|  | Introduction | Data<br>oooo | Structural Model | Quasi Natural Experiment | Prepayments | Conclusions | Ancillary<br>ooooooo |
|--|--------------|--------------|------------------|--------------------------|-------------|-------------|----------------------|
|--|--------------|--------------|------------------|--------------------------|-------------|-------------|----------------------|

# Residual Mortgage Debt Insurance and Defaults in the Netherlands

Presenter: Mauro Mastrogiacomo

with: Madi Mangan & Hans Bloemen

Bank of Italy 2025

July 4th, 2025

Rome



Mauro Mastrogiacomo

Mortgage insurance



## In a nutshell

- **Aim:** evaluate effectiveness of residual mortgage insurance (Nationale Hypotheek Garantie NHG) in increasing financial stability, using a microsimulation of the option to default
- **Research question:** Can mortgage insurance impact loan non-performance?
- **Answer:** Yes, the insurance helps lowering mortgage defaults and boosts financial stability.
- But ... there are signals of moral hazard
  - Separations increased among insured, and separated participants default more.
  - Insured borrower prepay less, even when they receive unexpected inheritances.
- **Conclusion**: NHG is valuable, but more efficient with sharper design.

Mauro Mastrogiacomo

Mortgage insurance

1/27

э

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

EUR



# Residual mortgage debt insurance?

- Managed by a fund (Stichting Waarborgfonds Eigen Woningen), that is government-backed, and takes on residual debt upon selling the house.
- Mortgage providers co-pay in case of loss of the fund.
- Only for borrowers who buy houses under a varying price threshold
- Eligibility: unemployment, separation, disability, death.
- Defaulting on loans is not a necessary condition for the insurance to pay out.
- Insured borrowers receive insurance & bottom interest rate. But:
  - They must amortize at least 50%
  - Respect LTI-cap
  - Fix interest rate for at least 10 years

э

イロト 人間 ト イヨト イヨト

FUR

#### Layout

- **Structural approach**: modeling default as an optimal decisions.
- **Microsimulation**: option value setting, where revealed preferences are assumed optimal and non-chosen alternatives must be simulated.
- **Validation**: quasi-natural experiment (RDD) of defaults based on institutional discontinuity at the insurance threshold.
- Study of separations and prepayments around the threshold, including inheritances.

э

イロト 人間 ト イヨト イヨト

| Introduction | Data<br>0000 | Structural Model | Quasi Natural Experiment | Prepayments | Conclusions |
|--------------|--------------|------------------|--------------------------|-------------|-------------|
|--------------|--------------|------------------|--------------------------|-------------|-------------|

## **Related Literature**

#### • Mortgage Default

- Liquidity Defaults
  - Mian and Sufi 2011, 2013, 2014.
  - Adelino, Schoar, and Severino 2016

#### 2 Strategic Default

- Gerardi et al. 2018 Gerardi et al. 2013 can pay but wouldn't pay very rare
- Guiso, Sapienza, and Zingales 2013, Riley 2013, Mayer et al. 2014 no recourse mortgages
- little evidence about NHG Kim et al. 2022, Haan and Mastrogiacomo 2020

#### Optimal Stopping Model

- Foster and Van Order 1984, 1985
- Campbell and Cocco 2015 dynamic model of households' mortgage decisions
- Hatchondo, Martinez, and Sánchez 2015 Life-cycle model with house-price risk

イロト 人間 ト イヨト イヨト

э

#### Data

#### • Loan-level-data (LLD) collected by DNB. (2012-2018)

- Credit-register type of data (with retrospective information (11 years: 2007-2018)
- Unique information: account status, insurance, prepayments, plus 60 more loan and borrowers characteristics (LTV, LTI, origination, interest rate percentage ...)

#### • Linked to admin data, using pre-loading by tax office, by CBS:.

- Registry data; household composition
- Social security registry: current employment status
- Tax data: income and wealth
- Transfer data: inheritances
- ... data collection requested a modification of Dutch law, **but ...**

э

イロト 人間 ト イヨト イヨト



## Descriptives 1: threshold and prices

- Threshold does not follow predictable pattern
- First slightly above average purchase prices
- Significantly surpassed average prices during crisis (almost all sold houses qualified)
- Eventually settled below prices



・ロト・日本・日本・日本・日本・日本

FUR

6/27



#### Descriptives 2: an offer one cannot refuse?

- During crisis take-up rate was almost 100%
- This implies little room for adverse selection in insurance.





