The Returns to Government R&D: Evidence from U.S. Appropriations Shocks

Andrew Fieldhouse

Mays Business School Texas A&M

Karel Mertens

FRB Dallas, CEPR

XXIII Banca d'Italia Public Finance Workshop, Sept 4, 2025

The views expressed do not necessarily reflect the views of the Federal Reserve Bank of Dallas or the Federal Reserve System.

Measured TFP (Business Sector)

Measured TFP: Role of Public Infrastructure and Government R&D?

Measured TFP is utilization-adjusted (Fernald 2012)

$$\Delta \ln TFP = \eta \Delta \ln Q + \phi \Delta \ln K + \Delta w$$

Public infrastructure Q

- Ramey (2021) review: plausible range of η of 0.065 to 0.12
- ullet CBO uses $\eta=$ 0.08, implied gross rate of return of pprox 12%

$$\Delta \ln TFP = \eta \Delta \ln Q + \phi \Delta \ln K + \Delta w$$

Public infrastructure Q

- Ramey (2021) review: plausible range of η of 0.065 to 0.12
- ullet CBO uses $\eta=0.08$, implied gross rate of return of pprox 12%

Government R&D capital K

• What is the **production function elasticity** ϕ of K?

$$\Delta \ln TFP = \eta \Delta \ln Q + \phi \Delta \ln K + \Delta w$$

Public infrastructure Q

- Ramey (2021) review: plausible range of η of 0.065 to 0.12
- ullet CBO uses $\eta=0.08$, implied gross rate of return of pprox 12%

Government R&D capital K

• What is the **production function elasticity** ϕ of K?

$$\hat{\phi} pprox 0.11$$
 if non-defense RD

$$\Delta \ln TFP = \eta \Delta \ln Q + \phi \Delta \ln K + \Delta w$$

Public infrastructure Q

- Ramey (2021) review: plausible range of η of 0.065 to 0.12
- CBO uses $\eta = 0.08$, implied gross rate of return of $\approx 12\%$

Government R&D capital K

- What is the production function elasticity ϕ of K? $\hat{\phi} \approx 0.11$ if non-defense R&D
- What is the social rate of return on government R&D?
 Between 140 and 210 percent ⇒ underinvestment in R&D

$$\Delta \ln TFP = \eta \Delta \ln Q + \phi \Delta \ln K + \Delta w$$

Public infrastructure Q

- Ramey (2021) review: plausible range of η of 0.065 to 0.12
- CBO uses $\eta = 0.08$, implied gross rate of return of $\approx 12\%$

Government R&D capital K

- What is the production function elasticity ϕ of K? $\hat{\phi} \approx 0.11$ if non-defense R&D
- What is the social rate of return on government R&D?
 Between 140 and 210 percent ⇒ underinvestment in R&D
- \bullet $\Delta \ln K$ explains at least one fifth of business TFP growth since WWII

Government R&D Expenditures

Sources: National Center for Science and Engineering Statistics+older NSF reports, BEA

Federal R&D Expenditures by Agency

Government R&D Expenditures by Performer

Composition of Public Capital Stock

Sources: Own calculations, BEA (NIPA and Fixed Asset Accounts)

Structural Estimation Approach ϕ

GMM → SP-IV (Lewis and Mertens, 2023)

Step 1 Estimate IRFs of TFP and Govt R&D capital to Govt R&D spending shocks

Step 2 Regress IRF of (adjusted) TFP on the IRF of Govt R&D capital to obtain $\hat{\phi}$

Long Variable Lags, Anticipation Effects
 R&D Appropriations, Long-horizon LPs

Long Variable Lags, Anticipation Effects
 R&D Appropriations, Long-horizon LPs

Different Types of R&D
 Defense vs Nondefense R&D

Long Variable Lags, Anticipation Effects
 R&D Appropriations, Long-horizon LPs

Different Types of R&D
 Defense vs Nondefense R&D

Correlation with Cyclical Shocks (with possible long-run effects)
 Narrative Classification, Quarterly Data, Cyclical Controls

Long Variable Lags, Anticipation Effects
 R&D Appropriations, Long-horizon LPs

Different Types of R&D
 Defense vs Nondefense R&D

Correlation with Cyclical Shocks (with possible long-run effects)
 Narrative Classification, Quarterly Data, Cyclical Controls

