

Transforming Survey Analysis

Tools for Central Banks

Nicholas Gray and Dominic Jones 2025 BIS IFC Workshop on Data Science in Central Banking February 2025

Surveys

- Surveys often include free-text open-ended questions.
 - They're great for eliciting what's top of mind or getting at unstructured thoughts or things the survey had missed.
- If the survey sample is small enough, reading responses is the best option.
- But usually, the sample is huge! NLP techniques can help build a qualitative understanding using quantitative techniques.

Surveys at central banks

- Consumer payments surveys
- Trust and credibility
- Banknote design
- Inflation expectations
- Business surveys
- Lending surveys

Framework

- Gradual supervision
 - Making use of expert knowledge where we have it...
 - ...providing guides where we don't.
- Cluster exploration
 - Providing richer descriptions of topics to help with comprehension
- Iterative refinement
 - Subject-matter experts in the loop.
- Concept matrices
 - Are there any complex interactions worth thinking about?

Gradual supervision

- Usually, SMEs start knowing not much (but not zero) and gradually learn more about survey responses.
- Our old model just run a topic model didn't reflect this growing understanding of the data.
- Luckily, techniques now exist that cover the whole gamut of unsupervised to fully supervised – and allow us to incorporate growing expert knowledge!

Unsupervised

Weakly supervised

Fully supervised

- Input: not much
- Easy
- Hard to interpret sometimes

- Input: anything you can think of
- Cheap
- Very good quality

- Input: labelled examples
- Costly + high expert effort often required
- High quality

Unsupervised techniques

- Descriptive statistics: wordclouds, TF-IDF scores, phrasal segmentation algorithms.
- (Unsupervised) Topic modelling
 - BERTopic
- Information retrieval
 - BM25, pretrained sentence transformers.
 - Great for incorporating priors!

Weak supervision

- When SMEs start building a picture it helps to iterate fast.
 - Full supervision is expensive and slows down the loop.
 - Trying candidate models should be cheap.
- Guided topic models
 - BERTopic (again)
 - CatE
- Prompt-guided embeddings
 - Using natural language to shape the embedding space.
- Weakly-supervised classifiers
 - Fast to build!

Full supervision

- When SMEs have a strong understanding of the data or want to be consistent over multiple surveys – it pays to train a fully supervised classifier.
- We often use **taxonomy classification** and train cross-encoders or text matching networks.
- It's useful to think about how to communicate these models and to track performance over time.

Recommendations

- Work closely with your SMEs.
 - Communicate the nature of what you're doing and be honest about limitations.
 - When eliciting guidance be clear about what format you want it in. Consider making a form for it!
- Reporting matters.
 - Do spend some time making reports easily digestible.
- When should we move up the chain? Questions to ask SMEs:
 - "Is this worth more investigation?"
 - "Should we cut this out of the analysis?"
 - "Are there any indicators of this sort of response?"
 - "Are there any sub-categories you're interested in?"
 - "Do you want to track this over time for the next survey?"

Cluster exploration

- Clusters, groups, classes don't need to be set in stone.
- Especially when understandings change!
- Agnostic of method, geometry of embedding space can be utilised.
- Providing interactivity and multiple perspectives important for reducing potential bias.

Cluster exploration

Interactivity:

Representative responses:

Closest to centroid of 7_credit_score_report cluster:	
Distance from centroid	Reponses
0.856	I didn't know this was being reported to the credit company until after it was done, I am trying to buy a house and this is causing problems.
0.827	They reported my account to the credit bureaus as 30 days late.
0.813	I contacted my bank in regards to this issue as they are reporting every month to the credit reporting agency 's with remarks which is affecting my credit score in a negative way.
0.805	I told them that was not fair because I cleared up my credit and it is in good standing.
0.804	This company has pulled my credit multiple times for no reason as well.

Prompts, too!

2D Visualization of Embeddings using PaCMAP, with HDBSCAN Clustering

LLM summaries

• All running on local LLMs for privacy reasons.

Q: Provide summaries of the most unusual document in cluster*

Response:

Scam Involving Timeshare Conversion:

- Sale of a timeshare condo as a campground membership.
- Down payment of \$10,000 without delivery of promised timeshare product.
- Denial of refund despite a contract addendum.
- Accusation of credit card fraud protection guarantee non-honoring by Chase.
- Loss of significant funds without receiving promised item or refund.
- Seeking governmental and legal assistance due to fraud.

Unauthorized Charges and Identity Theft:

- Unauthorized changes to bank account details and subsequent unauthorized transactions.
- Denial of dispute by bank despite evidence of fraudulent activity.
- Credit bureaus listing unauthorized transactions as late payments and charge-offs.
- Loss of funds due to identity theft and fraudulent charges.
- Seeking assistance to recover stolen money and address unauthorized account changes.

Fraudulent Transactions and Disputes:

- Merchant fraudulently disputing charges and misrepresenting to credit bureaus.
- Credit bureaus listing unauthorized transactions as legitimate.
- Credit card companies failing to resolve disputes and continuing to charge customers.
- Scenario involving a guest with a Capitol One card charged twice for a non-existent hotel stay.
- White Dial Stainless Steel watch purchase fraudulently disputed due to account access by an unauthorized third party.

Iterative refinement

- Cluster assignments no matter what algorithm you use can be a mixed bag.
- More problematic: sometimes they're hard to explain!
- Having SMEs "in the loop" helps here.

Iterative refinement

- Cache discrete clusters (circled)
- Rerun clustering on large central cluster

- Remove noise cluster (for downstream re-clustering)
- Focus in on clustered response

Run analysis on 20 clusters (plus 2 cached clusters from first iteration)

sentences = 23049 number of clusters = 3 noise cluster count = 12

sentences = 22882 number of clusters = 20 noise cluster count = 13818

Isualization of Embeddings using PaCMAP, with HDBSCAN Clust

noise cluster count = 0

Recommendations

- Sit down with your SMEs and explain all your charts.
- Let them see the data underlying any LLM summaries the chain of trust is important!
- Automate the process where possible tight feedback loops are good.
- Feed the refined clusters back into the gradual supervision pipeline.
 - Usually, iterative refinement takes place somewhere between the un- and weakly-supervised steps.

Concepts

- When the output of gradual supervision is a set of classifiers, we call the classifier output *concepts*.
- Reporting on concepts is straightforward: bar charts, line graphs, etc.
- But what about more complex interactions?

Concept co-occurrence

 Each text response is associated with a set of concepts. This forms a "bipartite graph". We can "project" these into concept-concept matrices.

Concept co-occurrence networks

Interpreting concept co-occurrence networks

- An edge means that two concepts are related (i.e. many responses are tagged with both concepts).
- Clusters on this graph can reveal more complex relationships that bar charts or group-bys wouldn't!
- If we see tight clusters (e.g. cliques) it's a sign that three separate concepts might be usefully thought of as a group.
 - In some cases!

Conclusions

- Guided supervision
 - Work closely with your SMEs
 - Use the whole gamut of techniques from un- to weakly- to fully-supervised.
- Cluster exploration
 - Important for reducing potential bias from basic topic summarization.
- Refinement
 - Build tight interactive loops with your SMEs to allow them to refine group assignments.
 - Use LLMs to reduce cognitive load on SMEs, but ensure they have access to the underlying data.
- Interactions
 - It's worth plotting a co-occurrence network if you've got a lot of concepts that might be interrelated.