.30( 0.04)
ρy 0.05 -0.14 (0.04) 0.45 (0.04) 0.63 (0.06) 0.40 (0.04) 0.07( 0.03)
ζp 0.80 0.85 (0.03) 0.91 (0.03) 0.93 (0.03) 0.90 (0.03) 0.78( 0.04)
ρχ 0.50 1.00 (0.03) 0.96 (0.03) 0.96 (0.03) 0.95 (0.03) 0.53( 0.02)
ρz 0.80 0.84 (0.03) 0.96 (0.03) 0.97 (0.03) 0.96 (0.03) 0.71( 0.03)
σχ 1.12 0.11 (0.02) 0.17 (0.02) 0.21 (0.03) 0.14 (0.02) 1.29( 0.01)
σz 0.51 0.07 (0.01) 0.09 (0.01) 0.09 (0.01) 0.07 (0.01) 0.72( 0.02)
σmp 0.10 0.05 (0.01) 0.05 (0.01) 0.05 (0.01) 0.05 (0.01) 0.21( 0.004)
σμ 20.60 6.30 (0.50) 16.75 (0.62) 22.75 (0.83) 14.40 (0.58) 15.86( 0.06)
σncχ 3.21

Table A.2: Posterior estimates, different filters, small variance of the non-cyclical shock.

LT HP FOD BP Flexible

Parameter True Median (s.d.) Median (s.d.) Median (s.d.) Median(s.d.) Median(s.d.)
σc 3.00 1.90 (0.07) 1.95 (0.09) 1.93 (0.08) 1.96 (0.08) 2.66 (0.19)
σn 0.70 2.08 (0.08) 1.96 (0.08) 2.08 (0.10) 1.94 (0.08) 0.56 (0.09)
h 0.70 0.56 (0.02) 0.68 (0.02) 0.57 (0.02) 0.69 (0.02) 0.55 (0.03)
α 0.60 0.49 (0.02) 0.31 (0.02) 0.48 (0.02) 0.28 (0.02) 0.13 (0.03)
� 7.00 3.68 (0.12) 4.00 (0.13) 4.17 (0.13) 4.30 (0.14) 6.15 (0.07)
ρr 0.20 0.59 (0.03) 0.74 (0.04) 0.64 (0.04) 0.55 (0.02) 0.28 (0.04)
ρπ 1.20 1.17 (0.04) 1.47 (0.07) 1.24 (0.04) 1.25 (0.04) 1.60 (0.04)
ρy 0.05 -0.05 (0.01) 0.28 (0.02) 0.02 (0.01) 0.20 (0.01) 0.47 (0.03)
ζp 0.80 0.80 (0.03) 0.90 (0.03) 0.83 (0.03) 0.89 (0.03) 0.82 (0.02)
ρχ 0.50 1.00 (0.03) 0.98 (0.03) 1.00 (0.03) 0.98 (0.03) 0.76 (0.04)
ρz 0.80 0.91 (0.03) 0.98 (0.03) 0.95 (0.03) 0.98 (0.03) 0.66 (0.03)
σχ 1.12 0.11 (0.02) 1.72 (0.16) 1.02 (0.15) 0.73 (0.08) 0.10 (0.01)
σz 0.51 0.17 (0.02) 0.08 (0.01) 0.15 (0.02) 0.08 (0.01) 0.24 (0.04)
σmp 0.10 0.06 (0.01) 0.06 (0.01) 0.05 (0.01) 0.06 (0.01) 0.10 (0.01)
σμ 20.60 13.19 (0.52) 15.97 (0.54) 13.01 (0.50) 13.88 (0.46) 0.14 (0.02)
σncχ 13.21

Table A.3:Posterior estimates, different filters, medium variance of the non-cyclical shock
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Figure A1: Model based output log-spectra, Technology shocks with two components. Vertical bars
indicate the frequencies where cycles with 8-32 quarters periodicities are located
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Figure A2: Autocorrelation functions of filtered cyclical and non-cyclical output, Technology shocks with
two components.