Correlation with Other Shocks to TFP trends (e.g. TFP news shocks)
 Unpredicted Variation in TFP

Long Variable Lags, Anticipation Effects
 R&D Appropriations, Long-horizon LPs

Different Types of R&D
 Defense vs Nondefense R&D

Correlation with Cyclical Shocks (with possible long-run effects)
 Narrative Classification, Quarterly Data, Cyclical Controls

Correlation with Other Shocks to TFP trends (e.g. TFP news shocks)
 Unpredicted Variation in TFP

Small Samples

WIV-Robust Inference, Sensitivity Analysis

Changes in Appropriations for Federal R&D

In the end, narrative classification not very important for the results

Empirical Specification

Local projections

$$\sum_{j=0}^{3} \left(\frac{1}{4} \times y_{t+h-j} \right) \quad = \quad c_h + \gamma_h z_t + \sum_{j=1}^{4} \beta_h^j \ln a_{t-j} + \sum_{j=1}^{4} \delta_h^j y_{t-j} + \sum_{j=1}^{4} \zeta_h^{j\prime} x_{t-j} + \nu_{t+h} \sum_{j=1}^{4} \beta_h^j y_{t-j} + \sum_{j=1}^{4} \zeta_h^{j\prime} x_{t-j} + \nu_{t+h} \sum_{j=1}^{4} \beta_h^j y_{t-j} + \sum_{j=1}^{4} \beta_h^j y_{t-j} +$$

h=0,...,H-1 H=60 quarters

 y_t : outcome variable of interest (e.g. measured TFP)

 z_t : narrative exogenous appropriations shocks

at: cumulative appropriations

 x_t : other controls

capacity utilization, private R&D capital, government R&D capital, util-adj. TFP, stock returns in tech/manu/health, Ramey and Zubairy (2018) military news

1948Q1 - 2021Q4 unbalanced sample

Response of Government R&D Capital to Nondefense R&D Appropriations Shock

Response of Business Sector TFP to Nondefense R&D Appropriations Shock

95% HAR CI Source: NCSES, Survey of Earned Doctorates

Source: OECD, Bloom et al. (2020)

95% HAR CI Source: Alexopoulos (2011)

Decomposition of Effect on Economy-Wide R&D Capital

Step 2: Structural Estimation of ϕ

SP-IV Regression in Impulse Response Space

(Lewis and Mertens, 2023; Barnichon and Mesters, 2020; Jorda and Kozicki, 2011)

 $\Delta \widetilde{tfp}_t = \Delta tfp_t - \eta_t \Delta q_t$: TFP adjusted for public infrastructure

Production Function Elasticity Estimates

Table 1: Estimates of Production Function Elasticities of Government R&D Capital

	Public R&D		Intermediate $\eta = 0.08$		Low $\eta = 0.065$	High $\eta = 0.12$	
	Measure	Instruments	$\hat{\phi}/\hat{\phi}_{ND}$	$\hat{\phi}/\hat{\phi}_D$	$\hat{\phi}/\hat{\phi}_{ND}$	$\hat{\phi}/\hat{\phi}_{ND}$	
[1]	Total	Exo ND	0.11*** (0.09,0.15)		0.11*** (0.09,0.15)	0.10*** (0.08,0.13)	
[2]	Total	Exo ND, No NASA	0.11*** (0.08,0.20)		0.12*** (0.08,0.21)	0.10*** (0.07,0.19)	
[3]	Total	All ND	0.10*** (0.09,0.14)		0.11*** (0.09,0.15)	0.09*** (0.07,0.13)	
[4]	Total	Exo D		-0.13 $(-1.20,0.04)$			
[5]	Total	All D		-0.11 $(-1.11,0.05)$			
[6]	ND/D	Exo ND	0.10*** (0.06,0.19)	-0.01 $(-0.22,0.39)$	0.11*** (0.06,0.20)	0.09*** (0.05,0.18)	
[7]	ND/D	Exo ND/D	0.10*** (0.04,0.19)	-0.07 $(-0.27,0.40)$	0.10*** (0.04,0.19)	0.09*** (0.03,0.18)	
[8]	ND/D	Exo ND, No NASA	0.11 (-2.00†,0.58)	0.20 (-2.00 [†] ,0.69)	0.11 (-2.00†,0.60)	0.10 $(-2.00^{\dagger}, 0.54)$	
[9]	ND/D	All ND	0.10*** (0.06,0.18)	-0.03 $(-0.23,0.35)$	0.10*** (0.06,0.18)	0.09*** (0.05,0.17)	

95% Weak-IV-robust CI based on Kleibergen (2005). Subvector inference based on projection method.

