

Leonardo Gambacorta (BIS) and Vatsala Shreeti*

Economist, Innovation and the Digital Economy, Bank for International Settlements (BIS)

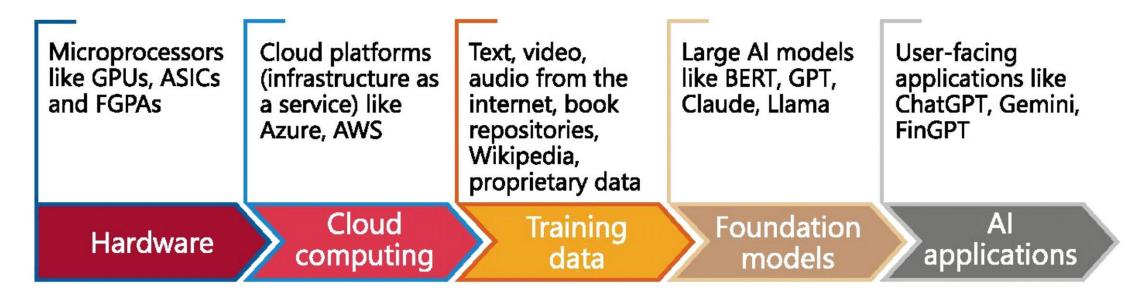
24 October 2025, The Digital Economy Amid Rising International Tensions, Banca d'Italia

^{*} The views expressed here are those of the presenter and not necessarily those of the BIS.

How are AI applications provided?

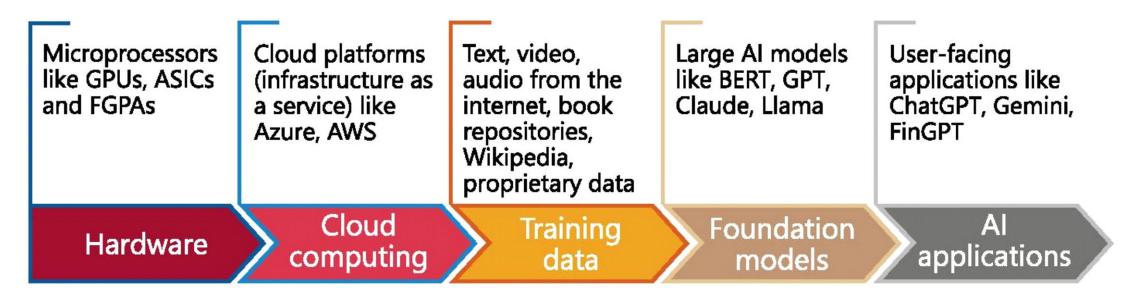
Microprocessors like GPUs, ASICs and FGPAs

Cloud platforms (infrastructure as a service) like Azure, AWS Text, video, audio from the internet, book repositories, Wikipedia, proprietary data Large AI models like BERT, GPT, Claude, Llama User-facing applications like ChatGPT, Gemini, FinGPT

