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I do not approve of anything that tampers with natural ignorance.  Ignorance is like a delicate exotic fruit; 
touch it and the bloom is gone. 
 

Lady Bracknel (Gwendolen’s lead manager), The Importance of Being Earnest 
 

 
The marked variation in average IPO initial returns (or underpricing) across time and across issuer types 

(e.g., tech firms and non-tech firms) has thus far eluded explanation.  Some theories seek to explain the fact 

of underpricing (most notably, the information extraction theory developed by Benveniste and Spindt (1989) 

and Benveniste and Wilhelm (1990)), but these theories cannot account for the variation in underpricing we 

observe.  Other theories seek to identify factors that might increase or decrease underpricing relative to what 

it would otherwise have been (e.g., Loughran and Ritter (2002), Ljungqvist and Wilhelm (2003)), but these 

theories take the fact of underpricing as given.  However, there is no theory of which we are aware that both 

explains why underpricing exists in equilibrium and predicts that average initial returns will vary on the scale 

that is observed.  In this paper we derive and test a parsimonious quantitative IPO pricing rule by drawing 

upon Kenney and Klein’s (1983) analysis of block-booking.  Using this rule, we find that we can largely 

explain the time-series and tech firm/non-tech firm variation in average initial returns over the 1986 to 2006 

period–including the extremely high average initial returns on tech firms at the height of the IPO boom in the 

late 1990s.1           

Our analysis follows the “asymmetric information/(potentially) informed investors” path pioneered by 

Rock (1986), Benveniste and Spindt (1989), and Benveniste and Wilhelm (1990) in that an IPO’s 

equilibrium expected initial return emerges from a process in which the underwriting bank (the “bank”) and 

investors deal rationally with informational frictions.  The informational friction we consider is as follows: 

An investor can engage in research (at some slight cost) to ascertain whether an IPO share’s value is below 

its offer price when presented with a concrete take-it-or-leave-it offer to buy by the bank.  Thus, given the 

option to buy, an investor must choose between: 1) engaging in such research (a choice we refer to “lemon-
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dodging”) and opting out of a deal that the bank has happened to overprice; and 2) just purchasing at the 

offer price knowing that there is a chance that he may lose money (a choice we refer to as “buying-the-

block”).  Since having a deal fail is very costly for both the bank and the issuer (Jagannathan and Sherman 

(2006)), we assume that the bank’s objective is to maximize the offer price subject to the condition that the 

deal succeed.  As there is a chance that the deal will fail if investors choose to lemon-dodge, it follows that 

the bank sets an IPO’s offer price at the maximum level such that an investor finds remaining in his state of 

natural ignorance and buying-the-block to be the more profitable choice.        

To see what this price is, suppose that i) IPOs come in a (possibly infinite) number of types, ii) the 

probability of the bank underwriting a given type in each period is constant, and iii) the bank sets one offer 

price for each type.  For a given offer price, one can divide an IPO’s expected return into downside risk (the 

expected return setting all positive return realizations to zero) and upside risk (the expected return setting all 

negative return realizations to zero).  Now, in a one-time game, an investor will always find lemon-dodging 

more profitable than buying-the-block for any offer price above the IPO share’s minimum possible value, as 

lemon-dodging enables him to avoid an offering’s downside risk.  The bank can increase the offer price 

above this minimum and still guarantee that the deal will succeed by entering into a repeat game with a 

coalition of investors and excluding any investor who does lemon-dodge from that coalition (this 

arrangement is known as “block-booking”).   A coalition investor must then trade-off the benefits of lemon-

dodging in the current period (avoiding downside risk on the current IPO) against the cost of being deprived 

access to the bank’s future IPOs.  So, the bank can raise the offer price on the current IPO to the point at 

which the benefits of lemon-dodging at that price just equal the expected benefits of remaining in the bank’s 

coalition.  Since the expected benefit of remaining in the bank’s coalition is constant over time, it follows 

that the bank sets each IPO’s offer price such that its level of downside risk given that price equals this 

constant benefit.  In other words, a banks sets offer prices in a manner that equalizes downside risk across its 
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offerings.  Since the expected benefit of remaining in the bank’s coalition must be positive to make block-

booking work, and since this benefit decreases as offer prices (downside risk) increase, the level of downside 

risk the bank chooses in equilibrium will imply that it underprices its IPO shares on average.  

If a bank does set offer prices to equalize downside risk across its offerings, then a firm’s offer price is 

basically determined by the left tail of its share value distribution while its expected return is heavily 

influenced by the right tail of its share value distribution.  It follows that varying the shape of a firm’s share 

value distribution will lead to a predictable change to its equilibrium expected initial return.  To see if this 

approach can explain the variation in IPO average initial returns that we observe, we sort our sample of U.S. 

IPOs from 1986 to 2006 into types by dividing them along a Tech/NonTech dimension and a time dimension.  

We find that the predicted average initial return the block-booking theory yields for these IPO types is 

generally both accurate and precise.  To illustrate, we predict that the average initial return on Tech IPOs 

from the early stages of the Boom (1995 to 1998) will lie between 20.6% and 23.0%.  The sample average 

initial return on these IPOs is 22.7%.  Our theory does reasonably well even in the extreme case of Tech 

IPOs from the height of the Boom (1999 and 2000), where the average initial return on these IPOs of 74.5% 

falls just outside our predicted range of 76.6% to 101.0%.  

To get the block-booking to work, the bank must engage in a repeat game with the investors in its 

coalition.  This prediction also follows from the information extraction theory mentioned above, and this has 

been extensively investigated (see, for example, Cornelli and Goldreich (2001) and Jenkinson and Jones 

(2004)).  However, previous studies of allocation have been limited to examining the allocation decisions of 

a single bank, and hence have not been able to completely disentangle the repeat game effect from investor-

specific effects (i.e., does a bank preferentially select a set of investors for its IPOs because the bank and 

those investors are in a repeat game or because those investors are more suitable than others?).  We are able 

to bring a new data set to bear on this issue.  Using U.K. data collected for market monitoring purposes, we 
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are able to track (albeit imperfectly) institutional investor participation for a sample of all 130 domestic U.K. 

IPOs that raised more than £10 million over the 1997 to 2000 period.  To the best of our knowledge, this is 

the first data set to enable one to directly track participation by specific investors across multiple banks.  

Controlling for investor-specific effects by using an investor’s overall level of activity in the IPO market, we 

find that the probability that a given bank selects a given investor to participate in one of its IPOs is far 

higher if that investor has participated in the bank’s previous IPOs.  This evidence suggests that this repeat 

interaction arises because banks form coalitions rather than because banks simply prefer some investors to 

others on the basis of investor-specific characteristics.  

In sum, the pricing and allocation evidence discussed above suggests to us that the IPO market looks the 

way it does because banks block-book their IPOs.  To the extent banks do block-book their IPOs, the level of 

average underpricing during the Boom was not “excessive” relative to the observed level of underpricing on 

non-tech IPOs in the pre-Boom period. 

Previous Literature 

The most compelling, and probably the dominant, of the existing theories of underpricing is the 

information extraction (IE) theory developed by Benveniste and Spindt (1989) and Benveniste and Wilhelm 

(1990) and extended by Hanley (1993) and Sherman and Titman (2002).2  The IE theory builds upon the 

analysis of Rock (1986), who shows that an uninformed bank must place shares with both informed and 

uninformed investors in a one-time game.  Since informed investors decline to participate when the bank 

happens to set the IPO’s offer price above its market value, uninformed investors face a severe winner’s 

curse.  To get the uninformed investors to participate, the bank must therefore underprice, on average, to the 

extent that the uninformed investors expect to break even on the shares they actually get.  The IE theory 

begins with the observation that a bank in this situation can do better than Rock’s (1986) analysis allows by 
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entering into a repeat game with a coalition of informed investors whereby the bank extracts the information 

they possess and incorporates that information into the IPO’s offer price.  Of course, the bank must make it 

worthwhile for the informed investors to reveal truthfully, so the bank underprices IPO shares on average and 

excludes from its coalition investors who behave opportunistically (in this context, that mislead the bank).  

Informed investors then must choose between revealing truthfully or misleading the bank once, and the bank 

sets the level of underpricing such that the informed investors find revealing truthfully the more profitable 

action.  The IE theory therefore predicts both that banks underprice IPO shares on average and that they 

allocate shares by entering into a repeat game with a coalition of investors.  Consider both of these 

predictions in more detail.         

To begin with pricing, according to the IE theory the level of expected underpricing will be driven by the 

extent to which an individual investor can affect an IPO’s offer price.  Given competition among investors 

and the large number of investors who participate in an IPO, it seems implausible to us–and we are aware of 

no empirical evidence to suggest–that the level of underpricing implied by the IE theory will be large or will 

vary much across IPOs (Ljungqvist and Wilhelm (2003), Ritter and Welch (2002)).  Furthermore, Jenkinson 

and Jones (2006), who survey institutional investors to see what factors they think influence IPO share 

allocation, find that information provision does not figure as very important.  Thus, while the IE theory is 

consistent with the fact of underpricing, it cannot explain the underpricing patterns we observe in the data.    

This failure by the IE theory–the most developed of the rational agent theories of underpricing–has caused 

attention to turn toward agency conflict and behavioral theories of underpricing.  Ljungqvist and Wilhelm 

(2003), for example, argue that the incentives of entrepreneurs to bargain hard declined during the Boom due 

to changes in firm ownership structure and insider selling behavior, causing underpricing to increase.  

