
Applicazioni degli scenari climatici in Banca d'Italia

Valentina Michelangeli

Agenda

Overview of climate risk stress test analysis

- Micro-simulation approach for assessing transition risk
- Extensions of micro-simulation approach

Overview of scenario analysis on flood risk

- Impact of flood-risk on Italian real wealth
- Costal flood and impact on banks' mortgage portfolio
- Methodologies for assessing the exposure of IT NFCs to flood risk

1

Overview of climate risk stress test analysis

Micro-simulation approach for assessing transition risk (1)

- Assess the impact of a <u>one-off carbon tax</u> on HHs' and NFCs' financial vulnerability using a microfounded approach, i.e. an alternative to standard macro-based climate stress tests
- Account for heterogeneity across households and firms
- Capture their differential exposure and response to climate shocks

Faiella, Lavecchia, Michelangeli and Mistretta (2022)

Multi-step approach

1. Simulate different carbon taxes (based on the NGFS scenarios) and translate them into energy prices

Carbon Tax Scenarios (real €2015 per ton CO₂)

	Value	Reference / Justification	Policy Relevance
•	: 50	≈ EU-ETS price; French tax (€56, 2020);	Not Paris-consistent (IMF 2019: €66 by
		higher than German (€25)	2030; CPLC 2017: €35-70 by 2020)
€		McKinsey (2020)	Insufficient to make all required
		,	investments profitable
Н	E200	Long-term EU target studies; NGFS "Orderly transition" SCC peak	More aligned with ELL climate objectives
		transition" SCC peak	Wore aligned with EO climate objectives
	£800	NGFS (2020, 2021) "Disorderly transition"	Extreme case, reflects high-cost transition
		SCC peak	risks

Micro-simulation approach for assessing transition risk (2)

2. Estimate energy-price elasticities at the micro level (HHs and NFCs)

	Households	Firms
Data	HBS, SHIW	Cerved – CR, INPS, EUROSTAT
Method	Autoregressive distributed lag Quasi panel, Compare subgroups	Log-log specification (Assumption: within each sector energy expenditure is correlated with the firms' size)

$$log Q_{s,t}^z = \lambda_s log Q_{s,t-1}^z + \beta_s log P_t + \gamma_s log E_{s,t} + w + s + t + t^2 + \varepsilon_{s,t}$$

$$logF_{i,t} = \lambda logF_{i,t-1} + \beta logP_{i,t} + t + t^2 + X_{i,t} + \mu_{i,t} + \varepsilon_{i,t}$$

Households' price elasticities.

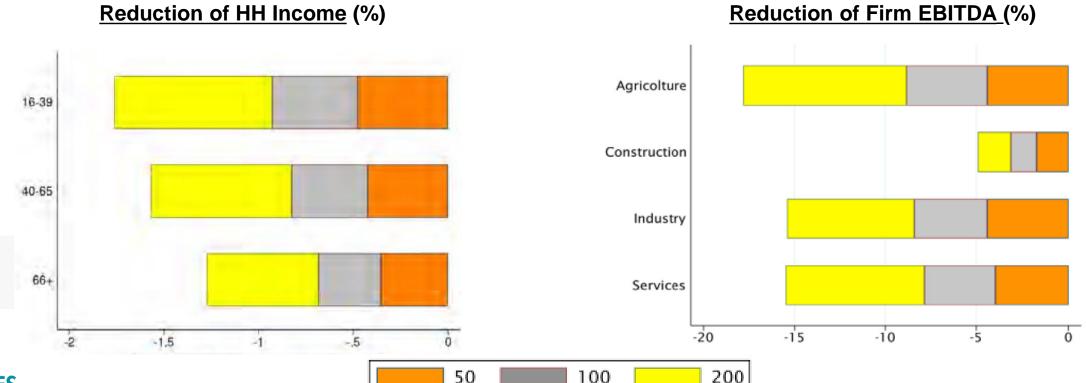
	Short-run			Long-run
	LS	Stratum-level LS	2SLS	
Electricity	-0.36***	-0.29*	-0.40***	-1.17***
Heating	-0.40***	-0.44**	-0.44***	-1.23***
Transport	-0.17**	-0.45**	-0.66***	-1.46***

Faiella and Lavecchia (2021)

Firms' price elasticities.

	Total Economy	Agriculture	Industry	Construction	Services
Total	-0.232***	0.0770	-0.397***	-0.583***	-0.116***
	(0.00)	(0.18)	(0.00)	(0.00)	(0.00)
0-49	-0.231***	0.0746	-0.393***	-0.577**	-0.120***
	(0.00)	(0.32)	(0.00)	(0.01)	(0.01)
>50	-0.208***	0.204*	-0.412***	-0.588***	-0.0141
	(0.00)	(0.06)	(0.00)	(0.00)	(0.75)

Notes: p-values are reported in parenthesis.