Historical Contributions to TFP Growth

	'47-'69	'70-'89	'90-'09	'10-'21		
TFP growth	1.98	0.98	1.15	0.87		
		a. Intermediate η				
Infrastructure	0.33	0.19	0.19	0.09		
R&D	0.48	0.25	0.19	0.19		
		b. Low η				
Infrastructure	0.27	0.16	0.15	0.07		
R&D	0.50	0.25	0.20	0.20		
		c. I	c. High η			
Infrastructure	0.50	0.29	0.28	0.14		
R&D	0.44	0.22	0.18	0.18		

Government R&D explains at least one fifth of TFP growth Typically at least as important as public infrastructure

Return to Government Investment in R&D

Net rate of return is $ho_t^n - \delta$ where $ho_t = \phi_t Y_t / K_t$, $\delta pprox 0.16$

Calculate $\rho = \hat{\phi} Y/K$ using SP-IV estimates $\hat{\phi}$,

Return to Government Investment in R&D

Net rate of return is $ho_t^n - \delta$ where $ho_t = \phi_t Y_t / K_t$, $\delta \approx$ 0.16

Calculate $\rho = \hat{\phi} Y/K$ using SP-IV estimates $\hat{\phi}$,

or, using $\Delta k_t pprox rac{\kappa_t - \kappa_{t-1}}{\kappa_t}$ and assuming ho_t rather than ϕ_t is constant

$$\Delta \widetilde{tfp}_t = \rho \frac{\Delta K_t}{Y_t} + \Delta w_t$$

estimate ρ using SP-IV

Estimates of Return to Government R&D

Table 2: Estimates of the Return to Government R&D Capital

	Government		Intermediate $\eta = 0.08$		Low $\eta = 0.065$		High $\eta = 0.12$	
	R&D Measure	Instruments	$\hat{\phi}_{ND}$ $\times \frac{Y}{K}$	$\hat{ ho}_{ND}$	$\hat{\phi}_{ND} \times \frac{Y}{K}$	$\hat{ ho}_{ND}$	$\hat{\phi}_{ND} \times \frac{Y}{K}$	$\hat{ ho}_{ND}$
]	Total	Exo ND	1.85	1.71*** (1.07,2.22)	1.91	1.77*** (1.13,2.26)	1.67	1.57*** (0.91,2.11)
]	Total	Exo ND, No NASA	1.94	1.60** (0.62,4.01)	2.00	1.62** (0.69,4.03)	1.77	1.53** (0.42,3.97)
]	Total	All ND	1.79	1.58*** (1.04,2.08)	1.86	1.63*** (1.10,2.12)	1.62	1.44*** (0.88,1.98)
]	ND/D	Exo ND	1.75	1.68** (0.23,3.20)	1.81	1.74** (0.30,3.24)	1.58	1.52** (0.08,3.11)
]	ND/D	$\mathrm{Exo}\ \mathrm{ND/D}$	1.67	2.04** (0.12,3.79)	1.73	2.10** (0.16,3.81)	1.50	1.88**
]	ND/D	Exo ND, No NASA	1.92	6.84 $(-2.00^{\dagger}, 5.00^{\dagger})$	1.98	6.91 $(-2.00^{\dagger}, 5.00^{\dagger})$	1.75	6.65 (-2.00†,5.00
]	ND/D	All ND	1.72	1.58** (0.27,2.90)	1.78	1.64** (0.32,2.95)	1.55	1.42**

95% Weak-IV-robust CI based on Kleibergen (2005). Subvector inference based on projection method.

Conclusion

Large spill-overs of nondefense Govt R&D on business TFP

Social returns larger than best estimates for private R&D

Return to R&D (140 - 210%) >> return to infrastructure (\approx 12%)

Misallocation of public capital, underinvestment in R&D