## Descriptives 3: defaults around the threshold

- Non-performance low by international standards
- Negative slope at the left of the threshold (effect of affordability?)
- Defaults jump up at the right of the threshold
- No slope at the right



Mortgage insurance

Image: A math

Ancillary

# DP vs Option Value Model

- DP: Default is a result of optimizing behaviour of the borrower.
  - Inter-temporal choice, optimal path to default within given period.
  - We do not observe all possible periods, so no further results presented here.
- Option value: at each period, borrower decides whether to pay their mortgage or default, considering the lifetime return of each action.
  - Defaulted borrower have to pay rent for ever, can exploit different fiscal facilities/subsidies that affect their gross-net trajectory.
  - otherwise, they make the same decision the following period.
- Model delivers the marginal utility of present and future consumption

イロト 人間 ト イヨト イヨト

| Introduction Data Structu | Iral Model Quasi Natural Experiment | Prepayments<br>oo | Conclusions | 1 |
|---------------------------|-------------------------------------|-------------------|-------------|---|
|---------------------------|-------------------------------------|-------------------|-------------|---|

# **Estimation results**

|              | All       | Α               | Age             |           | yment    | Туре о    | of House        | Location  |                 |
|--------------|-----------|-----------------|-----------------|-----------|----------|-----------|-----------------|-----------|-----------------|
|              |           | $\leq 35$       | >35             | Employees | Others   | Detached  | Apartment       | Randstad  | Other           |
| Consumption  | 2.853***  | 19.57***        | 1.108***        | 3.797***  | 0.695*** | 2.893***  | 2.886***        | 2.857***  | 2.944***        |
| Home Equity  | 0.0174*** | -0.170***       | 0.229***        | -0.017*** | 1.100*** | 0.0649*** | -0.0747***      | -0.087*** | 0.0368***       |
| Age          | -0.001*** | -0.491***       | 0.0173***       | -0.024*** | 0.003*** | -0.012*** | -0.009***       | -0.026*** | -0.001***       |
| NHG          | 3.906***  | 1.962***        | 4.650***        | 3.262***  | 9.194*** | 4.881***  | 1.593***        | 1.365***  | 4.310***        |
| а            | -21.57    |                 |                 |           |          |           |                 |           |                 |
| Observations | 4 805 933 | $1 \ 031 \ 592$ | $3 \ 774 \ 341$ | 3 830 937 | 974 996  | 3 689 279 | $1 \ 116 \ 654$ | 507 375   | $4 \ 298 \ 558$ |

#### ✤ rental price

Mauro Mastrogiacomo

EUR

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

∃ つへべ 10/27

| Introduction<br>0000 | Data<br>0000 | Structural Model                  | Quasi Natural Experiment<br>●ooooo      | Prepayments<br>oo                       | Conclusions<br>00 | Ancillary<br>ooooooo |
|----------------------|--------------|-----------------------------------|-----------------------------------------|-----------------------------------------|-------------------|----------------------|
| RDD ba               | sic set      | ир                                |                                         |                                         |                   |                      |
|                      |              | $Y_{d_{ii}} = \alpha + \beta_1 u$ | $w_{i,t} + \beta_2 NHG_i + \beta_3 N_i$ | HG <sub>i</sub> * uw <sub>i.t</sub> + a | U                 |                      |

Where *NHG* = 1 indicates participation and *uw* = underwater status

NHG threshold qualifies as a sharp cutoff point (c) that allows assignment to treatment. The assignment variable is the value of the house at purchase  $h_{i1}$  and the treatment status implies that  $NHG = 1[h_1 < c]$ .

Two assumptions are relevant:

- treatment effect is constant (it does not differ by household),
- Continuity, s.t. unobservables v imply that  $E(v_i | h_{i1} = h_1)$  is continuous in  $h_1$ .