Investigating this explanation empirically, they do find a positive relationship between their measures of 

entrepreneurial incentives and underpricing.  However, in the absence of a sound estimate of what the 
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average level of underpricing during the Boom would have been in the absence of the incentive problems that 

Ljungqvist and Wilhelm (2003) focus upon, it is unclear how important these incentive effects are in 

practice.  Loughran and Ritter (2002) argue that banks exploit limits in entrepreneur rationality to underprice 

excessively while still keeping entrepreneurs satisfied, but this theory does not yield very definite empirical 

predictions and so is difficult to test directly (see Ljungqvist and Wilhelm (2005) for an indirect test).      

Turning now to share allocation, we note that the IE theory and the block-booking theory use the same 

mechanism to deter opportunistic behavior by investors in the current period, namely, a repeat game with on-

average underpricing.  So, while the two theories differ with respect to what banks are trying to get coalition 

investors to do, both theories yield the prediction that banks form investor coalitions.  Our contribution here 

is to provide further evidence that banks do in fact form coalitions. 

We do not investigate how a bank selects investors for its coalition.  Jenkinson and Jones (2006) find that 

institutional investors believe that being in a broking relationship with the bank is a crucial factor.  This idea 

is supported by Reuter (2006), who finds a strong correlation between broking commissions paid by mutual 

funds to a given bank and their holdings of that bank’s IPOs.  One can see why a block-booking bank would 

put its “best” customers into its coalition, as behaving in this way would encourage an (institutional) investor 

who was splitting his brokerage business between several banks to concentrate it at the bank offering 

coalition membership.  This “good customers get IPO shares” finding would be inconsistent with the block-

booking hypothesis only if the amount that such an investor spent on brokerage above and beyond what he 

would have spent anyway eliminates the profits of coalition membership (as then, according to the theory, an 

investor would have an incentive to lemon-dodge as the true all-in profits from coalition membership are 

zero).  Since the empirical evidence on this topic suggests that coalition membership is still profitable even 

when looking at gross commissions (Ljungqvist (2005)), the findings of Jenkinson and Jones (2006) and 

Reuter (2006) are not inconsistent with the block-booking theory.  
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In this paper we focus on the implications of the block-booking theory for pricing and share allocation.  

Barzel, Habib, and Johnsen (2006) use a very similar framework to investigate other aspects of the IPO 

process, such as syndicate behavior, and find that these features of the IPO market also contribute to ensuring 

that investors choose to remain ignorant about an IPO share’s actual market value when deciding whether or 

not to participate in an offering. 

Organization of the Paper 

We derive the pricing and allocation implications of block-booking in Section I.  We test the pricing 

implications of the theory in Section II and the allocation implications in Section III.  Conclusions follow in 

Section IV.       

I.  The Block-Booking Equilibrium 

A.  Set-up and Assumptions 

We model the IPO process as a game involving entrepreneurs with projects to sell, investors with money 

to invest, and a bank that intermediates between the two.  

Projects: In each period t, t = 1…¶, an entrepreneur presents the bank with a project to bring public.  A 

project’s value is determined by a random draw from its share value distribution Ψt, with density ψt and 

support [0, ¶].  A project’s share value distribution (and hence expected value ExVt) is observable by both 

the bank and investors, but a project’s actual value Vt only becomes observable after its IPO is successful.  

Each project consists of a single infinitely divisible share. 

Each project is also of an observable type, with type determined by a random draw from the set of 

possible types W.  The known probability of drawing a given type w equals sw, and all projects of a given 
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type w have an identical share value distribution Ψw.  All projects are of some type, so when we wish to 

emphasize IPO t’s type we will add a type subscript (e.g., the value of the period t IPO that happens to be of 

type w is Vt,w).      

The Bank: In each period the bank observes an IPO’s type, sets its offer price of Pt, and offers shares to 

investors.  We capture the intuition that banks compete for underwriting mandates by assuming that the offer 

price the bank sets on an IPO in period t must be the maximum price consistent with guaranteed success.3  

For simplicity, we also assume that the bank sets one offer price for each IPO type.4  Denote each type’s 

equilibrium price by P*
ω .  The bank selects the investors to whom it offers shares at its discretion.  The 

entrepreneur will compensate the bank for providing this service out of the proceeds of the offering, but we 

do not model the bank/entrepreneur contract here. 

Denote the expected return on IPO t by ExRt, with 
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where the g[x] notation means that g is a function of x.  In the analysis below it will be convenient to divide 

an IPO’s expected return into downside risk d and upside risk U.  An offering’s downside (upside) risk 
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Note that 0
0Pt

t
=

=
δ , and that ∑dt/∑Pt > 0.  It follows from these definitions of d and U that 

ExRt[Pt] = – dt[Pt] + Ut[Pt].      (4) 

Investors: Investors behave competitively, are both risk neutral and identifiable, and maximize expected 

profits (p).  Investors and the bank live forever, implying that the bank and investors can form long-term 

relationships if they so wish.  If selected, an investor invests a fixed amount in an IPO.  While this amount 

can vary across investors, we set it equal to $1 for all investors for convenience.  Investors (like the bank) can 

observe an IPO’s share value distribution.  We incorporate the idea that investors have the ability to become 

informed (perhaps by virtue of their trading activities) by assuming that they can detect (at some small cost e) 

if Vt < Pt when presented with a concrete offer to buy (we treat e as small enough to drop from the analysis 

below).5  We also assume that the decision to become informed is observable by the bank.  Investors have a 

discount parameter of g.  

Sequence of Play: Each period consists of the following phases. 

Phase 1: An entrepreneur presents his project (of an observable type) to the bank. 

Phase 2: The bank sets the project’s offer price Pt and offers the shares to investors whom it selects.  

Phase 3: The selected investors decide whether or not to pay e and learn if Vt < Pt.  

Phase 4: Investors decide whether to purchase.  If they do purchase, the offering is successful and trading 

begins.  
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B.  Pricing IPO Shares 

Suppose that an entrepreneur acting alone presents an investor with a concrete offer to invest in his IPO t 

at the offer price Pt.  The entrepreneur goes public once, so the entrepreneur and the investors interact on just 

this one occasion.  Given the entrepreneur’s offer, the investor must choose between: 1) paying e, learning if 

Vt < Pt, and declining the offer if so (a choice we refer to as lemon-dodging), and 2) buying at the offer price, 

thereby incurring a loss in the event that Vt < Pt (a choice we refer to as buying-the-block).  The investor’s 

expected profit from lemon-dodging is pLD and from buying-the-block is pBB.  It is obvious that 

[ ] [ ] [ ] LD,tttttttBB,t PUPUP πδπ =+<+−= 0      (5) 

for any Pt > 0, as by lemon-dodging the investor avoids nonzero downside risk.  It follows that investors 

always choose to lemon-dodge in this situation.  Hence, an entrepreneur acting alone finds it impossible to 

both set a positive offer price and guarantee an offering’s success.   

This unhappy situation creates a role for an intermediary (the bank) to act on behalf of entrepreneurs.  In 

order to get an investor to buy-the-block, the bank must offer him an inducement that offsets his gains from 

lemon-dodging in the current period.  The bank does so by block-booking its IPOs, which entails the bank 

entering into a repeat game with a coalition of investors who agree to buy-the-block in each period.  Any 

investor who violates this membership condition by lemon-dodging is excluded from this coalition.6  Since in 

equilibrium the bank underprices IPO shares on average (as we demonstrate below), an investor must then 

choose between lemon-dodging once and receiving a stream of on-average underpriced IPO shares.  The 

bank sets offer prices such that investors find remaining in the bank’s coalition the more profitable choice.  

Thus, a block-booking bank attracts entrepreneurs with projects to sell by being able to guarantee an 
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offering’s success at a positive offer price, and it attracts investors into its coalition by making coalition 

membership profitable. 

Consider now the offer price a block-booking bank sets on IPO t.  Denoting the present discounted value 

of the profits an investor expects to obtain by remaining in the bank’s coalition by ct and recalling ∑dt/∑Pt > 

0, the bank chooses t’s offer price Pt,BB such that  

[ ] [ ] [ ]

[ ] .P

PUPUP

ttt

LD,ttttttttBB,t

χδ

πχδπ

=⇒

=−+≥+−= 0
     (6) 

The expected profit an investor obtains by remaining in the bank’s coalition is a function of the set of IPO 

types that the bank brings public (W), the probability of each type appearing (sw), the average underpricing 

on IPOs of each type (ExVw – P*
ω ) , the number of shares bought ($1/ P*

ω ), and the discount parameter (g).  It 

follows that  

( )*
*

T

t
t PExV

P ωω
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ωσγχ −= ∑∑ $1 .     (7) 

Of course, the offer price that the bank selects for an IPO in a given period must be consistent with the 

offer price the bank selects for IPOs of its type, implying that 

.,tPP *
BB,,t ωωω ∀=       (8) 

Consider now the implications of equations (6), (7), and (8) for the pattern of underpricing.  

PROPOSITION 1:  A block-booking bank sets offer prices so as to equalize downside risk on its offerings 

across time and across types. 
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Proof: It is obvious from equation (7) that the per-period expected profit an investor obtains by remaining 

in the bank’s coalition is a constant.  It follows that cn = cm " m, n.  Hence, from equation (6),  

[ ] [ ] κςδχδ κς ,,m,nPP BB,,nnBB,,mm ∀== .    (9) 

\ 

PROPOSITION 2: There exists a unique equilibrium level of downside risk. 

