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1 Introduction

Adverse selection is widely recognized as a major obstacle to the efficient functioning of

markets. This is especially true on financial markets, where buyers care about the quality

of the assets they purchase, and fear that sellers have superior information about it. The

same difficulties impede trade on second-hand markets and insurance markets. Theory

confirms that adverse selection may indeed have a dramatic impact on economic outcomes.

First, all mutually beneficial trades need not take place in equilibrium. For instance, in

Akerlof’s (1970) model of second-hand markets, only the lowest quality goods are traded at

the equilibrium price. Second, there may be difficulties with the very existence of equilibrium.

For instance, in Rothschild and Stiglitz’s (1976) model of insurance markets, an equilibrium

fails to exist whenever the proportion of low-risk agents is too high.

Most contributions to the theory of competition under adverse selection have considered

frameworks in which competitors are restricted to make exclusive offers. This assumption is

for instance appropriate in the case of car insurance, since law forbids to take out multiple

policies on a single vehicle. By contrast, competition on financial markets is typically non-

exclusive, as each agent can trade with multiple partners who cannot monitor each others’

trades with the agent. This paper supports the view that this difference in the nature

of competition may have a significant impact on the way adverse selection affects market

outcomes. This has two consequences. First, empirical studies that test for the presence of

adverse selection should use different methods depending on whether competition is exclusive

or not. Second, the regulation of markets plagued by adverse selection should be adjusted

to the type of competition that prevails on them.

To illustrate these points, we consider a stylized model of trade under adverse selection.

In our model, a seller endowed with some quantity of a good attempts to trade it with a

finite number of buyers. The seller and the buyers have linear preferences over quantities and

transfers exchanged. In line with Akerlof (1970), the quality of the good is the seller’s private

information. Unlike in his model, the good is assumed to be perfectly divisible, so that any

fraction of the seller’s endowment can potentially be traded. An example that fits these

assumptions is that of a firm which floats a security issue by relying on the intermediation

services of several investment banks. Buyers compete by simultaneously offering menus of

contracts, or, equivalently, price schedules.1 After observing the menus offered, the seller

decides of her trade(s). Competition is exclusive if the seller can trade with at most one

1As established by Peters (2001) and Martimort and Stole (2002), there is no need to consider more
general mechanisms in this multiple-principal single-agent setting.
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buyer, and non-exclusive if trades with several buyers are allowed.

Under exclusive competition, our conclusions are qualitatively similar to Rothschild and

Stiglitz’s (1976). In a simple version of the model with two possible levels of quality, pure

strategy equilibria exist if and only if the probability that the good is of high quality is low

enough. Equilibria are separating: the seller trades her whole endowment when quality is

low, while she only trades part of it when quality is high.

The analysis of the non-exclusive competition game yields strikingly different results.

Pure strategy equilibria always exist, both for binary and continuous quality distributions.

Aggregate equilibrium allocations are generically unique, and have an all-or-nothing feature:

depending of whether quality is low or high, the seller either trades her whole endowment

or does not trade at all. Buyers earn zero profit on average in any equilibrium. These

allocations can be supported by simple menu offers. For instance, one can construct linear

price equilibria in which buyers offer to purchase any quantity of the good at a constant

unit price equal to the expectation of their valuation of the good conditional on the seller

accepting to trade at that price. While other menu offers are consistent with equilibrium,

corresponding to non-linear price schedules, an important insight of our analysis is that this

is also the unit price at which all trades take place in any equilibrium.

These results are of course in line with Akerlof’s (1970) classic analysis of the market

for lemons, for which they provide a fully strategic foundation. It is worth stressing the

differences between his model and ours. Akerlof (1970) considers a market for a non-divisible

good of uncertain quality, in which all agents are price-takers. Thus, by assumption, all

trades must take place at the same price, in the spirit of competitive equilibrium models.

Equality of supply and demand determines the equilibrium price level, which is equal to the

average quality of the goods that are effectively traded. Multiple equilibria may occur in a

generic way.2 By contrast, we allow agents to trade any fraction of the seller’s endowment.

Moreover, our model is one of imperfect competition, in which a fixed number of buyers

choose their offers strategically. In particular, our analysis does not rely on free entry

arguments. Finally, buyers can offer arbitrary menus of contracts, including for instance

non-linear price schedules. That is, we avoid any a priori restrictions on instruments. The

fact that all trades take place at a constant unit price in equilibrium is therefore no longer

an assumption, but rather a consequence of our analysis.

A key to our results is that non-exclusive competition expands the set of deviations

2This potential multiplicity of equilibria arises because buyers are assumed to be price-takers. Mas-Colell,
Whinston and Green (1995, Proposition 13.B.1) allow buyers to strategically set prices in a market for a
non-divisible good where trades are restricted to be zero-one. The equilibrium is then generically unique.
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that are available to the buyers. Indeed, each buyer can strategically use the offers of his

competitors to propose additional trades to the seller. Such deviations are blocked by latent

contracts, that is, contracts that are not traded in equilibrium but which the seller finds it

profitable to trade at the deviation stage. These latent contracts are not necessarily complex

or exotic. For instance, in a linear price equilibrium, all the buyers offer to purchase any

quantity of the good at a constant unit price, but only a finite number of contracts can

end up being traded as long as the seller does not randomize on the equilibrium path. The

purpose of the other contracts, which are not traded in equilibrium, is only to deter cream-

skimming deviations that aim at attracting the seller when quality is high. The use of

latent contracts has been criticized on several grounds. First, they may allow one to support

multiple equilibrium allocations, and even induce an indeterminacy of equilibrium.3 This

is not the case in our model, since aggregate equilibrium allocations are generically unique.

Second, a latent contract may appear as a non-credible threat, if the buyer who issues it

would make losses in the hypothetical case where the seller were to trade it.4 Again, this

need not be the case in our model. In fact, we construct examples of equilibria in which

latent contracts would be strictly profitable if traded.

This paper is closely related to the literature on common agency between competing

principals dealing with a privately informed agent. To use the terminology of Bernheim

and Whinston (1986), our non-exclusive competition game is a delegated common agency

game, as the seller can choose a strict subset of buyers with whom she wants to trade.

In the specific context of incomplete information, a number of recent contributions use

standard mechanism design techniques to characterize equilibrium allocations. The basic

idea is that, given a profile of mechanisms proposed by his competitors, the best response of

any single principal can be fully determined by focusing on simple menu offers corresponding

to direct revelation mechanisms. This allows one to construct equilibria that satisfy certain

regularity conditions. This approach has been successfully applied in various delegated

agency contexts.5 Closest to this paper is Biais, Martimort and Rochet (2000), who study

competition among principals in a common value environment. In their model, uninformed

market-makers supply liquidity to an informed insider. The insider’s preferences are quasi-

linear, and quadratic with respect to quantities exchanged. Unlike in our model, the insider

has no capacity constraint. Variational techniques are used to construct an equilibrium in

3Martimort and Stole (2003, Proposition 5) show that, in a complete information setting, latent contracts
can be used to support any level of trade between the perfectly competitive outcome and the Cournot
outcome.

4Latent contracts with negative virtual profits have been for example considered in Hellwig (1983).
5See for instance Khalil, Martimort and Parigi (2007) or Martimort and Stole (2007).
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which market-makers post convex price schedules. Such techniques do not apply in our

model, as all agents have linear preferences, and the seller cannot trade more than her

endowment. Instead, we allow for arbitrary menu offers, and we characterize candidate

equilibrium allocations in the usual way, that is by checking whether they survive to possible

deviations. While this approach may be difficult to apply in more complex settings, it delivers

interesting new insights, in particular on the role of latent contracts.

The paper is organized as follows. Section 2 introduces the model. Section 3 focuses on

a two-type setting. We show that there always exists a market equilibrium where buyers

play a pure strategy. In addition, equilibrium allocations are generically unique. We also

characterize equilibrium menu offers, with special emphasis on latent contracts. Section 4

analyzes the general framework with a continuum of sellers’ types. Section 5 concludes.

2 The Model

There are two kinds of agents: a single seller, and a finite number of buyers indexed by

i = 1, . . . , n, where n ≥ 2. The seller has an endowment consisting of one unit of a perfectly

divisible good that she can trade with the buyers. Let qi be the quantity of the good

purchased by buyer i, and ti the transfer he makes in return. The set of feasible trades is

the set of vectors ((q1, t1), . . . , (qn, tn)) such that qi ≥ 0 and ti ≥ 0 for all i, and
∑

i q
i ≤ 1.

Thus the quantity of the good purchased by each buyer must be at least zero, and the sum

of these quantities cannot exceed the seller’s endowment.6

The seller has preferences represented by

T − θQ,

where Q =
∑

i q
i and T =

∑
i t
i denote aggregate quantities and transfers. Here θ is a

random variable that stands for the quality of the good as perceived by the seller.7 Each

buyer i has preferences represented by

v(θ)qi − ti.

Here v(θ) is a deterministic function of θ that stands for the quality of the good as perceived

by the buyers.

6This differs from the model of Biais, Martimort and Rochet (2000), in which the insider and the market-
makers can trade on both sides of the market.

7This is another difference with Biais, Martimort and Rochet (2000), where the preferences of the insider
can be represented by θQ− 1

2 γσ
2Q2−T , where γ and σ2 are common knowledge risk-aversion and volatility

parameters.
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We will typically assume that v(θ) is not a constant function of θ, so that both the seller

and the buyers care about θ. Gains from trade arise in this common value environment if

v(θ) > θ for some realization(s) of θ. However, in line with Akerlof (1970), mutually beneficial

trades are potentially impeded because the seller is privately informed of the quality of the

good at the trading stage. Following standard usage, we shall thereafter refer to θ as to the

type of the seller.

Buyers compete in menus for the good offered by the seller. As in Biais, Martimort and

Rochet (2000), trading is non-exclusive in the sense that the seller can pick or reject any

of the offers made to her, and can simultaneously trade with several buyers. The following

timing of events characterizes our non-exclusive competition game:

1. Each buyer i proposes a menu of contracts, that is, a set Ci of quantity-transfer pairs

(qi, ti) ∈ [0, 1]× R+ that contains at least the no-trade contract (0, 0).8

2. After privately learning the quality θ, the seller selects one contract (qi, ti) from each

of the menus Ci’s offered by the buyers, subject to the constraint that
∑

i q
i ≤ 1.

A pure strategy for the seller is a mapping s that associates to each type θ and each menu

profile (C1, . . . , Cn) a vector ((q1, t1), . . . , (qn, tn)) ∈ ([0, 1]× R+)n such that (qi, ti) ∈ Ci for

each i and
∑

i q
i ≤ 1. We accordingly denote by si(θ, C1, . . . , Cn) the contract traded by

type θ of the seller with buyer i. To ensure that the seller’s problem

sup

{∑
i

ti − θ
∑
i

qi :
∑
i

qi ≤ 1 and (qi, ti) ∈ Ci for all i

}
has a solution for any type θ and menu profile (C1, . . . , Cn), we require the buyers’ menus

to be compact sets.

At a later stage of the analysis, it will be instructive to compare the equilibrium outcomes

under non-exclusive competition with those arising under exclusive competition, that is,

when the seller can trade with at most one buyer. The timing of this latter game is similar

to that presented above, except that stage 2 is replaced by

2’. After privately learning the quality θ, the seller selects one contract (qi, ti) from one of

the menus Ci’s offered by the buyers.

Given a menu profile (C1, . . . , Cn), the seller’s problem then becomes

sup {ti − θqi : (qi, ti) ∈ Ci for some i}.
8As usual, the assumption that each menu must contain the no-trade contract allows one to deal with

participation in a simple way.
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Throughout the paper, and unless stated otherwise, the equilibrium concept is pure strategy

perfect Bayesian equilibrium.

3 The Two-Type Case

In this section, we consider the binary version of our model in which the seller’s type can be

either low, θ = θ, or high, θ = θ, for some θ > θ > 0. Denote by ν ∈ (0, 1) the probability

that θ = θ. We assume that the seller’s and the buyers’ perceptions of the quality of the

good move together, that is v(θ) > v(θ), and that it would be efficient to trade no matter

the quality of the good, that is v(θ) > θ and v(θ) > θ.

3.1 Equilibrium Outcomes

We first characterize the restrictions that equilibrium behavior implies for the outcomes of the

non-exclusive competition game. Next, we show that this game always admits an equilibrium

in which buyers post linear prices. Finally, we contrast the equilibrium outcomes with those

arising in the exclusive competition model.

3.1.1 Aggregate Equilibrium Allocations

Let ci = (qi, ti) and ci = (qi, t
i
) be the contracts traded by the two types of the seller

with buyer i in equilibrium, and let (Q, T ) =
∑

i c
i and (Q, T ) =

∑
i c
i be the corresponding

aggregate equilibrium allocations. To characterize these allocations, one needs only to require

that three types of deviations by a buyer be blocked in equilibrium. In each case, the

deviating buyer uses the offers of his competitors as a support for his own deviation. This

intuitively amounts to pivoting around the aggregate equilibrium allocation points (Q, T )

and (Q, T ) in the (Q, T ) space. We now consider each deviation in turn.

Attracting type θ by pivoting around (Q, T ) The first type of deviations allows one

to prove that type θ trades efficiently in any equilibrium.