Mauro Mastrogiacomo



# Smoothness around threshold (2014)



Mauro Mastrogiacomo



Quasi Natural Experiment

Prepayments

Conclusions

Ancillary 0000000

# Effect (around the threshold)

|                       |            | Drop 5%    | Drop 10%   | Drop at    | Drop 5000 EUR  |
|-----------------------|------------|------------|------------|------------|----------------|
|                       | All        | tails      | tails      | threshold  | from threshold |
| Underwater (β1)       | 0.0355***  | 0.0351***  | 0.0351***  | 0.0355***  | 0.0353***      |
| NHG (β2)              | -0.0005*   | -0.0006**  | -0.0009*** | -0.0005*   | -0.0004        |
| NHG * underwater (β₃) | -0.0179*** | -0.0211*** | -0.0215*** | -0.0178*** | -0.0173***     |
| Constant              | 0.0129***  | 0.0131***  | 0.0130***  | 0.0129***  | 0.0129***      |
| Observations          | 1 594 766  | 1 261 260  | 1 120 874  | 1 569 792  | 1 522 232      |
| R-squared             | 0.0090     | 0.0091     | 0.0094     | 0.0090     | 0.0089         |

robustness

Mauro Mastrogiacomo

Mortgage insurance

< □ > < ⑦ > < ≧ > < ≧ > EUR

13/27

æ

| Introduction Data Structural Model Quasi Natural Experiment Prepayme | nts Conclusions Ancillary |
|----------------------------------------------------------------------|---------------------------|
|----------------------------------------------------------------------|---------------------------|

## Qualification criteria

Honoured claims of NHG participants by qualification criteria (left), versus national separation and unemployment rate (right)



| Introduction | Data<br>0000 | Structural Model | Quasi Natural Experiment | Prepayments<br>oo | Conclusions<br>oo | Ancillary<br>0000000 |
|--------------|--------------|------------------|--------------------------|-------------------|-------------------|----------------------|
|              |              |                  |                          |                   |                   |                      |

## Augmented model

$$Y_{d_{it}} = lpha + eta_1 u w_{i,t} + eta_2 NHG_i + eta_3 NHG_i * u w_{i,t} + eta_3 NHG_i + eta_3 NHG_i$$

 $\beta_4$  separated +  $\beta_5$  NHG \* separated +

 $\beta_{6}$  unemployed +  $\beta_{7}$  NHG \* unemployed +  $\delta X_{i,t} + v$ 

- Separating is (partly) a choice within the household.
- Other criteria like disability, death, and unemployment are (usually) involuntary.
- If no effect of insurance, we would expect no significant difference in defaults between those separating or not with and without insurance.
- in *X* we also add risk triggers and other characteristics

< ロ > < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

FUR

Quasi Natural Experiment

## Augmented model results

|                                 | 201            | 2-2018         |
|---------------------------------|----------------|----------------|
|                                 | Model A        | Model B        |
| Underwater ( <b>β</b> 1)        | $0.0293^{***}$ | $0.0223^{***}$ |
| NHG $(\beta 2)$                 | -0.0024***     | -0.0056***     |
| NHG $*$ underwater ( $\beta$ 3) | -0.0157***     | -0.0140***     |
| Separated (β4)                  | $0.0042^{***}$ | 0.0003         |
| Separated*NHG (β5)              | 0.0007*        | 0.0016***      |
| Unemployed (β6)                 | $0.0129^{***}$ | $0.0097^{***}$ |
| Unemployed * NHG ( $\beta$ 7)   | 0.0075***      | $0.0077^{***}$ |
| Debt service to income ratio    |                | $0.0016^{***}$ |
| Income (ihs)                    |                | -0.0099***     |
| Assets (ihs)                    |                | -0.0027***     |
| LTV at origination              |                | $0.0121^{***}$ |
| Current age                     |                | -0.0006***     |
| Self-employed at origination    |                | $0.0058^{***}$ |
| Dummies for year of origination | yes            | yes            |
| Year of birth dummies           | yes            | yes            |
| Constant                        | 0.0278***      | 0.1737***      |
| Observations                    | 10,108,840     | 10,108,840     |
| R-squared                       | 0.0093         | 0.0128         |



Mauro Mastrogiacomo

#### Mortgage insurance

| Introduction<br>0000 | Data<br>0000 | Structural Model | Quasi Natural Experiment | Prepayments<br>●○ | Conclusions | Ancillary<br>0000000 |
|----------------------|--------------|------------------|--------------------------|-------------------|-------------|----------------------|
|                      |              |                  |                          |                   |             |                      |

