### Fiscal-Monetary Interactions: RANK vs HANK

HANK meets FTPL (Angeletos, Lian & Wolf) plus ongoing work (ALW, ALW+Dalton Rongxuan Zhang)

June 13, 2025

Two related questions:

Q1 How do fiscal deficits influence AD, *y*, and *π*? Q2 How does FP affect what MP can achieve?

- **RANK:** equilibrium selection
- HANK: non-Ricardian consumers

Two related questions:

Q1 How do fiscal deficits influence aggregate demand and inflation?Q2 How does FP affect what MP can achieve?

- **RANK:** equilibrium selection  $\mapsto$  "crazy" (fragile, no empirical foundations)
- HANK: non-Ricardian consumers → "sensible" (robust, ample empirical foundations)

- Multiple Equil due to Keynesian Cross (spending-income feedback)
- Active Fiscal (or FTPL) = select a self-fulfilling prophesy
  - fiscal deficits have no wealth effect in equilibrium
  - consumers spend more merely because other spends more for ever after
- Exceedingly fragile unravels with simple refinements
  - economy returning to steady state in finite time
  - small noise as in global-games literature

- Multiple Equil due to Keynesian Cross (spending-income feedback)
- Active Fiscal (or FTPL) = select a self-fulfilling prophesy
  - fiscal deficits have no wealth effect in equilibrium
  - consumers spend more merely because other spends more for ever after
- Exceedingly fragile unravels with simple refinements
  - economy returning to steady state in finite time
  - small noise as in global-games literature
- Bottom line: in (refined) RANK,
  - FP is entirely irrelevant
  - MP is "dominant" even if Taylor principle violated
  - traditional approach to F-M interactions is out

- Self-fulfilling prophesies still possible but can again be refined away
- FP now matters because HHs are non-Ricardian
- A robust and empirically founded way to model M-F interactions

- Self-fulfilling prophesies still possible but can again be refined away
- FP now matters because HHs are non-Ricardian
- A robust and empirically founded way to model M-F interactions
- Lesson 1: inflationary effects of fiscal deficits?
  - FTPL-like predictions even if Taylor principle satisfied
  - Mechanism behind FTPL is "crazy", but its empirical lessons could still apply!
- Lesson 2: how does FP affect what MP can achieve?
  - CB prefers *slow* fiscal adjustment in the presence of *demand* shocks
  - ... fast fiscal adjustment in the presence of cost-push shocks

## Framework

## AS, AD, and MP

**AS:** standard, summarized in NKPC

$$\pi_t = \kappa y_t + \beta \mathbb{E}_t \pi_{t+1} = \kappa \sum_{k=0}^{\infty} \beta^k \mathbb{E}_t y_{t+k}$$

## AS, AD, and MP

**AS:** standard, summarized in NKPC

$$\pi_t = \kappa y_t + \beta \mathbb{E}_t \pi_{t+1} = \kappa \sum_{k=0}^{\infty} \beta^k \mathbb{E}_t y_{t+k}$$

**AD:** perpetual youth OLG with survival rate  $\omega \in (0,1]$ 

 $\omega = 1$  nests PIH/RANK  $\Rightarrow y_t = -\sigma r_t + \mathbb{E}_t y_{t+1}$ 

 $\omega < 1$  mimics liquidity frictions/HANK

## AS, AD, and MP

**AS:** standard, summarized in NKPC

$$\pi_t = \kappa y_t + \beta \mathbb{E}_t \pi_{t+1} = \kappa \sum_{k=0}^{\infty} \beta^k \mathbb{E}_t y_{t+k}$$

**AD:** perpetual youth OLG with survival rate  $\omega \in (0,1]$ 

 $\omega = 1$  nests PIH/RANK  $\Rightarrow y_t = -\sigma r_t + \mathbb{E}_t y_{t+1}$ 

 $\omega < 1$  mimics liquidity frictions/HANK

• MP: interest rates set according to

$$\mathbf{r_t} \equiv i_t - \mathbb{E}_t \pi_{t+1} = \boldsymbol{\phi} \mathbf{y_t}$$

active MP when  $\phi > 0$ , passive when  $\phi \leq 0$ 

## **Fiscal Block**

• Flow budget plus no-Ponzi (or HH transversality)  $\Rightarrow$ 

$$d_t = \mathbb{E}_t \left[ \sum_{k=0}^{\infty} \beta^k \left( t_{t+k} - \beta \frac{D^{ss}}{Y^{ss}} r_{t+k} \right) \right]$$

 $\blacksquare$  Debt structure: one-period bonds; fraction  $\zeta$  nominal,  $1-\zeta$  real  $\Rightarrow$ 

$$d_t - \mathbb{E}_{t-1}\left[d_t
ight] = -\zeta rac{D^{ss}}{Y^{ss}}\left(\pi_t - \mathbb{E}_{t-1}\left[\pi_t
ight]
ight)$$