Lemma 1 Q = 1 in any equilibrium.

One can illustrate the deviation used in Lemma 1 as follows. Observe first that a basic

implication of incentive compatibility is that, in any equilibrium, Q cannot be higher than Q.

Suppose then that Q < 1 in a candidate equilibrium. This situation is depicted on Figure 1.

Point A corresponds to the aggregate equilibrium allocation (Q, T ) traded by type θ, while

point A corresponds to the aggregate equilibrium allocation (Q, T ) traded by type θ. The
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two solid lines passing through these points are the equilibrium indifference curves of type θ

and type θ, with slopes θ and θ. The dotted line passing through A is an indifference curve

for the buyers, with slope v(θ).

—Insert Figure 1 here—

Suppose now that some buyer deviates and includes in his menu an additional contract

that makes available the further trade AA′. This leaves type θ indifferent, since she obtains

the same payoff as in equilibrium. Type θ, by contrast, cannot gain by trading this new

contract. Assuming that the deviating buyer can break the indifference of type θ in his

favor, he strictly gains from trading the new contract with type θ, as the slope θ of the line

segment AA′ is strictly less than v(θ). This contradiction shows that one must have Q = 1

in equilibrium. The assumption on indifference breaking is relaxed in the proof of Lemma 1.

Attracting type θ by pivoting around (Q, T ) Having established that Q = 1, we now

investigate the aggregate quantity Q traded by type θ in equilibrium. The second type of

deviations allows one to partially characterize the circumstances in which the two types

of the seller trade different aggregate allocations in equilibrium. We say in this case that

the equilibrium is separating. An immediate implication of Lemma 1 is that Q < 1 in any

separating equilibrium. Let then p = T−T
1−Q be the slope of the line connecting the points

(Q, T ) and (1, T ) in the (Q, T ) space. Thus p is the implicit unit price at which the quantity

1−Q can be sold to move from (Q, T ) to (1, T ). By incentive compatibility, p must lie in the

interval [θ, θ] in any separating equilibrium. The strategic analysis of the buyers’ behavior

induces further restrictions on p.

Lemma 2 In a separating equilibrium, p < θ implies that p ≥ v(θ).

In the proof of Lemma 1, we showed that, if Q < 1, then each buyer has an incentive

to deviate. By contrast, in the proof of Lemma 2, we only show that if p < min{v(θ), θ}
in a candidate separating equilibrium, then at least one buyer has an incentive to deviate.

This makes it more difficult to illustrate why the deviation used in Lemma 2 might be

profitable. It is however easy to see why this deviation would be profitable to an entrant

or, equivalently, to an inactive buyer that would not trade in equilibrium. This situation

is depicted on Figure 2. The dotted line passing through A is an indifference curve for the

buyers, with slope v(θ). Contrary to the conclusion of Lemma 2, the figure is drawn in such

a way that this indifference curve is strictly steeper than the line segment AA.
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—Insert Figure 2 here—

Suppose now that the entrant offers a contract that makes available the trade AA. This

leaves type θ indifferent, since she obtains the same payoff as in equilibrium by trading the

aggregate allocation (Q, T ) together with the new contract. Type θ, by contrast, cannot

gain by trading this new contract. Assuming that the entrant can break the indifference of

type θ in his favor, he earns a strictly positive payoff from trading the new contract with

type θ, as the slope p of the line segment AA is strictly less than v(θ). This shows that,

unless p ≥ v(θ), the candidate separating equilibrium is not robust to entry. The assumption

on indifference breaking is relaxed in the proof of Lemma 2, which further shows that the

proposed deviation is profitable to at least one active buyer.

Attracting both types by pivoting around (Q, T ) A separating equilibrium must be

robust to deviations that attract both types of the seller. This third type of deviations

allows one to find a necessary condition for the existence of a separating equilibrium. When

this condition fails, both types of the seller must trade the same aggregate allocations in

equilibrium. We say in this case that the equilibrium is pooling.

Lemma 3 If E[v(θ)] > θ, any equilibrium is pooling, with

(Q, T ) = (Q, T ) = (1, E[v(θ)]).

The proof of Lemma 3 consists in showing that if E[v(θ)] > θ in a candidate separating

equilibrium, then at least one buyer has an incentive to deviate. As for Lemma 2, this makes

it difficult to illustrate why this deviation might be profitable. It is however easy to see why

this deviation would be profitable to an entrant or, equivalently, to an inactive buyer that

would not trade in equilibrium. This situation is depicted on Figure 3. The dotted line

passing through A is an indifference curve for the buyers, with slope E[v(θ)]. Contrary to

the conclusion of Lemma 3, the figure is drawn in such a way that this indifference curve is

strictly steeper than the indifference curves of type θ.

—Insert Figure 3 here—

Suppose now that the entrant offers a contract that makes available the trade AA′. This

leaves type θ indifferent, since she obtains the same payoff as in equilibrium by trading the

aggregate allocation (Q, T ) together with the new contract. Type θ strictly gains by trading

this new contract. Assuming that the entrant can break the indifference of type θ in his
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favor, he earns a strictly positive payoff from trading the new contract with both types as

the slope θ of the line segment AA′ is strictly less than E[v(θ)]. This shows that, unless

E[v(θ)] ≤ θ, the candidate equilibrium is not robust to entry. Once again, the assumption

on indifference breaking is relaxed in the proof of Lemma 3, which further shows that the

proposed deviation is profitable to at least one active buyer.

The following result provides a partial converse to Lemma 3.

Lemma 4 If E[v(θ)] < θ, any equilibrium is separating, with

(Q, T ) = (1, v(θ)) and (Q, T ) = (0, 0).

The following is an important corollary of our analysis.

Corollary 1 Each buyer’s payoff is zero in any equilibrium.

Lemmas 1 to 4 provide a full characterization of the aggregate trades that can be sustained

in a pure strategy equilibrium of the non-exclusive competition game. While each buyer

always receives a zero payoff in equilibrium, the structure of equilibrium allocations is directly

affected by the severity of the adverse selection problem.

We shall say that adverse selection is mild whenever E[v(θ)] > θ. Separating equilibria

are ruled out in these circumstances. Indeed, if the aggregate allocation (Q, T ) traded by

type θ were such that Q < 1, some buyer would have an incentive to induce both types of

the seller to trade this allocation, together with the additional quantity 1−Q at a unit price

between θ and E[v(θ)]. Competition among buyers then bids up the price of the seller’s

endowment to its average value E[v(θ)] for the buyers, a price at which both types of the

seller are ready to trade. This situation is depicted on Figure 4. The dotted line passing

through the origin is the equilibrium indifference curve of the buyers, with slope E[v(θ)].

—Insert Figure 4 here—

We shall say that adverse selection is strong whenever E[v(θ)] < θ. Pooling equilibria are

ruled out in these circumstances, as type θ is no longer ready to trade her endowment at price

E[v(θ)]. However, non-exclusive competition induces a specific cost of screening the seller’s

type in equilibrium. Indeed, any separating equilibrium must be such that no buyer has

an incentive to deviate and induce type θ to trade the aggregate allocation (Q, T ), together

with the additional quantity 1−Q at some mutually advantageous price. To eliminate any

incentive for buyers to engage in such trades with type θ, the implicit unit price at which
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this additional quantity 1−Q can be sold in equilibrium must be relatively high, implying at

most an aggregate payoff {E[v(θ)]− θ}Q for the buyers. Hence type θ can trade actively in

a separating equilibrium only in the non-generic case where E[v(θ)] = θ, while type θ does

not trade at all under strong adverse selection. This situation is depicted on Figure 5. The

dotted line passing through the origin is the equilibrium indifference curve of the buyers,

with slope v(θ).

—Insert Figure 5 here—

3.1.2 Equilibrium Existence

We now establish that the non-exclusive competition game always admits an equilibrium.

Specifically, we show that there always exists an equilibrium in which all buyers post linear

prices. In such an equilibrium, the unit price at which any quantity can be traded is equal

to the expected quality of the goods that are actively traded.

Proposition 1 The following holds:

(i) Under mild adverse selection, the non-exclusive competition game has an equilibrium

in which each buyer offers the menu

{(q, t) ∈ [0, 1]× R+ : t = E[v(θ)]q},

and thus stands ready to buy any quantity of the good at a constant unit price E[v(θ)].

(ii) Under strong adverse selection, the non-exclusive competition game has an equilibrium

in which each buyer offers the menu

{(q, t) ∈ [0, 1]× R+ : t = v(θ)q},

and thus stands ready to buy any quantity of the good at a constant unit price v(θ).

In the non-generic case where E[v(θ)] = θ, it is easy to check that there exist two linear

price equilibria, a pooling equilibrium with constant unit price E[v(θ)] and a separating

equilibrium with constant unit price v(θ). In addition, there exists in this case a continuum

of separating equilibria in which type θ trades actively. Indeed, to sustain an equilibrium

trade level Q ∈ (0, 1) for type θ, it is enough that all buyers offer to buy any quantity of

the good at unit price v(θ), and that one buyer offers in addition to buy any quantity of

the good up to Q at unit price E[v(θ)]. Both types θ and θ then sell a fraction Q of their

endowment at unit price E[v(θ)], while type θ sells the remaining fraction of her endowment

at unit price v(θ).
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3.1.3 Comparison with the Exclusive Competition Model

Our analysis provides a fully strategic foundation for Akerlof’s (1970) original intuition:

if adverse selection is severe enough, only goods of low quality are traded in any market

equilibrium. This contrasts sharply with the predictions of standard models of competition

under adverse selection, in which exclusivity clauses are typically assumed to be enforceable

at no cost. To see this within the context of our model, let (Qe, T e) and (Qe, T e) be the

allocations traded by each type of the seller in an equilibrium of the exclusive competition

game. One then has the following result.

Proposition 2 The following holds:

(i) Any equilibrium of the exclusive competition game is separating, with

(Qe, T e) = (1, v(θ)) and (Qe, T e) =
v(θ)− θ
v(θ)− θ

(1, v(θ)).

(ii) The exclusive competition game admits an equilibrium if and only if

ν ≤ θ − θ
v(θ)− θ

.

Hence, when the rules of the competition game are such that the seller can trade with at

most one buyer, the structure of market equilibria is formally analogous to that obtaining in

the competitive insurance model of Rothschild and Stiglitz (1976). First, any pure strategy

equilibrium must be separating, with type θ selling her whole endowment, Qe = 1, and type

θ selling less than her whole endowment, Qe < 1. The corresponding contracts trade at unit

prices v(θ) and v(θ) respectively, yielding both a zero payoff to the buyers. Second, type θ

must be indifferent between her equilibrium contract and that of type θ, implying

Qe =
v(θ)− θ
v(θ)− θ

.

This contrasts with the separating outcome that prevails under non-exclusivity and strong

adverse selection, as type θ then strictly prefers the aggregate equilibrium allocation (1, v(θ))

to the no-trade contract selected by type θ. An immediate implication of our analysis is thus

that the equilibrium allocations under exclusivity cannot be sustained in equilibrium under

non-exclusivity. These allocations are depicted on Figure 6. Point Ae corresponds to the

equilibrium contract of type θ, while point Ae corresponds to the equilibrium contract of

type θ. The two solid lines passing through these points are the equilibrium indifference

curves of type θ and type θ. The dotted line passing through the origin are indifference

curves for the buyers, with slope v(θ) and v(θ).
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—Insert Figure 6 here—

As in Rothschild and Stiglitz (1976), a pure strategy equilibrium exists under exclusivity

only under certain parameter restrictions. This contrasts with the non-exclusive competition

game, which, as shown above, always admits an equilibrium. Specifically, the equilibrium

indifference curve of type θ must lie above the indifference curve for the buyers with slope

E[v(θ)] passing through the origin, for otherwise there would exist a profitable deviation

attracting both types of the seller. This is the case if and only if the probability ν that the

good is of high quality is low enough. Simple computations show that the threshold

νe =
θ − θ
v(θ)− θ

,

for ν below which an equilibrium exists under exclusivity is strictly above the threshold

νne = max

{
0,

θ − v(θ)

v(θ)− v(θ)

}
for ν below which the equilibrium is separating under non-exclusivity. When 0 < ν < νne, the

equilibrium is separating under both exclusivity and non-exclusivity, and more trade takes

place in the former case. By contrast, when νne < ν < νe, the equilibrium is separating under

exclusivity and pooling under non-exclusivity, and more trade takes place in the latter case.

From an ex-ante viewpoint, exclusive competition leads to a more efficient outcome under

strong adverse selection, while non-exclusive competition leads to a more efficient outcome

under mild adverse selection.

3.2 Equilibrium Menus and Latent Contracts

We now explore in more depth the structure of the menus offered by the buyers in equilibrium.

Our first result provides equilibrium restrictions on the price of all issued contracts.

Proposition 3 The following holds:

(i) Under mild adverse selection, the unit price of any contract issued in an equilibrium of

the non-exclusive competition game is at most E[v(θ)].

(ii) Under strong adverse selection, the unit price of any contract issued in an equilibrium

of the non-exclusive competition game is at most v(θ).