## Prepayments

- Prepayments can reduce potential residual debt
- NHG insured are less wealthy, lower prepayments only indicative near threshold?
- Inheritances could induce prepayments, but insured could be less likely to expect/receive one.
- "Unexpected" inheritances should be less endogenous.
  - Inheritances & transfers micro data 2007-2018
  - All inheritances > 6000 euro
- Prepayment rate = (cumulative prepayments) / (original debt)

17/27

イロト イポト イヨト イヨト

| Introduction | Data<br>0000 | Structural Model | Quasi Natural Experiment | Prepayments<br>O | Conclusions | Ancill<br>0000 |
|--------------|--------------|------------------|--------------------------|------------------|-------------|----------------|
|--------------|--------------|------------------|--------------------------|------------------|-------------|----------------|

## Prepayment discontinuity





#### Prepayments: wrap up

- Progressive levels of exogeneity: inheritances, unexpected inheritances, NHG threshold.
- All checks reveal that NHG induces 3% lower prepayment rate
- Checks: inheritance vs gifts, age of unexpected death, bandwidth around and away from threshold. •• checks
- Specifications including bank dummies correct for prepayment fees.
- Conclusion: residual debt insurance induces borrowers to prepay less, and increases therefore their likelihood to be/stay underwater.

イロト 人間 ト イヨト イヨト

| Introduction | Data<br>0000 | Structural Model | Quasi Natural Experiment | Prepayments<br>oo | Conclusions | Ancillary<br>ooooooo |
|--------------|--------------|------------------|--------------------------|-------------------|-------------|----------------------|
|              |              |                  |                          |                   |             |                      |

# Conclusions

- NHG is a valuable tool to stabilize the housing market, as it sets higher lending standards and reduces defaults.
- Does the design need sharpening? Moral hazard could play a role:
  - in increasing separations
  - in disincentivizing prepayments
- Options:
  - Upfront: make premium depend on riskiness? or (draconically) remove separation from qualification criteria?
  - Ex-post: introduce co-payment? or conditionality on repayment capacity?
  - Do nothing: we accept a "moderate" amount of moral hazard.
- During the crisis little role for adverse selection, but now participation is dropping: should we remove the threshold?

<ロト < 回ト < 回ト < 回ト

FUR

| Introduction | Data<br>oooo | Quasi Natural Experiment | Prepayments | Conclusions | Ancillary<br>●೦೦೦೦೦೦ |
|--------------|--------------|--------------------------|-------------|-------------|----------------------|
|              |              |                          |             |             |                      |

Mauro Mastrogiacomo

#### Mortgage insurance

|  | Introduction<br>0000 | Data<br>oooo | Structural Model | Quasi Natural Experiment | Prepayments | Conclusions | Ancillary<br>o●oooooo |
|--|----------------------|--------------|------------------|--------------------------|-------------|-------------|-----------------------|
|--|----------------------|--------------|------------------|--------------------------|-------------|-------------|-----------------------|

# Prepayment share by bank





Mauro Mastrogiacomo

#### Mortgage insurance

◆□▶▲□▶▲目▶▲目▶ ▲目▼

EUR

Quasi Natural Experiment

Prepayments

Conclusions

Ancillary

# Checks: prepayment rate

|                                                 | Coefficient<br><i>NHG</i> | Coefficient<br>NHG ×<br>inheritance | N       |                                        | Coefficient<br><i>NHG</i> | Coefficient<br>NHG ×<br>inheritance | N       |
|-------------------------------------------------|---------------------------|-------------------------------------|---------|----------------------------------------|---------------------------|-------------------------------------|---------|
| Baseline Estimation(NHG × Inheritance)          | -0.0285***                | -0.0079***                          | 656 159 | Rich parents dummy × Inheritance       | 0.0099***                 | 0.0018                              | 390 279 |
| NHG × Unexpected Inheritance:died before 70(65) | -0.0283***                | -0.013***                           | 597 795 | Close to the threshold( $\pm$ 200,000) | -0.0251***                | -0.0097***                          | 552 717 |
| NHG × Unexpected Inheritance:died before 65(60) | -0.0283***                | -0.018***                           | 592 169 | Loans that originate since 2007        | -0.0279***                | -0.0076***                          | 433 998 |
| NHG × Unexpected Inheritance:died before 75(70) | -0.0283***                | -0.009***                           | 604 966 | Loans that originate since 2013        | -0.0217***                | -0.0051***                          | 192 773 |
| NHG × Transfer                                  | -0.0285***                | -0.0050***                          | 656 159 | Add amount inherited                   | -0.0286***                | -0.0072***                          | 656 159 |
| NHG × Inheritance after buying houses           | -0.0288***                | -0.0048***                          | 635 481 | Add bank dummy                         | -0.0267***                | -0.0085***                          | 656 159 |
| NHG × Gift                                      | -0.0291***                | -0.0004                             | 656 159 |                                        |                           |                                     |         |