Proof: Denote the level of downside risk one observes in the bank’s offerings by d*.  In a block-booking 

equilibrium it follows from equations (6), (7), and (8) that 
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If the bank sets offer prices of all of its IPOs to zero, then d* = 0 and c > 0, implying that the bank could 

raise offer prices and still guarantee each offering’s success.  If the bank sets offer prices equal to expected 

values, then d* > 0 and c = 0, implying that investors find lemon-dodging a more profitable strategy than 

buying-the-block.  The bank must therefore lower downside risk in order to guarantee the success of its 

offerings.  Since ∑Pw/∑d  > 0 " w, it follows that ∑c/∑d < 0.  Thus, there exists a unique d* (dBB) such that 
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PROPOSITION 3: The expected return on a high-risk IPO will exceed that of a low-risk IPO. 
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Proof: If a bank block-books, then ExRY = − dBB + UY[PY,BB] and ExRZ = − dBB + UZ[PZ,BB].  It follows that 

ExRY = ExRZ if and only if UY[PY,BB] = UZ[PZ,BB], which in general is not true.  If UY[PY,BB] > UZ[PZ,BB] 

(intuitively, if Y’s share value distribution has a long right tail relative to Z’s), then ExRY > ExRZ. 

\ 

  Note that we have been assuming in this analysis that coalition investors face downside risk.  If in 

practice banks eliminate downside risk for these investors through their price stabilization efforts in the 

aftermarket, then the block-booking theory will provide a poor explanation for IPO pricing and share 

allocation behavior.  However, Aggarwal (2000) shows that underwriters repurchase only a small proportion 

of the shares allocated to institutional (presumed coalition) investors in the course of their stabilization efforts 

for poorly performing IPOs, and Prabhala and Puri (1999) find no evidence that “price support is a 

manipulative practice to permit transfers of IPO ownership at artificially high prices.”  Furthermore, 

Boehmer, Boehmer, and Fishe (2006) find that institutional investors flip an average of only 30% of their 

initial allocation in poorly performing IPOs on their first two trading days (and not all of these sales are 

necessarily executed at an above true market value price).  The empirical evidence on price stabilization and 

flipping therefore suggests that institutional investors do indeed face downside risk. 

Given that investors do face downside risk, a bank must engage in a repeat game with a coalition of 

investors in order to get the block-booking equilibrium to work.  In the empirical analysis below we look for 

evidence of this repeat game, but we do not test any additional implications of our theory on share allocation.  

In particular, though we know that banks offer a portion of each offering to retail investors, we do not model 

the factors that determine the optimal institutional (coalition investor)/retail split.  To discuss this matter 

briefly, suppose that the non-block-booking factors that determine the optimal institutional/retail split for a 

given offering are independent of the expected return on that offering.  In this case, how would one expect a 
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block-booking bank to behave?  On the margin, the benefits of increasing the allocation to coalition investors 

is higher for high expected return IPOs as doing so increases the benefits of being in the bank’s coalition (all 

else equal) and enables the bank to increase offer prices generally.  Thus, one would expect to see a block-

booking bank allocate a relatively higher proportion of high expected return IPOs to coalition investors and a 

relatively higher proportion of low (but nonnegative) expected return IPOs to retail investors.  This is indeed 

the pattern that one finds for the institutional/retail split (Boehmer, Boehmer, and Fishe (2006)).  To push this 

line of argument further, Boehmer, Boehmer, and Fishe (2006) also find that institutional investors flip a 

higher proportion of their allocation in higher return offerings.  The ultimate (post-flip) proportion of the 

offering held by the original institutional investors therefore differs hardly at all (on average) across high and 

low return offerings, suggesting that the observed initial allocation pattern creates benefits for the bank 

(increasing coalition profits) without distorting the post-offering (issue date + 3 days) share holding structure 

for the underwritten firms.  To be sure, the factors determining the optimal institutional/retail split are still 

not fully understood.  So, while it would be rash to claim that the block-booking theory predicts this pattern, 

one can say that this pattern is not inconsistent with the theory. 

The key distinguishing implication of the block-booking theory is that a block-booking bank sets offer 

prices so as to equalize downside risk across its offerings.  It follows that, if banks do behave in this way, 

then average initial returns will vary across IPO types in a predictable (both qualitatively and quantitatively) 

manner.  We test the pricing implications of the block-booking theory in Section II.  We test the repeat game 

implication of the block-booking (and information extraction) theory in Section III. 

II.  Downside Risk and IPO Pricing 

Since we cannot observe an individual IPO’s downside risk, we are unable to test the equalization of 

downside risk implication of the block-booking theory on an IPO-by-IPO basis.  Instead, we proceed as 
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follows.  We sort a sample of IPOs into distinct types, and designate one of these types as the Benchmark.  If 

it is true that dBenchmark = dBB for each individual Benchmark IPO, then it will also be true that DBenchmark = dBB, 

where DBenchmark is the observable level of downside risk for the Benchmark IPO initial return distribution.  

The same line of reasoning implies that Df = dBB, where Df is the observable level of downside risk for the 

type f initial return distribution.  We then test the pricing implication of the block-booking theory by seeing 

if 

DBenchmark = Df " f.      (12) 

A. The IPO Sample and IPO Types 

Our sample consists of all common stock U.S. IPOs with an offer date on or between January 1, 1986 and 

December 4, 2006 that: 1) were listed on the SDC Platinum database; 2) had an SDC Exchange Code equal 

to the American Stock Exchange, Nasdaq, NYSE, or OTC; 3) were not classified by SDC as either “financial 

sector” (closed-end funds, REITs, etc.), unit offerings, or rights issues; 4) had an offer price of at least $5; 

and 5) had a closing price on the offer date of at least $1.  These criteria yield a sample of 5,002 IPOs.  An 

IPO’s Initial Return is measured from its offer price to its closing price on the offer date.7   

As we wish to explore the extent to which the block-booking theory can explain the time-series and 

Tech/NonTech variation in average initial returns, we sort our sample IPOs along a Tech/NonTech 

dimension and along a time dimension.   Sorting along the Tech dimension is straightforward–we simply 

classify an IPO as a Tech IPO if SDC assigns that IPO a High Tech Industry classification and as a NonTech 

IPO if SDC does not.  We present average initial returns (AvIR), number of IPOs (N), and N * AvIR for Tech 

and NonTech IPOs by year in Table I. 

TABLE I ABOUT HERE 
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There are not enough Tech or NonTech IPOs in any one year to get an accurate measurement of their 

downside risk.  We therefore group IPOs into continuous multiyear periods that, insofar as possible, form 

distinct N and AvIR regimes.  Taking Tech IPOs first and examining the N * AvIR column of Table I, there is 

clear evidence of a boom starting around 1995 and continuing through 2000, with the years of 1999 and 2000 

being particularly unusual.  We therefore define a Tech/LowBoom type, consisting of Tech IPOs from the 

years 1995 to 1998, and a Tech/HighBoom type, consisting of Tech IPOs from 1999 and 2000.  Given the 

Boom, we also define a Tech/PreBoom type, consisting of Tech IPOs from 1986 to 1994, and a 

Tech/PostBoom type, consisting of Tech IPOs from 2001 to 2006.  Turning to the NonTech IPOs, the regime 

shifts are more muted.  For consistency with our Tech IPO types, we define the following types: 

NonTech/PreBoom, NonTech/Boom, and NonTech/PostBoom.  We present summary statistics on these types 

in Table II. 

TABLE II ABOUT HERE 

These types are necessarily a bit arbitrary, and we explore alternative ways of dividing the sample in a 

robustness check below.  But the exact definitions do not matter very much.  The problem we wish to avoid 

is the following: If all IPOs were of a single type and priced according to some rule, then the downside risk 

of, for example, this year’s return distribution would equal that of last year’s return distribution because IPOs 

of the same type are being priced using the same rule rather than because the bank is setting offer prices to 

equalize downside risk.  In order to provide a test of the block-booking theory, then, one must sort IPOs into 

types with very different return distributions.  In this case, the idea that banks use a pricing rule that just so 

happens to equalize downside risk across types is highly implausible.  The types we define do have very 

different return distributions (see Table II).  So, if we do find that banks set offer prices to equalize downside 

risk, we can be confident that this result is unlikely to be the result of chance. 
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B. Testing for Downside Risk Equalization 

We designate NonTech/PreBoom IPOs as our benchmark type, and we therefore test for downside risk 

equalization between NonTech/PreBoom IPOs and type f IPOs, where f = {Tech/PreBoom, Tech/LowBoom, 

Tech/HighBoom, NonTech/Boom, Tech/PostBoom, NonTech/PostBoom}.  To carry out this test, denote the 

vector of type f offer prices by Pf and its vector of market values by Vf (measured by the closing price on 

the offer date).  Holding Vf constant, consider the impact on the downside risk of the type f return 

distribution (Df) of multiplying Pf by a scalar a (the block-booking offer price adjustment factor).  It is 

obvious that ∑Df/∑a > 0 and that Df|a = 0 = 0.  It follows that there exists an a (af) such that 

DNonTech/PreBoom = Df[Vf, afPf].     (13) 

If banks block-book their IPOs, then af º 1, as the offer prices a bank sets will be precisely those that 

bring about the equalization of downside risk across the two types.  If instead banks systematically price type 

f IPOs higher (lower) than the block-booking theory predicts relative to NonTech/PreBoom IPOs, then af < 

1 (af > 1).  Consequently, one may test our equalization of downside risk result by estimating af and seeing 

if it is close to one. 