The intuition for this result is as follows. If some buyer offered to purchase some quantity

at a unit price above E[v(θ)] under mild adverse selection, then any other buyer would have
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an incentive to induce both types of the seller to trade this contract and to sell him the

remaining fraction of their endowment at a unit price slightly below E[v(θ)]. Similarly,

if some buyer offered to purchase some quantity at a unit price above v(θ) under strong

adverse selection, then any other buyer would have an incentive to induce type θ to trade

this contract and to sell him the remaining fraction of her endowment at a unit price slightly

below v(θ). As a corollary, one obtains a simple characterization of the price of traded

contracts.

Corollary 2 The following holds:

(i) Under mild adverse selection, the unit price of any contract traded in an equilibrium

of the non-exclusive competition game is E[v(θ)].

(ii) Under strong adverse selection, the unit price of any contract traded in an equilibrium

of the non-exclusive competition game is v(θ).

With these preliminaries at hand, we can investigate which contracts need to be issued

to sustain the aggregate equilibrium allocations. From a strategic viewpoint, what matters

for each buyer is the outside option of the seller, that is, what aggregate allocations she can

achieve by trading with the other buyers only. For each buyer i, and for each menu profile

(C1, . . . , Cn), this is described by the set of aggregate allocations that remain available if

buyer i withdraws his menu offer Ci. One has the following result.

Proposition 4 The following holds:

(i) Under mild adverse selection, and in any equilibrium of the non-exclusive competition

game, the aggregate allocation (1, E[v(θ)]) traded by both types of the seller remains

available if any buyer withdraws his menu offer.

(ii) Under strong adverse selection, and in any equilibrium of the non-exclusive competition

game, the aggregate allocation (1, v(θ)) traded by type θ of the seller remains available

if any buyer withdraws his menu offer.

The aggregate equilibrium allocations must therefore remain available even if a buyer

deviates from his equilibrium menu offer. The reason is that this buyer would otherwise

have an incentive to offer both types to sell their whole endowment at a price slightly below

E[v(θ)] (in the mild adverse selection case), or to offer type θ to sell her whole endowment at

price θ while offering type v(θ) to sell a smaller part of her endowment on more advantageous
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terms (in the strong adverse selection case). The flip side of this observation is that no buyer

is essential in providing the seller with her aggregate equilibrium allocation. This rules out

standard Cournot outcomes in which the buyers would simply share the market and in which

all issued contracts would actively be traded by some type of the seller. As an illustration,

when there are two buyers, there is no equilibrium in which each buyer would only offer to

purchase half of the seller’s endowment.

Because of the non-exclusivity of competition, equilibrium in fact involves much more

restrictions on menus offers than those prescribed by Proposition 3. For instance, in the mild

adverse selection case, there is no equilibrium in which each buyer only offers the allocation

(1, E[v(θ)]) besides the no-trade contract. Indeed, any buyer could otherwise deviate by

offering to purchase a quantity q < 1 at some price t ∈ (E[v(θ)]−θ(1−q), E[v(θ)]−θ(1−q)).
By construction, this is a cream-skimming deviation that attracts only type θ, and that yields

the deviating buyer a payoff

ν[v(θ)q − t] > ν{v(θ)q − E[v(θ)] + θ(1− q)},

which is strictly positive for q close enough to 1. To block such deviations, latent contracts

must be issued that are not actively traded in equilibrium but which the seller has an

incentive to trade if some buyer attempts to break the equilibrium. In order to play this

deterrence role, the corresponding latent allocations must remain available if any buyer

withdraws his menu offer. For instance, in the mild adverse selection case, the cream-

skimming deviation described above is blocked if the quantity 1 − q can always be sold at

unit price E[v(θ)] at the deviation stage, since both types of the seller then have the same

incentives to trade the contract proposed by the deviating buyer. This corresponds to the

linear price equilibria described in Proposition 1.

An important insight of our analysis is that one can also construct non-linear equilibria

in which latent contracts are issued at a unit price different from that of the aggregate

allocation that is traded in equilibrium.

Proposition 5 The following holds:

(i) Under mild adverse selection, for each φ ∈ [θ, E[v(θ)]), the non-exclusive competition

game has an equilibrium in which each buyer offers the menu{
(q, t) ∈

[
0,
v(θ)− E[v(θ)]

v(θ)− φ

]
× R+ : t = φq

}
∪ {(1, E[v(θ)])}.
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(ii) Under strong adverse selection, for each ψ ∈
(
v(θ), v(θ) + θ−E[v(θ)]

1−ν

]
, the non-exclusive

competition game has an equilibrium in which each buyer offers the menu

{(0, 0)} ∪
{

(q, t) ∈
[
ψ − v(θ)

ψ
, 1

]
× R+ : t = ψq − ψ + v(θ)

}
.

This results shows that equilibrium allocations can also be supported through non-linear

prices. In such equilibria, the price each buyer is willing to pay for an additional unit of

the good is not the same for all quantities purchased. For instance, in the equilibrium for

the strong adverse selection case described in Proposition 6(ii), buyers are not ready to pay

anything for all quantities up to the level ψ−v(θ)
ψ

, while they are ready to pay ψ for each

additional unit of the good above this level. The price schedule posted by each buyer is such

that, for any q < 1, the unit price max
{

0, ψ − ψ−v(θ)
q

}
at which he offers to purchase the

quantity q is strictly below θ, while the marginal price ψ at which he offers to purchase an

additional unit given that he has already purchased a quantity q ≥ ψ−v(θ)
ψ

is strictly above

θ. As a result of this, the equilibrium budget set of the seller, that is,{
(Q, T ) ∈ [0, 1]× R+ : Q =

∑
i

qi and T ≤
∑
i

ti where (qi, ti) ∈ Ci for all i

}
,

is not convex in this equilibrium. In particular, the seller has a strict incentive to deal with

a single buyer. This contrasts with recent work on competition in non-exclusive mechanisms

under incomplete information, where attention is typically restricted to equilibria in which

the informed agent has a convex budget set in equilibrium, or, what amounts to the same

thing, where the set of allocations available to her is the frontier of a convex budget set.9

In our model, this would for instance arise if all buyers posted concave price schedules. It is

therefore interesting to notice that, as a matter of fact, our non-exclusive competition game

admits no equilibrium in which each buyer i posts a strictly concave price schedule T i. The

reason is that the aggregate price schedule T defined by T (Q) = sup {
∑

i T
i(qi) :

∑
i q
i = Q}

would otherwise be strictly concave in the aggregate quantity traded Q. This would in turn

imply that contracts are issued at a unit price strictly above T (1), which, as shown by

Proposition 3, is impossible in equilibrium.

A further implication of Proposition 6 is that latent contracts supporting the equilibrium

allocations can be issued at a profitable price. For instance, in the strong adverse selection

case, any contract in
{[

ψ−v(θ)
ψ

, 1
)
× R+ : t = ψq − ψ + v(θ)

}
would yield its issuer a strictly

9See for instance Biais, Martimort and Rochet (2000), Khalil, Martimort and Parigi (2007) or Martimort
and Stole (2007). Piaser (2007) offers a general discussion of the role of latent contracts in incomplete
information settings.
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positive payoff, even if it were traded by type θ only. In equilibrium, no mistakes occur, and

buyers correctly anticipate that none of these contracts will be traded. Nonetheless, removing

these contracts would break the equilibrium. One should notice in that respect that the

role of latent contracts in non-exclusive markets has usually been emphasized in complete

information environments in which the agent does not trade efficiently in equilibrium.10 In

these contexts, latent contracts can never be profitable. Indeed, if they were, there would

always be room for proposing an additional latent contract at a less profitable price and

induce the agent to accept it. In our model, by contrast, type θ sells her whole endowment in

equilibrium. It follows from Proposition 3 that there cannot be any latent contract inducing

a negative profit to the issuer. In addition, there is no incentive for any single buyer to raise

the price of these contracts and make the seller willing to trade them.

Finally, Proposition 6 shows that market equilibria can always be supported with only

one active buyer, provided that the other buyers coordinate by offering appropriate latent

contracts. Hence non-exclusive competition does not necessarily entail that the seller enters

into multiple contracting relationships.

3.3 Discussion

In this two-type framework, the role of latent contracts is to prevent unilateral deviations

which only attract the θ-type of sellers. A single buyer issues these additional offers antic-

ipating that the θ-type will have an incentive to trade them following a cream-skimming

deviation from any of his opponents. As suggested in the previous paragraphs, the number

of such deviations is possibly very high. Although it is difficult to provide a full characteri-

zation of the structure of latent contracts, one can nonetheless argue that an infinite number

of latent allocations should be made available at equilibrium.

Proposition 6. Under both mild and strong adverse selection and in any perfect Bayesian

equilibrium of the non-exclusive competition game, an infinite number of latent contracts

must remain available if any of buyers withdraws his offers.

The proof emphasizes that if only a finite number of contracts was offered at equilibrium,

there would always be an incentive for a buyer to propose only one contract, accepted by

type θ alone, which guarantees him a strictly positive profit.

Remark: Our results can be interpreted in terms of the literature on common agency

10See for instance Hellwig (1983), Martimort and Stole (2003), Bisin and Guaitoli (2004) or Attar and
Chassagnon (2008).
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games, which analyzes the relevance of situations where a number of principals compete

through mechanisms in the presence of a single agent. A communication mechanism as-

sociates an allocation to every message sent by the agent. In our context, a mechanism

proposed by principal (buyer) i is a mapping γi : M i → Ci, where M i is the set of messages

available to the agent (seller). We take Γi to be the set of mechanisms available to principal

i and we denote Γ = ×ni=1Γ
i. In a common agency game relative to Γ, the agent takes her

participation and communication decisions after having observed the array of offered mech-

anisms
(
γ1, γ2, . . . , γn

)
∈ Γ. With reference to such a scenario, Martimort and Stole (2002)

and Peters (2001) proved a characterization result: the equilibrium outcomes relative to any

set of mechanisms Γ correspond to the outcomes that can be supported at equilibrium in a

game where principals offer menus over the allocations induced by Γ.11

In our set-up, buyers compete over menus for the trade of a divisible good. Even in a

situation where only two types of sellers are considered, it turns out that equilibrium menus

should contain an infinite number of allocations. This indeed suggests that to support our

Akerlof-like outcomes when competition over mechanisms is considered, a rich structure of

communication has to be postulated. That is, an infinite number of messages should be

available to the seller; this allows her to effectively act as a coordinating device among

buyers, so to guarantee existence of an equilibrium.

In particular, these allocations cannot be supported if buyers were restricted to compete

through simple direct mechanisms. In our context, a direct mechanism for buyer i is defined

by a mapping γ̃i : Θ → Ci. In a direct mechanism game, the allocations offered by any of

the buyers are contingent on the seller’s private type only. In such a context, it is immediate

to verify that for every array of mechanisms (γ̃1, γ̃2, . . . , γ̃n) proposed by buyers, only a finite

set of offers will be available to the seller, which makes impossible to support our equilibrium

allocations. That is, direct mechanisms do not provide enough flexibility to buyers to make

a strategic use of the seller in deterring cream-skimming deviations.12 The possibility to

support some equilibrium allocations in a common agency game relative to an arbitrary set

of indirect mechanisms Γ, but not in the corresponding direct mechanism game, has been

acknowledged as a failure of the Revelation Principle in multiprincipal games.13 We therefore

11This is usually referred to as the Delegation Principle (see Martimort and Stole, 2002).
12The same difficulty would arise if stochastic direct mechanisms were considered. At any pure strategy

equilibrium of a direct mechanism game where buyers are using a stochastic mechanism the seller will
communicate before observing the realization of uncertainty. At equilibrium, a finite number of lotteries
over allocations will be offered. Bilateral risk-neutrality then makes this situation equivalent to that where
only deterministic allocations are proposed. One should however observe that it is problematic to find a
rational for stochastic mechanisms in our contexts, given the existence of quantity constraints.

13See Peck (1996), Martimort and Stole (2002), and Peters (2001).
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exhibit a relevant economic scenario where such a possibility, usually documented in specific

game-theoretic examples, takes place.

Contrarily to the exclusive environment, where market equilibria can be characterized

through simple direct mechanisms without any loss of generality, the restriction to direct

mechanisms turns out to be crucial in our non-exclusive context. In such a case, it is indeed

an immediate implication of our analysis that no allocation can be supported at equilibrium

in the direct mechanism game.

4 Latent contracts and efficiency in the continuous-

type case

The results we have derived so far may depend on the particular two-type setting we have

used. It is therefore important to check whether equilibria still exist, and whether they

support the Akerlof outcome, in the case when the agent’s type is continuously distributed.

We would also like to better understand the role and the necessity of latent contracts :

are they needed to support equilibria ? Finally it is important to evaluate the second-best

efficiency of the equilibrium outcome.

The model remains essentially the same; but we now assume that the type θ has a

bounded support [θ, θ̄], and a distribution characterized by a c.d.f. F , and a p.d.f. f

assumed strictly positive on the whole interval. The valuation function v(.) is assumed

continuous, but not necessarily monotonic. For convenience, assume that v is defined for

all real numbers, even outside [θ, θ̄]. The game we consider is the same as in the previous

section : first buyers simultaneously post offers (C1, .., Cn), and then the seller chooses one

contract in each offer. The seller’s payoff can be defined as

U(θ) ≡ sup{
∑
i

ti − θ
∑
i

qi;
∑
i

qi ≤ 1,∀ i (qi, ti) ∈ Ci} (1)

Notice that U(θ) is convex and weakly decreasing. Its derivative is well-defined almost

everywhere, and wherever it exists it is equal to (−Q(θ)), that is minus the total quantity

sold by type θ.

