Monetary Policy as Insurance

Stefano Eusepi, Christopher G. Gibbs and Bruce Preston

1st Banca d'Italia Annual Research Conference on Monetary Policy June 2025

1

Optimal Monetary Policy as Insurance

Large shocks: financial crisis + pandemic

- Monetary policy constrained by the zero lower bound (ZLB)
- Uncertainty about crisis duration

Optimal monetary policy response: forward guidance (FG) (Eggertsson and Woodford, 2003)

- Commitment to future zero interest rate policy at times when policy is no longer constrained

Optimal Monetary Policy as Insurance

Large shocks: financial crisis + pandemic

- Monetary policy constrained by the zero lower bound (ZLB)
- Uncertainty about crisis duration

Rational Expectations Full Information (standard)

- $-\,$ State-contingent forward guidance policy: additional ZLB rises with shock duration
- Large general equilibrium (GE) effects
- \implies Near-complete stabilization of the economy

Optimal Monetary Policy as Insurance

Large shocks: financial crisis + pandemic

- Monetary policy constrained by the zero lower bound (ZLB)
- Uncertainty about crisis duration

Incomplete knowledge (this paper): agents learn macro impact of FG policy \Rightarrow delayed GE effects

- $-\,$ State-contingent forward guidance policy: additional ZLB falls with shock duration
- Large(r) front-loaded stimulus at beginning of the crisis (before duration uncertainty is resolved)
 Costs: inflationary boom if shock is short-lived

 ${\bf Benefits:}\ {\rm prevent}\ {\rm large}\ {\rm welfare}\ {\rm costs}\ {\rm in}\ {\rm case}\ {\rm of}\ {\rm long}\ {\rm lasting}\ {\rm crisis}$

 \implies Policy ex-post too stimulatory: insurance against a persistent shock

$$c_{t}(i) = (1-\beta) x_{t} + \beta \hat{E}_{t} \sum_{T=t}^{\infty} \beta^{T-t} \left[(1-\beta) x_{T+1} - \sigma \beta \left(R_{T} - \pi_{T+1} - r_{T}^{n} \right) \right]$$

$$p_{t}(j) = (1-\xi\beta) x_{t} + \hat{E}_{t} \sum_{T=t}^{\infty} (\xi\beta)^{T-t} \left[\xi\beta (1-\xi\beta) x_{T+1} + \xi\beta \pi_{T+1} \right]$$

- 1. Households: permanent income theory $[x_t = \text{income}; R_t = \text{policy rate}; \pi_t = \text{inflation}]$
- 2. Firms: monopolistic competition and Calvo nominal rigidities
- **3.** Bounded rationality: $\hat{E}_t \neq$ model-consistent expectation
- 4. Aggregate: Market clearing condition $[c_t = x_t] + \text{aggregate prices } [\xi p_t(j) = (1 \xi)\pi_t] + \text{policy}$
 - x_t also output gap, as natural output is constant
 - Agents are identical but not aware of it

$$c_{t}(i) = (1-\beta) x_{t} + \beta \hat{E}_{t} \sum_{T=t}^{\infty} \beta^{T-t} \left[(1-\beta) x_{T+1} - \sigma \beta \left(R_{T} - \pi_{T+1} - r_{T}^{n} \right) \right]$$
$$p_{t}(j) = (1-\xi\beta) x_{t} + \hat{E}_{t} \sum_{T=t}^{\infty} (\xi\beta)^{T-t} \left[\xi\beta (1-\xi\beta) x_{T+1} + \xi\beta \pi_{T+1} \right]$$

- **1.** Crisis: Shock to the natural rate of interest r_t^n [Eggertsson and Woodford]
 - Start at REE equilibrium with $x_t = \pi_t = 0, R_t = r_t^n = r_H > 0$
 - Exogenous shift in the natural rate of interest $r_t^n = r_L < 0$ (such that ZLB binds)
 - Two-state Markov structure: r_L persists with probability 1δ ; $r_t^n = r_H > 0$ absorbing state

$$c_{t}(i) = (1-\beta) x_{t} + \beta \hat{E}_{t} \sum_{T=t}^{\infty} \beta^{T-t} \left[(1-\beta) x_{T+1} - \sigma \beta \left(R_{T} - \pi_{T+1} - r_{T}^{n} \right) \right]$$
$$p_{t}(j) = (1-\xi\beta) x_{t} + \hat{E}_{t} \sum_{T=t}^{\infty} (\xi\beta)^{T-t} \left[\xi\beta (1-\xi\beta) x_{T+1} + \xi\beta \pi_{T+1} \right]$$

- **2.** Optimal monetary policy response to the shock: $\hat{E}_t R_{t+j}$
 - a. State-contingent FG (rational expectations + full commitment + perfect credibility)
 - Let τ be the possible date when r_t^n returns to the high state
 - For each contingency τ the CB makes a promise of k_{τ} extra periods at ZLB
 - b. Exit from the ZLB: optimal policy under "normal times"

$$c_{t}(i) = (1-\beta) x_{t} + \beta \hat{E}_{t} \sum_{T=t}^{\infty} \beta^{T-t} \left[(1-\beta) x_{T+1} - \sigma \beta \left(R_{T} - \pi_{T+1} - r_{T}^{n} \right) \right]$$
$$p_{t}(j) = (1-\xi\beta) x_{t} + \hat{E}_{t} \sum_{T=t}^{\infty} (\xi\beta)^{T-t} \left[\xi\beta (1-\xi\beta) x_{T+1} + \xi\beta \pi_{T+1} \right]$$