Arriving at a point estimate of af is straightforward.  Denote sample values of a parameter by a subscript 

“Sample.”  The point estimate of af (af,Sample) then equals the a such that  

DNonTech/PreBoom,Sample  = Df,Sample[Vf,Sample, af,SamplePf,Sample].   (14) 

Estimating the plausible range of af is not so straightforward, as we see no way of deriving valid 

confidence intervals analytically.  We instead use a bootstrap consisting of 10,000 trials to do so (denoting 

each trial t with a “t” subscript) as follows:8 
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Step 1: Draw bootstrap samples NonTech/PreBoomt and ft. 

Step 2: Measure DNonTech/PreBoom,t[V NonTech/PreBoom,t, PNonTech/PreBoom,t]. 

Step 3: Calculate af,t such that DNonTech/PreBoom,t  = Df,t[Vf,t, af,tPf,t]. 

Step 4: Repeat steps 1-3 10,000 times. 

Step 5: Sort the set of af,t’s this process yields into an ordered list af,Boot. 

Step 6: The l% confidence interval for af (CIf,l) then equals 
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where the “G[[q ]]" notation denotes the qth element of list G. 

 

We subject this method to extensive Monte Carlo testing below and demonstrate that it yields accurate 

confidence intervals. 

C.  Results 

We report point estimates and confidence intervals for af for each IPO type in Table III.  Consistent with 

our prediction that af = 1, we find that: i) the point estimate of af º 1 for all IPO types; ii) the plausible range 

of af is very narrow for all IPO types; and iii) the 99% confidence interval of af includes one in all cases 

except (barely) that of Tech/HighBoom IPOs.  

TABLE III ABOUT HERE 

To illustrate these results, consider the case of Tech/LowBoom IPOs.  Recall from Table II that the 

Tech/LowBoom and NonTech/PreBoom return distributions are very different, with both the average initial 

return and the standard deviation of initial returns on Tech/LowBoom IPOs being almost three times as high 

as that on NonTech/PreBoom IPOs (average initial return, 22.69% vs. 8.22%; standard deviation of initial 
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returns, 37.11% vs. 15.53%).  Yet, despite these considerable differences in mean and standard deviation, the 

downside risk of the two distributions is virtually identical.  The point estimate of aTech/LowBoom is only 1.011, 

with a 99% confidence interval ranging from 0.996 to 1.025.  That is, offer prices on Tech/LowBoom IPOs 

are almost certainly within a percentage point or two of where they need to be to exactly equalize the 

downside risk of Tech/LowBoom IPOs with that of NonTech/PreBoom IPOs.  The equalization of downside 

risk result holds even more closely in the case of Tech/PreBoom and NonTech/Boom IPOs, with aTech/PreBoom 

= 1.003 and aNonTech/Boom = 1.009.  The point estimates of a are a bit further from (but still not statistically 

significantly different than) one in the case of NonTech/PostBoom and Tech/PostBoom IPOs, with 

aNonTech/PostBoom  = 0.986 and aTech/PostBoom = 0.964.      

The Tech/HighBoom results do not fit the theory quite as nicely as the results for the other IPO types, but 

they depart in a very interesting way.  The point estimate of aTech/HighBoom = 0.93, with the 99% confidence 

interval ranging from 0.868 to 0.988.  So, the true value of aTech/HighBoom is probably a bit lower than what the 

block-booking theory predicts.  But, even in this highly extreme case (average return of 74.53% vs. 8.22% 

for NonTech/PreBoom IPOs), Tech/HighBoom offer prices are probably well within 10% of the level needed 

to exactly equalize downside risk. 

The most surprising aspect of the Tech/HighBoom case is that aTech/HighBoom is less than one rather than 

greater than one.  Recalling that an af of less than one means that type f IPO offer prices are systematically 

too high relative to those of NonTech/PreBoom IPOs, rather than too low, our analysis suggests that the 

average initial return on Tech IPOs during the high boom years of 1999 and 2000 should have been higher 

than it was.  In other words, far from leaving money on the table (relative to what one would expect on the 

basis of issuer characteristics alone), issuers took money from the table.  The late 1990s was therefore an 

excellent time to go public from a Tech issuer’s perspective.9 



 20

The analysis above demonstrates that the data that we have are not inconsistent with the conjecture that 

af º 1.  One way to assess the strength of our results is to ask: What would the data have to look like to be 

inconsistent with this conjecture?  The very narrow confidence intervals that we find above (arising from the 

fact that our theory yields quantitative predictions) suggests that systematically altering Pf by only a few 

percentage points either up or down would shift CIf,99% to the extent that it would no longer include one, and 

such is indeed the case (except for Tech/HighBoom IPOs, of course).  Thus, the block-booking theory is 

nothing if not falsifiable.    

D.  Evaluating the Method 

We test the downside risk equalization implication of the block-booking theory by estimating the 

plausible range of af and seeing if it is narrow and close to one, where the plausible range of af is given by 

CIf,99%.  The validity of our results therefore hinges on the accuracy of the confidence intervals that our 

bootstrap estimation procedure yields.  In this section we explore the accuracy of our bootstrap estimation 

procedure using a Monte Carlo analysis.   

We begin by assuming that NonTech/PreBoomSample and fSample are the population of NonTech/PreBoom 

and type f IPOs.  Based upon these populations, we calculate af,True.  We then draw 1,000 bootstrap samples 

from these populations and analyze each of these samples as we did our actual sample above.  This process 

yields a set of 1,000 confidence intervals for af (at each level of coverage), which we denote by CIf,l,t, t = 

1...1,000.  A confidence interval is accurate if Af,l = Prob (af,True œ CIf,l) = l.  To estimate Af,l, we first form 

an indicator function If,l,t, with If,l,t = 1 if af,True œ CIf,l and If,l,t = 0 otherwise.  Our point estimate of Af,l 

equals 
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We report the results of our Monte Carlo analysis in Table IV.  We find that the point estimate of Af,l is 

close to and not statistically significantly different from l (with one exception) for all IPO types and for l = 

0.95 and 0.99.  These results suggest that the confidence intervals we estimate above are accurate.     

TABLE IV ABOUT HERE 

In carrying out our downside risk equalization test, we sort our sample of IPOs into types.  Since this 

necessarily somewhat arbitrary sorting introduces the possibility of “partition bias,” we experiment with 

alternative sorting schemes for the IPOs in our sample.  In particular, we examined the following IPO types: 

AllTech (all Tech IPOs in the sample), Tech/HighBoomA (Tech IPOs from 1998, 1999, and 2000), 

Tech/LowBoomA (Tech IPOs from 1995, 1996, and 1997), Tech/AllBoom (Tech IPOs from 1995 to 2000), 

Tech/HighReturn (Tech IPOs from years in which the average initial return on Tech IPOs exceeded 20%), 

Tech/LowReturn (Tech IPOs from years in which the average initial return on Tech IPOs did not exceed 

20%), and NonTech/Post1994.  In the case of the Tech IPO types, we also test for the equalization of 

downside risk with a benchmark consisting of all NonTech IPOs in addition to the NonTech/PreBoom 

benchmark we use above.  For each IPO type/Benchmark combination we obtain results that conform to 

those presented above.  We therefore conclude that our equalization of downside risk result is not an artifact 

of the way we classify our sample IPOs.         

E. The Time-Series and Tech/NonTech Variation in Average Initial Returns 

We now explore the extent to which the block-booking theory can illuminate the causes of the heretofore 

puzzling time-series and Tech/NonTech variation in average IPO initial returns.  One may calculate the 
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average initial return one would expect to observe on type f IPOs given that banks do block-book by: 1) 

multiplying type f IPO offer prices by af; and 2) calculating an average initial return with these adjusted 

offer prices holding share market values constant.  Denote the average initial return predicted by the block-

booking theory by AvIRf,BB[Vf, afPf], and the sample average initial return on type f IPOs by 

AvIRf,Sample[Vf, Pf].  The difference between the block-booking implied average initial returns and actual 

average initial returns is RGapf, with  

RGapf =  AvIRf,BB[Vf, afPf] − AvIRf,Sample[Vf, Pf].     (17) 

Since we observe af imperfectly, we plot RGap using the plausible range of af that we derived above (see 

Table III).  We present these RGap measures in Table V.    

TABLE V ABOUT HERE 

Table V reveals that, in the case of Tech/PreBoom, NonTech/Boom, Tech/LowBoom, NonTech/PostBoom, 

and Tech/PostBoom IPOs, the block-booking point estimate of average initial returns is within a few 

percentage points of the sample average initial return.  Furthermore, the plausible range of the block-booking 

predicted average initial return for these IPOs is very narrow.  In these cases, then, the average initial return 

predicted by the block-booking theory accurately and precisely tracks the actual average initial return on 

IPOs across time and across Tech and NonTech IPOs.  As one might expect from the downside risk analysis 

above, the average initial return the block-booking theory predicts for Tech/HighBoom IPOs is a bit further 

from the sample average initial return (RGap point estimate, 13.2%; RGap range, 2.1% to 26.5%).  But, 

given that the average initial returns on these IPOs is 75%, our predicted return is still in the right ballpark.  