Let us finally define our equilibrium concept. As in most of the literature, we restrict

attention to pure strategies for the buyers, but we allow the seller to randomize. Second

we look for equilibria that verify a simple refinement called robustness. In words, a Perfect

Bayesian Equilibrium is moreover robust if a buyer cannot profitably deviate by adding one

contract to its equilibrium subset of offers, assuming that those types of sellers that would
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strictly loose from trading the new contract do not change their behavior compared to the

equilibrium path.

Hence robustness requires that sellers do not play an active role in deterring deviations

by buyers if they do not profit from doing so. This requirement was not needed in the study

of the two-type case, because we were able to perfectly control the behavior of all types

following a deviation. This is more difficult with a continuum of types, and for the sake of

simplicity we choose to reinforce the equilibrium concept.

4.1 The monopsony case

As a warming exercise, consider the monopsony case (n = 1). Suppose first that the monop-

sony can only offer to buy one unit, at a price we denote by p. Because only types below p

accept this offer, the monopsony’s profits are

w(p) ≡
∫ p

−∞
[v(θ)− p]dF (θ)

¿From our assumptions, w is continuous, is zero below θ, and is strictly decreasing above

θ̄. It thus admits a maximum value wm ≥ 0, that is attained at some point in [θ, θ̄]. To

avoid ambiguities, we define the monopsony price pm as the highest such point.

Let us also define p∗ as the supremum of those p such that w(p) > 0 (set p∗ = θ if this

set is empty). Thus p∗ is the highest price at which one unit can be profitably bought, and

is thus the price that should prevail under competition if buyers are only allowed to buy

zero or one unit. In other words, p∗ is the Akerlof price, since the equality w(p∗) = 0 can be

rewritten under the more familiar

p∗ = E[v(θ)|θ < p∗]

By definition we know that w(p) ≤ 0 for p > p∗. To avoid discussing multiple equilibria,

in the following we assume that

Assumption 1 w(p) < 0 for p > p∗.

It is only slightly more complex to study the case when the monopsony is allowed to

offer an arbitrary menu of contracts. Fortunately, and as is well-known from the Revelation

Principle, one only has to maximize the monopsony’s profit

∫
[(v(θ)− θ)Q(θ)− U(θ)]dF (θ)
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under the seller’s incentive-compatibility (IC) constraints

∀ θ U ′(θ) = −Q(θ) a.e. Q(.) is weakly decreasing

and the seller’s individual rationality (IR) constraint

∀ θ U(θ) ≥ 0

This problem was already solved in Samuelson (1984). The proof given in Appendix

confirms that the monopsony cannot benefit from trading quantities that differ from zero

and one.

Lemma 1 (Samuelson, 1984) The monopsony maximizes its profit by offering to buy

one unit at the price pm.

4.2 Exclusive competition

Under exclusive competition, the seller can only trade with one buyer, so that we have

U(θ) ≡ sup{t− θq;∃ i (q, t) ∈ Ci}

Recall that in the two-type case results were similar to those derived in the Rotschild-

Stiglitz model; in particular equilibria need not exist. In the continuous-type case, non-

existence of equilibria turns out to be the rule. To establish this, following Riley (1985, see

also 2001) we first show that in any equilibrium the allocation (Une, Qne) is uniquely defined.

In particular, it must verify

U(θ) = (v(θ)− θ)Q(θ)

Thus profits must be zero for each type θ; this strong requirement results from the ability

of each buyer to undercut its competitors whenever one contract is profitably sold. This has

dramatic consequences; for example, if the surplus from trade (v(θ)− θ) is negative at some

point θ, then both Une and Qne must be zero for all higher values of θ.

The least we can do is thus to assume that v(θ) > θ. Since buying more from type

θ is strictly profitable, one must have Q(θ) = 1. Together with the zero-profit condition

above, and the IC constraint U ′(θ) = −Q(θ), these conditions indeed characterize a unique

candidate allocation (Une, Qne). But this allocation is as usual threatened by a pooling offer

to sell one unit to an interval of types containing θ. In fact, due to the simplicity of our

model we get a more striking result :
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Proposition 1 Suppose that the density f is continuous and positive at the right of θ. If

there exists a robust equilibrium of the exclusive competition game with non-zero trade, then

there exists θ > θ such that v is a constant on [θ, θ].

The case when v is a constant corresponds to that of a private good : buyers do not care

about the type of the seller. As soon as one assumes (rather intuitively) that v is increasing,

there cannot be any trade at equilibrium, and in fact equilibria do not exist14. Hence the

Proposition shows that under exclusive competition non-existence of equilibria is the rule

rather than the exception.

4.3 Non-Exclusive competition

By contrast, our first result in this section shows that equilibria always exist under non-

exclusivity :

Proposition 2 Under non-exclusive competition, there exists a robust Perfect Bayesian

Equilibrium in which each buyer proposes to buy any quantity at a unit price p∗, and the

seller sells one unit to a randomly chosen buyer.

The intuition for this result is the following. Given the other buyers’ offers, any deviating

buyer would have to propose unit prices above p∗ to attract some types of sellers, and

consequently would attract all types below p∗. But all such types would end up selling

one unit, either to the deviating buyer or to the other buyers. Consequently they would

all choose the most profitable manner to sell one unit. The deviating buyer can thus only

hope to sell the same quantity to these types, at a unit price above p∗; but this cannot be

profitable, by definition of p∗.

More striking is the fact that equilibria always exist, even when v is not monotonic.

In the two-type case, the same result obtained under some intuitive assumptions15. These

assumptions are not needed here.

Our second result proves that all equilibrium outcomes must support the Akerlof outcome

:

Proposition 3 Under non-exclusive competition, all robust equilibria are such that the ag-

gregate quantity traded is Q(θ) = 1 if θ < p∗, and Q(θ) = 0 if θ > p∗. Buyers get zero-profits.

14Unless the monopsony profit wm is zero.
15Recall that in the two-type case we have assumed θ < v < v̄ and θ̄ < v̄. Relaxing these assumptions is

possible, but threatens the existence of equilibria. Indeed, in the (quite exotic) case when θ < θ̄ < v and
v̄ < θ̄, no buyer wants to buy from the highest type. The maximum price is then θ̄, but then buyers get
positive profits. In such a case, it can be proven that equilibria do not exist. Interestingly this difficulty
disappears when types are continuously distributed.
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The intuition here can best be understood in the context of a free-entry equilibrium

(a complete proof is given in the Appendix). Suppose that some type θ1 < p∗ sells an

equilibrium quantity Q1 < 1. Because the total quantity sold cannot increase with θ, we

can even choose θ1 such tat w(θ1) > 0. Then an entrant could offer to buy 1−Q1 at a unit

price θ1. Clearly all types above θ1 would reject this new offer. On the other hand, θ1 would

be indifferent, which means that by accepting the offer θ1 would behave optimally; notice

that θ1 would sell one unit. Because types below θ1 are more eager to sell, they must also

choose to sell one, and the entrant’s offer ensures this is possible. Therefore all types below

θ1 would accept the new offer. The entrant’s profit would then be w(θ1)(1 − Q1) > 0, a

contradiction since entry would be profitable.

Therefore equilibrium aggregate quantities and transfers are unique. Because pm ≤ p∗,

there is more trade than in the monopsony case, which does not come as a surprise. Recall

that p∗ verifies w(p∗) = 0, or equivalently

p∗ = E[v(θ)|θ ≤ p∗]

Hence the equilibrium trades correspond to those that would obtain in the classical

Akerlof model. Recall though that our model allows for a divisible good, together with

arbitrary tariffs, in an imperfect competition framework. This result thus provides solid

game-theoretic foundations to Akerlof’s predictions.

4.4 Latent contracts

We also want to examine the role and necessity of latent contracts. As in the two-type case,

define the unit price of a contract (q, t) as the ratio t/q, whenever q is positive. One easily

gets

Proposition 4 Under non-exclusive competition, in any robust equilibrium all contracts

issued have a unit price equal to or below p∗, and all contracts traded have a unit price equal

to p∗.

This result illustrates how competition disciplines buyers; even though they are allowed

to use arbitrary tariffs, at equilibrium they end up trading at a unique price. Even contracts

that are not traded must remain below the unit price p∗; otherwise one of the buyers could

use such a contract and pivot on it to increase its profits.

This result shows that latent contracts cannot specify two high a unit price, because these

contracts can be used by other buyers to make profitable a deviation. On the other hand,

22



latent contracts may also be an impediment to deviations, and thus contribute to support

equilibria. Intuitively, consider types below but close to p∗. Because these types are less

eager to sell, it is possible to deviate by offering to sell a quantity 1−ε slightly below one, at

a price slightly above p∗. If the valuation function v is increasing, then it can be shown that

the deviating buyer would get positive profits from these types. What makes non-exclusive

competition particular is that other types may be attracted as well. Such low types would

accept the offer, and sell their remaining ε to non-deviating buyers, using latent contracts

that these buyers have proposed. These arguments show that contracts that allow to trade

small quantities at a price close enough to p∗ are needed to support equilibria (the proof in

Appendix is a bit more involved):

Proposition 5 Under non-exclusive competition, suppose that v is increasing. Then there

exists q0 > 0 such that all quantities below q0 can be traded thanks to a contract offered at

equilibrium.

This shows that in equilibrium many contracts (in fact a continuum of contracts) must

be made available. The same conclusion was derived in the two-type case, though in the

strong adverse selection case we were only able to show the necessity of a denumerable

number of contracts. A closer examination of the proof to Proposition 5 reveals that the

result depends on whether there are at least two types that trade in equilibrium. The strong

adverse selection case thus appears as a particular case, mainly because only one type is

trading positive quantities at equilibrium.

Still we cannot conclude yet to the necessity of latent contracts to support equilibria.

Indeed the contracts characterized in this proposition may be used at equilibrium by some

types of sellers. It turns out that equilibria without latent contracts may exist. In fact, we

can even build an equilibrium in Direct Revelation Mechanisms. Indeed one can show the

existence of a n-tuple of functions (g1, . . . , gn) verifying the following properties :

∀ i = 1, . . . , n gi([θ, θ̄]) = [0, 1]

∀ i = 1, . . . , n

∫ p∗

[v(θ)− p∗]gi(θ)dF (θ) = 0

∀ θ < p∗,
∑
i

gi(θ) = 1 ∀ θ > p∗, i gi(θ) = 0
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Then each buyer i could propose the following mechanism : tell me your type θ̂, and I

will buy from you the quantity gi(θ̂) at price p∗. The last property ensures that each seller

sells one or zero unit, as in the Akerlof outcome; the second property ensures zero-profits,

and the first property ensures that all such contracts are indeed traded in equilibrium by at

least one type. Therefore there are no latent contracts. Finally these offers indeed form an

equilibrium set of offers, from Proposition 2.

To speak frankly, we think that such a construction is artificial, as it requires different

types to behave differently when they in fact sell the same aggregate quantity for the same

aggregate transfer. The only alternative would be to allow the seller to randomize on the

quantities she sells to the different buyers; then strictly speaking there are no latent contracts.

Notice however that this candidate is not an equilibrium in Direct Revelation Mechanisms,

as the quantity traded by one buyer depends not only on the seller’s type, but also on the

result of the seller’s randomization.

4.5 Assessing efficiency [TO BE COMPLETED]

It is possible to show that the Akerlof outcome is in fact second-best efficient, under some

conditions.

5 Conclusion

In this paper, we have studied a simple imperfect competition model of trade under adverse

selection. When competition is exclusive, the existence of equilibria is problematic, while

equilibria always exist when competition is non-exclusive. In this latter case, aggregate

quantities and transfers are generically unique, and correspond to the allocations that obtain

in Akerlof’s (1970) model. Linear price equilibria can be constructed in which buyers stand

ready to purchase any quantity at a constant unit price.

The fact that possible market outcomes tightly depend on the nature of competition

suggests that the testable implications of competitive models of adverse selection should

be evaluated with care. Indeed, these implications are typically derived from the study of

exclusive competition models, such as Rothschild and Stiglitz’s (1976) two-type model of

insurance markets. By contrast, our analysis shows that more competitive outcomes can

be sustained in equilibrium under non-exclusive competition, and that these outcomes can

involve a substantial amount of pooling.

These results offer new insights into the empirical literature on adverse selection. For

instance, several studies have taken to the data the predictions of theoretical models of
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insurance provision, without reaching clear conclusions.16 Cawley and Philipson (1999) argue

that there is little empirical support for the adverse selection hypothesis in life insurance.

In particular, they find no evidence that marginal prices raise with coverage. Similarly,

Finkelstein and Poterba (2004) find that marginal prices do not significantly differ across

annuities with different initial annual payments. The theoretical predictions tested by these

authors are however derived from models of exclusive competition,17 while our results clearly

indicate that they do not hold when competition is non-exclusive, as in the case of life

insurance or annuities. Indeed, non-exclusive competition might be one explanation for the

limited evidence of screening and the prevalence of nearly linear pricing schemes on these

markets. As a result, more sophisticated procedures need to be designed in order to test for

the presence of adverse selection in markets where competition is non-exclusive.