- 3. Bounded rationality: private agents know
 - 1. The process r_t^n and observe current state
 - **2.** $R_T = 0$ in the low state
 - **3.** Optimal state-contingent FG about R_T when $r_t^n = r_H$
 - 4. Optimal policy rule upon exit from zero bound: $\hat{E}_t R_{t+j} = r_H + \psi_\pi \hat{E}_t \pi_{t+j} + \psi_x \hat{E}_t x_{t+j}$

Aggregate demand and supply

$$x_{t} = \hat{E}_{t} \sum_{T=t}^{\infty} \beta^{T-t} \left[(1-\beta) x_{T+1} - \sigma \left(R_{T} - \pi_{T+1} - r_{T} \right) \right]$$
$$\pi_{t} = \hat{E}_{t} \sum_{T=t}^{\infty} (\xi\beta)^{T-t} \left[\frac{(1-\xi\beta)(1-\xi)}{\xi} x_{T} + (1-\xi)\beta\pi_{T+1} \right]$$

3. Bounded rationality: private agents don't know aggregate effects of policy on x_t and π_t

Actual Law of Motion of x_t , π_t : Structural equations + beliefs + shock + policy

- Time varying and state-dependent mapping between policy and π_t and x_t Details

Perceived Law of Motion: Approximate with statistical model with unobserved components

- \Rightarrow Revise $\hat{E}_t \pi_{t+j}$, $\hat{E}_t x_{t+j}$ gradually from observed output and inflation
- $\Rightarrow~\mathrm{ALM}\neq\mathrm{PLM}$ but converges to RE over time

Aggregate demand and supply

$$x_{t} = \hat{E}_{t} \sum_{T=t}^{\infty} \beta^{T-t} \left[(1-\beta) x_{T+1} - \sigma \left(R_{T} - \pi_{T+1} - r_{T} \right) \right]$$
$$\pi_{t} = \hat{E}_{t} \sum_{T=t}^{\infty} (\xi\beta)^{T-t} \left[\frac{(1-\xi\beta)(1-\xi)}{\xi} x_{T} + (1-\xi)\beta\pi_{T+1} \right]$$

- 3. Bounded rationality: Partial and general equilibrium effects of FG policy
 - Partial equilibrium: direct immediate effects on x_t through $\hat{E}_t R_{t+j}$
 - General equilibrium: delayed effects on x_t, π_t through $\hat{E}_t \pi_{t+j}, \hat{E}_t x_{t+j}$
 - GE effects initialy weak but grow over time

Optimal Forward Guidance: Front-Loaded Promises

Figure: Promises k_{τ} (y-axis) as function of shock duration τ (x-axis).

Large initial commitments, declining with shock duration \approx calendar-based FG

Optimal Policy Response: Boom and Slowdown

 No forward guidance (gray): restriction on beliefs → optimal discretion (RE)

- Optimal policy (blue):
 - Large partial equilibrium effects on impact, delayed GE
 - Larger boom for short-duration crises
 - Upon exit from ZLB, policy induced slowdown
 - Large stimulus insurance for long-lasting crisis

Optimal Forward Guidance Policy: Gradual GE Effects

Optimal Forward Guidance Policy: Policy Overshooting

Optimal Policy: Rational Expectations versus Learning

Baseline (blue) vs. RE (red)

- **Rational Expectations**: period of zero interest rate commitments rise with the length of the crisis
 - Small commitments
 - Larger stimulus only for persistent shocks \rightarrow no front-loaded stimulus
 - Conditional on a transitory shock the central bank can easily remove the stimulus

Optimal Forward Guidance: RE versus Learning

Near-complete stabilization under **RE** with vastly smaller stimulus: why?

Distinct General Equilibrium Effects

Large and immediate GE effects under RE: no front-loaded stimulus (insurance) needed

The Insurance Premium

Conclusions

• Insurance principle: large front-loaded promises

The historical record is thick with examples of underdoing it ... And pretty much in every cycle, we just tend to underestimate the damage and underestimate the need for a response. I think we've avoided that this time.

- Jerome Powell (2021)

- Central trade-off: the cost of insurance is inflation overshooting and a downturn
- Optimal state-contingent policy approximated by calendar-based guidance
- Relevant to contemporary policy discussion:
 - Critical distinction between ex ante and ex post evaluation of policy
 - Inflation itself does not signal bad policy

ALM and PLM

Let
$$z_t = \begin{pmatrix} \pi_t & x_t \end{pmatrix}'$$

Perceived Law of Motion

$$z_t = \begin{cases} \bar{\omega}_L r_L + \omega_t + e_t, & S = L\\ \omega_t + e_t, & S = H \end{cases}$$

where $\bar{\omega}_L$ measures perceived impact of the shock and

$$\omega_t = \rho \omega_{t-1} + u_t, \quad 0 \le \rho \le 1.$$

Estimates' updating

$$\omega_{t+1|t} = (\rho - g)\omega_{t|t-1} + g\left(z_t - \bar{\omega}_L r_L \cdot \mathbf{1}_{\{\mathbf{S}=\mathbf{L}\}}\right)$$

Actual Law of Motion

$$z_{t} = \begin{cases} \bar{\omega}_{L} r^{L} + \mathcal{T}_{t} \left(\omega_{t|t-1} \right) & S = L \\ \mathcal{T}_{t} \left(\omega_{t|t-1} \right), & S = H \end{cases}$$

Back

Why Front-Loaded under Learning? Long and Variable Lags

Back-loaded policy: Zero interest rate policy to be implemented rises with the length of the crisis \Rightarrow get stimulus when it is too late Back