The block-booking pricing rule can therefore largely explain both the time-series and Tech/NonTech 

variation in average IPO initial returns over the 1986 to 2006 period.  This result suggests that this variation 
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in average initial returns primarily arises from differences in the share value distributions of the IPOs hitting 

the market rather than from any change of behavior by either the underwriting banks or the entrepreneurs.           

III. Share Allocation and Investor Coalitions 

To get block-booking to work, a bank must engage in a repeat game with a coalition of investors.  We 

know from both the anecdotal evidence and the single-bank studies of share allocation by Cornelli and 

Goldreich (2001) and Jenkinson and Jones (2004) that banks are far more likely to select some investors than 

others when allocating IPO shares.  Yet, this fact is not in itself sufficient to establish that banks form 

investor coalitions, as banks may favor a set of investors for two reasons.  First, it could be the case that some 

investors are more suitable than others on the basis of their own characteristics (e.g., they operate under an 

investment strategy that enables them to commit to not flipping shares).  In this case, one would expect banks 

to disproportionately draw the same (more suitable) investors from the pool of all possible investors each 

period even if they chose investors independently for each IPO.10  Second, the allocation pattern we observe 

could arise because banks and their favored investors are engaged in a repeat game.  In this case, a bank will 

be far more likely to select an investor in its coalition than one would predict on the basis of that investor’s 

own characteristics.  So, in order to demonstrate that banks select investors in a manner consistent with what 

a block-booking equilibrium requires, one must disentangle the Own Characteristics effect from the 

Coalition effect and show that it is the Coalition effect that drives the favored investor phenomenon. 

We propose to disentangle these two effects in the following manner.  We have been able to acquire 

regulatory data from the U.K. that provides (imperfect) investor-level participation data for all large U.K. 

IPOs over the 1997 to 2000 period.11  We sort the IPOs into a Control Group and a Test Group.  We measure 

the Own Characteristics effect by an investor’s overall level of activity in Control Group IPOs, and we 

measure Coalition Membership in a given bank’s coalition by determining if an investor participated in that 
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bank’s control group IPOs.  Using these data, we then estimate the probability that a bank selects an investor 

for IPOs in its Test Group as a function of that investor’s Own Characteristics and Coalition Membership.  

The block-booking theory predicts that the relationship between Coalition Membership and participation will 

be highly significant both economically and statistically.   

A. Description of the Data 

Our IPO sample for this portion of the analysis consists of all new equity offerings on the London Stock 

Exchange (i.e., that appear on the Official List) or the London Stock Exchange’s Alternative Investment 

Market (AIM) over the period January 1, 1997 to August 3, 2000 that raised at least £10 million, excluding 

unit offerings and investment trusts.  These criteria leave us with a sample of 130 IPOs (see Table VI for 

summary statistics on the IPO sample), which we order chronologically.  We assign each IPO to its 

bookrunner(s).  We put (roughly) the first two-thirds of each bank’s IPOs into the Control Group and the 

remaining IPOs into the Test Group.  Banks that underwrote less than three IPOs have all of their IPOs 

allocated to the Control Group (where they affect the Own Characteristics measure).  One may find the 

Control Group/Test Group split by bank in Table VII. 

TABLE VI ABOUT HERE 

TABLE VII ABOUT HERE 

Turning now to the investor data, the U.K.’s financial regulator the Financial Services Authoity (“FSA”) 

collected secondary market trading data for each of the IPOs in our sample for their first 40 trading days for 

market monitoring purposes.  Each firm executing a trade was required to report the trade, their counterparty, 

and the Ultimate Transactor–either the executing firm itself in the case of Principal trades or the firm on 

whose behalf the trade was executed for Agency trades.  Though firms were required to report only 



 25

secondary market trades, it was often the case that they reported primary market trades as well.  Ultimate 

Transactors are reported on an “Authorized Firm” level, enabling us to track the transactions of individual 

authorized firms across multiple banks.  With the exception of hedge funds, most of the entities that one 

would think of as “institutional investors” must be authorized by the FSA to carry out investment business 

activities.12  It will generally be the case that an “Authorized Firm” will correspond to an economic entity.  

However, investment banks themselves usually consist of a large number of separate “Authorized Firms.”  In 

the case of banks, then, we consult with banking supervisors and aggregate the “Authorized Firms” that 

constitute an economically defined bank into a single entity for our analysis.  We do not count the book or 

syndicate members as participants in any IPO that they themselves underwrite.13  Our investor sample 

therefore consists of authorized firms that took a position in a share allocation sample IPO within its first 40 

trading days; 10,303 such firms did so. 

We count a sample investor (SI) as participating in an IPO if either: 1) that investor bought shares in the 

IPO at the offer price on the offer date (the direct observation channel); or 2) that investor had a negative net 

position in the IPO’s stock at the close of its 40th trading day.  We include the negative net position channel 

because we reasoned that an investor selling shares from “no where”–recall that our data consist of all 

secondary market transactions–most likely acquired those shares in an unreported primary market 

transaction.  In total, we identify 4,322 IPO participants.  Of this total, 3,804 enter via the original purchase 

channel and the remaining 518 enter via the negative net position channel (see Table VIII).  The investors 

who participate in at least one IPO participate a total of 7,697 times in the 130 sample IPOs (i.e., each 

investor who participates in at least one IPO participates in an average of 1.8 IPOs).  While only 2% of SI’s 

participate in five or more IPOs, these investors account for 30% of total participation (see Table IX).  When 

allocating IPO shares, banks definitely favor a small charmed circle of all investors.14  

TABLE VIII ABOUT HERE 
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TABLE IX ABOUT HERE 

B. Testing for Coalitions 

The probability that a bank B selects an investor I to participate in IPO t will be a function of that 

investor’s own level of suitability (OwnCharacteristicsI), whether or not I is in B’s coalition 

(CoalitionMembershipI,B), the characteristics of the IPO itself (Dealt), and the strength of B’s coalition 

(CoalitionStrengthB).  We therefore test for the existence (and importance) of investor coalitions by 

estimating the Probit equation 

 YI,t,B = F[OwnCharacteristicsI, CoalitionMembershipI,B, Dealt, CoalitionStrengthB].    (18) 

The dependent variable YI,t,B is equal to one if investor I participates in Test Group IPO t underwritten by 

bank B, and zero otherwise.  

We capture the impact of OwnCharacteristicsI on an investor’s selection probability with the variable 

GenPartI, where GenPartI equals the overall proportion of control group IPOs in which investor I took a 

position.15  

We measure CoalitionMembershipI,B with the variables BookOneI,B, BookManyI,B, and GenPartI * 

BookManyI,B.  BookOneI,B equals one if investor I participated in only one of B’s control group IPOs, and 

zero otherwise.  BookManyI,B equals one if investor I participated in at least two of B’s control group IPOs, 

and zero otherwise.  

Given the noise in our data, we expect BookMany to be a stronger indicator of coalition membership than 

BookOne.  We include a GenPart/BookMany interaction term to take into account the possibility that the 

boost a given investor’s selection probability receives when that investor becomes a member of a bank’s 
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coalition may be smaller if that investor’s selection probability is already elevated due to that investor’s own 

characteristics.16  

All else equal, one would expect a bank to choose more investors for bigger IPOs.  To capture this Dealt 

impact upon investor selection probabilities, we include the natural log of total proceeds (LnSizet) in the 

Probit. 

To explore the extent to which coalition strength varies across banks, we include individual bank coalition 

strength dummy variables in the regression.  A dummy BCSB equals one if bank B is the bookrunner for IPO t 

and if investor I participated in at least one of B’s control group IPOs (i.e., if BookOne or BookMany equals 

one), and zero otherwise.  Each major bank has its own variable, and we assign a single dummy SecondTier 

to all minor banks.  For reasons of confidentiality, we label the major bank variables BCS1 to BCS9. 

One may find summary statistics for these variables in Table X (except IPO size, which we report with the 

IPO summary statistics in Table VI).  For the Probit our investor sample will consist of SI’s that took a 

position in at least one Control Group IPO. Our control group of IPOs yields a list of 7,491 sample investors, 

and our test group consists of 35 IPOs.  We therefore have 262,185 observations of possible participation (35 

IPOs * 7,491 investors).   

TABLE X ABOUT HERE 

C. Results 

We report our Probit estimation in Table XI.17  To begin with the key result for block-booking, the 

regression indicates that both BookOne and BookMany are highly significant, with BookMany having a 

considerably stronger effect than BookOne.  So, an investor’s participation in a bank’s previous IPOs does 
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significantly increase that investor’s probability of participating in that bank’s future IPOs after controlling 

for that investor’s general level of suitability. 

TABLE XI ABOUT HERE 

An investor’s selection probability is also significantly influenced by his general level of activity in the 

IPO market (GenPart), providing further evidence to support the hypothesis that banks find some investors to 

be more suitable recipients of IPO shares than others.  The BookMany/GenPart interaction term is negative, 

indicating that coalition membership provides a bigger boost to the selection probability of an investor that 

the bank would be unlikely to choose on the basis of that investor’s specific attributes alone.  Our analysis 

also indicates that the importance of coalition membership varies considerably across the banks in our sample 

as some of the BCS dummies are economically and statistically significant.  We expect that banks with strong 

coalitions will have a competitive advantage in the underwriting market, and we intend to explore this 

relationship in future work.   