16See Chiappori and Salanié (2003) for a survey of this literature.
17Chiappori, Jullien, Salanié and Salanié (2006) have derived general tests based on a model of exclusive

competition, that they apply to the case of car insurance.
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Appendix

Proof of Lemma 1. Suppose instead that Q < 1, and consider some buyer i. Buyer i

can deviate by offering a menu consisting of the no-trade contract and of two new contracts.

The first one is

ci(ε) = (qi + 1−Q, ti + (θ + ε)(1−Q)),

where ε is some positive number, and is designed to attract type θ. The second one is

ci(ε) = (qi, t
i
+ ε2),

and is designed to attract type θ. The key feature of this deviation is that type θ can sell

her whole endowment by trading ci(ε) together with the contracts cj, j 6= i. Since the unit

price at which buyer i offers to purchase the quantity increment 1 − Q in ci(ε) is θ + ε,

this guarantees her a payoff increase (1−Q)ε compared to what she obtains in equilibrium.

When ε is close enough to zero, she cannot obtain as much by trading ci(ε) instead. Indeed,

even if this were to increase her payoff compared to what she obtains in equilibrium, the

corresponding increase would be at most ε2 < (1−Q)ε. Hence type θ trades ci(ε) following

buyer i’s deviation. Consider now type θ. By trading ci(ε) together with the contracts cj,

j 6= i, she can increase her payoff by ε2 compared to what she obtains in equilibrium. By

trading ci(ε) instead, the most she can obtain is her equilibrium payoff, plus the payoff from

selling the quantity increment 1−Q at unit price θ+ ε. For ε close enough to zero, θ+ ε < θ

so that this unit price is too low from the point of view of type θ. Hence type θ trades ci(ε)

following buyer i’s deviation. The change in buyer i’s payoff induced by this deviation is

−νε2 + (1− ν)[v(θ)− θ − ε](1−Q)

which is strictly positive for ε close enough to zero if Q < 1. Thus Q = 1, as claimed. �

Proof of Lemma 2. Suppose that p < θ in a separating equilibrium, and consider some

buyer i. Buyer i can deviate by offering a menu consisting of the no-trade contract and of

two new contracts. The first one is

ci(ε) = (qi + 1−Q, ti + (p+ ε)(1−Q)),

where ε is some positive number, and is designed to attract type θ. The second one is

ci(ε) = (qi, t
i
+ ε2),

and is designed to attract type θ. The key feature of this deviation is that type θ can sell

her whole endowment by trading ci(ε) together with the contracts cj, j 6= i. Since the unit
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price at which buyer i offers to purchase the quantity increment 1 − Q in ci(ε) is p + ε,

this guarantees her a payoff increase (1−Q)ε compared to what she obtains in equilibrium.

As in the proof of Lemma 1, it is easy to check that when ε is close enough to zero, she

cannot obtain as much by trading ci(ε) instead. Hence type θ trades ci(ε) following buyer

i’s deviation. Consider now type θ. By trading ci(ε) together with the contracts cj, j 6= i,

she can increase her payoff by ε2 compared to what she obtains in equilibrium. As in the

proof of Lemma 1, it is easy to check that when p + ε < θ, she cannot obtain as much by

trading ci(ε) instead. Hence type θ trades ci(ε) following buyer i’s deviation. The change in

buyer i’s payoff induced by this deviation is

−νε2 + (1− ν){v(θ)(qi − qi)− ti + ti + [v(θ)− p− ε](1−Q)},

which must be at most zero for any ε close enough to zero. Since Q = 1 by Lemma 1,

summing over the i’s and letting ε go to zero then yields

v(θ)(Q− 1)− T + T + n[v(θ)− p](1−Q) ≤ 0,

which, from the definition of p and the fact that Q < 1, implies that

(n− 1)[v(θ)− p] ≤ 0.

Since n ≥ 2, it follows that p ≥ v(θ), as claimed. �

Proof of Lemma 3. Suppose that a separating equilibrium exists, and consider some

buyer i. Buyer i can deviate by offering a menu consisting of the no-trade contract and of

the contract

c̃i(ε) = (qi + 1−Q, ti + (θ + ε)(1−Q)),

where ε is some positive number, that is designed to attract both types of the seller. The

key feature of this deviation is that both types can sell their whole endowment by trading

c̃i(ε) together with the contracts cj, j 6= i. Since the unit price at which buyer i offers to

purchase the quantity increment 1−Q in c̃i(ε) is θ+ε, and since θ ≥ p, this guarantees both

types of the seller a payoff increase (1−Q)ε compared to what they obtain in equilibrium.

Hence both types trade c̃i(ε) following buyer i’s deviation. The change in buyer i’s payoff

induced by this deviation is

{E[v(θ)]− θ − ε}(1−Q) + (1− ν)[v(θ)(qi − qi)− ti + ti],

which must be at most zero for any ε. Since Q = 1 by Lemma 1, summing over the i’s and

letting ε go to zero then yields

n{E[v(θ)]− θ}(1−Q) + (1− ν)[v(θ)(Q− 1)− T + T ] ≤ 0,
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which, from the definition of p and the fact that Q < 1, implies that

n{E[v(θ)]− θ}+ (1− ν)[p− v(θ)] ≤ 0.

Starting from this inequality, two cases must be distinguished. If p < θ, then Lemma 2

applies, and therefore p ≥ v(θ). It then follows that E[v(θ)] ≤ θ. If p = θ, the inequality

can be rearranged so as to yield

(n− 1){E[v(θ)]− θ}+ ν[v(θ)− θ] ≤ 0.

Since n ≥ 2 and v(θ) > θ, it follows again that E[v(θ)] ≤ θ, which shows the first part of

the result. Consider next some pooling equilibrium, and denote by (1, T ) the corresponding

aggregate equilibrium allocation. To show that T = E[v(θ)], one needs to establish that

the buyers’ aggregate payoff is zero in equilibrium. Let Bi be buyer i’s equilibrium payoff,

which must be at least zero since each buyer always has the option not to trade. Buyer i

can deviate by offering a menu consisting of the no-trade contract and the contract

ĉi(ε) = (1, T + ε),

where ε is some positive number. It is immediate that both types trade ĉi(ε) following buyer

i’s deviation. The change in payoff for buyer i induced by this deviation is

E[v(θ)]− T − ε−Bi,

which must be at most zero for any ε. Letting ε go to zero yields

Bi ≥ E[v(θ)]− T =
∑
j

Bj

where the equality follows from the fact that each type of the seller sells her whole endowment

in a pooling equilibrium. Since this inequality holds for each i and all the Bi’s are at least

zero, they must all in fact be equal to zero. Hence T = E[v(θ)], as claimed. �

Proof of Lemma 4. Suppose first that a pooling equilibrium exists, and denote by (1, T )

the aggregate allocation traded by both types in this equilibrium. Then the buyers’ aggregate

payoff is E[v(θ)]−T . One must have T − θ ≥ 0 otherwise type θ would not trade. Since the

buyers’ aggregate payoff must be at least zero in equilibrium, it follows that E[v(θ)] ≥ θ,

which shows the first part of the result. Next, observe that in any separating equilibrium,

the buyers’ aggregate payoff is equal to

(1− ν)[v(θ)− T ] + ν[v(θ)Q− T ] = (1− ν)[v(θ)− p(1−Q)] + νv(θ)Q− T
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by definition of p. We claim that p ≥ v(θ) in any such equilibrium. If p < θ, this follows

from Lemma 2. If p = θ, this follows from Lemma 3, which implies that θ ≥ E[v(θ)] > v(θ)

whenever a separating equilibrium exists. Using this claim along with the fact that T ≥ θQ,

one obtains that the buyers’ aggregate payoff is at most (E[v(θ)]− θ)Q. Since this must be

at least zero, one necessarily has (Q, T ) = (0, 0) whenever E[v(θ)] < θ. In particular, the

buyers’ aggregate payoff (1− ν)[v(θ)− p] is then equal to zero. It follows that p = v(θ) and

thus T = v(θ), which shows the second part of the result. �

Proof of Corollary 1. In the case of a pooling equilibrium, the result has been established

in the proof of Lemma 3. In the case of a separating equilibrium, it has been shown in

the proof of Lemma 4 that the buyers’ aggregate payoff is at most (E[v(θ)] − θ)Q. As a

separating equilibrium exists only if E[v(θ)] ≤ θ, it follows that the buyers’ aggregate payoff

is at most zero in any such equilibrium. Since each buyer always has the option not to trade,

the result follows. �

Proof of Proposition 1. (i) Consider first the mild adverse selection case.

Step 1. Given the menus offered, any best response of the seller leads to an aggregate

trade (1, E[v(θ)]) irrespective of her type. Assuming that each buyer trades the same quantity

with both types of the seller, all buyers obtain a zero payoff.

Step 2. No buyer can profitably deviate in such a way that both types of the seller trade

the same contract (q, t) with him. Indeed, such a deviation is profitable only if E[v(θ)]q > t.

However, given the menus offered by the other buyers, the seller always has the option to

trade quantity q at unit price E[v(θ)]. She would therefore be strictly worse off trading the

contract (q, t) no matter her type. Such a deviation is thus infeasible.

Step 3. No buyer can deviate in such a way that he obtains a strictly positive payoff from

trading with type θ. Indeed, an additional contract (q, t) attracts type θ only if t ≥ E[v(θ)]q,

since she has the option to trade any quantity at unit price E[v(θ)]. The corresponding payoff

for the deviating buyer is then at most {v(θ)− E[v(θ)]}q which is at most zero.

Step 4. It follows from Step 3 that a profitable deviation must attract type θ. An

additional contract (q, t) attracts type θ only if t ≥ E[v(θ)]q, since she has the option to

trade any quantity at unit price E[v(θ)]. However, type θ can then also weakly increase her

payoff by mimicking type θ’s behavior. One can therefore construct the seller’s strategy in

such a way that it is impossible for any buyer to deviate by trading with type θ only.

Step 5. It follows from Steps 3 and 4 that a profitable deviation must involve trading

with both types. Whatever the contract traded by the seller with the deviating buyer, and
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no matter her type, she can sell to the other buyers the remaining fraction of her endowment

at unit price E[v(θ)]. Hence each type of the seller faces the same problem, namely to use

optimally the deviating buyer’s and the other buyers’ offers to sell her whole endowment at

the maximum price. One can therefore construct the seller’s strategy in such a way that

each type selects the same contract from the deviating buyer’s menu. By Step 2, this makes

such a deviation non profitable. The result follows.

(ii) Consider next the strong adverse selection case.

Step 1. Given the menus offered, any best response of the seller leads to aggregate trades

(1, v(θ)) for type θ and (0, 0) for type θ, and all buyers obtain a zero payoff.

Step 2. No buyer can profitably deviate in such a way that both types of the seller trade

the same contract (q, t) with him. Indeed, such a deviation is profitable only if E[v(θ)]q > t.

Under strong adverse selection, this however implies that t − θq < 0, so that type θ would

be strictly worse off trading the contract (q, t). Such a deviation is thus infeasible.

Step 3. No buyer can deviate in such a way that he obtains a strictly positive payoff from

trading with type θ. Indeed, an additional contract (q, t) attracts type θ only if t ≥ v(θ)q,

since she always has the option to trade quantity q at unit price v(θ). The corresponding

payoff for the deviating buyer is then at most zero.

Step 4. It follows from Step 3 that a profitable deviation must attract type θ. An

additional contract (q, t) attracts type θ only if t ≥ θq. However, since θ > E[v(θ)] > v(θ)

under strong adverse selection, type θ can then strictly increase her payoff by trading the

contract (q, t) and selling to the other buyers the remaining fraction of her endowment at

unit price v(θ). It is thus impossible for any buyer to deviate by trading with type θ only.

Step 5. It follows from Steps 3 and 4 that a profitable deviation must involve trading

with both types. Given the offers of the other buyers, the most profitable deviations lead

to trading some quantity q at unit price θ with type θ, and trading a quantity 1 at unit

price θq + v(θ)(1 − q) with type θ. By construction, type θ is indifferent between trading

the contract (1, θq + v(θ)(1 − q)) and trading the contract (q, θq) while selling to the other

buyers the remaining fraction of her endowment at unit price v(θ). As for type θ, she is

indifferent between trading the contract (q, θq) and not trading at all. The corresponding

payoff for the deviating buyer is then

ν[v(θ)− θ]q + (1− ν)[v(θ)− θq − v(θ)(1− q)] = {E[v(θ)]− θ}q,

which is at most zero under strong adverse selection. The result follows. �
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Proof of Proposition 2.

The proof goes through a series of steps.

Step 1. Each buyer must earn zero profit at equilibrium. If not, there will be at least one

buyer i earning a profit strictly smaller than
1

2

[
ν
(
v(θ)Q

e − T e
)

+ (1− ν)
(
v(θ)Qe − T e

)]
at

any equilibrium. Such a buyer can indeed profitably deviate offering the array of contracts

{ci(ε), ci(ε)} where ci(ε) = (Qe, T e + ε) and ci(ε) = (Q
e
, T

e
+ ε), with ε ∈

(
0,

1

2

[
ν
(
v(θ)Q

e −
T
e)

+ (1− ν)
(
v(θ)Qe − T e

)])
. Both types will trade with the deviating buyer, since any of

them can achieve a utility greater than the equilibrium one. In particular, the θ-type will

trade ci(ε), and the θ-type will purchase ci(ε). The deviation is hence profitable for buyer i.