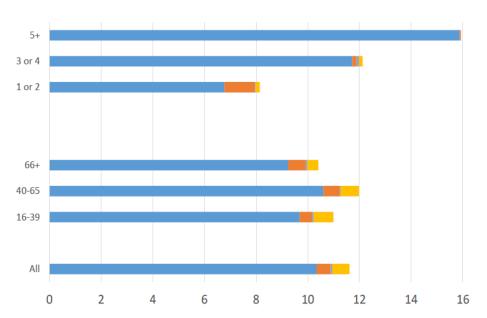

^{*} p < 0.05

^{**} *p* < 0.01

^{***} p < 0.00

Micro-simulation approach for assessing transition risk (3)

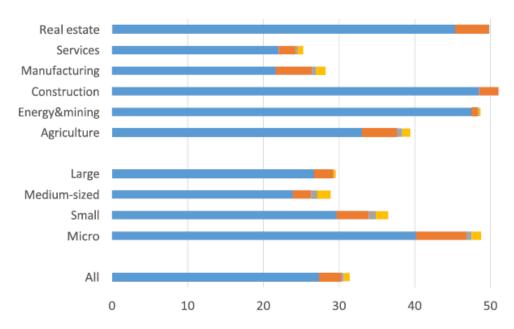
- 3. Evaluate the effect of the increase in energy price on HH income and NFC EBITDA
 - ⇒ The carbon tax increases energy prices
 - ⇒ The total energy expenditure (Q*P) increases for each HH/NFC according to its elasticity
 - ⇒ Household income and firm EBITDA available for debt-service are reduced in proportion to the increase in the total energy expenditure


Micro-simulation approach for assessing transition risk (4)

4. Assess immediate impact on HH and NFC financial vulnerability

Indicator of HH financial vulnerability:

$$VHH_{i,t} = \begin{cases} 1 & if \frac{L_{i,t}}{\cdots} > 0.3 \text{ and } \tilde{y}_{i,t,\tau} < median(\tilde{y}_{i,t,\tau}) \\ \tilde{y}_{i,t,\tau} & otherwise \end{cases}$$


HH Debt at risk in 2016 (%)

Indicator of firm financial vulnerability:

$$VNFC_{i,t} = \begin{cases} 1 & if \ EBITDA_{i,t} \left(1 - x_{i,t,\tau} \right) < 0 \text{ or } \frac{IE_{i,t}}{EBITDA_{i,t} \left(1 - x_{i,t,\tau} \right)} > 0.5 \\ 0 & otherwise \end{cases}$$

Firm Debt at risk in 2018 (%)

Extensions of micro-simulation approach for assessing transition risk

Extension 1 – Effect on sector-level firms' probability of default

Credit risks stemming from the introduction of a carbon tax – during periods of low default rates - are modest for banks: on average, over a one-year horizon, the default rates of firms increase but remain below their historical averages.

Aiello and Angelico (2022)

Extension 2 – Effects on individual firms' default rates

The introduction of carbon taxation would have a limited impact on credit risk: a carbon tax of EUR 40 (Below 2°C), EUR 90 (Net Zero 2050) and EUR 140 (Delayed Transition) per tonne of CO2 would raise the average PD by 0.6, 2.3 and 4.1 basis points, respectively. The effect is slightly larger for the Agriculture and Services sectors, while there is no clear pattern relating to firm size

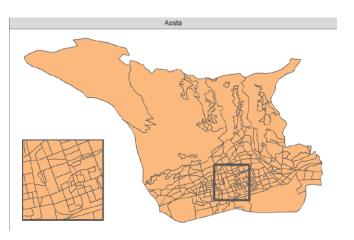
Extension 3 – Effects of the surge in energy prices on HH vulnerability

If energy price elasticity is not duly accounted for, financial vulnerability rises excessively following an energy price upsurge. However, when consumption rebalancing is taken into account, financial vulnerability remains rather low and in line with the supervisory data.

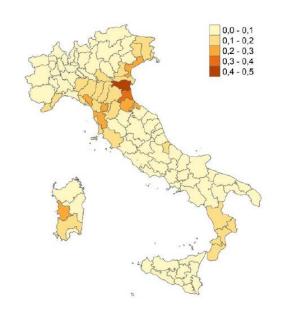
Colabella, Lavecchia, Michelangeli and Pico (2023)

2

Overview of scenario analysis on flood risk


Impact of flood-risk on Italian real wealth

Expected economic loss = $E \times P \times V$


- **E** = Exposure → Value of housing assets
 - 2011 Censimento: 400,000+ micro-sections with floor-level housing data (Istat)
 - 2020 OMI Price: 28,000 market areas
- **P** = Probability of flooding → 2020 ISPRA maps [& JRC maps]
 - Geographical identification of floodable areas
 - 3 probability scenarios: high, medium, low
- $V = Vulnerability \rightarrow damage functions (Huizinga et al., 2017)$
 - Loss of dwellings value (% of the total value) as a function of the floor level