Э



# Competing qualification criteria

Unemployment and disability hazards do not show significant discontinuity at the threshold. (\* back)



◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Mauro Mastrogiacomo

Mortgage insurance

#### 🕨 back

| Model                                     | NHG*underwater (β3) |
|-------------------------------------------|---------------------|
| Baseline                                  | -0.0141***          |
| Robustness checks:                        |                     |
| Dropping 5% tail                          | -0.0170***          |
| Dropping 10% tail                         | -0.0175***          |
| Drop observation €5000 from threshold     | -0.0134***          |
| Drop observation €10000 from threshold    | -0.0123***          |
| Observations within €50000 from threshold | -0.0165***          |
| Placebo tests:                            |                     |
| Treatment: income above €40000            | 0.0370***           |
| Treatment: income above €60000            | 0.0130***           |
| Treatment: fin. wealth above €50000       | 0.0041              |
| Treatment: fin. wealth above €100000      | 0.0277***           |

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ | □ ● ○ ○ ○ ○

#### Mauro Mastrogiacomo

EUR

25/27

Ancillary

# Policy simulations for share of defaults based on 2014 data

|                                        | Predicted defaults | St. Dev. |
|----------------------------------------|--------------------|----------|
| Baseline model                         | 2.04%              | 0.0183   |
| NHG threshold increases by 10000 euro  | 1.86%              | 0.0183   |
| NHG threshold increases by 50000 euro  | 1.80%              | 0.0182   |
| NHG threshold increases by 100000 euro | 1.76%              | 0.0182   |
| LTI limit increases by 10%             | 2.19%              | 0.0181   |
| LTI limit increases by 20%             | 2.23%              | 0.0185   |
| LTI limit increases by 30%             | 2.47%              | 0.0189   |
| LTV at origination increase by 10%     | 2.17%              | 0.0187   |
| LTV at origination increase by 20%     | 2.31%              | 0.0192   |
| LTV at origination increase by 30%     | 2.47%              | 0.0197   |

・ロト ・部 ト ・ ヨ ト ・ ヨ ト Э

#### Mauro Mastrogiacomo

#### Mortgage insurance

#### EUR

0000000

|  | Introduction<br>0000 | Data<br>0000 | Structural Model | Quasi Natural Experiment | Prepayments<br>00 | Conclusions | Ancillary<br>000000 |
|--|----------------------|--------------|------------------|--------------------------|-------------------|-------------|---------------------|
|--|----------------------|--------------|------------------|--------------------------|-------------------|-------------|---------------------|

## Sensitivity analysis: rental prices

In baseline model we assume that alternative rental price is 25% of gross income. This is very low by current market conditions, and corresponds to prudential DSTI share (NIBUD) for purchase. • back

|             | Rent as a percentage of total household income |             |             |            |            |               |  |
|-------------|------------------------------------------------|-------------|-------------|------------|------------|---------------|--|
|             | 22%                                            | 25%         | 28%         | 30%        | 34%        | 38%           |  |
| Consumption | -0.679***                                      | 2.853***    | 2.870***    | 3.723***   | 4.008***   | $3.218^{***}$ |  |
| Home Equity | 0.0170***                                      | 0.0174***   | 0.0165***   | 0.0204***  | 0.0231***  | 0.0259***     |  |
| Age         | 0.0261***                                      | -0.00988*** | -0.00900*** | -0.0251*** | -0.0348*** | -0.0261***    |  |
| NHG         | 5.042***                                       | 3.906***    | 3.559***    | 3.235***   | 2.448***   | 2.032***      |  |

Mauro Mastrogiacomo

Mortgage insurance

イロト イポト イヨト イヨト

FUR