Step 2. There cannot be any pooling equilibrium with both types trading the same allocation

(Qp, T p). At a pooling equilibrium, one should have E[v] ≥ θ, otherwise it would not be

possible to guarantee participation for both types without incurring a loss; following step 1,

one also gets: (Qp, T p) = (1, E[v]). In such a situation, though, there is always an incentive

for any of the inactive buyers, say the i− th one, to propose the contract ci = (Qi, T i) such

that U(θ, ci) > U(θ,Qp, T p) and U(θ, ci) < U(θ,Qp, T p). Given the assumptions θ > θ and

v(θ) > v(θ), there always exists a contract ci satisfying the former two inequalities and such

that v(θ)Qi− T i > 0. That is, ci constitutes a profitable (cream-skimming) deviation which

only attracts the θ-type. At equilibrium, we must therefore have separation of types.

Step 3. At any separating equilibrium it must be v(θ)Q
e

= T
e

and v(θ)Qe = T e. That is,

no cross-subsidization across types takes place. We first remark that if v(θ)Qe−T e > 0, then

any buyer i who is not trading with the θ-type will have an incentive to offer the contract

ci(ε) = (1, T e + (1−Qe)(T e + ε), with ε ∈ (0, v(θ)Qe−T e). Clearly, the θ-type will purchase

ci(ε). By construction, the deviating buyer i will therefore earn a strictly positive profit.

In a similar way, one can show that in the case v(θ)Q
e − T e > 0 any of the buyers who is

not trading with the θ-type can profitably deviate by offering the array of contracts {ci, ci},
where ci is the same as before and ci = (Q

e − δ, T e − θδ(1 + ε))}. If δ > 0 and ε > 0 are

small enough, then the θ-type will select ci while the θ-type has an incentive to trade the ci

contract, which guarantees that the deviation is profitable.

Step 4. At any separating equilibrium the θ-type type will trade the allocation (Qe, T e) =

(1, v(θ)). Since at equilibrium it must be T e = v(θ)Qe, it is immediate to verify that if

Qe < 1, then any of the buyers, say the i − th one, can profitably deviate. Consider the

array {ci, ci(ε)}, where ci is the same as before and ci(ε) = (1, T e + (1 − Qe)(θ + ε)). The
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θ-type will always trade the deviating contract and the buyer earns a strictly positive profit

for every ε ∈ (0,
v(θ)Qe − T e

1−Q
− θ).

Step 5. At any separating equilibrium the θ type will trade the allocation (Qe, T e). Suppose

not. Then, she must be trading an allocation (T ,Q) such that T = v((θ))Q and T < T
e
.18

In this case, any of the buyers (say again the i − th one) can profit by offering the array

{ci, ci(ε)}, where ci is the same as before and ci(ε) =
(
Q + δ, T + δθ(1 + ε)

)
. If δ > 0 and

ε > 0 are small enough, then the θ-type will select ci while the θ-type has an incentive to

trade the ci contract, which guarantees that the deviation is profitable.

Step 6. In a final step, we explicitly construct an equilibrium supporting the aforementioned

allocations. Consider a situation where every buyer posts the array {
(
Qe, T e

)
,
(
Q
e
, T

e)}. It

is a best reply for the θ type to trade (Q
e
, T

e)
and for the θ type to trade {

(
Qe, T e

)
. In

such a context, we have already argued that none of the buyers can profitably deviate by

proposing only one allocation. It remains to show that there is no incentive to deviate by

proposing two allocations either. Suppose then that buyer i proposes the array of contracts

{
(
Q′, T ′

)
,
(
Q
′
, T
′)} anticipating that

(
Q′, T ′

)
will be traded by θ and

(
Q
′
, T
′)

by θ. By

construction, the deviation must guarantee a strictly positive profit on
(
Q′, T ′

)
, so to com-

pensate the negative profit earned on
(
Q′, T ′

)
. To determine the best deviation for any single

buyer, one should set:

T
′ − θQ′ = T − θQ

T
′ − θQ′ = T ′ − θ,

where the first equality guarantees that the buyer is maximizing the rent earned on the θ

type, who is left at his equilibrium utility. The second equality, where Q′ has been set equal

to 1, guarantees that the losses incurred on the θ type are minimized. Considering these

equations together, one can indeed express the deviator’s payoff in terms of Q
′
:

(1− ν)[v(θ)−T ′] + ν[v(θ)Q
′−T ′] = (1− ν)[v(θ)−Q′(1 + θ− θ)−K] + ν[v(θ)Q

′− θQ′−K],

where K = T − θQ. It is then straightforward to observe that the deviator’s profit is

strictly decreasing in Q
′
, as long as ν <

v(θ)− θ
θ − θ

, which concludes the proof.

18If T > T
e

the θ-type would have an incentive to trade the (T ,Q) allocation, contradicting the assumption
of a separating equilibrium.
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Proof of Proposition 3. (i) Consider first the mild adverse selection case. Suppose that

an equilibrium exists in which some buyer i offers a contract ci = (qi, ti) at unit price

ti

qi > E[v(θ)]. Notice that one must have E[v(θ)] − ti ≥ θ(1 − qi) otherwise ci would give

type θ more than her equilibrium payoff. Similarly, one must have qi < 1 otherwise ci would

give both types more than their equilibrium payoff. Any other buyer j could offer a menu

consisting of the no-trade contract and of the contract

cj(ε) = (1− qi, E[v(θ)]− ti + ε),

with 0 < ε < ti−qiE[v(θ)]. If both ci and cj(ε) were available, both types of the seller would

sell their whole endowment at price E[v(θ)] + ε by trading ci with buyer i and cj(ε) with

buyer j, thereby increasing their payoff by ε compared to what they obtain in equilibrium.

Buyer j’s equilibrium payoff is thus at least

E[v(θ)](1− qi)− {E[v(θ)]− ti + ε} = ti − qiE[v(θ)]− ε > 0,

which is impossible since each buyer’s payoff is zero in any equilibrium by Corollary 1. Hence,

no contract can be issued at a price strictly above E[v(θ)].

(ii) Consider next the strong adverse selection case. Suppose that an equilibrium exists

in which some buyer i offers a contract ci = (qi, ti) at unit price ti

qi > v(θ). Notice that

one must have ti ≤ θqi otherwise ci would give type θ more than her equilibrium payoff.

Similarly, one must have v(θ) − ti ≥ θ(1 − qi) and qi < 1 otherwise ci would give type θ

more than her equilibrium payoff. Any other buyer j could offer a menu consisting of the

no-trade contract and of the contract

cj(ε) = (1− qi, v(θ)− ti + ε),

where 0 < ε < min{ti − qiv(θ), θ − v(θ)}. If both ci and cj(ε) were available, type θ would

sell her whole endowment at price v(θ) +ε by trading ci with buyer i and cj(ε) with buyer j,

thereby increasing her payoff by ε compared to what she obtains in equilibrium. Moreover,

since v(θ) + ε < θ, type θ would strictly lose from trading cj(ε) with buyer j. Buyer j’s

equilibrium payoff is thus at least

(1− ν){v(θ)(1− qi)− [v(θ)− ti + ε]} = (1− ν)[ti − qiv(θ)− ε] > 0,

which is impossible since each buyer’s payoff is zero in any equilibrium by Corollary 1. Hence,

no contract can be issued at a price strictly above v(θ). �
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Proof of Corollary 2. (i) Consider first the mild adverse selection case. We know from

Proposition 3(i) that no contract is issued, and a fortiori traded, at a unit price strictly

above E[v(θ)]. Suppose now that a contract with unit price strictly below E[v(θ)] is traded

in equilibrium. Then, since the aggregate allocation traded by both types is (1, E[v(θ)]),

at least one buyer must be trading a contract at a unit price strictly above E[v(θ)], a

contradiction. The result follows.

(ii) Consider next the strong adverse selection case. We know from Proposition 3(ii)

that no contract is issued, and a fortiori traded, at a unit price strictly above v(θ). Suppose

now that a contract with unit price strictly below v(θ) is traded in equilibrium. Then, since

the aggregate allocation traded by type θ is (1, v(θ)), at least one buyer must be trading a

contract at a unit price strictly above v(θ), a contradiction. The result follows. �

Proof of Proposition 4. Fix some equilibrium with menu offers (C1, . . . , Cn), and let

A−i =

{∑
j 6=i

(qj, tj) :
∑
j 6=i

qj ≤ 1 and (qj, tj) ∈ Cj for all j 6= i

}

be the set of aggregate allocations that remain available if buyer i withdraws his menu offer

Ci. By construction, A−i is a compact set.

(i) Consider first the mild adverse selection case. Suppose that the aggregate allocation

(1, E[v(θ)]) traded by both types does not belong to A−i. Since A−i is compact, there

exists some open set of [0, 1]×R+ that contains (1, E[v(θ)]) and that does not intersect A−i.
Moreover, any allocation (Q−i, T−i) in A−i is such that T−i ≤ E[v(θ)]Q−i by Proposition

3(i). Since θ < E[v(θ)] under mild adverse selection, this implies that A−i does not intersect

the set of allocations that are weakly preferred by both types to (1, E[v(θ)]). By continuity

of the seller’s preferences, it follows that there exists some positive ε such that the contract

(1, E[v(θ)] − ε) is strictly preferred by each type to any allocation in A−i. Thus, if this

contract were available, both types would trade it. This implies that buyer i’s equilibrium

payoff is at least ε, which is impossible since each buyer’s payoff is zero in any equilibrium

by Corollary 1. The result follows.

(ii) Consider next the strong adverse selection case. Suppose that the aggregate allocation

(1, v(θ)) traded by type θ does not belong to A−i. Since A−i is compact, there exists an

open set of [0, 1]×R+ that contains (1, v(θ)) and that does not intersect A−i. Moreover, any

allocation (Q−i, T−i) in A−i is such that T−i ≤ v(θ)Q−i by Proposition 3(ii). Since θ < v(θ),

this implies that A−i does not intersect the set of allocations that are weakly preferred by
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type θ to (1, v(θ)). Since the latter set is closed andA−i is compact, it follows that there exists

a contract (qi, t
i
) with unit price t

i

qi ∈ (θ, v(θ)) such that the allocation (1, v(θ)) is strictly

preferred by type θ to any allocation obtained by trading the contract (qi, t
i
) together with

some allocation in A−i.19 Moreover, since t
i

qi > θ, the contract (qi, t
i
) guarantees a strictly

positive payoff to type θ. Thus, if both (1, v(θ)) and (qi, t
i
) were available, type θ would

trade (1, θ) and type θ would trade (qi, t
i
). This implies that buyer i’s equilibrium payoff

is at least ν[v(θ)qi − t
i
] > 0, which is impossible since each buyer’s payoff is zero in any

equilibrium by Corollary 1. The result follows. �

Proof of Proposition 5.

We first introduce some preliminary definitions. Fix an equilibrium with zero-profit, and

a buyer i. Let A−i be the set of (aggregate) pairs (t,q) that can be traded with the other

buyers. Define

z(θ, q) = sup{t′ − θq′ : (q′, t′) ∈ A−i, q′ ≤ q}

In words, z(θ, q) is the highest payoff a seller of type θ can get from other buyers, if her

remaining stock is q. Notice that z ≥ 0, and z is non-decreasing in q. Also, any trade (q′,

t′) satisfying the constraints can be selected by both types. We can thus write

t′ − θ̄q′ = t′ − θq′ + (θ − θ̄)q′ ≥ t′ − θq′ + (θ − θ̄)q

because q′ ≤ q. Taking supremums, we get a useful property :

z(θ̄, q) ≥ z(θ, q) + (θ − θ̄)q (2)

We consider the situation where buyer i deviates adding to his equilibrium offer some

contract (t0, q0), designed to attract only type θ̄. To ensure this, we impose the following IC

constraints

t0 − θq0 + z(θ, 1− q0) < U(θ)

t0 − θ̄q0 + z(θ̄, 1− q0) > U(θ̄)

Clearly these constraints together require that

19This follows directly from the fact that if K is compact and F is closed in some normed vector space X,
and if K ∩ F = ∅, then for any vector u in X, (K + λu) ∩ F = ∅ for any sufficiently small scalar λ.
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θq0 − z(θ, 1− q0) + U(θ) > θ̄q0 − z(θ̄, 1− q0) + U(θ̄) (3)

The resulting profit is then v̄q0− t0, which must be non-positive; and t0 can be computed

from the second IC constraint. Thus we have shown the following implication : if q0 is such

that (3) holds, then

(v̄ − θ̄)q0 ≤ U(θ̄)− z(θ̄, 1− q0) (4)

In the mild adverse selection case, we have U(θ̄) = Ev − θ̄ and Ū + θ̄ = U + θ. (4) is

false if

z(θ̄, 1− q0) > Ev − θ̄ − (v̄ − θ̄)q0 (5)

Let

q∗0 ≡
Ev − θ̄
v̄ − θ̄

Notice that q∗0 < 1. Thus, for q0 > q∗0 the right-hand-side of (5) is negative, and thus (5)

holds. Hence (4) is false, and therefore (3) is false:

z(θ̄, 1− q0) ≤ z(θ, 1− q0) + (θ − θ̄)(1− q0)

But this is the opposite inequality as in (2). We thus have shown that for q0 > q∗0

z(θ̄, 1− q0) = z(θ, 1− q0) + (θ − θ̄)(1− q0)

This is only possible if both types choose to sell q′ = 1− q0 in program z. Letting T−i(q)

be the best price offered for a quantity q, we have shown that T−i(q)− θ̄q is non-decreasing

with q, for q low enough. More precisely : there exists a dense set of quantities q in [0, 1−q∗0],

such that (q, T−i(q)) belongs to A−i, for some function T−i(q) such that T−i(q)− θ̄q is non-

decreasing with q.