Exposure	Annual expected loss
ISPRA Low prob (>200 year	s)
991,8 billion	10,8 billion
(23,3% housing stock)	(0.25% housing stock)

Geolocalization

Average loss (% of housing stock)

Costal flood and impact on banks' mortgage portfolio

- Case study: The choice of Rimini is linked to the implementation of coastal defense intervention in the southern area of the city, the Sea Park, with a height of 2.8 meters above sea level, for a total cost of 33.3 million euros
- Methodology: Expected risk = E x P x V

E = mortgage portfolio provided by 3 banks

P, V = Amadio (2022)

- Main Result and Takeaway:
 - ✓ The coastal barrier significantly reduces the losses in the mortgage portfolio
 - ✓ Some critical points regarding data collection:
 - (1) **Imprecise geolocalization**: Incorrect or incomplete address (e.g. missing street number) invalidate risk assessments in about 1/5 of cases.
 - (2) Missing dwelling plan details: No floor-level data, limiting flood risk analysis (ground floors more exposed).
 - (3) **No insurance data**: Catastrophe policy info unavailable, though useful for assessing vulnerability—even on existing loans.

Source: Municipality of Rimini (link)

Faiella e Lavecchia (2025)

2

Methodologies for assessing NFC exposure to hydrogeological risks

Borrower exposure to hydrogeological risk through integration of data from:

- ✓ Hazard maps (ISPRA) on floods and landslides at municipality level
- ✓ Number of employees by municipality for each company to estimate the presence of a business unit (InfoCamere)
- ✓ AnaCredit data on loans and collateral
- Key results:
 - ✓ 8% of loans in high landslide-risk areas, 3% of loans in high flood-risk areas
 - ✓ Collateral and borrower locations typically coincide => Collateral offers limited risk mitigation in high-risk areas.

Meucci e Rinaldi (2022)

Further improvement:

- ✓ Exploit the exact location of all establishments (geolocation via Open Street Map)
- ✓ Exploit Hazard maps (ISPRA) on floods at granular level
- ✓ Case study: Application to manufacturing companies
- Key findings:
 - √ ~35% of manufacturing firms are exposed to floods or landslides; these firms represent ~50% of sector employment.
 - ✓ Floods main risk: 29.4% of firms have at least 1 establishment exposed to flood risk; 8.3% face landslide exposure.
 Loberto e Russo (2024)

Thank you!

References

- Aiello, M. A. and C. Angelico (2023). Climate change and credit risk: The effect of carbon tax on italian banks' business loan default rates.
 Journal of Policy Modeling 45 (1), 187–201.
- Amadio, M., Essenfelder, A. H., Bagli, S., Marzi, S., Mazzoli, P., Mysiak, J., and Roberts, S. (2022), Cost-benefit analysis of coastal flood defence measures in the North Adriatic Sea, *Nat. Hazards Earth Syst.* Sci., 22, 265–286, https://doi.org/10.5194/nhess-22-265-2022.
- Colabella, A., L. Lavecchia, V. Michelangeli and R. Pico (2025). Are energy bills squeezing people. International Journal of Microsimulation, vol 18(1).
- Di Virgilio, S., I. Faiella, A. Mistretta, and S. Narizzano (2024). Assessing credit risk sensitivity to climate and energy shocks: Towards a common minimum standards in line with the ecb climate agenda. *Journal of Policy Modeling* 46 (3), 552–568.
- Faiella, I., and L. Lavecchia (2021). Households' energy demand and the effects of carbon pricing in Italy. *Bank of Italy Occasional papers*, (614).
- Faiella, I., L. Lavecchia, V. Michelangeli, and A. Mistretta (2022). A climate stress test on the financial vulnerability of italian households and firms. *Journal of Policy Modeling* 44 (2), 396–417.
- Faiella, I., and L. Lavecchia (2025). Here comes the flood: the climate risk of residential mortgages in Rimini. *Bank of Italy Occasional Paper*, (925).
- Huizinga, J., De Moel, H. e Szewczyk, W. (2017), Global flood depth-damage functions: Methodology and the database with guidelines, EUR 28552 EN, Publications Office of the European Union, Luxembourg.
- Loberto, M., and M. Spuri (2023). L'impatto del rischio di alluvione sulla ricchezza immobiliare in Italia (The impact of flood risk on real estate wealth in Italy). Bank of Italy Occasional Paper, (768).
- Loberto, M., and R. Russo (2025). The exposure of Italian manufacturing firms to hydrogeological risk. Journal of Environmental Management, 393, 126747.
- Meucci, G., and F. Rinaldi (2022). Bank exposure to climate-related physical risk In Italy: an assessment based on AnaCredit data on loans to non-financial corporations. *Bank of Italy Occasional Paper*, (706).