To illustrate the economic significance of these results, we present point estimates of an investor’s 

selection probability in Table XII as a function of the investor’s general level of involvement in the IPO 

market, bank coalition strength, and the investor/bank relationship.  Consider, for example, the selection 

probability of a highly suitable investor (GenPart = 0.2) for a large IPO (LnSize = 5.16).  If the investor is a 

member of the bank’s coalition (BookMany = 1) and if the bank’s coalition is strong, the bank selects that 

investor with probability 0.45.  If the bank’s coalition is weak, the investor’s selection probability falls to 

0.09.  If that investor is not a member of the bank’s coalition, the bank selects that investor with a probability 

of 0.02. 

TABLE XII ABOUT HERE 



 29

We note here that, if anything, our analysis may understate the importance of coalition membership.  First, 

we observe investor participation imperfectly, which weakens our ability to detect coalitions.  Second, we 

assign each IPO to a single bank (its book), whereas IPOs are usually underwritten by multibank syndicates.  

Our coalition membership variables will then be noisy indicators of actual coalition membership (an investor 

may appear in a book’s coalition because it received shares from a syndicate member rather than the book 

itself).  Third, GenPart may measure (in part) membership in multiple coalitions (banks may form coalitions 

from the same set of suitable investors), implying that GenPart will pick up some of the effect of coalition 

membership.  In light of these potential biases, we are confident that our coalition membership results arise 

because banks form coalitions rather than as an artifact of the data. 

In sum, the empirical evidence indicates that banks form coalitions of investors to whom they 

preferentially allocate shares in their IPOs.  It follows that the allocation evidence is also consistent with the 

hypothesis that banks block-book their IPOs. 

IV. Conclusion 

 “Betrayal on Wall Street” (in the words of a Fortune headline) is perhaps the consensus explanation for 

the extremely high average initial returns on IPOs during the boom of the late 1990s (though academics 

typically express this idea using the more refined term “agency conflict,” as in Ritter and Welch (2002)).  

According to this view, “rather than raise the most money for the side they’re supposed to be 

representing...[investment banks] ply mutual funds and hedge funds with artificially cheap shares...and then 

get repaid with high commission stock trades.”18  IPO firm management fell prey to the machinations of the 

bankers through a combination of naivety (nonrational decision making) and sloth (incentives insufficiently 

strong to induce them to perform the job shareholders hired them to do).  Indeed, one can seemingly chart the 
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decline of ethical standards in the IPO market by calculating the “money left on the table” as a result of 

underpricing (see Ritter and Welch (2002) for the numbers).      

While the story of greed and corruption destroying a sound institution such as the IPO market in the pre-

Boom years is a satisfying one, we find it implausible to suppose that investment bankers have become 

greedier and/or that entrepreneurs have become more irrational or slothful.  The block-booking theory posits 

instead that the IPO market looks the way it does because it has evolved to solve the very difficult problem of 

how to place shares of uncertain value with investors who may be knowledgeable enough to lemon-dodge 

(that is, with investors who might know just enough to know when the bank gets a share’s offer price wrong, 

giving them the opportunity to decline to participate in offerings the bank happens to overprice).  To 

successfully market IPOs in these circumstances, a bank forms a coalition of investors and offers them the 

following deal: The investors will always accept the shares the bank offers, the bank will in turn underprice 

shares on average (though not in each case) so as to make coalition membership valuable, and the bank will 

exclude any investor that lemon-dodges from the coalition.  An investor then faces the choice of remaining in 

the bank’s coalition and getting on-average underpriced shares in the future or lemon-dodging once.  The 

bank underprices each offering to the extent necessary to make remaining in the coalition the more profitable 

choice. 

The block-booking theory yields the very strong quantitative prediction that banks set offer prices so as to 

equalize downside risk across the IPOs they underwrite.  Testing this implication with data on U.S. IPOs 

over the 1986 to 2006 period, we find that banks do set offer prices in a manner that equalizes downside risk.  

The block-booking theory is the only theory of the IPO process of which we are aware that yields this 

prediction. 
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The block-booking theory also implies that a bank will allocate IPO shares by engaging in a repeat game 

with a coalition of investors (in common with the information extraction theory pioneered by Benveniste and 

Spindt (1989) and Benveniste and Wilhelm (1990)).  Using a unique data set that allows us to identify 

(imperfectly and with noise) original investors in all large U.K. IPOs over the 1997 to 2000 period, we find 

that banks do indeed form coalitions.  To illustrate, a bank with a strong coalition underwriting a large 

offering is about 20 times more likely to allocate shares to a coalition investor (an investor with whom the 

bank has dealt before) than to a noncoalition investor, controlling for that investor’s general level of activity 

in the IPO market.  The pricing and allocation evidence together suggest to us that the IPO market looks the 

way it does because banks block-book their IPOs. 

If a bank block-books, then an IPO’s expected return will be determined by the equilibrium level of 

downside risk and its share value distribution.  That is, if a bank sets an IPO’s offer price to equalize 

downside risk, an IPO’s offer price is determined by the left tail of its return distribution.  Holding the left 

tail (and so downside risk) of the share value distribution constant, stretching out the right tail will increase 

an offering’s expected value and thus (given a constant offer price) its expected return.  An IPO with a share 

value distribution with a long right tail will then have a high expected return in equilibrium…and the share 

value distribution of tech IPOs during the Boom had a very long right tail.  Indeed, average initial returns on 

tech IPOs during the Boom were about where one would expect them to be on the basis of their own 

characteristics and the equalization of downside risk that follows from block-booking.  If one wishes to 

assign blame for this rise, then, one can but conclude: The fault lies not in the stars (Mary Meeker…), but in 

the firms themselves. 
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Table I 
Pricing Analysis: IPO Sample Description and Summary Statistics 

 
Our sample consists of all common stock U.S. IPOs with an offer date on or between January 1, 1986 and 
December 4, 2006 that: 1) were listed on the SDC Platinum database; 2) had an SDC Exchange Code equal 
to the American Stock Exchange, Nasdaq, NYSE, or OTC; 3) were not classified by SDC as either “financial 
sector” (closed-end funds, REITs, etc.), unit offerings, or rights issues; 4) had an offer price of at least $5; 
and 5) had a closing price on the offer date of at least $1.  These criteria yield a sample of 5,002 IPOs.  We 
classify an IPO as a “Tech IPO” if SDC assigns that IPO a High Tech Industry classification and as a 
“NonTech IPO” if SDC does not.  An IPO’s Average Initial Return is measured from its offer price to its 
closing price on the offer date. 

 Tech IPOs  NonTech IPOs 

Year Number 
(N) 

Average 
Initial Return 

(%) 

N * AvIR  Number 
(N) 

Average Initial 
Return (%) 

N * AvIR 

1986 

1987 

1988 

1989 

1990 

1991 

1992 

1993 

1994 

1995 

1996 

1997 

1998 

1999 

2000 

2001 

2002 

2003 

2004 

2005 

2006 

102 

82 

33 

36 

40 

116 

143 

155 

131 

209 

308 

179 

123 

340 

285 

40 

30 

29 

84 

59 

46 

6.66 

6.53 

6.88 

11.87 

10.54 

22.00 

12.14 

15.23 

11.25 

26.81 

17.87 

16.28 

37.13 

86.55 

60.19 

18.18 

6.38 

12.17 

13.78 

8.92 

7.98 

6.79 

5.35 

2.27 

4.28 

4.21 

25.52 

17.37 

23.60 

14.74 

56.03 

55.03 

29.14 

45.67 

294.26 

171.54 

7.27 

1.91 

3.52 

11.58 

5.26 

3.67 

 218 

168 

53 

62 

58 

119 

187 

276 

205 

158 

239 

184 

100 

74 

44 

25 

33 

22 

65 

76 

66 

5.61 

4.77 

6.54 

6.37 

10.42 

9.79 

8.44 

12.22 

7.69 

13.60 

15.03 

11.98 

13.70 

22.07 

33.23 

26.61 

20.51 

13.18 

10.84 

10.09 

10.64 

12.23 

8.01 

3.47 

3.95 

6.04 

11.65 

15.77 

33.73 

15.77 

21.50 

35.92 

22.04 

13.70 

20.13 

14.62 

6.65 

6.77 

2.90 

7.04 

7.67 

7.02 
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Table II 
IPO Types 

 
We sort IPOs along a Tech/NonTech dimension and a time dimension (PreBoom, Boom, and PostBoom).   
We classify an IPO as a Tech IPO if SDC assigns that IPO a High Tech Industry classification and as a 
NonTech IPO if SDC does not.  We define Boom as the years 1995 to 2000, PreBoom as the years 1986 to 
1994, and PostBoom as the years 2001 to 2006.  The extremely high number of Tech IPOs during 1999 and 
2000, and the extremely high average initial returns on these IPOs, caused us to split the Boom period into a 
LowBoom (1995 to 1998) and HighBoom (1999 and 2000) period for Tech IPOs.    