In the strong adverse selection case, we have Ū = 0 and U = v− θ. Then the RHS of (4)

is zero, and the LHS is positive if q0 is positive. Therefore (3) cannot hold, and we get

∀ q0 > 0 z(θ, 1− q0) ≥ v − θ − (θ̄ − θ)q0

Recall also that z(θ, q) ≤ (v − θ)q. Thus z must lie between these two bounds :
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(v − θ)q ≥ z(θ, q) ≥ v − θ − (θ̄ − θ)(1− q)

Since these two bounds are equal at q = 1, we can also show that there must be a se-

quence of points in A−i with quantities converging to 1 and transfers converging to v (it is

enough to draw a graph of the two bounds with q on the horizontal axis, and to consider a

non-decreasing z).

Proof of Proposition 6. (i) Consider first the mild adverse selection case.

Step 1. Given the menus offered, any best response of the seller leads to an aggregate

trade (1, E[v(θ)]) irrespective of her type. Since φ < E[v(θ)], it is optimal for each type of

the seller to trade her whole endowment with a single buyer. Assuming that each type of

the seller trades with the same buyer, all buyers obtain a zero payoff. Note also that if any

buyer withdraws his menu offer, the most the seller can achieve by trading with the other

buyers consists in trading with a single buyer.

Step 2. No buyer can profitably deviate in such a way that both types of the seller trade

the same contract (q, t) with him. Indeed, such a deviation is profitable only if E[v(θ)]q > t.

Since φ < E[v(θ)], the highest payoff the seller can achieve by purchasing the contract (q, t)

together with some contract in the menu offered by the other buyers is less than the payoff

from trading the contract (1, E[v(θ)]), which remains available at the deviation stage. She

would therefore be strictly worse off trading the contract (q, t) no matter her type. Such a

deviation is thus infeasible.

Step 3. No buyer can deviate in such a way that he obtains a strictly positive payoff from

trading with type θ. Indeed, trading an additional contract (q, t) with type θ is profitable

only if v(θ)q > t. The same argument as in Step 2 then shows that type θ would be strictly

worse off trading the contract (q, t) rather than the contract (1, E[v(θ)]), which remains

available at the deviation stage. Such a deviation is thus infeasible.

Step 4. It follows from Step 3 that a profitable deviation must attract type θ. An

additional contract (q, t) that is profitable when traded with type θ attracts her only if

t + φ(1 − q) ≥ E[v(θ)], that is, only if she can weakly increase her payoff by trading the

contract (q, t) and selling to the other buyers the remaining fraction of her endowment at

unit price φ. That this is feasible follows from the fact that, when t + φ(1 − q) ≥ E[v(θ)]

and v(θ)q > t, the quantity 1 − q is less than the maximal quantity v(θ)−E[v(θ)]

v(θ)−φ that can be

traded at unit price φ with the other buyers. Moreover, the fact that φ ≥ θ guarantees that

it is indeed optimal for type θ to behave in this way at the deviation stage. However, type θ
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can then also weakly increase her payoff by mimicking type θ’s behavior. One can therefore

construct the seller’s strategy in such a way that it is impossible for any buyer to deviate by

trading with type θ only.

Step 5. It follows from Steps 3 and 4 that a profitable deviation must involve trading with

both types. Whatever the contract traded by the seller with the deviating buyer, and no

matter her type, she will sell to the other buyers the remaining fraction of her endowment

at unit price φ. Hence, each type of the seller faces the same problem, namely to use

optimally the deviating buyer’s and the other buyers’ offers to sell her whole endowment at

the maximum price. One can therefore construct the seller’s strategy in such a way that

each type selects the same contract from the deviating buyer’s menu. By Step 2, this makes

such a deviation non profitable. The result follows.

(ii) Consider next the strong adverse selection case.

Step 1. Given the menus offered, any best response of the seller leads to an aggregate

trade (1, v(θ)) for type θ and (0, 0) for type θ. Since each buyer is not ready to pay anything

for quantities up to ψ−θ
ψ

and offers to purchase each additional unit at a constant marginal

price ψ above this level, it is optimal for type θ to trade her whole endowment with a single

buyer, and all buyers obtain a zero payoff. Note also that if any buyer withdraws his menu

offer, the most the seller can achieve by trading with the other buyers consists in trading

with a single buyer.

Step 2. No buyer can profitably deviate in such a way that both types of the seller trade

the same contract (q, t) with him. This can be shown as in Step 2 of the proof of Proposition

1(ii).

Step 3. No buyer can deviate in such a way that he obtains a strictly positive payoff from

trading with type θ. Indeed, trading an additional contract (q, t) with type θ is profitable

only if v(θ)q > t. Since ψ > v(θ), the highest payoff type θ can achieve by purchasing the

contract (q, t) together with some contract in the menu offered by the other buyers is less

than the payoff from trading the contract (1, θ), which remains available at the deviation

stage. She would therefore be strictly worse off trading the contract (q, t). Such a deviation

is thus infeasible.

Step 4. It follows from Step 3 that a profitable deviation must attract type θ. An

additional contract (q, t) attracts type θ only if t ≥ θq. Two cases must be distinguished. If

q ≤ v(θ)
ψ

, then type θ can trade the contract (q, t) and sell to some other buyer the remaining

fraction of her endowment at price ψ(1− q)− ψ + v(θ). The price at which she can sell her
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whole endowment is therefore at least (θ−ψ)q+ v(θ), which is strictly higher than the price

θ that she obtains in equilibrium since θ > v(θ) + θ−E[v(θ)]
1−ν ≥ ψ. If q > v(θ)

ψ
, then by trading

the contract (q, t), type θ obtains at least a payoff (θ−θ)v(θ)
ψ

, which, since θ > ψ > v(θ), is

more than her equilibrium payoff v(θ) − θ. Thus type θ can always strictly increase her

payoff by trading the contract (q, t). It is therefore impossible for any buyer to deviate by

trading with type θ only.

Step 5. It follows from Steps 3 and 4 that a profitable deviation must involve trading

with both types. Given the offers of the other buyers, the most profitable deviations lead to

trading some quantity q ≤ v(θ)
ψ

at unit price θ with type θ, and trading a quantity 1 at unit

price θq + v(θ)− ψq with type θ. By construction, type θ is indifferent between trading the

contract (1, θq+ v(θ)−ψq) and trading the contract (q, θq) while selling to the other buyers

the remaining fraction of her endowment at price ψ(1 − q) − ψ + v(θ). As for type θ, she

is indifferent between trading the contract (q, θq) and not trading at all. The corresponding

payoff for the deviating buyer is then

ν[v(θ)− θ]q + (1− ν){v(θ)− [θq + v(θ)− ψq]} = [νv(θ) + (1− ν)ψ − θ]q,

which is at most zero since ψ ≤ v(θ) + θ−E[v(θ)]
1−ν . The result follows. �

Proof of Lemma 1 : for further reference, we solve here a slightly more general problem,

that is parameterized by three elements (θ0, θ1, Q1), with θ0 ≤ θ1 and 0 ≤ Q1 ≤ 1. This

problem consists in maximizing

∫ θ1

−∞
[(v(θ)− θ)Q(θ)− U(θ)]dF (θ)

under the IC and (IR) constraints, and two additional constraints that we now spell. The

first constraint imposes that Q(θ) = 1 if θ ≤ θ0. The second constraint imposes that Q(θ) is

at least equal to Q1. Notice that the monopsony problem corresponds to Q1 = 0, θ0 = −∞,

θ1 = +∞.

Using standard techniques, the problem reduces to maximizing

∫ θ1

−∞
[v(θ)− θ]Q(θ)dF (θ)−

∫ θ1

−∞
Q(θ)F (θ)dθ

under the constraint that Q is weakly decreasing, and our two additional constraints. The

objective is linear in Q. Moreover any Q verifying the constraints is a convex combination

of functions indexed by θ′ ≥ θ0, such that Q(θ) = 1 if θ ≤ θ′, and Q(θ) = Q1 if θ > θ′.
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Therefore the buyer cannot loose anything by using such functions; each function corresponds

to offering to buy one unit for a transfer θ′.

Hence the problem reduces to maximizing on θ′ ∈ [θ0, θ1] the buyer’s payoff

∫ θ′

−∞
[v(θ)− θ]dF (θ)−

∫ θ′

−∞
F (θ)dθ +Q1

∫ θ1

θ′
[v(θ)− θ]dF (θ)−Q1

∫ θ1

θ′
F (θ)dθ

=

∫ θ′

−∞
v(θ)dF (θ)− θ′F (θ′) +Q1

∫ θ1

θ′
v(θ)dF (θ) +Q1[θ

′F (θ′)− θ1F (θ1)]

and thus the buyer’s maximum profit is

Q1w(θ1) + (1−Q1) sup
θ′∈[θ0,θ1]

w(θ′) (6)

For the monopsony problem under study, setting (θ0 = −∞, θ1 = +∞, Q1 = 0) proves

Lemma 1. Another consequence of (6) will be used when dealing with competition : then

aggregate profits cannot exceed the bound in (6). Therefore, if we know that Q(θ) = 1 for

θ < p∗, we can apply the formula at (θ0 = p∗, θ1 = +∞, Q1 = 0); Assumption 1 then implies

that Q(θ) = 0 for θ > p∗. QED.

Proof of Proposition 1 : Suppose that a robust equilibrium exists, with outcome (U , Q).

Let us first prove the following result, that is used repeatedly :

Lemma 2 Choose θa < θb, and suppose that the following property holds at (θa, θb) :

∃ θ, θ′ θa < θ < θ′ < θb and Q(θ) > Q(θ′) (7)

Define

q0 =
U(θa)− U(θb)

θb − θa
t0 =

θbU(θa)− θaU(θb)

θb − θa
Then at equilibrium one must have

n

∫ θb

θa

[v(θ)q0 − t0]dF (θ) ≤
∫ θb

θa

[(v(θ)− θ)Q(θ)− U(θ)]dF (θ)

Proof of Lemma 2 : since U ′(θ) is equal to (−Q(θ)) almost everywhere, q0 is computed

as an average of the quantities traded; under (7) it must be that Q(θb) < q0 < Q(θa). Notice

moreover that
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t0 = U(θa) + θaq0 = U(θb) + θbq0

Now suppose that principal i deviates by adding the contract (q0, t0) to his equilibrium

offer. For θ > θb, convexity of U implies

U(θ) ≥ U(θb) + (θ − θb)(−Q(θb))

and using the definitions of q0 and t0 we get

U(θ) ≥ t0 − θq0 + (θ − θb)(q0 −Q(θb))

which is strictly greater than t0 − θq0. Thus θ strictly prefers his equilibrium trade to

trading (q0, t0); from robustness this implies that following the buyer’s deviation θ does

not trade (q0, t0), and does not change his behaviour. The same properties can be shown

similarly for all types θ < θa. Finally consider types such that θa < θ < θb. By convexity we

have

U(θa) ≥ U(θ) + (θ − θa)Q(θ)

U(θb) ≥ U(θ) + (θ − θb)Q(θ)

and from (7) at least one of these inequalities is strict. Multiplying by well-chosen positive

constants and summing, we get

U(θa)(θb − θ) + U(θb)(θ − θa) > U(θ)(θb − θa)

which reduces to t0 − θq0 > U(θ). Hence under robustness all types in ]θa, θb[ choose to

trade (q0, t0). This establishes that for any principal i the variation in profits is

∫ θb

θa

[v(θ)q0 − t0 − bi(θ)]dF (θ)

where bi(θ) is the expected profit that principal i gets from type θ on the equilibrium path.

We get the result by summing over i = 1..n, because
∑

i b
i(θ) = (v(θ)−θ)Q(θ)−U(θ). QED.

Now choose some positive quantity Q0 that is actually traded by some type θ0 in ]θ, θ̄[.

Impose moreover that Q(.) is continuous at θ0 (this is not a strong restriction, as anyway

the non-increasing function Q is continuous almost everywhere). We distinguish two cases,
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in order to show that the buyers’ aggregate profits are zero or below zero when Q0 is traded.