## **Fiscal Block**

• Flow budget plus no-Ponzi (or HH transversality)  $\Rightarrow$ 

$$d_t = \mathbb{E}_t \left[ \sum_{k=0}^{\infty} \beta^k \left( t_{t+k} - \beta \frac{D^{ss}}{Y^{ss}} r_{t+k} \right) \right]$$

 $\blacksquare$  Debt structure: one-period bonds; fraction  $\zeta$  nominal,  $1-\zeta$  real  $\Rightarrow$ 

$$d_t - \mathbb{E}_{t-1}\left[d_t
ight] = -\zeta rac{D^{ss}}{Y^{ss}}\left(\pi_t - \mathbb{E}_{t-1}\left[\pi_t
ight]
ight)$$

**FP:** taxes set according to



passive FP when  $\tau_d > 0$ , active when  $\tau_d = 0$ 

**Definition.** A stochastic path for  $y_t, \pi_t, d_t, r_t$ , etc such that

- $\pi_t$  obeys NKPC (firm and worker optimality)
- $c_t$  obeys aggregate consumption function (consumer optimality)
- $y_t = c_t$  and  $a_t = d_t$  (goods and asset market clearing)
- *d<sub>t</sub>* obeys gov's flow budget and no-Ponzi
- $t_t$  and  $r_t$  obey assumed policy rules

(and  $y_t$  bounded)

# RANK ( $\omega = 1$ )



$$y_t = -\sigma r_t + \mathbb{E}_t y_{t+1}$$
  $\pi_t = \kappa y_t + \beta \mathbb{E}_t \pi_{t+1}$   $r_t = \phi y_t$  (+fiscal block)

### Proposition

1. Conventional equil: If  $\phi > 0$  &  $\tau_d > 0$  (active M, passive F),  $\exists$  a unique equil and is s.t.

 $y_t=\pi_t=0.$ 



$$y_t = -\sigma r_t + \mathbb{E}_t y_{t+1}$$
  $\pi_t = \kappa y_t + \beta \mathbb{E}_t \pi_{t+1}$   $r_t = \phi y_t$  (+fiscal block)

#### Proposition

1. Conventional equil: If  $\phi > 0 \& \tau_d > 0$  (active M, passive F),  $\exists$  a unique equil and is s.t.

 $y_t=\pi_t=0.$ 

2. FTPL equil: If  $\phi \leq 0 \& \tau_d = 0$  (active F, passive M),  $\exists$  a different unique equil and is s.t.

$$\frac{\partial \pi_t}{\partial \varepsilon_t} = \frac{\kappa}{\tau_y + (\kappa\zeta - \beta\phi)\frac{D^{ss}}{V^{ss}}} \qquad \underbrace{= \left(\zeta \frac{D_{ss}}{V_{ss}}\right)^{-1} \text{ when } \phi = \tau_y = \tau_d = 0}_{\text{simple FTPL arithmetic}}$$

## How Can Deficits Matter?

**The tension:** Ricardian equiv fails despite Ricardian households

- deficits can be inflationary iff they trigger a boom in c, y
- but why do Ricardian household spend more?

## How Can Deficits Matter?

**The tension:** Ricardian equiv fails despite Ricardian households

- deficits can be inflationary iff they trigger a boom in c, y
- but why do Ricardian household spend more?
- Because of a **purely self-fulfilling loop** 
  - Wlog,  $\phi = 0$ . Aggregate consumption:

$$c_t = (1-\beta)\sum_{k=0}^{\infty} \beta^k \mathbb{E}_t y_{t+k} + (1-\beta) z_t \quad \text{with} \quad z_t \equiv a_t - \sum_{k=0}^{\infty} \beta^k \mathbb{E}_t t_{t+k}$$

• In equilibrium, debt and deficits have no wealth effects:

$$a_{t} = d_{t} = \sum_{k=0}^{\infty} \beta^{k} \mathbb{E}_{t} t_{t+k} \quad \Rightarrow \quad \mathbf{z}_{t} = \mathbf{0} \quad \Rightarrow \quad c_{t} = \underbrace{(1-\beta) \sum_{k=0}^{\infty} \beta^{k} \mathbb{E}_{t} \mathbf{y}_{t+k}}_{\text{permanent income}}$$

• But: if others spend more  $\Rightarrow$  my permanent income increases  $\Rightarrow$  I spend more!

