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What is Cryptography?

Definition:

- Cryptography is a technique to protect
information by converting it into an
unreadable format without a secret key.

Main Objectives:
1. Confidentiality
2. Integrity



A little bit of naming

A cryptographic system is a system capable of
encrypting and decrypting a message through
the use of an algorithm and a key (an
alphanumeric string). The message to be
encrypted is called “plaintext” while the result

of the cryptographic algorithm is called
“ciphertext”



Alice and Bob are the two parties that intend to communicate
securely through the network
*They could be client and server programs, or devices (e.g.

routers) ...
e Trudy is a third party that can listen to the messages
exchanged by Alice and Bob and possibly alter them, delete
them or create fake ones
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Types of Cryptography

* Main Categories:

* - Symmetric Cryptography: One key for both
encryption and decryption.

* - Asymmetric Cryptography: A pair of public
and private keys.
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Introduction to Homomorphic

Encryption

What is it?

- A type of encryption that allows computations on
encrypted data without decrypting it.

Key Feature:

- The computation result remains encrypted but, when
decrypted, matches the result of working on plaintext
data.

Origin of the term:
- 'Homomorphic' means 'same form' in Greek.



How Does Homomorphic Encryption
Work?

* 1. Encryption: Data is transformed into encrypted
form.

e 2. Computation on encrypted data: Operations
like addition and multiplication are performed
without access to plaintext.

* 3. Decryption: The encrypted result is

transformed into plaintext, providing the correct
output.

* Note: Computationally intensive but increasingly
practical.



An example

Scenario: Credit Risk Analysis with Homomorphic Encryption

A bank wants to calculate a customer's creditworthiness based on their income and total debt, but

without ever seeing the raw data for privacy reasons.

Problem:

The customer does not want to share their income and debt in plaintext with the bank.

The bank needs to compute the debt-to-income ratio to assess risk.

If traditional encryption were used, the bank would not be able to perform calculations on the

encrypted data.

Solution with Homomorphic Encryption

Ts

2.

The customer encrypts their financial data with a homomorphic public key.

They send the encrypted data to the bank.

The bank performs computations directly on the encrypted data without decrypting it.
The encrypted result is returned to the customer.

The customer decrypts the result with their private key and obtains their creditworthiness score.



Using homomorphic encryption on
linear regression

1. Scenario:

* A healthcare organization wants to use patient data (e.g., age, weight, blood pressure) to train

a linear regression model to predict disease risk.
e The data is sensitive and must remain private throughout the analysis.
2. Homomorphic Encryption in Action:

e The organization encrypts the dataset using a homomorphic encryption scheme before

sharing it with a data analyst or external machine learning provider.

e This encryption allows computations directly on the encrypted data without needing

decryption.
3. Steps in the Process:

e Data Encryption:

Each data point (features and target values) is encrypted using a public key. For example:
o X (features) - Enc(X)
e 1y (target) - Enc(y)

e Secure Computation:
The analyst performs the required computations (e.g., matrix multiplication for gradient

descent) directly on the encrypted data:

o Compute Enc(B) = (X1 X)Xy, where 8 is the coefficient vector of the regression

model.



The gradient descent approach to
linear regression

The gradient descent approach allows us to fit a linear regression model on a variety of datasets. In particular, we
focus on datasets that can have up to 50 columns for independent variables (features) and up to 100000 rows
(one hundred thousand rows). To measure the software-only (SW-only) performance results we selected various
datasets with different numbers of rows and columns. Specifically, we ran several experiments by fixing the number
of columns to five, thirty and fifty. For each case, we used different number of rows and measured the run time for
fitting a linear regression model and making inference (prediction) with the trained model. The experimental results
are as shown in the following tables and plots.
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Training time on Cornami accelerated
Hardware
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Statistical Analysis of the Results

RMSE: root mean square error

n_rows n_cols | RMSE (FHE and actual values) | RMSE (PTXT and actual values)
250 50 0.0064 0.00626
2500 50 0.00535 0.00499
5000 50 0.00529 0.00486
12500 50 0.0065 0.00618
17500 50 0.00683 0.00658
25000 50 0.00567 0.00533




Conclusion

* We trained a linear regression model on fully
homomorphic encrypted (FHE) data using the
stochastic gradient descent algorithm.

 The estimated coefficients are comparable to the
actual ones when the dataset contains more than
1,000 rows.

* Although training time is relatively slow using
software, it can be significantly faster using
Cornami hardware.
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