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Abstract

• This paper introduces a specially designed toolbox aimed at leveraging Natural

Language Processing (NLP) to unlock insights for the National Bank of Romania

(NBR), enhancing economists' capacity to process text data such as financial news

and press releases, exploring areas of Financial Stability, Monetary Policy

Efficiency, and Central Bank Communication.

• We propose implementing scalable Natural Language Processing methods within

the National Bank of Romania’s analysis toolkit, focusing on lexicon-based

sentiment analysis of daily news and monetary policy decisions. This effort,

unprecedented at NBR, seeks to align the institution with the best practices of

other central banks and highlights the untapped potential of textual data as a

valuable resource in central banking.
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Introduction

• The paper is structured in two chapters: the first one addressed monetary policy

statements in English from the National Bank of Romania, the European Central

Bank, the United States’s Federal Reserves and 25 other emerging market

countries, with the scope of building a list of positive and negative words

associated with intensity scores from the financial stability point of view, the

starting point of the Romanian Financial Stability Dictionary.

• The second chapter focus on the Romanian news archive database, and we

finalize the Financial Stability Dictionary that contains specialized positive and

negative words with expert scores to measure text-based sentiments in financial

texts.
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• The first part focuses on English monetary policy statements starting from the

moment NBR adopted inflation targeting. We extended the dataset by including

ECB, FED, and 25 other emerging market countries.

• We fine-tuned a Transformer model, DistilBERT, on the binary sentiment labels we

created for the monetary policy statement based on movements in the monetary

policy interest rate of each country (positive sentiment if the interest rate is

lowered, negative sentiment if the interest rate is raised).

• After trying unspecialized lexicons, we demonstrated that using specialized

Financial Stability Dictionary is crucial for constructing a sentiment index for

monetary policy, and we measure the polarity of words using DistilBERT.
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Chapter 1. The English Monetary 

Policy Statements Database
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Confusion Matrix of 
DistilBERT on test 
sample from the 
extended English 
database

precision recall F1-score support

positive 86% 85% 85% 259

negative 90% 90% 90% 383

accuracy 88% 642

macro accuracy 88% 88% 88% 642

Weighted average 88% 88% 88% 642

Classification 
report on test 
sample (10 
epochs)
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NBR Monetary Policy
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• The version of the sentiment index with scores outperforms the simple sentiment

index by 4% (76% versus 80%), and the final index that we obtained by mixing the two

methods matches 90% of the labels. This performance is considered excellent, given

that the neutral decisions were built using the last decision rule (negative sentiment

persists if last decision was to raise the interest rate, positive sentiment persists if the

last decision was to lower interest rate) and not manually evaluated by a human.

• To assess the performance of our NLP analysis, we examined the correlation between

the sentiment index of monetary policy decisions and the most relevant economic

variable: the inflation rate, since controlling inflation is the primary goal of monetary

policy. We found an expected negative correlation between our computed sentiment

and the all-items HICP (Harmonized Index of Consumer Prices) of -43%, while the

correlation between the monetary policy interest rate and HICP was -60%.



Sentiment Index of Monetary Policy compared to Binary Labels



Chapter 2. The Romanian Financial 

News Articles Database

• The second part addresses the NBR’s archive of daily financial news, for which we

conduct topic modeling using LDA to track key trends in the news, and propose a

tailor-made, Romanian Financial Stability Dictionary to measure sentiments.

• We computed polarity scores using GenAI tools and human expert judgement.

We analyze daily general economic market sentiment and present an example of

Named Entity Recognition (NER) analysis for Banca Transilvania, the largest bank

in the Romanian banking sector.

• In absence of labels, we assess the performance by comparing our method with

K-Means clustering applied to embeddings obtained with multilingual BERT

Transformer, and by demonstrating correlations with macroeconomic and market

variables as well as interactions with monetary policy decisions.
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Interactive LDA analysis, Example for year 2023
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Word Cloud analysis, Example for year 2023
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Daily Sentiment of News using Romanian Financial Stability Dictionary

𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝐼𝑛𝑑𝑒𝑥 =
𝑃 𝑡 − 𝑁 𝑇
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• To assess the performance of our daily sentiment indicator, we developed a K-

means analysis according to Kanungo (2002) on embeddings using the BERT

multilingual model by Devlin (2018). The results show a 70% overlap between the

clusters and the binary sentiments from the simple index computed by counting

lemmas, while a slightly lower 67.5% overlap was observed between the clusters

and the binary sentiments from the index computed also using scores (evaluated

by ChatGPT prompt, but also by human Financial Stability experts). It seems that

in the case of daily news, contrary to monetary policy decisions, the scores do not

improve the accuracy of the sentiment index. We will interpret this with caution

given that this is an unsupervised method and just a rough performance

evaluation, and we will re-evaluate on the longer time sample.
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Daily Sentiment of Financial News and Monetary Policy Decisions



• We compared the daily sentiment of financial news with the moments of monetary

policy decisions and showed that there is strong evidence that the press respond to

monetary policy decisions and that the communication of the central bank is

efficient in influencing the markets.

• In 2019, Romania experienced negative sentiment from political point of view due

to the controversial 'greed tax' imposed on banks and energy companies, which led

to concerns about economic stability and investor confidence. Additionally, the

political climate was tense and polarized as the country prepared for presidential

elections, further exacerbating uncertainty and public discontent.

• There was a rise in sentiment in mid-2020 despite the COVID-19 pandemic. The

opposite pattern can be identified in early 2018 and especially in 2022, where there

were 8 negative monetary policy decisions, meaning the NBR raised the interest rate

to combat inflation pressures. In just one year, the reference monetary policy rate

rose by almost 5 percentage points due to the need to counteract the international

inflationary environment.
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Daily Sentiment of News and Stock Market Index
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Conclusions

• This paper proposes stepping aside from classical numerical, tabular data and

investing more time and effort in the use of nontraditional data, not just time

series, thus implementing natural language processing methods at a large scale for

some types of text that exist in a central bank. The primary goal is to provide the

NBR with a guideline for pre-processing Romanian text, building NLP tools, and

benchmarking sentiment analysis.

• We can only hope that by following this NLP Toolbox for the National Bank of

Romania, the list of potential use cases for NLP will continue to be extended at the

NBR and that economists will commit to a long-term adoption of text data in their

research, as there are many other text sources available.
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Thank you!
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