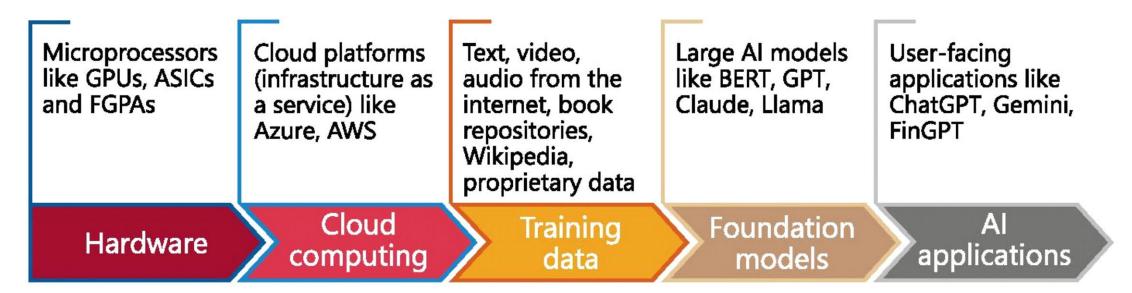

Hardware

Cloud computing

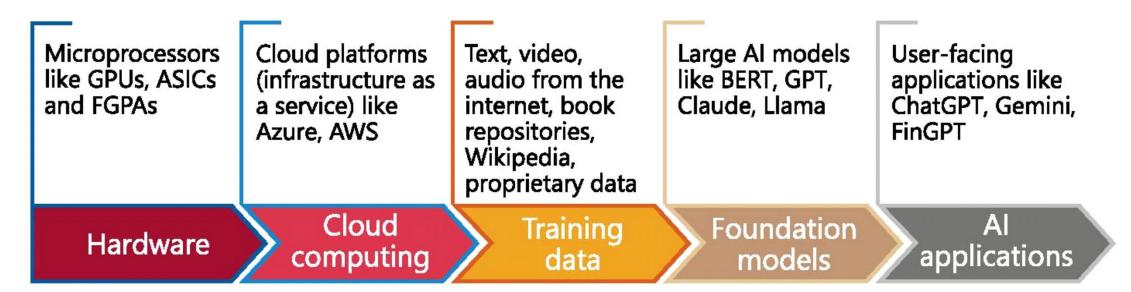
Training data


Foundation models

AI applications

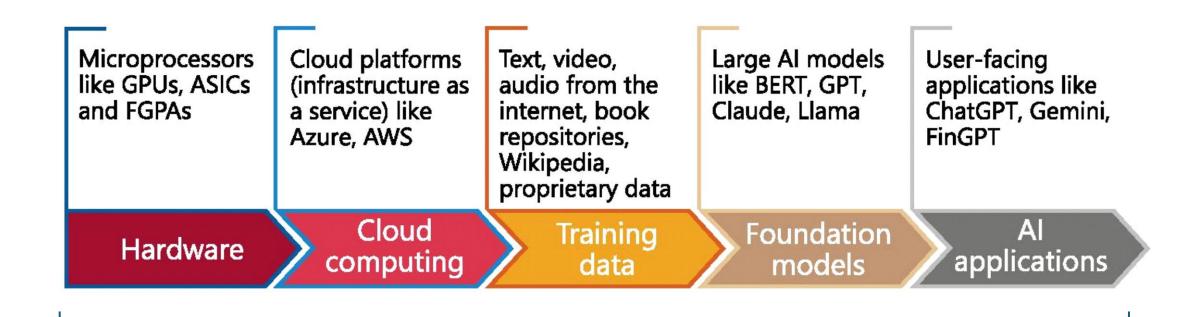

Hardware

- Specialised AI chips such as field-programmable gate arrays (FPGAs), application-specific integrated circuits (ASICs) and GPUs.
- GPUs are the most widely used, especially during the training phase of AI model development.
 Thousands of GPUs required for training AI models, as well as for inference.
- It takes eight GPUs for Microsoft Bing to answer a single question in less than one second (CNBC, 2023)


Cloud computing

- Range of on-demand services, including data and model storage, processing, computation and analytics; can be accessed remotely.
- Three main service models for cloud computing: i) software as a service (SaaS), ii) platform as a service (PaaS) and iii) infrastructure as a service (laaS).
- Al models are typically trained and stored using the laaS model.

Training data

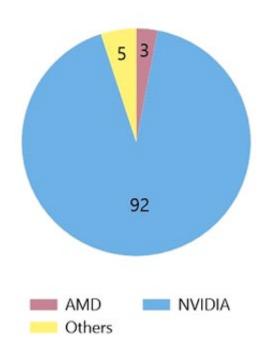

- Datasets including text, audio, video and images from both public and proprietary sources.
- Training data could also be synthetic.
- Automated or human-driven labelling to make it suitable for training AI models.

Foundation models

- Large AI models that can be adapted for various functions and applications.
- Performance of a foundation model depends not only on its technical architecture but also on the volume and quality of the training datasets

The AI supply chain: human capital

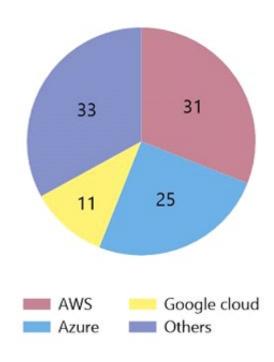
Al talent



What does the market look like in each layer of the AI supply chain?

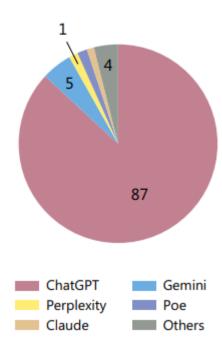
Hardware

- Nvidia serves most of the global market with gross margins of over 70%.
- Initially serving the video game market, first to leverage the parallel computing capacity of its GPUs for AI models.
- Nvidia's GPUs come in an exclusive bundle with CUDA, its parallel computing platform.
- CUDA has become the industry standard for programmers and can only be used with Nvidia's GPUs.
- Strategic acquisition of Mellanox in 2019, a technology company that provides the architecture to connect GPUs in a network.
- First-mover's advantage and benefits from exclusively bundling CUDA with its GPU offerings.


