#### 4th IFC and Bank of Italy Workshop on "Data Science in Central Banking"

#### Data science: the role of statisticians



Elisabetta Carfagna, University of Bologna Chair of the Special Interest Group on Data Science International Statistical Institute (ISI)

# Alternative data sources and statistics

# Non-probability data:

 Large datasets, new data sources, administrative registers, satellites and aircrafts, webcams, data voluntarily provided by the internet users, data harvested from the web

## Questions

- How reliable are statistics produced through data science applied to big data?
- Do machine learning classifiers outperform parametric models?
- Which is the role of statisticians?

# Data elaborated for estimating acreage of crops

- Satellite data:
  - 6 images from Sentinel 1 and Sentinel 2
  - 6 vegetation indexes for each of the Sentinel 2 images:
  - Normalized Difference Vegetation Index (NDVI)
  - Green Normalized Vegetation Index (GNDVI)
  - Two-band Enhanced Vegetation Index (EVI2)
  - Normalized Difference Water Index (NDWI)
  - Chlorophyll Red-Edge (ClRed-edge)
  - Soil-Adjusted Vegetation Index (SAVI)
- Digital elevation model

# Area sampling frame - Un-clustered point sampling



Training and test data: ground data collected by Italian Ministry of Agricultural Food and Forestry Policies (MiPAAF) in 2016 (AGRIT project) 574 georeferenced points in the north of Tuscany Region

# Information collected on the ground on the sample of 574 geo-referenced points

- Land use
  - Agricultural land use
  - Cropping patterns
- Farm management
  - Soil cover
  - Tillage practices
  - Ground cover technique
  - Presence and kind of irrigation
  - Presence of fences







Esempio di 781 - SIEPI E FILARI inseriti nella matrice agricola





Esempio di 781 - SIEPI E FILARI pertinenti alla rete stradale principale: da non rilevare

# Comparison of the performance of classifiers

 Regularized multinomial regression - penalized logistic classifier estimated using the maximization of the likelihood function combined with a lasso penalty term to deal with many explicative variables

$$Pr(G = k | X = x) = \frac{\exp\left(\beta_{k0} + b_k^T x\right)}{1 + \sum_{l=1}^{K-1} \exp(\beta_{l0} + b_l^T x)}, k = 1, \dots, K-1$$

- 3 machine learning classifiers:
  - random forest
  - boosting
  - bagging

Each classifier has been repeated for different training and test sets, maintaining the same proportions of training and test sets (1000 simulations):

- 80% of the sample used for training the classifiers (459 points)
- 20% of the sample used for testing (115 points)

# Distribution of accuracy of Random Forest, Boosting, Bagging and Regularized multinomial regression

- with all explicative variables
- with only explicative variables derived from satellite data



# Median accuracy and Kappa value for the various classifiers

Vineyards; olive groves; sunflower; winter cereals, other crops

| All explanatory variables          |          |       | Satellite explanatory variables only     |          |       |  |
|------------------------------------|----------|-------|------------------------------------------|----------|-------|--|
| Median accuracy of classifiers     | Accuracy | Kappa | Median accuracy of classifiers           | Accuracy | Kappa |  |
| Boosting                           | 0.845    | 0.777 | Random forest                            | 0.691    | 0.526 |  |
| Regularized multinomial regression | 0.836    | 0.767 | Regularized<br>multinomial<br>regression | 0.689    | 0.521 |  |
| Random forest                      | 0.819    | 0.731 | Boosting                                 | 0.677    | 0.528 |  |
| Bagging                            | 0.812    | 0.713 | Bagging                                  | 0.652    | 0.495 |  |

Subset of ground data - 177 out of the 574 points close to cities and coastal areas selected to simulate a probable spatial distribution of data collected by citizens (citizen science)



Distribution of accuracy of Random Forest, Boosting, and Regularized multinomial regression with 177 sample points out of the 574: stratified random subsample and citizens subsample - 142 points (80%) for training – 35 points

#### Accuracy



Median accuracy and Kappa value for the various classifiers with 177 sample points: stratified random subsample and citizen subsample

Vineyards; olive groves; sunflower; winter cereals, other crops

| Stratified random subsample        |          |       | Citizen subsample                  |          |       |
|------------------------------------|----------|-------|------------------------------------|----------|-------|
| Median accuracy of classifiers     | Accuracy | Карра | Median accuracy of classifiers     | Accuracy | Kappa |
| Boosting                           | 0.77     | 0.66  | Boosting                           | 0.77     | 0.63  |
| Regularized multinomial regression | 0.76     | 0.64  | Regularized multinomial regression | 0.79     | 0.65  |
| Random forest                      | 0.72     | 0.59  | Random forest                      | 0.74     | 0.55  |

# Comparisons of area estimates based on: 1) citizen subsample 2) entire AGRIT sample

### Total study area 741,450 ha

|                | citizen subsample |         | Area estimate<br>citizen-AGRIT |     |
|----------------|-------------------|---------|--------------------------------|-----|
| Other          | 148,654           | 152,364 | -3,709                         | -2  |
| Olive groves   | 52,896            | 47,043  | 5,853                          | 12  |
| Vineyard       | 50,577            | 37,368  | 13,209                         | 35  |
| Winter cereals | 47,488            | 42,877  | 4,611                          | 11  |
| Sunflowers     | 5,285             | 9,070   | -3,785                         | -42 |

Expansion factor based on photo-interpreted systematic sample (29,658 points) has been adopted also for estimates based on citizen subsample

# Role of statisticians in data science

- Population and variables of interest under and over coverage
- Data collection methodology training and test data
- Data quality sampling and non sampling errors
- Quantify uncertainty Classification accuracy small classes
- Classifiers assumptions interpretation
- Models for combining proxies with real data bias-variance tradeoffs
- Results analysis

ISI welcomes IFC sessions at ISI regional conference, Malta, June 3-6, 2026

Thank you elisabetta.carfagna@unibo.it

# Main references

Carfagna, E., Gallego, F.J. (2005) Using remote sensing for agricultural statistics. International Statistical Review, 73: 389-404.

Defourny, P. (2017) Land cover mapping and monitoring. In: J. Delincé (ed.), Handbook on Remote Sensing for Agricultural Statistics (Chapter 2). Handbook of the Global Strategy to improve Agricultural and Rural Statistics (GSARS): Rome.

Friedman J., Hastie T., Tibshirani R. (2001) The elements of statistical learning, volume 1. Springer series in statistics New York, NY, USA.

Gómez, C., White, J.C. & Wulder, M.A. (2016) Optical Remotely Sensed Time Series Data for Land Cover Classification: A Review. ISPRS Journal of Photo-grammetry and Remote Sensing, 116: 55–72.

Hamza M. and Larocque D. An empirical comparison of ensemble methods based on classification trees. Journal of Statistical Computation and Simulation, 75(8):629–643, 2005

Lei Ma, Yu Liu, Xueliang Zhang, Yuanxin Ye, Gaofei Yin, Brian Alan Johnson, (2019) Deep learning in remote sensing applications: A meta-analysis and review, ISPRS Journal of Photogrammetry and Remote Sensing, Volume 152, 2019, Pag-es 166-177, ISSN 0924-2716

Pratesi M. (2023) Letter from the President, The Survey Statistician, 2023, Vol. 88, 4.

Tillé Y., Debusschere, M., Luomaranta, H., Axelson, M., Elvers, E., Holmberg, A. & Valliant, R. (2022) Some Thoughts on Official Statistics and its Future (with discussion), Journal of Official Statistics,38(2) 557-598. https://doi.org/10.2478/jos-2022-0026