IPO Type Definition Number Average Initial 
Return (%) 

Standard 
Deviation of 

Initial Returns 

NonTech/PreBoom NonTech, 1986 - 1994 1346 8.22 15.53 

Tech/PreBoom Tech, 1986 - 1994 838 12.43 30.15 

NonTech/Boom NonTech, 1995 - 2000 799 15.53 26.61 

Tech/LowBoom Tech, 1995 - 1998 819 22.69 37.11 

Tech/HighBoom Tech, 1999 - 2000 625 74.53 95.22 

NonTech/PostBoom NonTech, 2001 - 2006 287 13.26 35.31 

Tech/PostBoom Tech, 2001 - 2006 288 11.54 17.48 
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Table III 
The Equalization of Downside Risk 

 
The block-booking theory predicts that a bank sets offer prices to equalize downside risk across its offerings, 
where downside risk equals an IPO’s expected return setting all positive return realizations to zero.  We test 
this conjecture by pooling together our sample IPOs into the types defined in Table II and seeing if the 
downside risk of the type f return distribution Df, f = {Tech/PreBoom, Tech/LowBoom, Tech/HighBoom, 
Tech/PostBoom, NonTech/Boom, NonTech/PostBoom}, equals that of a benchmark type, which we take to be 
NonTech/PreBoom IPOs.  To carry out this test, note that there exists a block-booking offer price adjustment 
factor af such that DNonTech/PreBoom[VNonTech/PreBoom, PNonTech/PreBoom] =  Df[Vf, afPf], where Pf (Vf) denotes the 
offer price (share value) vector of type f IPOs and the g[x] notation means that g is a function of x.  If banks 
do set offer prices to equalize downside risk, then af º 1.  If af > 1 (af < 1) then type f IPOs are 
systematically underpriced (overpriced) relative to the benchmark NonTech/PreBoom IPOs.  The point 
estimate of af (af,Sample) equals the a such that DNonTech/PreBoom,Sample = Df,Sample[Vf,Sample, af,SamplePf,Sample].  We 
estimate the plausible range of af using a bootstrap consisting of 10,000 trials.  In each trial t we draw a 
bootstrap sample from the type f sample and from the NonTech/PreBoom sample and solve for af,t, which is 
the a such that DNonTech/PreBoom,t = Df,Sample[Vf,t, af,tPf,t].  We sort the set of af,t’s this process yields into an 
ordered list af,Boot.  The l% confidence interval for af (CIf,l) then equals  
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where the “G[[q]]" notation denotes the qth element of list G.  We present our results below for each IPO 
type.   The box in the middle of each line marks CIf,50%, the inner set of vertical lines marks CIf,95%, and the 
outer set (with their numerical values) marks CIf,99%.  The vertical line in the box marks af,Sample  (with its 
numerical value underneath).  
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Table IV 

The Accuracy of the Bootstrapped Confidence Intervals of the Block-Booking Offer 
Price Adjustment Factor 

 
To gauge the accuracy of the bootstrapped af confidence intervals that we calculate in Table III, we subject 
our bootstrap process to a Monte Carlo analysis as follows (notation as in Table III).  We begin by assuming 
that our sample of NonTech/NonBoom and type f IPOs represents the relevant population.  Based upon these 
populations, we calculate af,True.  We then draw 1,000 bootstrap samples from these populations and analyze 
each of these samples as we did our original sample.  This process yields a set of 1,000 confidence intervals 
for af (at each level of coverage), which we denote by CIf,l,t, t = 1...1,000.  A confidence interval is accurate 
if Af,l  = Prob (af,True œ CIf,l) = l.  To estimate Af,l, we first form an indicator function If,l,t, with If,l,t = 1 if  
af,True œ CIf,l and 0 otherwise.  Our estimate of Af,l equals Ê If,l,t/1,000. Below we report these estimates 
and test to see if Af,l is statistically significantly different from l at the 1% level. 

 Af,95%  Af,99% 

IPO Type Point Estimate Reject Af,95% = 0.95  Point Estimate Reject Af,99% = 0.99 

Tech/PreBoom 0.96 No  0.99 No 

NonTech/Boom 0.94 No  0.99 No 

Tech/LowBoom 0.97 Yes  0.99 No 

Tech/HighBoom 0.95 No  0.99 No 

NonTech/PostBoom 0.93 No  0.98 No 

Tech/PostBoom 0.95 No  0.98 No 
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Table V 
The Gap Between Predicted and Actual Average Initial Returns By IPO Type  

 
The block-booking theory predicts that the average initial return on type f IPOs will be that implied by 
multiplying their offer prices by the block-booking offer price adjustment factor af holding their market 
values (closing price on their offer date) constant.  Denote this average initial return by AvIRf,BB and the 
sample average initial return on type f IPOs by AvIRf,Sample.  In this table we plot RGapf = AvIRf,BB − 
AvIRf,Sample for the plausible range of af, as calculated in Table III.   The box on each line marks the values of 
RGapf implied by the middle 50% of the af range in Table III, the inner set of vertical lines mark the values 
of RGapf implied by the middle 95% of that range, and the outer set of vertical lines (with their numerical 
values) indicates the RGapf values implied by the middle 99% of that range.  The vertical line in the box 
marks our point estimate of RGapf, with its numerical value underneath. 

 

 

 



 39

Table VI 
Share Allocation Analysis: IPO Sample and Summary Statistics 

 
We investigate IPO share allocation with a sample consisting of the 130 new equity offerings on the London 
Stock Exchange (i.e., that appear on the Official List) or the Alternative Investment Market (AIM) over the 
period January 1, 1997 to August 3, 2000 that raised at least £10 million (excluding unit offerings and 
investment trusts). 

Variable Mean Standard Deviation Median 

Initial Return (%) 23.25 57.70 9.30 

Size (£ Million) 110.95 151.19 77.74 

Ln[Size] 4.16 1 4.35 
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Table VII 
The Number of IPOs by Bookrunner 

 
We assign each IPO to (each of) its bookrunner(s).  Sorting IPOs by offer date, we assign (roughly) the first 
two-thirds of each bank’s IPOs to the control group and the remaining one-third to the test group.   In the 
event that banks A and B merge to form C, we assign all A and B IPOs to C when determining participation in 
C’s previous IPOs.  We treat each second tier bank individually, but pool them together for reporting 
purposes.  Banks that underwrote fewer than three IPOs have all of their IPOs put into the control group.  
The sample consists of 130 IPOs, 95 control group IPOs, and 35 test group IPOs.  The sum of control group 
and test group IPOs in the table exceeds 130 due to multiple bookrunners. 

Bank Control Group IPOs Test Group IPOs 

Cazenove 12 5 

CSFB 4 2 

Deutche Morgan Grenfell 3 1 

Dresdner Kleinwort Benson 6 3 

Goldman Sachs 5 3 

Merrill Lynch 4 3 

Morgan Stanley 3 2 

UBS Warburg 10 5 

WestLB Panmure 5 3 

Second Tier 54 10 

Total 106 37 
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Table VIII 
IPO Investors 

 
Our investor sample consists of firms authorized by the U.K. financial services regulatory authority (the 
FSA) to carry out investment business activities (loosely speaking: institutional investors) that took a position 
in a share allocation sample IPO within its first 40 trading days; 10,303 such firms did so.  Generally, an 
authorized firm corresponds to an economic entity.  However, investment banks usually consist of many 
authorized firms.  In consultation with banking supervisors, we therefore aggregate the authorized firms 
constituting an economically defined investment bank into a single entity.  We count a sample investor as 
participating in an IPO if either: 1) that investor bought shares in the IPO at the offer price on the offer date 
(the direct observation channel); or 2) that investor had a negative net position in the IPO’s stock at the close 
of its 40th trading day.  We do not count an underwriting bank or a member of its syndicate as an investor in 
its own IPOs. 

Panel A. Sample and Participating Investors 

Investors All IPOs Control Group 
IPOs 

Test Group IPOs In Control and Test 
Group 

Investor Sample 10,303 7,491 4,038 1,226 

Participating Investors: 
Direct Observation 

3,804 2,047 2,130 373 

Participating Investors: 
Negative Net Position 

1,565 1,133 694 262 

Total Participating 
Investors 

4,322 2,529 2,287 494 

 

Panel B. Observed Participation Per IPO 

 Mean Standard Deviation Median 

Participating Investors Per IPO 58.02 131.74 12 
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Table IX 
The Distribution of IPO Participation 

 
In this table we report the distribution of IPO participation for sample investors (as defined in Table VIII).  
The 10,303 sample investors participated a total of 7,697 times in sample IPOs. 

Sample investors who participate 
in… 

Proportion of total sample 
investors 

Proportion of total investor 
appearances 

0 IPOs 58% 0% 

1 IPO 33% 35% 

2 – 4 IPOs 7% 35% 

5+ IPOs 2% 30% 
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Table X 
Investor Selection Probabilities: Variable Summary Statistics 

 
We track the participation of each of the 7,491 sample investors that took a position in a control group IPO in 
each of the 35 test group IPOs, leaving us with a data set consisting of 262,185 observations of possible 
participation (35 IPOs * 7,491 investors).  YI,t,B equals one if investor I participated in test group IPO t 
underwritten by bank B, and zero otherwise.  BookOne equals one if investor I participated in only one 
control group IPO brought public by the bank (B) underwriting test group IPO t, and zero otherwise.  
BookMany equals one if investor I participated in at least two control group IPOs brought public by the bank 
underwriting test group IPO t, and zero otherwise.  GenPart equals the proportion of all control group IPOs 
in which investor I took a position.  BCSB equals one if bank B is the bookrunner for test group IPO t and if 
investor I participated in at least one of its control group IPOs, and zero otherwise.  For reasons of 
confidentiality, we cannot identify the bank to which each individual Bank Coalition Strength Dummy 
applies.  We therefore sort BCS variables by the magnitude of their coefficient estimates in Table XI.  We 
report the standard deviation of GenPart alone, as the other variables are all zero-one dummies. 