### The Crux of Active FP – with real debt

- Let real debt ( $\zeta = 0$ ) or rigid prices ( $\kappa = 0$ ), and constant rates ( $\phi = 0$ )
- $\exists$  continuum of equil with  $Y_t = Y_0$  and "free"  $Y_0$
- Now, let the following active FP:

$$T_0 = -\varepsilon_0 \qquad T_t = \tau_y Y_t \,\, orall t \geq 1,$$

This selects the following equil:

$$Y_0 = \frac{1-\beta}{\tau_y} (D_0 + \varepsilon_0)$$

- This is the "Fiscal Theory of Output (FTY)"
  - HHs coordinate on unique self-fulfilling boom that finances deficit or tax cut
  - Why? Just because that's what it takes to satisfy no-Ponzi when  $\tau_d = 0$ .

## The Crux of Active FP – with nominal debt

- Now let **nominal** debt ( $\zeta = 1$ ), and again constant rates
- Again,  $\exists$  continuum of equil with  $Y_t = Y_0$  and "free"  $Y_0$ .
- Next, let

$$D_0 = rac{B_0}{P_0}$$
 and  $P_0 = rac{\kappa}{1-eta} Y_0$  (by Phillips Curve)

and consider same active FP as before.

• This now selects unique  $Y_0$  s.t.

$$Y_0 = \frac{1-\beta}{\tau_y} \left( \frac{B_0}{\frac{\kappa}{1-\beta} Y_0} + \varepsilon_0 \right)$$

- Now any fiscal innovation is financed in part by  $P_0\uparrow$  and  $D_0\downarrow$
- But  $P_0 \uparrow$  only because  $Y_0 \uparrow$ , which in turn is sustained by same kind of self-fulfilling boom
- The FTY simply translates to the FTPL

## Fragilities of FTY/FTPL/active FP

### **1** Unravels if fiscal adjustment at any finite horizon

• can support  $y_t = \pi_t = 0$  for any MP, active or passive, if taxes adjust after 1000 periods

## Fragilities of FTY/FTPL/active FP

### **1** Unravels if fiscal adjustment at any finite horizon

• can support  $y_t = \pi_t = 0$  for any MP, active or passive, if taxes adjust after 1000 periods

### 2 Unravels if self-fulfilling boom cannot last literally for ever

### Proposition

Suppose economy returns to steady state in finite time, instead of asymptotically. Then,  $\exists$  unique equilibrium and is s.t.

 $\{y_t, \pi_t\}$  invariant to FP

regardless of  $\phi$ .

- deficits never matter, unless they move  $y_t$  literally for ever
- also ruled out by perturbations a la global games (Angeletos & Lian '23)

## **Taking Stock**

### Within (refined) RANK:

- FP is entirely irrelevant
- MP is "dominant" even if Taylor principle fails
- traditional modeling of F-M interaction is out

### How to make progress?

- Move from RANK to HANK (i.e., let HHs be non-Ricardian, as in the micro evidence)
  - $\implies$  turn deficits from sunspots to payoff-relevant
  - $\Longrightarrow$  avoid all the "bugs"

# HANK ( $\omega < 1$ )

### Mechanism: classical non-Ricardian effects

Same aggregate consumption and same definition for  $z_t$ , modulo  $\beta \mapsto \beta \omega$ :

$$c_{t} = \underbrace{(1-\beta\omega)z_{t}}_{\text{wealth effect}} + \underbrace{(1-\beta\omega)\sum_{k=0}^{\infty}(\beta\omega)^{k}\mathbb{E}_{t}[y_{t+k}]}_{\text{permament income}}.$$

(1)

In equilibrium,  $a_t = d_t = NPV$ (surpluses) but no more  $z_t = 0$ . Instead,

$$Z_{t} = \mathbb{E}_{t} \left[ \sum_{\substack{k=0\\\text{private assets}}}^{\infty} \beta^{k} t_{t+k} - \sum_{\substack{k=0\\\text{tax liability}}}^{\infty} (\beta \omega)^{k} t_{t+k} \right]$$

- **Essence:** FP stimulates *c* by shifting tax burden to future (or easing borrowing constraints)
- Key implication: Slower fiscal adjustment  $\Rightarrow$  higher  $z_t$  for same  $\varepsilon_t \Rightarrow$  larger stimulus

Answer two questions:

### **1** How inflationary are fiscal deficits?

• fix MP response; study how  $rac{\partial \pi}{\partial arepsilon}$  varies with  $au_d$ 

### 2 When does the CB prefer slow/fast fiscal adjustment?

• optimize MP response; study how CB objective varies with  $au_d$ 

#### Theorem

Let  $\omega < 1$ ,  $\phi = 0$ . Then,  $\exists$  unique equil and is such that:

- **1.** Deficits are always expansionary/inflationary. For any  $\tau_d$ ,  $\frac{\partial y_{t+k}}{\partial \varepsilon_t} > 0$  and  $\frac{\partial \pi_{t+k}}{\partial \varepsilon_t} > 0$ .
- **2.** Monotonicity. Lower  $\tau_d$  (slower fiscal adjustment)  $\Rightarrow$  bigger and more persistent boom