A. GPU revenues from data centres¹

Cloud

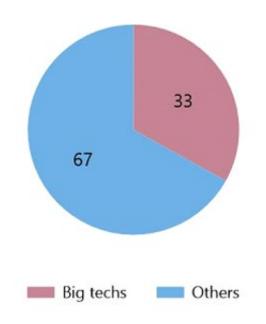
- Globally, the cloud computing market is dominated by three big tech companies: Amazon Web Services (31%), Microsoft Azure (24%) and Google Cloud Platform (11%).
- For laaS, the market is even more concentrated, 74% market share globally of AWS, Microsoft and Google.
- High switching costs for end-users; switching difficult without extensive retraining of engineers.
- Egress fees: a cost on users for transferring data out of the cloud to a rival platform.
- Ecosystem of vertically integrated services.
- High fixed costs, lack of interoperability and significant direct and indirect network effects in usage.


B. Cloud computing²

Foundation models and AI applications

- There are over 300 foundation models in the market, provided by 14 different firms (CMA, 2024; Korinek and Vipra, 2024).
- Competing business models: open-source (Llama, DeepSeek) vs proprietary (OpenAl).
- Nevertheless, market for foundation models currently is dominated only by a handful of firms like OpenAI, Google DeepMind, Anthropic and Meta.
- Economic forces: high fixed costs & low variable costs, economies of scale and scope, competition "for" the market, vertical integration.
- Al application layer: many downstream applications, but questions about the market structure within each market. Winner takes all dynamics?

C. Al applications³



Big tech footprint in the AI supply chain

Big techs to big AI?

- Big techs are investing heavily in AI: in 2023, they accounted for 33% of the total capital raised by AI firms, and nearly 67% of the capital raised by generative AI firms.
- They are also vertically integrating across all layers of the AI supply chain, especially the big cloud providers.
- Active in the foundation model layer, either through partnerships or as producers of foundation models themselves. Amazon, Google, Meta and Microsoft also active in the hardware layer.
- Unique position as publicly available data run out. Own pool of proprietary data, updating privacy policies and terms of use, acquisitions of data owners.
- A new cloud-model-data loop?
- Countervailing forces on data: diminishing returns from additional data, not all data will reinforce this loop.

D. Capital raised by AI firms

"Acquihires"

Billion-dollar 'acqui-hires' are bad for competition

From Google to Microsoft to Meta, some of the biggest tech deals of the past few years have been staff moves

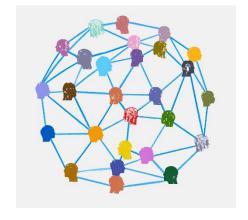
INNOVATION > VENTURE CAPITAL

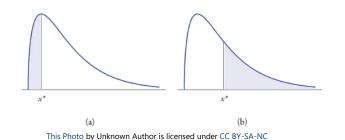
How 'Acquihires' Are Reshaping Silicon Valley's Al Investments

Big Tech's acquihire deals face regulatory scrutiny, outgoing EU antitrust official says

What are the consequences for financial stability and other outcomes?

Potential impact on economic outcomes


- Consumer welfare: limited consumer choice, lock-in, restricted access of smaller firms, for example, TSMC in 2021.
- Direction of innovation controlled by major cloud providers/big tech, risk of misalignment between socially desirable innovation and privately profitable innovation.
- Operational resilience of critical infrastructure. E.g. CrowdStrike incident, 2024.
- As AI model use is expanding in finance, a concentrated supply chain can create systemic risk.
- Use of similar algorithms, datasets and models can lead to flash crashes, market volatility and illiquidity during times of stress.


Financial stability and Al

Early rule-based systems were already important for financial stability: 1987 US stock market crash

Machine learning increases network interconnectedness, data uniformity, model herding.

Gen AI leads to the fat tail problem, third party dependencies, model herding and uniformity.

Why is regulation hard?

Path ahead is not straightforward

- Achieving consensus on policy is difficult as the AI supply chain contains many different markets that fall under the ambit of different regulatory authorities, often with competing goals.
- International cooperation even more elusive, jurisdictions differ in their legal frameworks, geopolitical goals and regulatory appetite.
- Pace of technological progress in the field of AI is usually much faster than regulatory capacity.
- Need to have a constantly evolving skillset among policymakers and regulators.
- Antitrust measures are applied ex post, need to balance static effects on competition with dynamic effects on future innovation.

Thank you. Questions? Vatsala.Shreeti@bis.org

Possible actions

Public data sets for model training?

Non-discrimination requirements for access to foundation models?

Antitrust: evidence collection

Data sharing frameworks?

Multi-cloud strategies? Common APIs?

Harmonising regulatory frameworks?

Sharing best practices?