Variable Mean Variable  Mean 

YI,t,B 0.0056 BCS4 0.0022 

BookOne 0.0441 BCS5 0.0039 

BookMany 0.008 BCS6 0.0004 

GenPart 0.022 

(StDev: 0.051) 

BCS7 0.0029 

BCS1 0.0019 BCS8 0.0023 

BCS2 0.007 BCS9 0.0189 

BCS3 0.0018 BCSSecondTier 0.0067 
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Table XI 
Investor Selection Probability Regression 

In this table we estimate the probability that a bank selects a control group investor to participate in a test 
group IPO using a probit specification.  The dependent variable is YI,t,B, which equals one if control group 
investor I participated in test group IPO t underwritten by bank B, and zero otherwise.  The independent 
variables are defined in Table X.  Our data set consists of 262,185 observations.  A “*” denotes statistical 
significance at the 1% level.  To avoid overidentification, we omit BCS9 from the regression. 

 

 Coefficient Standard Error t-Stat 

Constant – 4.08* 0.06 68.93 

BookOne 0.29* 0.05 5.31 

BookMany 1.06* 0.08 13.3 

GenPart 3.64* 0.09 38.72 

BookMany * GenPart – 1.70* 0.19 – 8.93 

Ln[Size] 0.26 0.01 22.17 

BCS1 1.20* 0.08 14.26 

BCS2 0.55* 0.06 8.85 

BCS3 0.51* 0.1 5.23 

BCS4 0.45* 0.09 5.11 

BCS5 0.33* 0.07 4.39 

BCS6 0.22 0.19 1.16 

BCS7 – 0.04 0.12 0.31 

BCS8 – 0.06 0.09 0.61 

BCSSecondTier – 0.01 0.12 0.82 

McFadden R2 0.28   
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Table XII 
Investor Selection Probabilities: Point Estimates 

 
In this table we report our point estimate of the probability that a bank selects an investor for one of its large 
IPOs (Ln[Size] = 5.16) as a function of the investor’s general level of activity in the IPO market, bank 
coalition strength, and the relationship between the investor and the bank.  We calculate these probabilities 
using the regression reported in Table XI.  We consider two levels of investor activity: Highly Active 
(GenPart = 0.2) and Inactive (GenPart = 0.01).  We consider two bank types: Strong Coalition (BCS1) and 
Weak Coalition (BCSSecondTier).  We consider two levels of the Investor/Bank relationship: Coalition 
(BookMany = 1) and Non-Coalition (BookMany = 0 and BookOne = 0). 

Panel A. A Highly Active Investor’s Selection Probability 

In Bank’s Coalition? Coalition Type Selection Probability 

Yes Strong 0.45 

Yes Weak 0.09 

No - 0.02 

 

Panel B. An Inactive Investor’s Selection Probability 

In Bank’s Coalition? Coalition Type Selection Probability 

Yes Strong 0.33 

Yes Weak 0.05 

No - 0.001 

 



 46

Notes 

                                                           
1 This success suggests that our pricing rule may also help to gauge the empirical relevance of the other initial 
return affecting factors identified in the underpricing literature by providing a sound counterfactual against 
which to measure their impact. 

2 See Ritter and Welch (2002) and Ljungqvist (2005) for excellent surveys of the vast literature on 
underpricing for a discussion of the alternative theories. 

3 We assume that the bank must set an IPO’s offer price in a manner that guarantees the offering’s success 
for convenience, but our results require only that having a deal fail imposes a cost.  This assumption is 
consistent with the analysis of Jagannathan and Sherman (2006), who: i) show that IPO auctions have a 
higher probability of failure than book-building (of which block-booking is an example); and ii) argue that 
this risk accounts for why underwriters do not use auctions to allocate IPO shares. 

4 Intuitively, the assumption that the bank must maximize each IPO’s offer price rules out implausible pricing 
strategies in which the bank arbitrarily increases offer prices on some set of IPOs and gets investors to 
participate by bundling them together with other IPOs with arbitrarily decreased offer prices.  Hence, we 
believe that allowing more complicated pricing strategies would not alter our results but would force the 
analysis below to become far more opaque.   We also assume that the bank cannot set a project’s offer price 
at a level higher than its expected value.  For simplicity, we assume that this constraint does not bind in the 
analysis below. 

5 The investors we discuss here are institutional investors, and we assume that the bank must sell at least a 
given proportion of each IPO to these investors.  The remainder can be sold to retail investors (who lack the 
ability to obtain private information on share value, and so can’t lemon-dodge) at the offer price if in 
equilibrium the expected return on an IPO share is nonnegative.  We do not explicitly model the retail 
allocation aspect of this process. 

6 For simplicity, we assume that the bank can detect lemon-dodging with probability one.  As lemon-dodging 
becomes harder to detect, the average discount the bank must offer to get block-booking to work will 
increase.  And, of course, if banks cannot detect lemon-dodging at all, then they will not block-book.  In 
these circumstances, one would not expect the pricing implications of the block-booking theory to hold in the 
data. 

7 We omit 167 firms that did not have closing prices reported on SDC, and we omit 5 firms with a closing 
price of less than $1 (suggesting a decimal place error).  We are able to track down offer prices for about 
60% of these IPOs through other sources; including them with these corrected offer prices does not affect our 
results.  We do not include these IPOs in the analysis below so as to make it easier to replicate our sample. 

8 For a description of the Bootstrap, see Efron and Tibshrani (1993), Chernick (1999), or Horowitz (2001).  
To construct bootstrap sample t of fSample, which consists of NSample observations, one makes NSample draws at 
random with recall from fSample.  This process yields a new sample of type f IPOs, ft, which in turn yields a 
new offer price vector Pf,t and a new market value vector Vf,t.  The idea behind the bootstrap is that one’s 
sample provides a good estimate of the population.  So, drawing a large number of bootstrap samples from 
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one’s original sample and calculating the value of the parameter under investigation for each bootstrap 
sample should provide a good estimate of that parameter’s plausible range. 

9 It is possible that this systematic increase in Tech IPO offer prices (of approximately 7%) during the height 
of the IPO boom was due to increased competition between underwriters for IPO business. 

10 It is unlikely that an individual investor would suffer from a “capacity constraint” and be unable to accept 
an offer to purchase on-average underpriced shares, so investors with only slightly more desirable 
characteristics could be selected far more often than the typical investor. 

11 Ideally, of course, we would have investigated pricing and share allocation using a common set of IPOs, 
but lack of U.S. allocation data prevents us from doing so.  We think that the U.K. case can shed light on the 
question of bank coalitions as banks in the U.K. also can allocate IPO shares at their discretion (implying that 
they can form coalitions) and because most of the IPOs in the sample were underwritten by banks that are 
also active in the U.S. IPO market.  Thus, if these banks block-book in the U.S., one would also expect them 
to block-book in the U.K. 

12 There are about 55,000 Authorized Firms in the U.K.  See 
http://www.fsa.gov.uk/pages/Doing/Do/index.shtml for a discussion of which firms must be authorized. 

13 Transactions that do not involve Authorized Firms (e.g., those with retail customers) are reported by 
executing firms using their own codes.  Hence, there is no way to track a given retail investor’s activity 
across multiple banks.  We therefore focus our analysis upon Authorized Firms (institutional investors).   
Strictly speaking, firms authorized in non-U.K. jurisdictions (e.g., the Bank of New York) are at least 
sometimes tagged with their Bank Identifier Code (or BIC) number, which enables us to track the activities 
of these institutions across multiple banks as well.  We include the small number of firms identified by BIC 
codes in our analysis. 

14 The median number of investors that we find per IPO is 12, and so we obviously do not find all of them 
using these data.  While the imperfections in our data do not prevent us from establishing the general point 
that banks form coalitions, these imperfections do prevent us from using these data to explore detailed 
questions about exactly how a bank runs its coalition. 

15 We use this broad activity-based measure of GenPart rather than a narrow participation-based measure 
because we know that we track participation imperfectly.  We are worried that these imperfections might lead 
to a downward bias in a participation-based GenPart measure, which might lead us to underestimate the 
importance of investor-specific factors in selection probabilities.   However, we note that we also experiment 
with a narrow measure of GenPart based only upon (our measure of) direct IPO participation, and that this 
narrow measure does not materially affect the coefficients on the coalition membership variables that are the 
focus of our analysis. 

16 Note that several of the banks in our sample merged over the course of our sample period.  To deal with 
ownership changes, we assume that if banks A and B merge to form C, then C inherits the coalitions of both 
A and B.  So, for a bank C IPO in our test group, we include both bank A and bank B IPOs in C’s control 
group.  In addition, we treat the case of multiple bookrunners as a temporary merger: If a given test group 
deal is underwritten by banks A and B, we construct our coalition membership variables on the basis of both 
A and B control group IPOs. 
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17 We estimate our probit using the package Shazam. 

18 “Betrayal on Wall Street,” Fortune, May 14, 2001.  It is interesting to note that, in retrospect, issuers had 
little to complain about. 