**3. Limit.** As fiscal adjustment gets slower and slower, the fiscally-led inflation in HANK converges smoothly to its FTPL counterpart:

$$\lim_{\tau_d \to 0^+} \left. \frac{\partial \pi_t}{\partial \varepsilon_t} \right|_{HANK} = \left. \frac{\partial \pi_t}{\partial \varepsilon_t} \right|_{FTPL}$$

- Different mechanism, but similar predictions!
- Avoids the fragilities, moots the controversy

## Understanding the Limit Result

- Intuition for  $\tau_y = 0$ :  $\underbrace{\varepsilon_0}_{\text{deficit}} = \underbrace{\underbrace{D^{ss}}_{Y^{ss}} \pi_0}_{\text{debt errosion}} + \underbrace{T}_{\text{NPV(tax hikes)}}$ 
  - as long  $\mathcal{T}>0,$  delaying tax hikes yields  $\uparrow \mathsf{AD}, \uparrow \pi_0,$  and  $\downarrow \mathcal{T}$
  - this keeps working till  $\mathcal{T} \to 0$  and hence  $\pi_0 \to \left(rac{D^{ss}}{Y^{ss}}
    ight)^{-1} arepsilon_0$
  - i.e., same debt erosion and same inflation as in simple FTPL arithmetic!

## Understanding the Limit Result

• Intuition for  $\tau_y = 0$ :  $\varepsilon_0 =$ 



- as long  $\mathcal{T}>0,$  delaying tax hikes yields  $\uparrow AD$ ,  $\uparrow \pi_0,$  and  $\downarrow \mathcal{T}$
- this keeps working till  $T \to 0$  and hence  $\pi_0 \to \left(\frac{D^{ss}}{Y^{ss}}\right)^{-1} \varepsilon_0$

• i.e., same debt erosion and same inflation as in simple FTPL arithmetic!

- Generalizes to  $au_{y} > 0$ , albeit with a twist
  - less debt erosion needed b/ automatic tax-base expansion
- **Takeaway:** deficits always inflationary, FTPL just a particular limit

## Does the difference in mechanism matter?

Same predictions about  $\pi$  and debt erosion, but two notable differences:

### **1** Robustness

- to active-monetary passive-fiscal ( $\phi > 0, \tau_d > 0$ )
- to refinements of far-ahead beliefs (steady state; Angeletos & Lian '23)
- **2** Front-loading: HANK predicts less persistence in y and  $\pi$ 
  - because non-Ricardian households are relatively impatient (spend fast)
  - important testable difference (although not the focus here)
  - consistent with post-covid experience

## **Cumulative Inflation and Front-Loading**



\*Short-Run Share = cumulative  $\pi$  in year 1 relative to cumulative  $\pi$  in years 1-5

### Q1: inflationary effects of deficits?

- In RANK, robust answer is 0, regardless of MP
- $\blacksquare$  In HANK, robust answer is  $\approx\!\mathsf{FTPL}$  when fiscal and MP adj is slow

### Q2 (next): how does FP influences, constrains, or helps optimal MP?

Again: payoff/liquidity effects in HANK as opposed to equil selection in RANK

## **Fiscal-Monetary Interactions in HANK**

### • Setting (so far):

• triple-mandate CB:

$$\min \mathbb{E}_0\left[\sum_{t=0}^{\infty}\beta^t\left\{\lambda_y y_t^2 + \lambda_\pi \pi_t^2 + \lambda_r r_t^2\right\}\right]$$

• subject to OLG/HANK for y, PC for  $\pi$ , and FP as before

### Lesson (so far):

- CB prefers fast fiscal adj w/ supply (cost-push) shocks
- CB prefers slow fiscal adj w/ demand (discount-rate) shocks

### **Fiscal-Monetary Interactions in HANK**

• CB loss, at optimal MP, as a function of  $\tau_d$ :



**Contrast with RANK:** there,  $\tau_d$  is irrelevant regardless of shocks

## Conclusion

### Fiscal-Monetary Interactions in New Keynesian Paradigm

- not flexible-price models, not Sargent-Wallace
- Two methodological approaches:
  - [1] equilibrium selection in RANK
  - [2] payoff/liquidity effects in HANK
- My recommendation: abandon [1], focus on [2]
  - different, more palatable, mechanism
  - grounded on evidence about stimulus checks, MPCs, etc
  - robust to delicate assumptions about far-ahead beliefs

- Angeletos & Lian (JPE 2023)
  - eliminate FTPL and other sunspot solutions
  - select conventional solution even if Taylor principle violated
- Woodford (2001), Angeletos & Huo (2021), etc
  - add inertia+myopia (or backward-lookingness+discounting) to conventional solution
  - reconcile hump-shapes at macro level with quick jumps at micro level
- Two birds with one stone!

## Thank You!