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Motivation

1

Support inflation 
nowcasting

Leverage nontraditional 
data sources
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The INI is a quantitative summary of digital news coverage 
on inflation and prices of goods and services

2

Inflation News Index (INI)

INI is INI is NOT
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Constructing the INIs: An overview

3

• Pointwise Mutual 
Information (PMI)

• Reinforcement 
Learning (RL)

Web scraping

Keyword Filtering

Deriving Lexicons

• MultiLayer 
Perceptron

• Bidirectional Long 
Short Term 
Memory (BiLSTM)

Machine Learning

INI-RL

INI-BiLSTM

Manual 
Annotation
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Data sources and annotation
✓Data were collected from multiple local news sources. [Sections of interest: 

economy, banking, finance]. 

4

✓Articles are then filtered with the keywords: “inflation”, “price”, “prices”

✓A random sample of 3,000 sentences  were annotated

Sample annotated sentences and their classes/labels[

News Text Label

Aside from flour, other ingredients also went up including LPG, and sugar 
which substantially increase prices.

1

This was a slight decline from last weeks price level of P37.83/kg. -1

Some will not pass on the fuel price increases on passengers so they can 
keep their ticket prices low and haul in more customers.

0

Source: Various media websites, authors’ estimates

applewebdata://B47AE6A6-A481-43DF-B16A-026FF30DF636/
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Data pre-processing
Pre-processing steps include:

▪ Removal of extra spaces in the text
▪ Case normalization
▪ Removal of punctuations marks
▪ Unicode conversion
▪ Tokenization
▪ Vectorization

4

Additional steps include:

▪ Part of speech tagging 
▪ Named entity recognition
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Dictionary based method involves a creating a list of keywords. Pointwise mutual 
information (PMI) was used to infer word associations with increasing and 
decreasing inflation

Overall PMI score for a word 𝑤:

𝑆𝑐𝑜𝑟𝑒 𝑤 = 𝑃𝑀𝐼 𝑤 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 − 𝑃𝑀𝐼 𝑤 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒
 
Initial lexicon: Words with Score > 0 are classified as increase and words with Score 
< 0 are classified as decrease

Reinforcement learning was used to improve the initial lexicon

Methodology I: Lexicon refined with 
reinforcement learning

5
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Methodology II: Machine Learning models

Machine learning based method utilizes two artificial neural networks to predict 
association of text 

▪ MultiLayer Perceptron (MLP)
• A fully connected feedforward neural network, notable for finding 

nonlinear relationships.

▪ Bidirectional Long Short Term Memory (BiLSTM)
• Contains two LSTM layers in opposite directions. LSTMs are used for 

finding long term dependencies in sequential data such as time series, 
text and audio.

6
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Evaluation of methodologies

Lexicons
Accuracy

(in percent)
Macro F1

(in percent)

Initial lexicon 64.3 41.8

Lexicon with RL 89.3 69.3

Machine Learning Models
Accuracy

(in percent)
Macro F1

(in percent)

MLP 68.9 45.7

BiLSTM(16) 78.4 56.2

BiLSTM(32) 79.8 57.9

Both dictionaries and machine learning models were evaluated against test set of 
the manually-labelled sentences sampled from online news articles

7

Note: Number in parenthesis for BiLSTM refers to number of hidden units.
Source: Authors’ estimates
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Results
Estimates of INIs strongly co-move with inflation.  

8

Source: Authors’ estimates

INIs vis-à-vis inflation
Q1 2018 to Q4 2023
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Nowcast evaluation
On average, forecast errors have declined in models augmented with INI-RL 
compared to baseline models

11

Baseline 
SVR

SVR+INI

NCR 0.29 0.28
CAR 0.28 0.04*

R1 0.46 0.33*
R2 0.47 0.32
R3 0.47 0.08*

R4A 0.36 0.14*
R4B 0.30 0.06*
R5 0.38 0.22
R6 0.41 0.40
R7 0.28 0.22
R8 0.27 0.30
R9 0.61 0.59
R10 0.30 0.21
R11 0.29 0.29
R12 0.33 0.35

BARMM 0.37 0.13*
R13 0.20 0.14*

Philippines 0.37 0.03*
Average 0.36 0.23

Baseline AR ARX+INI

NCR 0.24 0.24
CAR 0.28 0.26

R1 0.27 0.24
R2 0.36 0.33
R3 0.40 0.34*

R4A 0.33 0.30
R4B 0.30 0.24*
R5 0.31 0.28
R6 0.41 0.37
R7 0.30 0.28
R8 0.22 0.21
R9 0.39 0.40
R10 0.26 0.29
R11 0.29 0.27
R12 0.38 0.38

BARMM 0.38 0.23*
R13 0.16 0.15

Philippines 0.30 0.31
Average 0.31 0.28

Nowcast evaluation: Mean Absolute Error
January-December 2023

Source: Authors’ estimates
*Passed Diebold-Mariano test
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Nowcast evaluation
On average, forecast errors have declined in models augmented with INI-BiLSTM 
compared to baseline models

12

Baseline AR ARX+INI

NCR 0.24 0.27
CAR 0.28 0.26

R1 0.27 0.24*
R2 0.36 0.33*
R3 0.40 0.32*

R4A 0.33 0.29
R4B 0.30 0.23*
R5 0.31 0.27
R6 0.41 0.37
R7 0.30 0.30
R8 0.22 0.21
R9 0.39 0.38
R10 0.26 0.27
R11 0.29 0.29
R12 0.38 0.37

BARMM 0.38 0.25*
R13 0.16 0.16

Philippines 0.30 0.29
Average 0.31 0.28

Baseline 
SVR

SVR+INI

NCR 0.29 0.02*
CAR 0.28 0.24*

R1 0.46 0.22*
R2 0.47 0.39
R3 0.47 0.03*

R4A 0.36 0.02*
R4B 0.30 0.02*
R5 0.38 0.12*
R6 0.41 0.45
R7 0.28 0.24
R8 0.27 0.29
R9 0.61 0.60
R10 0.30 0.23
R11 0.29 0.28
R12 0.33 0.33

BARMM 0.37 0.25*
R13 0.20 0.22

Philippines 0.37 0.18*
Average 0.36 0.23

Nowcast evaluation: Mean Absolute Error
January-December 2023

Source: Authors’ estimates
*Passed Diebold-Mariano test
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Key findings

▪ INIs are quantitative summary of digital news coverage on inflation and prices 
of goods and services

▪ INIs are found to co-move with actual inflation
▪ INIs exhibit strong correlation with survey-based inflation expectations of firms 

and professional forecasters
▪ INIs contain information that can help nowcast inflation
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Thank you!
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