First case : suppose that θ0 is the only type to sell Q0. Then for any θ1 < θ0 < θ2, (7)

holds at (θ1, θ2). We can thus apply Lemma 2, and because t0 = U(θ1) + θ1q0 we obtain

n

∫ θ2

θ1

[v(θ)q0 − U(θ1)− θ1q0]dF (θ) ≤
∫ θ2

θ1

[(v(θ)− θ)Q(θ)− U(θ)]dF (θ)

Since this is valid for any θ1 < θ0 < θ2, one can divide this inequality by (F (θ2)−F (θ1))

and compute the limit when both bounds go to θ0, to get

n[v(θ0)Q0 − U(θ0)− θ0Q0] ≤ (v(θ0)− θ0)Q0 − U(θ0)

or equivalently

(v(θ0)− θ0)Q0 − U(θ0) ≤ 0

which indicates that the buyers’ aggregate profits from trading Q0 cannot be positive.

Second case : the only other case is when Q(θ) = Q0 on some maximum interval (θ2, θ3)

containing θ0. Choose (θ1, θ4) such that θ1 < θ2 < θ3 < θ4. One can now apply Lemma 2

at, say, (θ1, θ3), and take limits as above when θ1 goes to θ2, to obtain

n

∫ θ3

θ2

[v(θ)Q0 − U(θ)− θQ0]dF (θ) ≤
∫ θ3

θ2

[(v(θ)− θ)Q0 − U(θ)]dF (θ)

or equivalently

∫ θ3

θ2

[(v(θ)− θ)Q0 − U(θ)]dF (θ) ≤ 0

Hence we have established that whatever the quantity traded the buyers’ aggregate profits

are zero or below zero. Because aggregate profits must be at least zero, this implies that prof-

its are exactly zero for all quantities traded (apart for a negligible subset of θ), as announced.

We can now extend our analysis of the second case : choose some θ′ such that θ2 < θ′ < θ3,

and apply Lemma 2 at (θ1, θ
′), and take the limit when θ1 goes to θ2 to get

∫ θ′

θ2

[(v(θ)− θ)Q0 − U(θ)]dF (θ) ≤ 0

Similarly apply Lemma 1 at (θ′, θ4), and take the limit when θ4 goes to θ3 to get
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∫ θ3

θ′
[(v(θ)− θ)Q0 − U(θ)]dF (θ) ≤ 0

Because these two functions of θ′ add up to zero, these inequalities imply that they are

identically equal to zero. Summarizing, we have shown that U(θ) = (v(θ)− θ)Q0 for almost

all θ ∈ [θ, θ̄]. Since finally U and v are continuous, then Q must be continuous, and the

equality is in fact valid for all θ.

There remains to check deviations in which a buyer proposes to buy one unit from sellers

with type below some threshold θ0 > θ. To attract exactly such types, the price quoted must

be equal to U(θ0) + θ0. At equilibrium the resulting profit cannot be positive, so that

∫ θ0

(v(θ)− U(θ0)− θ0)dF (θ) ≤ 0

or equivalently

w(θ0) ≤ U(θ0)F (θ0)

This inequality must be valid for any θ0. To study it, first recall that by definition

w′ = (v − θ)f − F , and U = −(v − θ)U ′. We thus get w′U ′ = −[UF ]′, so that we can

compute F from U and w:

F (θ0)U(θ0) = −
∫ θ0

U ′(θ)w′(θ)dθ

Our inequality thus becomes

w(θ0) +

∫ θ0

U ′w′ ≤ 0

or equivalently

∫ θ0

w′(1−Q) ≤ 0

The problem is now that at θ we have w′(θ) = (v(θ)−θ)f(θ), which is positive by assump-

tion; and w′ is continuous, therefore w′ is positive on a neighborhood of θ. Therefore one

must have Q = 1 on a neighborhood of θ. But when Q is a constant on some interval, each θ

in this interval sells the same quantity for a unit price v(θ). For clear incentive-compatibility

reasons, v(.) must then be a constant on this interval. QED.

Proof of Proposition 2 : suppose that all buyers offer to buy any quantity at price p∗,

and the seller chooses randomly across buyers. Suppose a buyer i were to deviate. A type
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θ < p∗ trading (q, t) with i would also sell 1− q at price p∗ to other buyers. θ’s overall payoff

would be

t− θq + p∗(1− q)− θ(1− q) = t− p∗q + p∗ − θ

and should be maximized on the set of contracts (q, t) offered by i. But θ does not impact

this maximization problem; we can thus safely assume that all types below p∗ choose to

trade the same contract (q, t) with buyer i. Moreover the unit price t/q must be above p∗,

otherwise all types would sell zero to i. But then buyer i cannot make any profits from types

below p∗. The same conclusion holds for types above p∗ : even a monopoly cannot extract

any profits from these types (see the formula (6), applied at (θ0 = p∗, θ1 = +∞, Q1 = 1)).

QED.

Proof of Proposition 3 : let us first study necessity. Suppose we are given a robust equi-

librium, whose outcome include the set Ci of contracts offered by each buyer i = 1..n, and

payoffs U(θ) and total quantity traded Q(θ) (possibly random) for each type θ of the agent.

Let us define bi(θ) as the equilibrium expected profit obtained by buyer i from the seller of

type θ. Define also θ0 as the supremum of those types that sell a quantity one (set θ0 = −∞
if this set is empty).

Let θ1 > θ0, and let Q1 < 1 be a quantity that this type sells with strictly positive

probability. BecauseQ1 is possibly traded at equilibrium, there exists (qi,ti)i=1..n in C1×..×Cn
such that

Q1 =
∑
i

qi U(θ1) =
∑
i

ti − θ1Q1 (8)

Choose any buyer i, and consider the following deviation : offer the same subset of con-

tracts Ci as before, plus the contract (qi + 1−Q1, ti + θ1(1−Q1)). The seller reacts to this

deviation depending on his type θ.

If θ > θ1, then θ strictly prefers (qi, ti) to the new contract, because its unit price is too

low. We can then apply part i) of our robustness refinement to conclude that θ does not

change its behavior.

If θ < θ1, then θ can choose to trade the new contract, together with the contracts (qj,

tj)j 6=i that are defined in (8). Then θ would sell exactly one unit, and would get a payoff
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θ1(1−Q1) + ti +
∑
j 6=i

tj − θ = U(θ1) + θ1 − θ > U(θ)

because U(θ) + θ is strictly increasing on [θ0, θ1]. Since U(θ) is the best payoff θ can

get by rejecting the new contract, we have shown that θ strictly gains by trading the new

contract compared to not trading it, and from part ii) of our robustness requirement he must

do so.

Now we can compute the change in profits for buyer i, following the deviation. For

θ ≤ θ1, now buyer i gets

(qi + 1−Q1)v(θ)− ti − θ1(1−Q1)

while at equilibrium i was getting an expected profit bi(θ). Therefore the variation in

profits can be written

∫ θ1

−∞
[(qi + 1−Q1)(v(θ)− θ1) + θ1qi − ti − bi(θ)]dF (θ)

and this must be weakly negative (otherwise the deviation would be strictly profitable).

Using the definition of w, we obtain

(qi + 1−Q1)w(θ1) ≤
∫ θ1

−∞
[ti − θ1qi + bi(θ)]dF (θ)0

Now we can sum over i. Notice that at equilibrium the total profits from θ are a.e.

∑
i

bi(θ) = (v(θ)− θ)Q(θ)− U(θ)

Using also (8), we get

(Q1 + n(1−Q1))w(θ1) ≤
∫ θ1

−∞
[(v(θ)− θ)Q(θ)− (U(θ)− U(θ1))]dF (θ)

where n ≥ 2 is the number of buyers. Let us study the right-hand side integral. We know

that (Q, U − U(θ1)) must satisfy the IC and IR constraints, that moreover Q(θ) ≥ Q1, and

finally that Q(θ) = 1 for θ < θ0. Using the expression for the monopoly profits derived in

(6), we get that the right-hand-side integral must lie below

Q1w(θ1) + (1−Q1) sup
θ∈[θ0,θ1]

w(θ)
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Replacing and simplifying since Q1 < 1, we finally get

nw(θ1) ≤ sup
θ∈[θ0,θ1]

w(θ) (9)

This must hold for all θ1 > θ0, by definition of θ0. We can take supremums to get

n sup
θ1>θ0

w(θ1) ≤ sup
θ1>θ0

sup
θ∈[θ0,θ1]

w(θ) = sup
θ≥θ0

w(θ)

and by continuity of w, and because n ≥ 2, we get

sup
θ≥θ0

w(θ) ≤ 0

¿From Assumption 1, this implies that θ0 ≥ p∗, so that Q(θ) = 1 for θ < p∗. Applying

the result stated in the last paragraph of the proof to Lemma 1, we get that Q(θ) is equal

to one for all θ < p∗, and Q(θ) is zero above p∗. QED.

Proof of Proposition 4 : we only have to show that all contracts issued have a unit

price below p∗. Suppose otherwise, and consider a contract (q > 0, t) with a unit price

strictly above p∗, offered by one of the buyers. Another buyer could then deviate by adding

the contract C ′ = (1 − q, (p∗ − ε)(1 − q)) to its equilibrium offer, where ε is such that

t − p∗q > ε(1 − q). Then clearly types θ above p∗ − ε do not trade this contract, since the

unit price is too low. Types below p∗ − ε could trade this contract together with contract

(q, t) and get

t+ (p∗ − ε)(1− q)− θ = p∗ − θ + t− p∗q − ε(1− q) > p∗ − θ = U(θ)

so that under robustness these types should accept to trade C ′. Overall our buyer gets

∫ p∗−ε
[v(θ)− p∗ + ε][1− q]dF (θ) = (1− q)w(p∗ − ε)

which is positive for ε small and well-chosen, by definition of p∗. Q.E.D.

Proof of Proposition 5 : Fix an equilibrium with zero-profit, and a buyer i. Let A be the

set of (aggregate) pairs (t,q) that can be traded with the other buyers j 6= i, and let Ā be

its closure (under our compactness assumption, we in fact have Ā = A). Define

z(θ, q) = sup{t′ − θq′ : (q′, t′) ∈ Ā, q′ ≤ q}
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(Notice that the value of z would be unchanged if one were to replace Ā by A in the

definition of z.) In words, z(θ, q) is the highest payoff a seller of type θ can get from other

buyers, if her remaining stock is q. Notice that z ≥ 0, and z is non-decreasing in q. Also,

any trade (q′, t′) satisfying the constraints can be selected by both types. We can thus write,

for θ < θ′,

t′ − θ′q′ = t′ − θq′ + (θ − θ′)q′ ≥ t′ − θq′ + (θ − θ′)q

because q′ ≤ q. Taking supremums, we get a useful property :

z(θ′, q) ≥ z(θ, q) + (θ − θ′)q

or equivalently z(θ, q) + θq is non-decreasing with θ. Moreover, if z(θ, q) + θq = z(θ′, q) +

θ′q, then there must exist a contract (1− q0, t) in Ā, that is chosen by both θ and θ′.

Now let θ0 ∈]θ,min(p∗, θ̄)[, and let q0 ∈]0, 1[. Let us distinguish two cases. If z(θ, q) is

a constant on some interval containing θ0, then we are done, from the remark above. The

complementary case is when, for all θ′, θ” such that θ′ < θ0 < θ” we have

z(θ′, 1− q0) + θ′(1− q0) < z(θ0, 1− q0) + θ0(1− q0) < z(θ”, 1− q0) + θ”(1− q0) (10)

In that case buyer i could deviate, by adding to his offer a contract (q0, t0) that we now

describe. We impose that θ0 is indifferent between sticking to the previous offer (selling one

at price p∗) and trading (q0, t0):

t0 − θ0q0 + z(θ0, 1− q0) = p∗ − θ0

Now from (10) all types θ > θ0 strictly prefer the new offer to selling one unit at price

p∗, and all types θ < θ0 strictly prefer to sell one unit at price p∗. For types θ > p∗, notice

that z(θ, 1− q0) = U(θ) = 0, because such a type gets a zero-payoff at equilibrium. Hence θ

accepts the new offer if t0 > θq0, or equivalently θ < θ1, where

t0 = θ1q0 = θ0q0 + p∗ − θ0 − z(θ0, 1− q0)

It is easily checked that θ1 ≥ p∗ if and only if (p∗ − θ0)(1− q0) ≥ z(θ0, 1− q0), which we

know is true from proposition 4. Overall, we have shown that the deviation (q0, t0) attracts
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all types in some interval ]θ0, θ1[, with θ0 < p∗ < θ1, that θ0 and θ1 are indifferent, and that

all other types reject the deviation. Hence the profit realized is

∫ θ1

θ0

[v(θ)q0 − t0]dF (θ)

Now let q0 go to one. Then z(θ0, 1 − q0) goes to zero (once more this is because (p∗ −
θ0)(1− q0) ≥ z(θ0, 1− q0) ≥ 0), so that θ1 and t0 go to p∗. Then the limit of the profit is

∫ p∗

θ0

[v(θ)− p∗]dF (θ)

Because v − p∗ is assumed to be increasing, and w(p∗) =
∫ p∗

(v − p∗)dF = 0, this profit

must be positive; but this cannot be true at equilibrium, a contradiction. QED.
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Figure 1 Attracting type θ by pivoting around (Q, T )
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Figure 2 Attracting type θ by pivoting around (Q, T )
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Figure 3 Attracting both types by pivoting around (Q, T )
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Figure 4 Aggregate equilibrium allocations in the mild adverse selection case
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Figure 5 Aggregate equilibrium allocations in the strong adverse selection case
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Figure 6 Equilibrium allocations under exclusive competition
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